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A B S T R A C T

Contra-rotating pump-turbines (CRPT) have been proposed as a new solution for pumped hydro storage (PHS)
at low-head sites. The two individually operated runners give both flexibility and complexity during transient
operation, such as startup. This paper presents an optimisation approach for the pump mode startup sequence
of a CRPT. The aim is to minimise the loads during fast startups and thus extend the lifetime and increase
the flexibility of the CRPT. The startup sequence is decomposed into five design variables which determine a
valve opening and the speedup of each runner rotational speed. The optimisation procedure includes transient
computational fluid dynamics (CFD) simulations and global surrogate-based optimisation (SBO). An objective
function, based on an integration of the time derivative of the axial force, is derived and transformed into a
Gaussian-process surrogate model. The results show that the SBO can predict an optimal combination of the
five variables that limits unfavourable load variations during the pump mode startup sequence. For an optimal
startup sequence, the valve should be opened up during 73% of the sequence, the upstream runner should
speed up during most of the sequence, and the downstream runner should speed up during the final third of
the sequence. The outcome of this work is beneficial for a safe startup operation of possible future PHS with
CRPTs.
1. Introduction

The most common form of energy storage provided today is through
pumped hydro storage (PHS) [1]. The historical development of PHS
has mainly focused on high-head applications of several hundreds of
meters. The large difference in height elevations between the reser-
voirs for high-head PHS limits where it can be built [2,3]. To over-
come this and to allow energy storage at low-head locations with
flat topography, new pump-turbine designs are needed. The ALPHEUS
(augmenting grid stability through low head pumped hydro energy
utilization and storage) Horizon 2020 EU [4,5] project is an attempt
to address low-head pump-turbine designs. One of the concepts inves-
tigated in the ALPHEUS project is an axial flow, shaft-driven, reversible
contra-rotating pump-turbine (CRPT).

A CRPT has two individual runners, rotating in opposite directions
from one another. This type of runner, or propeller, configuration is
traditionally associated with maritime and aviation propulsion sys-
tems [6], but it has recently been proposed as an alternative runner
configuration for low-head PHS [2,7]. Several researchers have per-
formed experimental and numerical studies of CRPTs, indicating its
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potential as a low-head runner configuration [8–13]. Kim et al. [8]
demonstrated that the 𝑘 − 𝜔 shear stress transport (SST) turbulence
model gives a good accuracy for steady-state operations of a small
CRPT. Later, the same research group performed a design and optimisa-
tion study reaching hydraulic efficiencies of up to 79.98% and 86.23%
in pump and turbine modes, respectively, for the optimal design [9].
Vagnoni et al. [10] presented numerical and experimental results of
a contra-rotating micro turbine intended for energy recovery in water
supply networks. Their results highlighted the importance of including
the tip clearance in the numerical simulations to get a better agreement
with the experimental data. Fahlbeck et al. [13] showed numerical re-
sults of a CRPT with hydraulic efficiencies of close to 90% in both pump
and turbine modes. These studies as well as the majority of available
studies of CRPTs concern the blade design and steady-state operating
conditions. However, unfavourable transient operating conditions are
often responsible for most of the damage during turbine operation and
have a direct negative effect on the lifetime of turbines [14].

In our recent research [15], preliminary startup and shutdown
sequences for a model scale CRPT were studied. It was shown that
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the runners can experience large and rapid force and torque variations
during the transient sequences in pump mode. Additionally, it was
found that the pump mode startup is more severe than the shutdown for
the evaluated sequence. Given that a PHS station may shift from pump
mode to turbine mode several times a day, it is crucial to know how to
optimally perform transient operations of the machine, for safety and
to minimise premature deterioration [16].

An option for determining how to safely start up a CRPT in pump
mode is to carry out an optimisation study of the transient startup
sequence. A number of studies on optimisation of transients in pump-
storage plants have recently been presented. As an example, Rezghi
et al. [17] optimised the closing sequence of a wicket gate for a
pump-turbine with 1D partial differential flow equations. The closing
sequence was divided into a number of time segments, and a ge-
netic algorithm (GA) was applied to minimise the runner over-speed
and maximum over-pressure. Similarly, Liu et al. [18] used 1D flow
equations to optimise the closing law of a wicket gate for a high-
head PHS plant using a multi-objective optimisation GA. On the other
hand, in the work by Mao et al. [19], computational fluid dynamics
(CFD) was used to optimise a self-adaptive closure law during the
load rejection sequence for a reversible pump-turbine. A multi-objective
optimisation approach was adopted with the aim to decrease fluctu-
ations in rotational speed and pressure. Furthermore, in the review
paper by Kang et al. [20] on how to optimise for transient loads, it
was suggested that for nonlinear and noisy data, response surface or
surrogate-based optimisation (SBO) techniques can be used. In SBO, an
approximate surrogate model is constructed based on sample points.
The optimisation is then performed on the surrogate model, and not
on the sampled data [21].

In the present work, an SBO approach is adopted using a GA to
obtain an optimal solution. The surrogate is constructed based on CFD
simulations of the pump mode startup sequences for a model scale
CRPT within the ALPHEUS project. The aim of the optimisation study is
to minimise loads (forces and torque) on the runners during the pump
mode startup. The transient sequence includes a valve opening and
speedup of the two individual runners. Five design variables are used
to characterise the startup sequence and a single objective function is
formalised based on the change of axial forces of the runners during the
sequence. A design of experiment (DOE) matrix is constructed with a
space-filling Latin hypercube sampling method [22], and a global single
objective SBO [21] approach is used to find an optimal combination of
the five variables.

