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A J-function for Inhomogeneous
Spatio-temporal Point Processes
O. CRONIE and M. N. M. VAN LIESHOUT
CWI, Amsterdam, The Netherlands

ABSTRACT. We propose a new summary statistic for inhomogeneous intensity-reweighted
moment stationarity spatio-temporal point processes. The statistic is defined in terms of
the n-point correlation functions of the point process, and it generalizes the J -function when sta-
tionarity is assumed. We show that our statistic can be represented in terms of the generating
functional and that it is related to the spatio-temporal K-function. We further discuss its explicit
form under some specific model assumptions and derive ratio-unbiased estimators. We finally
illustrate the use of our statistic in practice.

Key words: inhomogeneous spatio-temporal point process, intensity-reweighted moment sta-
tionarity, J -function, K-function, location-dependent thinning of hard core model, log-
Gaussian Cox process, n-point correlation function, Papangelou conditional intensity, Poisson
process, (reduced Palm measure) generating functional

1. Introduction

A spatio-temporal point pattern can be described as a collection of pairs ¹.xi ; ti /ºmiD1; m � 0,
where xi 2 WS � Rd ; d � 1, and ti 2 WT � R describe, respectively, the spatial loca-
tion and the occurrence time associated with the i -th event. Examples of such point patterns
include recordings of earthquakes, disease outbreaks and fires (see, e.g., Gabriel & Diggle
(2009), Møller & Díaz-Avalos (2010) or Ogata (1998)).

When modelling spatio-temporal point patterns, the usual and natural approach is to
assume that ¹.xi ; ti /ºmiD1 constitute a realization of a spatio-temporal point process (STPP) Y
restricted toWS�WT . Then, in order to deduce what type of model could describe the observa-
tions ¹.xi ; ti /ºmiD1, one carries out an exploratory analysis of the data under some minimal set
of conditions on the underlying point process Y . At this stage, one is often interested in detect-
ing tendencies for points to cluster together or to inhibit one another. In order to do so, one
usually employs spatial or temporal summary statistics, which are able to capture and reflect
such features.

A simple and convenient working assumption for the underlying point process is stationarity.
In the case of a purely spatial point pattern ¹xi ºmiD1 � WS generated by a stationary spatial
point process X , a variety of summary statistics have been developed; see, for example, Chiu et
al. (2013), Gelfand et al. (2010), Illian et al. (2008) or Lieshout (2000). One such statistic is the
so-called J -function (Lieshout & Baddeley, 1996) given by

J.r/ D
1 �G.r/

1 � F.r/
(1)

for r � 0 such thatF.r/ ¤ 1. Here, the empty space functionF.r/ is the probability of having at
least one point of X within distance r from the origin, whereas the nearest neighbour distance
distribution function G.r/ is the conditional probability of some further point of X falling
within distance r from a typical point of X . Hence, J.r/ < 1 indicates clustering, J.r/ D 1

indicates spatial randomness and J.r/ > 1 indicates regularity at inter-point distance r .

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fsjos.12123&domain=pdf&date_stamp=2014-10-07
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In many applications, though, stationarity is not a reasonable assumption. This observation
has led to the development of summary statistics being able to compensate for inhomogeneity.
For purely spatial point processes, Baddeley et al. (2000) introduced the notion of second-
order intensity-reweighted stationarityand defined a summary statistic Kinhom.r/. It can be
interpreted as an analogue of the K-function, which is proportional to the expected number
of further points within distance r of a typical point of X , as it reduces to K.r/ when X is
stationary.

The concept of second-order intensity-reweighted stationarity was extended to the spatio-
temporal case by Gabriel & Diggle (2009) who also defined an inhomogeneous spatio-
temporal K-function Kinhom.r; t/, r; t � 0. These ideas were further developed and studied in
Møller & Ghorbani (2012) with particular attention to the notion of space–time separability.

To take into account interactions of order higher than two, Lieshout (2011) introduced the
concept of intensity-reweighted moment stationarity for purely spatial point processes and
generalized (1) to such point processes.

In this paper, we develop a proposal of Lieshout (2011) to study the spatio-temporal gen-
eralization Jinhom.r; t/ of (1) under suitable intensity reweighting. In section 2, we give the
required preliminaries, which include definitions of product densities, Palm measures, gener-
ating functionals, n-point correlation functions and intensity-reweighted moment stationarity
for STPPs. Then, in section 3, we give the definition of Jinhom.r; t/ under the assumption of
intensity-reweighted moment stationarity and discuss its relation to the inhomogeneous spatio-
temporalK-function of Gabriel & Diggle (2009). In section 4, we write Jinhom.r; t/ as a ratio of
1� Finhom.r; t/ and 1�Ginhom.r; t/ in analogy with (1). As a by-product, we obtain generaliza-
tions of the empty space function and the nearest neighbour distance distribution. The section
also includes a representation in terms of the Papangelou conditional intensity. In section 5,
we consider three classes of STPPs for which the intensity-reweighted moment stationarity
assumption holds, namely Poisson processes, location-dependent thinning of stationary STPPs
and log-Gaussian Cox processes. In section 6, we derive a non-parametric estimator Ĵinhom.r; t/

for which we show ratio-unbiasedness. The new statistic is applied to data on the 2001 foot
and mouth disease epidemic in the UK in section 7. Finally, section 8 provides a summary and
discussion, and the Supporting Information contains some proofs and additional material.

2. Definitions and preliminaries

In this section, we recall notions from point process theory. The reader is referred to Daley &
Vere-Jones (2003, 2008) for further details.