The numerical framework includes 3D transient CFD simulations
using the OpenFOAM-v2012 [23] open-source CFD code. The compu-
tational domain is limited to the region close to the runners and does
not include the entire conduit. To include the main effects from the
whole system that the CRPT is located in, the conduit and reservoirs
are characterised by head losses at the boundaries of the computational
domain using the headLossPressure boundary condition developed by
Fahlbeck et al. [24]. A mesh study is performed to achieve an afford-
able, yet sufficiently accurate, low-fidelity (LoFi) CFD model for the
many simulations of the optimisation study. The optimal solution is
compared to a baseline case with the LoFi model. Finally, to verify
the optimal startup sequence obtained with the LoFi model, the LoFi
model is compared to a high-fidelity (HiFi) CFD model. Ultimately, this
research contributes to increasing the knowledge of how to carry out
transient operations of CRPTs with minimum load variation.

2. Pump-turbine design and operating conditions

The investigated CRPT with its conceptual mounting arrangement is
shown in Fig. 1. In pump mode, the flow is from left to right (Runner 1
is upstream), and in turbine mode, it is from right to left (Runner 2
is upstream). The blade geometries were designed and optimised as
part of the ALPHEUS project by Joseph et al. [25]. In this study, the
CRPT is in model scale and has a shroud diameter of 27.6 cm and a
2

Table 1
Operating conditions of the model scale CRPT at the design point. Power, head and
hydraulic efficiency are according to Fahlbeck et al. [15].

Pump Turbine

Power (𝑃 ) 55.4 16.7 kW
Net heada (𝐻) 13.4 6.7 m
Flow rate (𝑄) 375.5 282.7 l/s
Hydraulic efficiencyb (𝜂) 88.5 90.3 %
Runner 1 (𝑁R1) 1501.9 842.4 rpm
Runner 2 (𝑁R2) 1129.1 633.3 rpm

aThe head is based on the change in total pressure over CRPT.
bThe efficiency is based on the net head of the CRPT.

hub diameter of 12.5 cm. The operating conditions of the model scale
CRPT at the design point are summarised in Table 1 for both pump and
turbine modes. The corresponding prototype scale is a 10 MW machine
with a shroud diameter of up to 6 m. The two runners are connected to
individual motors/generators and rotate independently of each other.
Runner 1 has eight blades and Runner 2 has seven blades.

The current study concerns the model scale CRPT since experimen-
tal studies will be carried out on the model scale as a part of the
ALPHEUS project. In the future lab tests, the design point cannot be
reached since the test facility consists of two open water reservoirs
with limited possibilities to adjust the water levels. The reservoirs are
connected with long pipes and the gross head of the open water surfaces
can be set to 6.45 m, which is used in this study.

3. Optimisation properties

The optimisation procedure concerns the startup sequence in pump
mode. The aim of the optimisation study is to minimise time-varying
runner loads (axial force and torque) and peak loads on the run-
ners. By minimising unfavourable load variations, the lifetime and
flexibility of possible future PHS facilities may be extended since tran-
sient operations of hydraulic machines often cause the most hazardous
events [14]. One option to decrease severe load variations is to perform
the startup sequence very slowly, which is not desirable as it limits
the machine’s flexibility [26]. Hence, the maximum time of the startup
sequence (𝑡max) is considered fixed and is set to 3 s in this work.
In the startup sequence, the rotational speed of the two runners are
individually increased and a valve is gradually opened. The flow field
and performance of the machine are numerically analysed throughout
the sequence with transient CFD simulations.

A single objective global SBO is performed in MATLAB (version
R2021a) using GA [27,28]. The GA uses an evolutionary approach,
where a new generation of samples is created based on mutating
the best samples of the previous generation. In this work, the GA is
configured to use a population size of 100 samples, and to continue
creating offsprings until the relative change of the objective function
for the best individual is converged below 10−8. The GA presented a
converged optimal solution within 53 generations.

Five design variables are used to characterise the transient se-
quence, which are the opening time of the valve (𝑡V,e), the speedup
start times of Runner 1 and Runner 2 (𝑡R1,s and 𝑡R2,s), and the fraction
f the remaining sequence for Runner 1 and Runner 2 (𝛾R1 and 𝛾R2).

The fraction of the remaining time of the sequence is used to define
the end time of the speedup of a runner as

𝑡R𝑖,e(𝑡R𝑖,s, 𝛾R𝑖) = 𝑡R𝑖,s + (𝑡max − 𝑡R𝑖,s)𝛾R𝑖. (1)

Here, 𝑡max is the maximum time of the sequence (3 s), index 𝑖 is 1 or 2
for the respective runner, and subscripts ‘s’ and ‘e’ represent the start
and end times. The fraction variables (𝛾R𝑖) allow all design parameters
to be unconstrained and independent of each other.

For each design sample, the piecewise cubic Hermite interpolating
polynomial [29] method is utilised to create a smooth time-variation
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Fig. 1. Investigated CRPT and its conceptual mounting arrangement for the lab tests.
Fig. 2. Design space for the startup sequence, where 𝑁R𝑖 is the rotational speed of a
runner and 𝛼V is the valve opening. The dotted lines indicate the slowest and fastest
possible valve opening or runner speedup at the edges of 𝑡R𝑖,s (see Section 3.2), and the
shaded areas show all possible startup schemes. 𝑁R𝑖,max = 1501.9 rpm, and 𝛼V,max = 90◦.

for the valve opening and speedup of the runners, based on the calcu-
lated start and end times. The valve opening is controlled with a minor
loss coefficient as explained in Section 4.2.

3.1. Startup sequence and design space

A PHS power plant is typically started in pump mode by speeding
up the runner to its nominal rotational speed with a fully closed valve
and then opening the valve (and guide vanes if applicable) [30]. Our
experience suggests that such a procedure is not suitable for the CRPT
configuration if a fast startup is desirable and if high-amplitude loads
are to be avoided during the startup. Instead, the increase in the runner
rotational speeds and valve opening need to be in joint operation for
safe startup operation in pump mode.