2.1. Simple spatio-temporal point process

In order to set the stage, let kxk D
�Pd

iD1 x
2
i

�1=2
and d

Rd
.x; y/ D kx � yk; x; y 2 Rd ,

denote, respectively, the Euclidean norm and metric. Because space and time must be treated
differently, we endow Rd � R with the supremum norm k.x; t/k1 D max¹kxk; jt jº and the
supremum metric

d..x; t/; .y; s// D k.x; t/ � .y; s/k1 D max¹d
Rd
.x; y/; dR.t; s/º;

where .x; t/; .y; s/ 2 Rd � R. Then .Rd � R; d.�; �// is a complete separable metric space that
is topologically equivalent to the Euclidean space .Rd �R; d

RdC1
.�; �//. Note that in the supre-

mum metric, a closed ball of radius r � 0 centred at the origin 0 2 Rd � R is given by the
cylinder set

BŒ0; r� D ¹.x; t/ 2 Rd � R W max¹kxk; jt jº � rº:

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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564 O. CRONIE and M. N. M. VAN LIESHOUT Scand J Statist 42

Write B.Rd � R/ D B.Rd /˝ B.R/ for the d -induced Borel � -algebra, and let ` denote the
Lebesgue measure on Rd �R. Furthermore, given some Borel set A � Rd �R and some mea-
surable function f , we interchangeably let

R
A
f .y/ dy and

R
A
f .y/`.dy/ represent the integral

of f over A with respect to `.
In this paper, an STPP is a simple point process on the product space Rd �R. More formally,

letN be the collection of all locally finite counting measures ' on B.Rd �R/, that is, '.A/ <1
for bounded A 2 B.Rd � R/, and let N be the smallest � -algebra on N to make the mappings
' 7! '.A/ measurable for all A 2 B.Rd � R/. Consider in addition the sub-collection N� D
¹' 2 N W '.¹.x; t/º/ 2 ¹0; 1º for any .x; t/ 2 Rd � Rº of simple elements of N .

Definition 1. A simple STPP Y on Rd � R is a measurable mapping from some probability
space .�;F ;P/ into the measurable space .N;N / such that Y almost surely (a.s.) takes values
in N�.

Throughout, we will denote the Y -induced probability measure on N by P . Both
Y.¹.x; t/º/ D 1 and .x; t/ 2 Y will have the same meaning, and both Y.A/ and jY \ Aj may be
used as notation for the number of points of Y in some set A, where j � j denotes cardinality.

2.2. Product densities and n-point correlation functions

Our definition of the inhomogeneous J -function relies on the so-called n-point correlation
functions, which are closely related to the better known product densities. Here, we recall their
definition.

Suppose that the factorial moment measures of Y exist as locally finite measures and that
they are absolutely continuous with respect to the n-fold product of ` with itself. Then the
Radon–Nikodym derivatives �.n/; n � 1, referred to as product densities, are permutation
invariant and defined by the integral equations

E

2
4 X¤

.x1;t1/;:::;.xn;tn/2Y

h..x1; t1/; : : : ; .xn; tn//

3
5

D

Z
� � �

Z
h..x1; t1/; : : : ; .xn; tn//�

.n/..x1; t1/; : : : ; .xn; tn// dx1 dt1 � � � dxn dtn

(2)

for non-negative measurable functions h W .Rd �R/n ! R under the proviso that the left-hand
side is infinite if and only if the right-hand side is. The symbol

P¤ indicates that the sum is
over n-tuples of distinct points. Equation (2) is sometimes referred to as the Campbell formula.
Heuristically, �.n/..x1; t1/; : : : ; .xn; tn// dx1 dt1 � � � dxn dtn is the infinitesimal probability of
observing points x1; : : : ; xn 2 Rd of Y at the respective event times t1; : : : ; tn 2 R. For n D 1,
we obtain the intensity measure ƒ of Y as

ƒ.A/ D

Z
B�C

�.1/..x; t// dx dt

for any A D B �C 2 B.Rd �R/. We shall also use the common notation �.x; t/ D �.1/..x; t//
and assume henceforth that N� D inf.x;t/ �.x; t/ > 0.

The n-point correlation functions (White, 1979) are defined in terms of the �.n/ by setting
�1 � 1 and for other n recursively by

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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�.n/..x1; t1/; : : : ; .xn; tn//Qn
kD1 �.xk ; tk/

D

nX
kD1

X
D1;:::;Dk

kY
jD1

�jDj j.¹.xi ; ti / W i 2 Dj º/; (3)

where
P
D1;:::;Dk

is a sum over all possible k-sized partitions ¹D1; : : : ;Dkº;Dj ¤ ;, of the
set ¹1; : : : ; nº and jDj j denotes the cardinality of Dj .

For a Poisson process on Rd � R with intensity function �.x; t/, owing to, for example,
theorem 1.3 in Lieshout (2000), �.n/..x1; t1/; : : : ; .xn; tn// D

Qn
kD1 �.xk ; tk/, whereby �n � 0

for all n � 2. Hence, the sum on the right-hand side in expression (3) is a finite series expansion
of the dependence correction factor by which we multiply the product density

Qn
kD1 �.xk ; tk/

of the Poisson process to obtain the product density �.n/..x1; t1/; : : : ; .xn; tn// of Y .
A further interpretation is obtained by realizing that the right-hand side of (3) is a series

expansion of a higher-order version of the pair correlation function

g..x1; t1/; .x2; t2// D
�.2/..x1; t1/; .x2; t2//

�.x1; t1/�.x2; t2/
D 1C �2..x1; t1/; .x2; t2//:

The main definition of this section gives the class of STPPs to which we shall restrict
ourselves in the sequel of this paper.

Definition 2. Let Y be an STPP for which product densities of all orders exist. If N� D
inf.x;t/ �.x; t/ > 0 and, for all n � 1; �n is translation invariant in the sense that

�n..x1; t1/C .a; b/; : : : ; .xn; tn/C .a; b// D �n..x1; t1/; : : : ; .xn; tn//

for almost all .x1; t1/; : : : ; .xn; tn/ 2 Rd � R and all .a; b/ 2 Rd � R, we say that Y is
intensity-reweighted moment stationary (IRMS).

By Equation (3), translation invariance of all �n is equivalent to translation invariance of the
intensity-reweighted product densities. The property is weaker than stationarity, which requires
the distribution of Y to be invariant under translation, but stronger than the second order
intensity-reweighted stationarity of Baddeley et al. (2000). The latter property, in addition to
N� > 0, requires the random measure

„ D
X

.x;t/2Y

ı.x;t/

�.x; t/

to be second order stationary (Daley & Vere-Jones, 2008, p. 236).

2.3. Palm measures and conditional intensities

In order to define a nearest neighbour distance distribution function, we need the concept of
reduced Palm measures. In integral terms, recalling the assumption that the intensity measure
is locally finite, they can be defined by the reduced Campbell–Mecke formula

E

2
4 X
.x;t/2Y

g.x; t; Y n ¹.x; t/º/

3
5 D Z

Rd�R

Z
N

g.x; t; '/P Š.x;t/.d'/�.x; t/ dx dt

D

Z
Rd�R

EŠ.x;t/ Œg.x; t; Y /� �.x; t/ dx dt

(4)

for any non-negative measurable function g W Rd � R � N ! R, with the left-hand side being
infinite if and only if the right-hand side is infinite. By standard measure theoretic arguments

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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566 O. CRONIE and M. N. M. VAN LIESHOUT Scand J Statist 42

(Halmos, 1974), it is possible to find a regular version such that P Š.x;t/.R/ is measurable as
a function of .x; t/ and a probability measure as a function of R. Thus, P Š.x;t/.R/ may be
interpreted as the conditional probability of Y n ¹.x; t/º falling in R 2 N given Y.¹.x; t/º/ > 0.

At times, we make the further assumption that Y admits a Papangelou conditional intensity
�.�; �I'/. In effect, we may then replace expectations under the reduced Palm distribution by
expectations under P . More precisely, (4) may be rewritten as

E

2
4 X
.x;t/2Y

g.x; t; Y n ¹.x; t/º/

3
5 D Z

Rd�R

E Œg.x; t; Y /�.x; t IY /� dxdt (5)

for any non-negative measurable function g � 0 on Rd�R�N . Equation (5) is referred to as the
Georgii–Nguyen–Zessin formula. We interpret �.x; t IY / dx dt as the conditional probability of
finding a space–time point of Y in the infinitesimal region d.x; t/ given that the configuration
elsewhere coincides with Y .

2.4. The generating functional

For the representation of Jinhom in the form (1), we will need the generating functional G.�/ of
Y , which is defined as

G.v/ D E

2
4 Y
.x;t/2Y

v.x; t/

3
5 D Z

N

Y
.x;t/2'

v.x; t/ P.d'/

for all functions v D 1 � u such that u W Rd � R! Œ0; 1� is measurable with bounded support
on Rd � R. By convention, an empty product equals 1. The generating functional uniquely
determines the distribution of Y (theorem 9.4.V. in Daley & Vere-Jones (2008)).

Because we assume that the product densities of all orders exist,

G.v/ D G.1 � u/ D

D 1C

1X
nD1

.�1/n

nŠ

Z
� � �

Z
u.x1; t1/ � � �u.xn; tn/�

.n/..x1; t1/; : : : ; .xn; tn//

nY
iD1

dxidti ;

(6)

provided that the right-hand side converges (Chiu et al., 2013, p. 126). The generating
functional of the reduced Palm distribution P Šy is denoted by GŠy.v/.

3. Spatio-temporal J -functions

We now turn to the definition of the inhomogeneous J -function. Before giving the definition
in our general context, we define a spatio-temporal J -function for stationary STPPs.

3.1. The stationary J -function

Assume for the moment that Y is stationary. Then we may set, in complete analogy to the
definition in Lieshout & Baddeley (1996),

J.r; t/ D
1 �G.r; t/

1 � F.r; t/
D

PŠ.0;0/
�
Y \ S tr D ;

�
P
�
Y \ S tr D ;

� (7)

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 Inhomogeneous spatio-temporal J -function 567

for r; t � 0 such that F.r; t/ ¤ 1, where

S tr D
°
.x; s/ 2 Rd � R W kxk � r; jsj � t

±

and PŠ.0;0/ is the P Š.0;0/-reversely induced probability measure on F .
Note that the two equalities in (7) are defining ones, G.r; t/ is the spatio-temporal near-

est neighbour distance distribution function, and F.r; t/ the spatio-temporal empty space
function.

3.2. The inhomogeneous J -function

In this section, we extend the inhomogeneous J -function of Lieshout (2011) to the product
space Rd � R equipped with the supremum metric d.�; �/.

Definition 3. Let Y be an IRMS STPP (cf. definition 2). For r; t � 0, let

Jn.r; t/ D

Z
Str

� � �

Z
Str

�nC1..0; 0/; .x1; t1/; : : : ; .xn; tn//

nY
iD1

dxidti

and set

Jinhom.r; t/ D 1C

1X
nD1

�
�N�
�n

nŠ
Jn.r; t/ (8)

for all spatial ranges r � 0 and temporal ranges t � 0 for which the series is absolutely
convergent.

Note that by Cauchy’s root test, absolute convergence holds for those r; t � 0 for which

lim supn!1
�
N�njJn.r; t/j=nŠ

�1=n
< 1.

Let us briefly mention a few special cases. For a Poisson process, as �nC1 � 0 for n � 1,
Jinhom.r; t/ � 1. Moreover, if Y is stationary, (8) reduces to (7).