The design space for the optimisation is depicted in Fig. 2. A value
of 0 on the y-axis means that the valve (𝛼V) is closed or that there
is no runner rotational speed (𝑁R𝑖), while a value of 1 refers to a
fully open valve or the nominal runner rotational speed of 1501.9 rpm.
The solid lines marked with ⋄ and ◦ indicate all possible times when
initiating a runner speedup (𝑡R𝑖,s) and total valve opening times (𝑡V,e),
respectively. The line marked with □ shows all possible end times of
a runner speedup, obtained through Eq. (1). In the sequence, it is
assumed that the rotational speeds of the runners are initially at 61% of
their nominal rotational speed with a fully closed valve. That rotational
speed is chosen through an extensive study to ensure that the net head
produced by the machine matches the gross head of the facility that
the machine is part of. This prevents reverse flow through the pump
storage facility during startup. Our experience has shown that speeding
3

up the runners to 61% of their respective nominal speed with a closed
valve does not generate any severe loads. That part of the sequence is
therefore excluded in the present study.

In each of the numerical simulations for the optimisation process,
the flow field is fully developed prior to the commencement of the
startup sequence. The valve starts to open at the initial time step, and
continues to open until 𝑡V,e. The rotational speeds of the runners inde-
pendently increase from the initial values to their maximum between
𝑡R𝑖,s and 𝑡R𝑖,e, where the latter is governed by 𝛾R𝑖 and 𝑡R𝑖,s through
Eq. (1). The simulations are continued with one additional second after
the startup sequence, to reach fully developed conditions, yielding a
total simulation time (𝑡sim) of 4 s.

3.2. Objective function

The goal of the optimisation study is to prevent severe load fluctua-
tions with low frequency and high amplitude (force and torque for the
whole runners and individual blades). Preliminary studies have shown
that the load variations are largest when the change in axial force on
the runners is largest. Therefore, it is suitable to minimise the time-
integral of the magnitude of the gradient in time of the axial force,
on both runners, to accomplish the goal. The objective function to be
minimised is thus defined as

𝑓 (𝒙) = ∫

𝑡sim

𝑡=0

(

|

|

|

|

|
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|

|

|

|

+
|

|
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|

|

𝜕𝐹𝑧,R2(𝒙)
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|

|

|

|

|

)

d𝑡, (2)

for a design variable space given by (depicted in Fig. 2)

0.3 s ≤𝑡V,e ≤ 3.0 s,

0.0 s ≤𝑡R1,s ≤ 2.7 s,

0.2 ≤𝛾R1 ≤ 1.0, (3)
0.0 s ≤𝑡R2,s ≤ 2.7 s,

0.2 ≤𝛾R2 ≤ 1.0.

Here, 𝑡sim is 4 s which is the total time of each simulation (𝑡max + 1 s
to ensure fully developed flow), 𝐹𝑧 is the instantaneous averaged axial
force and 𝒙 is a vector of the five design variables 𝑡V,e, 𝑡R1,s, 𝛾R1, 𝑡R2,s,
𝛾R2. The instantaneous average is obtained with a Savitzky–Golay finite
impulse response filter [31], using a window size of 0.25 s.

An option could also be to include other terms such as the torque
or force in the transverse directions in a similar fashion. However, by
introducing more variables to the objective function, various weighting
parameters also need to be added to scale the variables to a comparable
level. The weighting factors would make the objective function more
complex and our previous research [15] showed that the axial force
and torque spikes appear at the same time. By minimising the proposed
objective function it is ensured that large spikes and peaks are avoided.
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3.3. Response surface

A Gaussian process (GP) regression model [32] is used to map the
objective function into a response surface. A GP surrogate model is
used since the objective function is non-linear and noisy. To assess the
performance of the surrogate model, the leave-one-out cross-validation
(LOOCV) is employed. In LOOCV each simulated data point is in turn
excluded from the model training and used for validating the surrogate
model that is generated without that sample [33]. The normalised root
mean square error (nRMSE) [34],

nRMSE =

√

∑𝑁
𝑖
(

𝑦𝑖 − �̂�𝑖
)2

𝑁
𝑦max − 𝑦min

, (4)

and R-squared (𝑅2) [21],

𝑅2 =

[

cov(𝒚, �̂�)
√

var(𝒚)var(�̂�)

]2

, (5)

values are used to examine the accuracy of the surrogate model.
Here 𝑦 and �̂� are the observed sample data and predicted data by the
surrogate model, respectively, and 𝑁 is the number of samples. In a
GP surrogate model, it is assumed that the objective function 𝑓 (𝒙) is
distributed as a Gaussian process (Gaussian distribution for functions),
as

𝑓 (𝒙) ∼ 
(

𝑚(𝒙), 𝑘(𝒙,𝒙′)
)

. (6)

Here 𝑚(𝒙) is the mean function and 𝑘(𝒙,𝒙′) is the covariance func-
tion [35]. 𝒙′ is any other value of the design parameters than 𝒙.
The covariance function is usually referred to as the kernel of the
GP [36,37].

Several kernels are evaluated and the Matern 5/2 kernel [32,38],
is the most promising for the used objective function. The Matern 5/2
kernel is defined as

𝑘(𝒙,𝒙′) = 𝜎2𝑠

(

1 +

√

5𝑟
𝓁

+ 5𝑟2

3𝓁3

)

exp

(

−

√

5𝑟
𝓁

)

, (7)

where 𝜎𝑠 and 𝓁 are the signal standard deviation and characteristic
length scale, while 𝑟 represents the Euclidean distance between 𝒙 and
′ [39]. The variables 𝜎𝑠 and 𝓁 are called hyperparameters and can be
ptimised when training the regression model [32].

The GP surrogate model with the Matern 5/2 kernel achieves a
OOCV-nRMSE of 9.06% (Eq. (4)) and a LOOCV-𝑅2 value of 0.81
Eq. (5)). The corresponding values without using the LOOCV method
re an nRMSE of 4.32% and an 𝑅2 of 0.96. The difference between
he values when applying or not applying a LOOCV indicates that a
OOCV is required to get the true accuracy of the response surface
ithout the risk of over-fitting. It is suggested by Sobester et al. [21]

hat a nRMSE < 10% is required for a reasonable prediction and that a
urrogate model with an 𝑅2 > 0.8 has good capabilities for predicting
he true response. The predicted LOOCV values are just within the
imits for an adequate response surface.