3.3. Relationship to K-functions

The spatio-temporal K-function may be seen as a second order approximation of Jinhom.
Indeed, Gabriel & Diggle (2009), under the assumptions that the intensity function is bounded
away from zero and the pair correlation function g..x; t/; .y; s// D Ng.u; v/ depends only on
u D kx�yk and v D jt�sj, introduce a spatio-temporal inhomogeneousK-function by setting

Kinhom.r; t/ D

Z
Str

Ng.kx1k; jt1j/ d.x1; t1/ D !d

Z t
�t

Z r
0

Ng.u; v/ud�1 dudv;

where !d=d D �d=2=	.1 C d=2/ D 
d is the volume of the unit ball in Rd (see, e.g., Chiu
et al. (2013, p. 14)). Note that the second equality follows from a change to hyperspherical
coordinates. If in addition Y is IRMS,

Jinhom.r; t/ � 1 D �N�

�
!d

Z t
�t

Z r
0

Ng.u; v/ud�1 dudv � `
�
S tr
��
C

1X
nD2

�
�N�
�n

nŠ
Jn.r; t/

	 �N�
�
Kinhom.r; t/ � `

�
S tr
��
;

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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568 O. CRONIE and M. N. M. VAN LIESHOUT Scand J Statist 42

whereby Kinhom.r; t/ may be viewed as a second order counterpart of Jinhom.r; t/. In relation
hereto, it should be noted that even if the product densities exist only up to some finite orderm,
we may still obtain an approximation of Jinhom by truncating its series representation at n D m.

Under the assumption of intensity-reweighted moment stationarity that is, N� > 0 and „
second-order stationary, we may extend the definition in Baddeley et al. (2000) to the spatio-
temporal setting by defining

K�inhom.r; t/ D
1

`.A/
E

2
4 ¤X
.x1;t1/;.x2;t2/2Y

1 ¹.x1; t1/ 2 A; kx1 � x2k � r; jt1 � t2j � tº
�.x1; t1/�.x2; t2/

3
5

for r; t � 0 and some set A D B � C 2 B.Rd � R/ with `.A/ > 0. By lemma 1 below, the
definition does not depend on the choice of A.

Lemma 1. For any A D B � C 2 B.Rd � R/ for which `.A/ > 0, K�inhom.r; t/ D

K„
�
S tr n ¹.0; 0/º

�
, the reduced second factorial moment measure of „ evaluated at S tr (see, e.g.,

section 12.6 in Daley & Vere-Jones (2008)).

Proof. By the Campbell formula, the intensity measure of „ is given by

ƒ„.A/ D E

2
4 X
.x;t/2Y

1

�.x; t/
1A.x; t/

3
5 D `.A/;

so it is locally finite and has density 1. Hence, by proposition 13.1.IV of Daley & Vere-Jones
(2008), there exist reduced Palm measures P Šy1

„
.R/; y1 2 Rd � R, R 2 N , such that

K�inhom.r; t/ D
1

`.A/
E

�Z
Rd�R

1A.y1/„
��
y1 C S

t
r

�
n ¹y1º

�
„.dy1/

	

D
1

`.A/

Z
Rd�R

EŠy


1A.y/„

�
y C S tr

��
dy D EŠ.0;0/



„
�
S tr
��
D K„

�
S tr
�

and this completes the proof.

It is not hard to see that under the stronger assumptions of Gabriel & Diggle (2009),
K�inhom.r; t/ D Kinhom.r; t/.

4. Representation results

Being based on a series of integrals of n-point correlation functions, definition 3 highlights the
fact that Jinhom involves interactions of all orders but it is not very convenient in practice. The
goal of this section is to give representations that are easier to interpret.

4.1. Representation in terms of generating functionals

As for purely spatial point processes, we may express Jinhom in terms of the generating
functionals G and GŠ� by an appropriate choice of v D 1 � u (Lieshout, 2011). Indeed, set

u
y
r;t .x; s/ D

N�1¹ka � xk � r; jb � sj � tº
�.x; s/

; y D .a; b/ 2 Rd � R;

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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and define the inhomogeneous spatio-temporal nearest neighbour distance distribution function as

Ginhom.r; t/ D 1 �G
Šy
�
1 � uyr;t

�
D 1 � EŠ.a;b/

2
4 Y
.x;s/2Y

 
1 �
N�1¹ka � xk � r; jb � sj � tº

�.x; s/

!35 (9)

and the inhomogeneous spatio-temporal empty space function as

Finhom.r; t/ D 1 �G
�
1 � uyr;t

�
D 1 � E

2
4 Y
.x;s/2Y

 
1 �
N�1¹ka � xk � r; jb � sj � tº

�.x; s/

!35
for r; t � 0, under the convention that empty products take the value one. Then, the represen-
tation theorem below tells us that Ginhom.r; t/ and Finhom.r; t/ do not depend on the choice of y
and, furthermore, that Jinhom.r; t/ may be expressed through Ginhom.r; t/ and Finhom.r; t/. The
proof of theorem 1 can be found in the Supporting Information (Appendix S1).

Theorem 1. Let Y be an IRMS STPP and assume that

lim sup
n!1

 
N�n

nŠ

Z
Str

� � �

Z
Str

�.n/..x1; t1/; : : : ; .xn; tn//

�.x1; t1/ � � ��.xn; tn/

nY
iD1

dxidti

!1=n
< 1:

Then Ginhom.r; t/ and Finhom.r; t/ are `-almost everywhere constant with respect to y D .a; b/ 2

Rd � R and the J -function of definition 3 can be written as

Jinhom.r; t/ D
1 �Ginhom.r; t/

1 � Finhom.r; t/

for all r; t � 0 such that Finhom.r; t/ ¤ 1.