In the left graph of Fig. 3, the observed training data is compared to
he estimated LOOCV response from the surrogate model. The predicted
ata shows an acceptable agreement with the observed training data,
nd most predicted points are within the standard deviation (𝜎) of the
bserved points. The standardised residual, is defined as

tR =
𝑦𝑖 − �̂�𝑖
√

var(�̂�)
,

s shown in the right graph of Fig. 3. Jones et al. [40] stated that the
tandardised residual should be within ±3 for a surrogate model to be
alid. The value of ±3 approximately represents a 99.7% confidence
nterval [40]. The predicted data points show a sufficient standardised
esidual. The nRMSE, 𝑅2 and the data fit graph provide confidence that
he surrogate model can predict trends of the objective function to a
reat extent.
4

v

3.4. Sampling plan

The space-filling Latin hypercube sampling [22] method is used to
sample the five design variables and distribute them onto a DOE matrix.
The full DOE is divided into two stages. The first DOE contained 200
samples. Based on the results of the first DOE, 50 additional design
points is evaluated in the area where the first DOE suggested that the
optimal solution should be found. The design space of the additional
DOE is constrained to

1.5 s ≤𝑡V,e ≤ 3.0 s,

0.1 s ≤𝑡R1,s ≤ 1.0 s,

0.7 ≤𝛾R1 ≤ 1.0,

1.5 s ≤𝑡R2,s ≤ 2.5 s,

0.7 ≤𝛾R2 ≤ 1.0,

which can be compared to the design space of the first DOE, shown in
Eq. (3).

The full DOE matrix used to predict the optimal startup sequence
thus consists of 250 data points. Each data point represents a transient
CFD simulation of the startup sequence. A single simulation is run
using parallel processing with 32 CPU cores and requires roughly 103

core hours, see Section 4 for details about the numerical computations.
Once all data points are evaluated with CFD, the data is post-processed
to generate the objective function organised in a table with all the
evaluated data points.

4. Numerical properties

OpenFOAM-v2012 is used for the transient CFD simulations. Open-
FOAM [23,41] is an open-source object-oriented C++ code for CFD
simulations. In the numerical simulations, the incompressible Reynolds
averaged Navier–Stokes (RANS) equations are discretised and solved
on a computational mesh using the finite volume method [42]. The
eddy viscosity 𝑘 − 𝜔 SST-SAS (shear stress transport-scale adaptive
imulation) turbulence model is used for closure of the RANS equations.
he SAS modifications to the traditional 𝑘 − 𝜔 SST model allow for

a local decrease in turbulent viscosity to resolve turbulence in parts
of the computational domain [43,44]. The turbulence model has re-
cently been used by several researchers in a hydropower context with
sufficiently accurate results [45–50].

The numerical framework includes the full 3D computational do-
main shown in Fig. 4(a), and the results from the two meshes shown in
Fig. 4(b) are compared in Section 5.2. The total length of the domain
is 5.70 m (20.64 times the runner shroud diameter). The domain
incorporates a hub, support struts, contraction/expansions before and
after the machine, and straight pipes near the inlet and outlet of the
domain. The full domain is divided into four regions, one for each
runner and two regions up and downstream of the CRPT. The arbitrary
mesh interface (AMI) technique is employed to transfer fluxes between
the mesh regions [51,52]. The runners rotate individually by imposing
time-varying solid body rotations according to the DOE samples.

4.1. Discretisation schemes and solver algorithm

Temporal discretisation is handled with the implicit second-order
accurate backward scheme [53]. The time step is set to 2.5 × 10−4 s,

hich gives a maximum runner rotation per time step of 2.25◦ (at the
ominal rotational speed). The time step is selected as a compromise
etween stability, accuracy, and the total time of each simulation. The
aximum average Courant number [54] is around 0.16 and happens

t the final operating condition.
The spatial discretisation schemes are of second-order accuracy for

ll variables except for the convection terms of the turbulent kinetic
nergy (𝑘) and the specific turbulence dissipation rate (𝜔). For these

ariables, a first-order accurate upwind scheme is used. The convection
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Fig. 3. Normalised observed sample points 𝑓 (𝒙) (left) and standardised residual (right) as a function of normalised predicted LOOCV response 𝑓 (𝒙).
Fig. 4. Computational domain (a) and mesh (b) displayed in a cut view.
terms of the three velocity components are handled with the linear-
upwind stabilised transport (LUST) scheme [55]. LUST is a blended
scheme that employs 75% of a central difference scheme for accuracy,
and 25% of a second-order upwind scheme for stability.

The OpenFOAM-v2012 pimpleFoam solver is used for all the simu-
lations. It is a transient CFD solver for incompressible flows that utilises
the PIMPLE algorithm [56]. This algorithm uses a pressure–velocity
coupling that combines the PISO [57] and the SIMPLE [58] algorithms.
PISO is used as an inner-loop corrector, while SIMPLE performs the
outer-loop correction. The pimpleFoam solver is in this work configured
with a maximum of 10 outer corrector loops per time step and two
inner correction loops within every outer loop. One non-orthogonal cor-
rector step is further performed at each inner loop. The outer corrector
loop is interrupted when a specified convergence criterion is reached
within the time step, and the simulation proceeds to the next time step.
The convergence criterion is set to an absolute tolerance of 10−6 and
10−5, or a relative solver tolerance of 0.01 and 0.001, for velocity and
pressure, respectively. In OpenFOAM, the absolute tolerance is referred
5

to as the solver residual, and the relative tolerance is the fraction of
the final to initial residuals in the numerical solution loop of the linear
system. In most time steps, a converged solution was obtained within
four to six outer corrector loops.