The intuition behind Ginhom.r; t/ and Finhom.r; t/ is best seen when Y is stationary. In this
case, u0r;t .x; s/ D 1

®
.x; s/ 2 S tr

¯
, and hence

Finhom.r; t/ D 1 � E

2
4 Y
.x;s/2Y

1
®
.x; s/ … S tr

¯35 D 1 � P
�
Y \ S tr D ;

�
D F.r; t/;

the empty space function in expression (7). Similarly, Ginhom.r; t/ reduces to the distribu-
tion function of the nearest neighbour distance when Y is stationary, and Jinhom is indeed a
generalization of (1).

4.2. Representation in terms of conditional intensities

Some families of point processes, notably Gibbsian ones (Lieshout, 2000), are defined in terms
of their Papangelou conditional intensity �.�; �I �/. In theorem 2, we show that for such pro-
cesses, Jinhom may be represented in terms of �.�; �I �/. The proof of the theorem is given in the
Supporting Information (Appendix S2).

Theorem 2. Let the assumptions of theorem 1 hold and assume, in addition, that Y admits

a conditional intensity �.�; �I �/. Write W.a;b/.Y / D
Q
.x;s/2Y

�
1 � u.a;b/r;t .x; s/

�
. Then

E


�.a; bIY /W.a;b/.Y /=�.a; b/

�
> 0 implies EŒW.a;b/.Y /� > 0 and

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Jinhom.r; t/ D E

�
�.a; bIY /

�.a; b/
W.a;b/.Y /

	
=EŒW.a;b/.Y /�

for almost all .a; b/ 2 Rd � R.

Because EŒ�.a; bIY /� D �.a; b/, we immediately see that

Jinhom.r; t/ � 1() Cov
�
�.a; bIY /;W.a;b/.Y /

�
� 0

and

Jinhom.r; t/ � 1() Cov
�
�.a; bIY /;W.a;b/.Y /

�
� 0:

In words, for clustered point processes, �.a; bIY / tends to be large if .a; b/ is near to points of
Y , whereas W.a;b/.Y / tends to be large when there are few points of Y close to .a; b/. Thus,
in this case, the two random variables are negatively correlated, and the J -function is smaller
than one. A dual reasoning applies for regular point processes, but Bedford & Van den Berg
(1997) warn against drawing too strong conclusions.

4.3. Scaling

In expression (8), we consider distances on the spaces Rd and R separately. Instead, we could
have used the supremum distance on Rd �R and the closed d -metric balls BŒ0; r� D Srr ; r � 0,
to define Jn.r/ D Jn.r; r/ and

Jinhom.r/ D 1C

1X
nD1

�
�N�
�n

nŠ
Jn.r/: (10)

When the pair correlation function only depends on the spatial and temporal distances, set
K�inhom.r/ D K�inhom.r; r/ and Kinhom.r/ D Kinhom.r; r/, whence K�inhom.r/ D Kinhom.r/ and
Jinhom.r/ � 1 	 �N�.Kinhom.r/ � `.BŒ0; r�//.

In the remainder of this section, we argue that (8) may be obtained from (10) by scaling. Let
c D .cS ; cT / 2 .0;1/

2 and apply the bijective transformation .y; s/ 7! .cSy; cT s/ to each
point of the IRMS STPP Y to obtain

cY D
X

.y;s/2Y

ı.cSy;cT s/:

Through a change of variables and the Campbell formula, one obtains

�
.n/

cY
..x1; t1/; : : : ; .xn; tn// D c

�dn
S c�nT �.n/..x1=cS ; t1=cT /; : : : ; .xn=cS ; tn=cT //;

so that �cY .x; t/ D c�dS c�1
T
�.x=cS ; t=cT / and N�cY D inf.x;t/ �cY .x; t/ D c�dS c�1

T
N�. Hence,

�cYn ..x1; t1/; : : : ; .xn; tn// D �n..x1=cS ; t1=cT /; : : : ; .xn=cS ; tn=cT //;

whence cY is IRMS if and only if Y is and, whenever well defined,

J cYinhom.r; t/ D Jinhom

�
r

cS
;
t

cT

�
:

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 Inhomogeneous spatio-temporal J -function 571

In conclusion, by taking cS D 1, and cT D r=t , any Jinhom.r; t/ may be obtained from
Jinhom.r/ through scaling.

5. Theoretical examples

Next, we will consider three families of models, each representing a different type of
interaction.

5.1. Poisson processes

The inhomogeneous Poisson process may be considered the benchmark for lack of interaction
between points. As we saw in section 3.2, for a Poisson process Jinhom.r; t/ � 1. Alternative
proofs may be obtained from theorems 1–2, by noting that the Palm distributions equal P by
Slivnyak’s theorem (Schneider & Weil, 2008) or that the intensity function and the Papangelou
conditional intensity coincide almost everywhere.

5.2. Location-dependent thinning

Given a stationary STPP Y with product densities �.n/; n � 1, intensity � > 0 and J -function
J.r; t/, consider some measurable function p W Rd � R ! .0; 1� with Np D inf.x;t/ p.x; t/ > 0.
Location-dependent thinning of Y is the scenario in which a point .x; t/ 2 Y is retained with
probability p.x; t/. Denote the resulting thinned process by Yth. The product densities of Yth are

�
.n/
th ..x1; t1/; : : : ; .xn; tn// D �

.n/..x1; t1/; : : : ; .xn; tn//

nY
iD1

p.xi ; ti /

by (Daley & Vere-Jones, 2008, section 11.3), whereby �th.x; t/ D �p.x; t/ > 0 and the n-point
correlation functions of Yth and Y coincide. Hence, Yth is IRMS with N� D inf.x;t/ �th.x; t/ D

� Np and

J th
inhom.r; t/ D 1C

1X
nD1

.�� Np/n

nŠ
Jn.r; t/

for all r; t � 0 for which the series converges. Here, Jn.r; t/ is the n-th coefficient in the series
expansion (8) of the J -function of the original process Y .