4.2. Boundary conditions

For pressure, the headLossPressure boundary condition developed
by Fahlbeck et al. [24] is used to achieve a flow-driving pressure
difference over the computation domain. The flow rate is thus given as
part of the solution. The boundary condition provides the possibility to
include the main effects of pressure losses in the system caused by com-
ponents such as valves, bends, pipe friction, etc, that are not considered
in the computational domain. Thus, the pressure difference experienced
by the CRPT in the simulations is caused by the computational domain
and the system components that are not part of the simulation. The
system is in this work configured according to the future lab tests
that are to be made in the ALPHEUS project. Table 2 summarises the
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Table 2
Input to the pressure boundary condition.

Inlet Outlet

Surface elevation 3.25 9.70 m

Minor losses (loss coefficient)
Bend – 0.20 –
Sharp entrance – 0.45 –
Sharp exit 1.00 – –
Fixed valve – 2 × 0.20 –
Opening valve – 𝑘V(𝛼V , 𝑡) –

Friction losses
Pipe length 1.00 15.50 m
Surface roughness 0.05 0.05 mm

prescribed head losses upstream and downstream of the computational
domain. All minor loss coefficients and surface roughness of the pipes
are taken from White [59], except the ‘Opening valve’, which is the
valve that is being opened through the startup sequence using a smooth
function, as described in Section 3. In the future experimental test
facility, the valve is planned to be located far downstream of the CPRT
in pump mode. Hence, the valve will have a limited effect on the flow
field by the runners.

The relation between the minor loss coefficient of the valve, 𝑘V, and
its opening angle, 𝛼V, is estimated based on data provided by the test
facility as

𝑘V(𝛼V) = exp(−4.2351 ln(𝛼V) + 18.1149). (8)

The valve is of a butterfly type where 90◦ represents the fully open
tate while 0◦ indicates the fully closed position. Due to numerical
nstability, the valve cannot be fully closed in the simulations, as the
inor loss approaches infinity when the opening is 0◦ (see Eq. (8)).
herefore, the smallest opening angle used in the simulations is 2◦,
hich gives a minor loss coefficient of 𝑘V(2) = 3.91 × 106, yielding a
egligible flow rate at this opening.

The pressureInletOutletVelocity [23] boundary condition is used at
oth the inlet and the outlet for the velocity. This boundary condition
rescribes a zero-gradient (homogeneous Neumann) condition, with the
estriction that inflow is only allowed in the face-normal direction. All
alls are treated with the no-slip condition and wall functions are used

o model wall viscous effects.

.2.1. Mesh study and chosen mesh
In the optimisation study, several hundreds of simulations of tran-

ient sequences should be carried out. It is thus necessary to have
n affordable computational model while still capturing the essential
hysical trends accurately. Thus, a mesh study is performed to estimate
he discretisation error of a coarse CFD model. Five different mesh
izes are evaluated at a fixed operating point, with total cell counts
f 21.32, 9.76, 5.02, 2.36, and 1.15 million cells, respectively. Time-
veraged values of the CRPT power (𝑃 ) using these meshes are shown
s a function of average cell size in Fig. 5. The average cell size is
omputed as

=

(

1
𝑁

𝑁
∑

𝑖
𝛥𝑉𝑖

)1∕3

, (9)

where 𝑁 is the number of cells and 𝛥𝑉𝑖 is the volume of the 𝑖th cell.
Discretisation schemes and boundary conditions are identical for all
the cases in the mesh study. However, the time step is varied so that
the average Courant number [54] is kept as close as possible for the
different mesh sizes.

Richardson extrapolation (RE) is performed on the CRPT power
given by the three finest meshes to estimate the numerical discretisa-
tion error [60,61]. The grid convergence index (GCIf ine), the extrapo-
lated relative error (𝑒f ineext ) of the finest mesh (21.32 × 106 cells), and the

coarse 6
6

extrapolated relative error (𝑒ext ) of the coarsest mesh (1.15×10 cells)
Fig. 5. Power as a function of average cell size ℎ.

re 0.16%, 0.13% and 6.27%, respectively. The extrapolated values
uggest that the discretisation error of the finest mesh is less than 0.2%.
he present study however focuses on the coarsest mesh with 1.15×106

ells (referred to as the LoFi model) and the mesh with 9.76 × 106 cells
referred to as the HiFi model). See Fig. 4(b) for a graphical view of
hose meshes. The LoFi model falls outside the asymptotic range of
onvergence. However, the HiFi model is well within this range since

GCIHiFi

𝑟𝑝GCIf ine
= 1.000.

Furthermore, the HiFi model achieves a GCIHiFi of 0.90%, and a 𝑒HiFiext
of 0.72%. This means that the expected discretisation error of the
HiFi model is less than 1%. Therefore, the HiFi model results are in
Section 5.2 used to validate the results of the LoFi model during a full
transient sequence. Although the relative error of the LoFi model is
larger, and that it falls outside the asymptotic range of convergence,
the validation shows that it gives acceptable results for the optimisation
process. The power is only underestimated by a few percent, and the
mesh is fine enough to capture the most essential physics during the
transient sequence. At the same time, the LoFi mesh is coarse enough
to make the optimisation study feasible. Therefore, considering the
fact that hundreds of CFD simulations of transient sequences need to
be performed, the coarse mesh with 1.15 × 106 cells is chosen for the
optimisation study.

As described earlier, and as can be seen in Fig. 4(b), the compu-
tational mesh is divided into four parts, one for each runner and one
for each of the two regions upstream and downstream the CRPT. The
runner meshes are block-structured, except in the tip-clearance region
where four layers of hexahedral and triangular prism cells are used. The
upstream and downstream regions consist of six prism boundary layer
cells and unstructured tetrahedral core cells. The mesh is finest close to
the runners and is gradually coarser further away. The total cell count
is 1.15×106 cells. The mesh regions of Runners 1 and 2 contain 0.35×106

and 0.28 × 106 cells, respectively, while the upstream and downstream
regions contain 0.26 × 106 cells each. The average 𝑦+ value of the first
nodes at the walls is between 40–210.

5. Results and discussion

The outcome of the optimisation study is presented and discussed in
this section. The optimal solution is compared to a baseline startup se-
quence in Section 5.1. For the baseline case, the valve gradually opens
up during the whole three seconds. Simultaneously, both runners utilise
the full time of the sequence to steadily speed up. Additionally, the
optimal startup sequence, estimated with the LoFi model, is validated
using the results of a HiFi model in Section 5.2. Flow structures during
the optimised startup sequence are finally examined in Section 5.3 with
the HiFi model. Recall that the maximum time of the startup sequence

(𝑡max) is 3 s. However, in the graphs presented in this section, one
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additional second is added to show the developed conditions at the final
operating point. Furthermore, all the force and torque graphs show
smoothed instantaneous average values. See Section 3.2 for further
details about the smoothing procedure.

5.1. The optimal startup sequence

The optimal startup sequence suggested by the optimisation algo-
rithm is shown together with the baseline sequence in Fig. 6. The
optimal and baseline design variables and the objective function are
summarised in Table 3. In the optimal startup sequence, Runner 1
(upstream) starts speeding up prior to Runner 2 (downstream), and
there is an overlap between the speedup procedures of the two runners.
The Runner 1 speedup time is 2.728 s, which corresponds to 91% of the
entire sequence. The speedup of Runner 2 is faster and requires only
0.890 s, which corresponds to 30% of the entire sequence. The valve
opens up during 73% of the sequence. Moreover, the valve is almost
fully opened prior to the speedup of Runner 2, while there is a large
overlap between the valve opening and the speedup of Runner 1 in the
optimal sequence. Comparing the observed, 𝑓 (𝒙), and estimated, 𝑓 (𝒙),
objective functions reveals that the surrogate model manages to predict
the objective function adequately with an acceptable relative error of
3.5% for the optimal case and 6.6% for the baseline case.

To verify that the optimised startup sequence indeed is a favourable
alternative, the loads on the runners are compared to those of the
baseline startup sequence in Fig. 7. Also, the average plus/minus the
standard deviation of the first 200 DOE samples at each time step is
shown. The first 200 DOE samples are used since they are statistically
independent. Recall that the axial force and torque are smoothed in the
graphs, thus only the main variation is demonstrated. Focusing on the
variation of axial force (left graph in Fig. 7), it is shown that Runner 2
may experience larger detrimental force oscillations, which can be

Fig. 6. Optimal and baseline startup sequences as a function of time. The baseline
sequence is indicated with □ markers, note that the runner speedups are identical for
he baseline. 𝑁R𝑖,max = 1501.9 rpm, and 𝛼V,max = 90◦.
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Table 3
Design variables and objective function for the optimal and baseline sequences.

Variable 𝑡V,e 𝑡R1,s 𝛾R1 𝑡R2,s 𝛾R2 𝑓 (𝒙) 𝑓 (𝒙)

Optimal 2.179 s 0.223 s 0.982 2.030 s 0.917 9.811 10.167
Baseline 3.000 s 0.000 s 1.000 0.000 s 1.000 11.617 12.438

explained by the fact that complex flow structures leaving Runner 1
encounter Runner 2. The maximum encountered axial force (left graph)
and torque (right graph) for all the evaluated sequences surpass values
of 6.5 kN and 360 N m, respectively. The optimal solution shows
remarkably lower peaks for the force and torque. The load variation for
Runner 2 shows a rather smooth behaviour for the optimised solution,
whereas a clear peak arises around 𝑡 = 1.7 s for the baseline case.
The peak load of the baseline case at 1.7 s is in fact outside of the
standard deviation, which indicates that a random startup sequence
should in principle be a better alternative than the baseline sequence.
However, as seen by the maximum force and torque of all the evaluated
samples, a random sample could also be a less favourable alternative.
The variation of axial force and torque of Runner 1 for the optimal case
does not show any significant improvements compared to the baseline
alternative. However, the loads on Runner 1 are generally smaller than
on Runner 2, indicating the importance of the Runner 2 loads for the
CRPT machine.

Decreasing the low-frequency high-amplitude fluctuations of forces
and torques on the full runners, the machine lifetime increases and the
likeliness of total breakdown of the machine due to fatigue reduces. The
hydraulic loads on the full runners indicate the main loads transmitted
to the mechanical system, e.g., shafts, bearings, support structures, etc.
For axial-flow machines where the blades are not supported by the
shroud, it can also be important to monitor loads on a single blade
since all oscillations might not be detectable on the full runner as the
blade loads can potentially cancel each other out. The axial forces
and torques shown in Fig. 8 are evaluated for a single blade on each
runner. The single-blade load variation is closely connected to the
lifetime of the runner itself. Persistent large spikes may lead to fatigue
or even breakdown of the runner blades. The optimal solution shows
no severe force or torque spikes. The torque is in fact showing a fairly
smooth variation during the startup for the optimal case. In contrast,
the Runner 2 curves of the baseline sequence present notable axial force
and torque peaks that exceed the loads at the final operating point.

The time variation of the flow rate during the startup, demonstrated
in Fig. 9, can also explain the advantageous performance of the optimal
case. The optimal solution presents a gradual increase in flow rate
through most of the sequence, while the baseline case shows more
abrupt changes. A distinct change in the rate of increasing flow rate
appears for the baseline case around 𝑡 = 1.8 s, shortly after the Runner 2
peaks in axial force and torque, shown in Figs. 7 and 8. The variation
of flow rate indicates that a safe startup sequence cannot be achieved
without a smooth and gradual increase in the flow rate.