A more informative expression for J th
inhom can be obtained by noting that, by equations (5.3)–

(5.4) in Chiu et al. (2013), the generating functional of Yth is given by Gth.v/ D G.1�pCpv/,
where G.�/ is the generating functional of Y .

Hence, as applying thinning to the reduced Palm distribution of Y is equivalent to Palm
conditioning in the thinned process,

J th
inhom.r; t/ D

G
Š.0;0/
th

�
1 � Np1

®
� 2 S tr

¯
=p.�/

�
Gth

�
1 � Np1 ¹� 2 S tr º =p.�/

� D
EŠ.0;0/

h
.1 � Np/Y .S

t
r/
i

E

h
.1 � Np/Y .S

t
r/
i

when theorem 1 applies.
When a Papangelou conditional intensity exists for Y , by recalling that � D �.x; t/ D

EŒ�.x; t IY /� and applying the combination of (4) and (5) to the restriction of the function

g.a; b; Y / D .1 � Np/Y ..a;b/CS
t
r/ to arbitrary bounded space–time domains, the previous

expression becomes

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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572 O. CRONIE and M. N. M. VAN LIESHOUT Scand J Statist 42

J th
inhom.r; t/ D

E

h
�.0; 0IY / .1 � Np/Y .S

t
r/
i

�E
h
.1 � Np/Y .S

t
r/
i :

Thinned hard core process. The spatio-temporal hard core process is a stationary STPP
defined through its Papangelou conditional intensity

�Y .a; bIY / D ˇ 1
°
Y \

�
.a; b/C S

RT
RS

�
D ;

±
D ˇ

Y
.x;t/2Y

1
°
.x; t/ � .a; b/ … S

RT
RS

±
;

(11)

where .a; b/ 2 Rd � R. Moreover, ˇ > 0 is a model parameter, and RS > 0 and RT > 0

are, respectively, the spatial and temporal hard core distances. In words, as realizations a.s.
do not contain points that violate the spatial and temporal hard core constraints, that is,

PŠ.0;0/
�
Y
�
S
RT
RS

�
> 0

�
D 0, there is inhibition.

By thinning Y with some suitable measurable retention function p W Rd � R ! .0; 1�; Np D

inf.x;t/ p.x; t/ > 0, we obtain an IRMS hard core STPP Yth.

Lemma 2. For a hard core process Y; ˇ=� � 1. If either .r; t/ 2 Œ0; RS � � Œ0; RT � or .r; t/ 2
ŒRS ;1/� ŒRT ;1/; J.r; t/ is non-decreasing in r and t . Moreover, when .r; t/ 2 Œ0; RS �� Œ0; RT �
we have that 1 � J.r; t/ � ˇ=� and when .r; t/ 2 ŒRS ;1/�ŒRT ;1/; J.r; t/ D ˇ=�. WhenRT D
RS D R > 0, so that SRT

RS
D BŒ0;R�, J.r/ D J.r; r/ is increasing and satisfies 1 � J.r/ < ˇ=�

for r 2 Œ0; R/ and J.r/ D ˇ=� for r � R. For a thinned hard core process, J th
inhom.r; t/ � 1 for

r � RS and t � RT .

Proof. Noting that � D �.0; 0/ D EŒ�Y .0; 0IY /� D ˇ P

�
Y \ SR

T

RS
D ;

�
� ˇ, we find that

ˇ=� � 1. Furthermore, through theorem 2 and expression (11), we obtain

J.r; t/ D
E


�Y .0; 0IY /1

®
Y \ S tr D ;

¯�
�.0; 0/E



1 ¹Y \ S tr D ;º

� D
ˇ

�

P

�
Y \ S

RT
RS
D ;; Y \ S tr D ;

�
P
�
Y \ S tr D ;

� :

Hence, when both r � RS and t � RT , we have that SRT
RS
� S tr and consequently J.r; t/ D

ˇ=�. Moreover, when r � RS and t � RT , so that S tr � S
RT
RS

, expression (7) gives us J.r; t/ D
1=.1� F.r; t//, which is increasing in both r 2 Œ0; RS � and t 2 Œ0; RT � and satisfies J.r; t/ � 1.

Specializing to J.r/ D J.r; r/ and RS D RT D R, when r � R, we have that J.r/ D
1=.1 � F.r; r//, which is increasing to ˇ=�, and when r � R; J.r/ D ˇ=�.

When Y is thinned and r � RS and t � RT ,

J th
inhom.r; t/ D

EŠ.0;0/
h
.1 � Np/Y .S

t
r/
i

E

h
.1 � Np/Y .S

t
r/
i �

EŠ.0;0/
�
.1 � Np/

Y

�
S
RT
RS

�	

E

h
.1 � Np/Y .S

t
r/
i

D
1

E

h
.1 � Np/Y .S

t
r/
i � 1:

5.3. Log-Gaussian Cox processes

Our final example concerns spatio-temporal versions of log-Gaussian Cox processes (see, e.g.,
Coles & Jones (1991), Møller et al. (1998) or Rathbun (1996)). In words, these models are

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 Inhomogeneous spatio-temporal J -function 573

spatio-temporal Poisson processes for which the intensity functions are given by realizations of
log-Gaussian random fields (Adler, 1981; Adler & Taylor, 2007).