The significant differences between the Runner 2 loads of the op-
timal and baseline cases at roughly 𝑡 = 1.7 s are further investigated

through the tangential velocity and secondary flow vectors in Fig. 10.
Fig. 7. Axial force (left) and torque (right) for the full runners as a function of time. The shaded areas show the mean (𝜇) ± the standard deviation (𝜎) at each time step for the
first 200 DOE samples. The max value is the maximum value encountered for all the evaluated sequences.
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Fig. 8. Axial force (left) and torque (right) of a single blade for both runners as a function of time.
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Fig. 9. Flow rate as a function of time.

he results are from the HiFi CFD model (9.76 × 106 cells and 𝛥𝑡 =
×10−5 s), which is discussed in detail in Section 5.2. In each subfigure,
he left picture illustrates the flow field between the runners while
he right one represents the flow field downstream of Runner 2 (the
ed and blue planes in Fig. 10(g), respectively). The secondary flow
ectors between the runners for the optimal case at 𝑡 = 1.5 s, shown in
ig. 10(a) (left figure) indicate a non-uniform flow. Furthermore, the
angential velocity contour suggests mostly a clockwise swirl (𝑢𝜃 > 0)
irection between the runners. After Runner 2 (right figure), a counter-
lockwise swirl (𝑢𝜃 < 0) can be observed. A counter-clockwise swirl
ownstream of Runner 2 is also encountered for the baseline case at
= 1.5 s (right picture in Fig. 10(b)). At the same time, compared to

he optimal case, a more uniform clockwise swirl is formed between
he two runners in the baseline case. Moreover, the flow rate is larger
or the baseline case at 𝑡 = 1.5 s, which means that a larger torque is
equired to change the flow direction. Therefore, the abrupt changes in
he flow swirl direction, in combination with the higher flow rate, can
e seen as another physical explanation of the large load fluctuations
n Runner 2 in the baseline case, which are considerably reduced by
he optimisation procedure.

Later on, the secondary flow patterns of the optimal case in
igs. 10(c) and 10(e) indicate an increase of the tangential velocity
etween the runners. On the other hand, the secondary flow direction
fter Runner 2 demonstrates no drastic changes between 𝑡 = 1.6 and
.7 s. This is because, based on the optimal operation, the rotational
peed of Runner 1 increases, while the rotational speed of Runner 2
oes not. The same analysis for the baseline case (Figs. 10(d) and 10(f))
uggests that the magnitude of the tangential velocity between the
unners is smaller than for the optimal case. However, the secondary
low vectors indicate that the direction is more aligned in a clockwise
irection. The flow after Runner 2 shows a counter-clockwise direction
or the baseline case with comparably small values of tangential ve-
ocity at 𝑡 = 1.7 s. Additionally, at the final time step, traces of wakes
rom Runner 1 are visible between the runners for the baseline case
s an effect of the larger flow rate and the more ordered flow. Similar
8

atterns are apparent for the optimal case at later time steps as well.
The combination of a comparably high flow rate, a dominant clock-
ise swirl between the runners, and a distinct counter-clockwise swirl
ownstream of Runner 2 explains the load peaks for the baseline case at
≈ 1.7 s, shown in Figs. 8 and 9. This is because Runner 2 is responsible
or the torque required to change the flow direction from clockwise to
ounter-clockwise. For the optimal case, there are larger values of the
angential velocity between the runners. However, the secondary flow
ectors show that the flow swirl direction is less ordered for the optimal
ase than for the baseline case. Moreover, the flow rate is smaller in the
ptimal case, which means that the CRPT is working more like a mixer
han a pump at the evaluated time steps.

To further explain why the optimal case reduces the undesirable
oad peaks compared to the baseline case, the axial component of the
ngular momentum flux over Runner 2 is shown in Fig. 11. The angular
omentum flux is derived from Reynolds’ transport theorem [59], and
ses a control volume approach by applying conservation of angular
omentum as

= ∬𝑆
(𝒓 × 𝒖)𝜌(𝒖 ⋅ 𝒏) d𝑆 ⇒ 𝑀𝑧 = ∬𝑆

(𝑟𝑢𝜃)𝜌(𝒖 ⋅ 𝒏) d𝑆. (10)

ere, 𝒓 is the lever vector (𝑟 is the lever in the radial direction), 𝜌 is the
fluid density, 𝑆 is the control volume surfaces, 𝒖 is the velocity vector,
𝒏 is the surface normal vector and subscript 𝜃 denotes the tangential
direction. The equation is a general form of the Euler turbine equation,
𝑇 = �̇�(𝑟2𝑢𝜃2 − 𝑟1𝑢𝜃1), and describes the change of angular momentum
over a control volume. The control volume surfaces are in this case
defined according to the red and blue surfaces in Fig. 10(g).

The curve for the baseline case in Fig. 11 shows a peak value at
𝑡 ≈ 1.7 s, which is at the same time as the axial force and torque peaks
occur. Hence, the high Runner 2 load peaks for the baseline case are
caused by the change in tangential velocity over the runner, while at
the same time having a significant flow rate. This is because Eq. (10)
in principle demonstrates the change of tangential velocity over the
control volume multiplied by the flow rate, since the average lever is
constant. For the optimal case, no distinct peak is demonstrated.

5.2. Verification of the optimal startup sequence

To verify that the performance of the optimal solution, based on the
LoFi CFD model (coarse mesh with 1.15×106 cells and 𝛥𝑡 = 2.5×10−4 s),
is as promising as suggested in Section 5.1, the optimal sequence is
numerically analysed with the HiFi CFD model (fine mesh with 9.76 ×
106 cells and 𝛥𝑡 = 5 × 10−5 s). In Fig. 4(b), a visual comparison of the
LoFi and HiFi computational meshes is displayed. For the HiFi model,
all solver settings are identical to the LoFi model, except the time step
which is decreased for numerical stability and increased accuracy. The
LoFi model requires roughly 1 × 103 CPU core hours for the startup
sequence, while the HiFi model needs 50 × 103 CPU core hours. The
LoFi model is thus around 50 times less computationally demanding,
which is why it was used for the optimisation study.

In Fig. 12, the axial force and torque are compared between the

HiFi and LoFi models. The LoFi model manages to predict the trends
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Fig. 10. Contours of tangential velocity and in-plane vectors of secondary flow (scaled with the velocity magnitude) at two cut-planes for the optimal and the baseline cases at
various times. The lower cut-plane is located between the runners (red plane in g) and the above plane is placed downstream of Runner 2 (blue plane in g). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Axial component of the angular momentum flux (Eq. (10)) over Runner 2 as
a function of time.

of the sequence rather well since the curves of the HiFi and LoFi
models are similar. There are nonetheless some inevitable differences.
The LoFi model mostly under-predicts the Runner 1 loads, while for
Runner 2, the loads are over-predicted. In the LoFi case, this results
in that the downstream runner is to a larger extent responsible for
generating the required head. The predicted head is almost the same
9

for the LoFi and HiFi models and can be translated to the sum of axial
force (R1 + R2 in the left graph of Fig. 12). The sum of torque is in
general under-predicted by the LoFi model, which has a decisive impact
on the computed flow rate.

The increase in flow rate for the HiFi and LoFi models of the
optimised startup sequence is shown in Fig. 13. The general trend is
captured by the LoFi model. However, there is an offset starting at
𝑡 ≈ 0.5 s. Also, at the later time steps the LoFi model under-predicts
the flow rate by roughly 5%. The offset at the later time steps is
explained by the smaller torque estimated by the LoFi model, as shown
in Fig. 12 (R1 + R2 in the right graph). A smaller torque put into
the flow means less momentum to generate the pressure increase by
the CRPT that drives the flow through the computational domain. The
underestimation of torque is most likely caused by the fact that a large
part of the wall viscous effects is modelled through wall functions in
the computational domain for the LoFi model, whereas the HiFi model
resolves a larger part of the boundary layers.

The results from the HiFi model demonstrate a similar behaviour
as the LoFi model for the optimised startup sequence in pump mode.
This implies that the sample points generated by the LoFi model
can adequately predict the physical phenomena behind the damaging
effects of the startup sequence. Additionally, the GP surrogate model
and the SBO obtained with the GA can present an optimal combination
of the design variables to avoid drastic low-frequency, high-amplitude,
load peaks and thus limit the risk of fatigue and total breakdown.
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Fig. 12. Axial force (left) and torque (right) for the full runners as a function of time. The shaded areas indicate the difference between the HiFi and the LoFi models.
Fig. 13. Flow rate as a function of time, the shaded area indicates the difference
between the HiFi and LoFi models.

5.3. Flow structures during the optimised startup sequence

Iso-surfaces of the 𝜆2-criterion [62] with the HiFi model are demon-
strated in Fig. 14, to study the complex flow structures during the
optimal startup sequence. At 𝑡 = 0.5 s (Fig. 14(a)) the machine is mainly
working as a mixer, due to a near-zero flow rate. Most of the flow
structures are centred around Runner 1, indicating massively separated
flow near this runner. At 𝑡 = 1.5 s (Fig. 14(b)) the flow rate has started
to increase because of the rising rotational speed of Runner 1 and the
opening of the valve. This causes larger flow structures around both
runners. The flow rate is still far from the final operating condition,
resulting in a heavily separated flow field around the blades.

Recall the rapid change in axial forces and torques, shown in Fig. 12,
close to 2.0 < 𝑡 < 2.2 s. Figs. 14(c)–14(e) show that the flow undergoes
a significant change between 𝑡 = 2.0 to 2.2 s. The flow is transformed
from being mainly mixed by the runners, to having a more developed
10
behaviour. Most of the small flow structures between the runners are
diminished during this short period, and tip clearance vortices at the
leading edge of the runner blades are seen at 𝑡 = 2.2 s.

The tip clearance vortices are still apparent at the final time step of
the startup sequence, at 𝑡 = 3.0 s, as shown in Fig. 14(f). Additionally,
vortex shedding from the upstream support struts is developed. Traces
of vortex shedding for the downstream support struts are also found.
However, a smaller 𝜆2 value is required to clearly visualise the down-
stream support struts vortex shedding. The value of 𝜆2 = 5 × 105 s−2

was chosen to visualise flow structures close to the runners rather than
in the whole computational domain.

6. Conclusions

The current study has successfully demonstrated an approach for
reducing flow-induced load pulsations during a transient startup se-
quence for a CRPT in pump mode. The startup scheme is based on the
rotational speed of the runners being set to initial values with a closed
valve, so that the net head of the CRPT matches the gross head of the
PHS facility. This ensures a minimal energy loss for the PHS station
during startup since reverse flow from the upper to the lower reservoir
is avoided.

The developed optimisation framework is configured to minimise,
low-frequency, high-amplitude load pulsations during the transient
startup sequence. In the sequence, the valve starts to open up at the
initial time step, and the runners’ rotational speeds gradually increase.
The maximum allowed time of the startup sequence is set to 3 s, and
five design variables that control the startup sequence are optimised.
One variable is used for the valve and two for each of the runners.

The optimisation algorithm suggests that the valve should be fully
open after 73% of the full time of the sequence. The speedup of Run-
ner 1 (upstream) should start prior to that of Runner 2 (downstream),
and Runner 1 should speed up during most of the sequence. The
speedup of Runner 2 should be almost three times as fast as that of
Fig. 14. Iso-surfaces of 𝜆2 = 5 × 105 s−2 with the HiFi model during the optimal startup sequence at various time steps. Note that the flow is from left to right.
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Runner 1, and its increase in rotational speed should occur during the
final third of the sequence.

The optimal startup sequence shows a smooth increase in the flow
rate through the sequence. A smooth change in flow rate during the
startup reduces drastic peak values of torque and axial force of both the
full runners and also a single blade on each runner. The machine may
experience numerous startup sequences throughout its lifetime, and the
risk of fatigue and total breakdown of the runner blades are reduced by
limiting the drastic load peaks.

For possible future PHS stations with CRPTs, it is recommended
to execute transient operations in pump mode that ensures a smooth
variation in the change of flow rate throughout the transient. By
monitoring the change in flow rate, it should possible to carry out
further optimisation studies on transient operations. Such studies can
use a similar strategy as the one presented in this paper. Simplified
models, with e.g. characteristics of the pump-turbine, could potentially
also be used.
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