Recall that a Gaussian random field is completely determined by its mean function �.x; t/
and its covariance function C..x; t/; .y; s//; .x; t/; .y; s/ 2 Rd � R, and that by Bochner’s
theorem C must be positive definite (see, e.g., section 2.4 in Gelfand et al. (2010)). Now, a
spatio-temporal log-Gaussian Cox process Y has random intensity function given by

exp ¹�.x; t/CZ.x; t/º ; .x; t/ 2 Rd � R;

where Z D ¹Z.x; t/º.x;t/2Rd�R is a zero-mean spatio-temporal Gaussian random field. Note
that the variance function of Z is given by �2.x; t/ D C..x; t/; .x; t// and the correlation
function by r..x; t/; .y; s// D C..x; t/; .y; s//=.�.x; t/�.y; s//. By Daley & Vere-Jones (2003,
section 6.2) or Chiu et al. (2013, section 5.2),

�.n/..x1; t1/; : : : ; .xn; tn//

�.x1; t1/ � � ��.xn; tn/
D exp

8<
:
X
i<j

C..xi ; ti /; .xj ; tj //

9=
;

and the intensity function of Y is

�.x; t/ D exp
°
�.x; t/C �2.x; t/=2

±
:

Therefore, if inf.x;t/ exp¹�.x; t/º > 0 so that �.x; t/ is bounded away from zero, under the
additional condition that C..x; t/; .y; s// D C.x�y; t � s/, Y is IRMS. In this case, �2.x; t/ D
C.0; 0/ D �2 and Z is stationary. To exclude trivial cases, we shall assume that �2 > 0.

Before we proceed, note that we must impose conditions on r to ensure that the function
exp¹�.x; t/CZ.x; t/º is integrable and defines a locally finite random measure. Further details
are given in the Supporting Information. Henceforth, we will assume that �.x; t/ is continu-
ous and bounded with N� D inf.x;t/ �.x; t/ > �1, so that N� D exp

®
N�C �2=2

¯
, and that r is

non-negative and such that Z a.s. has continuous sample paths. Combining proposition 6.2.II
in Daley & Vere-Jones (2003) with (5.35) in Chiu et al. (2013), under the assumptions of
theorem 1, we obtain

Jinhom.r; t/ D
E

h
eZ.0;0/ exp

°
�
R
Str

e N�CZ.x;s/ dx ds
±i

EŒeZ.0;0/�E
h
exp

°
�
R
Str
N�CZ.x;s/ dx ds

±i
upon noting that the Palm distribution of the driving random measure of our log-Gaussian Cox
process Y is eZ-weighted. Note here that the Papangelou conditional intensity of Y exists and
is given by �.x; t IY / D EŒexp¹�.x; t/CZ.x; t/ºjY � (see, e.g. Møller & Waagepetersen (2007)).

Lemma 3. For a log-Gaussian Cox process, when the aforementioned conditions are imposed on
� and C; Jinhom.r; t/ � 1 for all r; t � 0.

Proof. First, observe that Jinhom.r; t/ � 1 is equivalent to

Cov
�

eZ.0;0/; exp
²
�e N�

Z
Str

eZ.x;s/ dx ds
³�
� 0:

Further, note that by the a.s. sample path continuity of Z,

exp
²
�e N�

Z
Str

eZ.x;s/ dx ds
³

a.s.
D lim
n!1

exp

8<
:�e N�

X
.xi ;si /2S.n/

ci;neZ.xi ;si /

9=
; ;

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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574 O. CRONIE and M. N. M. VAN LIESHOUT Scand J Statist 42

where S.n/ � S tr ; n � 1, are Riemann partitions. Because Z has positive correlation function,
Pitt’s theorem (Pitt, 1982) tells us that Z is an associated family of random variables. Hereby,
Cov

�
eZ.0;0/; exp

®
�e N�

P
.xi ;si /2S.n/

ci;neZ.xi ;si /
¯�
� 0 for any n � 1, and the result follows

from taking the limit in the last covariance and applying dominated convergence.

6. Estimation

Assume that we observe an IRMS STPP Y within some compact spatio-temporal regionWS �
WT � Rd � R and obtain the realization ¹.xi ; ti /ºmiD1; m D Y.WS � WT /. The goal of this
section is to derive estimators for Ginhom.r; t/, Finhom.r; t/ and Jinhom.r; t/. In order to deal with
possible edge effects, we will apply a minus sampling scheme (Chiu et al., 2013; Cronie &
Särkkä, 2011). For clarity of exposition, we assume that the intensity function is known.

Denote the boundaries ofWS andWT by @WS and @WT , respectively. Further, writeW�r
S
D

¹x 2 WS W dRd .x; @WS / � rº D ¹x 2 WS W x C BRd
Œ0; r� � WS º for the eroded spatial domain,

and similarly, letW�t
T
D ¹s 2 WT W dR.s; @WT / � tº. For given r; t � 0, we define an estimator

of 1 �Ginhom.r; t/ by

1ˇ̌̌
Y \

�
W�r
S
�W�t

T

�ˇ̌̌ X
y2Y\

�
W
�r
S �W

�t
T

�

2
64 Y
.x;s/2.Y n¹yº/\.yCStr/

 
1 �

N�

�.x; s/

!375 (12)

and, given a finite point grid L � WS �WT , we estimate 1 � Finhom.r; t/ by

1ˇ̌̌
L \

�
W�r
S
�W�t

T

�ˇ̌̌ X
l2L\

�
W
�r
S �W

�t
T

�

2
64 Y
.x;s/2Y\.lCStr/

 
1 �

N�

�.x; s/

!375 : (13)

The ratio of (12) and (13) is an estimator of Jinhom.r; t/ (cf. theorem 1).

Theorem 3. Under the conditions of theorem 1, the estimator (13) is unbiased and (12) is ratio
unbiased.

Proof. We start with (12) and note that E
h
Y
�
W�r
S
�W�t

T

�i
D ƒ

�
W�r
S
�W�t

T

�
. By the

reduced Campbell–Mecke formula (4),

E

2
664 X
y2Y\

�
W
�r
S �W

�t
T

�
Y

.x;s/2.Y n¹yº/\.yCStr/

 
1 �

N�

�.x; s/

!3775

D

Z
W
�r
S �W

�t
T

EŠy

2
4 Y
.x;s/2Y

 
1 �

N�

�.x; s/
1
®
.x; s/ 2 y C S tr

¯!35�.y/ dy:

By (9), the expectation is equal to GŠ0
�
1 � u0r;t

�
, from which the claimed ratio-unbiasedness

follows.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 Inhomogeneous spatio-temporal J -function 575

Turning to (13), unbiasedness follows from the assumed translation invariance of the �n and
equation (6) under the conditions of theorem 1.

Estimators for K�inhom follow immediately from the definition and are discussed in Gabriel &
Diggle (2009).

In the Supporting Information we use the inhomogeneous J -functions and K-functions to
quantify the interactions in realizations of each of the three models discussed in section 5.
We work mostly in R. For the J -function, we exploit functions in the package spatstat

(Baddeley & Turner, 2005); an estimator for K�inhom has been implemented in stpp (Gabriel
et al., 2013). To simulate log-Gaussian Cox processes, we use the package RandomFields
by Schlather et al. (2013). Realizations of spatio-temporal hard core processes can be obtained
using the C++ library MPPLIB of Steenbeek et al. (2002). Because the intensity function is
either known or known up to a constant (for the thinned hard core process), as (12)–(13) are
defined in terms of the ratio N�=�.x; s/, there is no need to plug in intensity function estimators.

In practice, the intensity function �.x; s/ and its infimum are unknown and must be esti-
mated. Indeed, Gabriel & Diggle (2009) as well as Møller & Ghorbani (2012) consider a
combination of parametric models and kernel estimators for �.x; s/. They stress, however, that
care has to be taken when O�.x; s/ is close to zero.

Fig. 1. Incidences of foot and mouth disease in northern Cumbria. The locations of outbreak are indicated
by the centre of a disc whose radius is proportional to the date of the outbreak in days from 1 February
2001.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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7. Application

Figure 1 plots incidences of foot and mouth disease in the northern part of the county of Cum-
bria in the west of England bordering Scotland. Because the original data contain confidential
information, we use the publicly available version in the R package stpp (Gabriel et al., 2013).
The locations of outbreak are indicated by the centre of a disc whose radius is proportional to
the date of the outbreak in days from 1 February 2001. For the spatial windowWS , we take the
territory outlined in Figure 1; as data were collected for 200 days, we set WT D Œ0; 200�.

We follow Møller & Ghorbani (2012) and assume that the unknown intensity function �
is separable. The spatial intensity is estimated by a mass preserving Gaussian kernel estima-
tor (Lieshout, 2012) with standard deviation (bandwidth) 3.68 km, the temporal intensity by
a log-transform re-transform scheme (Markovich, 2007) using a Gaussian kernel with stan-
dard deviation 0.05 days. For further details, see Møller & Ghorbani (2012). The bound N� was
estimated by the minimal value of O� among the data points.

Figure 2 shows ̂Jinhom.r/ for the Cumbria data (black line) together with envelopes obtained
from 99 independent samples from a spatio-temporal Poisson process with intensity O�. Note
that the mean of the latter (stippled line) is close to one and that the variation increases with r .
There is clear evidence of clustering, confirming findings from Gabriel et al. (2013) and Møller
& Ghorbani (2012) based on K̂�inhom.

It should be stressed that we do not formally test hypotheses here but rather look for indi-
cations of clustering. Provided that one formally would like to perform such tests, it might be
advised to consider the testing schemes considered by Grabarnik et al. (2011) and Myllymäki
et al. (2013). However, these tests require very large numbers of simulated three-dimensional

Fig. 2. Estimated Jinhom.r/-values for the Cumbria data (black line) together with envelopes obtained
from 99 independent samples from a spatio-temporal Poisson process with the same (estimated) intensity.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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point patterns to be used in the envelopes. As a consequence, we strongly believe that such
computations would be virtually impossible to perform here.

8. Discussion

In this paper, we followed the suggestion of Lieshout (2011) to generalize the nearest neigh-
bour distance distribution, empty space and J -functions for inhomogeneous point patterns
to the spatio-temporal domain by equipping Rd � R with the supremum distance and apply-
ing scaling under an appropriate assumption of intensity-reweighted stationarity. We expressed
the new statistics in terms of fundamental point process characteristics including product den-
sities, the generating functional and the Papangelou conditional intensity. We computed the
inhomogeneous J -function for three important families of STPPs and discussed the relation
to the inhomogeneous spatio-temporal K-function. Finally, we derived non-parametric esti-
mators and illustrated their performance by means of a data set on the 2001 foot and mouth
epidemic in the UK.

In practice, the intensity function tends to be unknown and must be estimated. This is not a
problem when there are independent replicates. Otherwise, pragmatic model assumptions must
be made. For example, in section 7, we imposed separability. When prior information about the
data is available, a parametric model can also be used.

Throughout, an STPP Y was understood as a point process on a product space. How-
ever, when one of the dimensions is of prime importance, it would be natural to treat Y as a
marked point process. Thus, our work in progress aims at defining versions of the G-functions,
J -functions and K-functions for inhomogeneous Cronie & Lieshout (2014) marked point pro-
cesses. The focus will be on real-valued or discrete marks, but it is important to bear in mind
that more complicated cases, for example the function spaces of Cronie & Mateu (2014), can
be handled as well.
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