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Abstract

This thesis focuses on the development of programming frameworks to enforce,
by construction, desirable properties of software systems. Particularly, we are in-
terested in enforcing differential privacy—a mathematical notion of data privacy-
while statically reasoning about the accuracy of computations, along with deriv-
ing the sensitivity of arbitrary functions to further strengthen the expressiveness of
these systems. To this end, we first introduce DPella, a programming framework for
differentially-private queries that allows reasoning about the privacy and accuracy
of data analyses. DPella provides a novel component that statically tracks the ac-
curacy of different queries. This component leverages taint analysis to infer statis-
tical independence of the different noises that were added to ensure the privacy of
the overall computation. As a result, DPella allows analysts to implement privacy-
preserving queries and adjust the privacy parameters to meet accuracy targets, or
vice-versa.

In the context of differentially-private systems, the sensitivity of a function de-
termines the amount of noise needed to achieve a desired level of privacy. How-
ever, establishing the sensitivity of arbitrary functions is non-trivial. Consequently,
systems such as DPella provided a limited set of functions—whose sensitivity is
known—to apply over sensitive data; thus hindering the expressiveness of the lan-
guage. To overcome this limitation we propose a new approach to derive proofs
of sensitivity in programming languages with support for polymorphism. Our ap-
proach enriches base types with information about the metric relation between val-
ues and applies parametricity to derive proof of a function’s sensitivity. These ideas
are formalized in a sound calculus and implemented as a Haskell library called
SPAR, enabling programmers to prove the sensitivity of their functions through type-
checking alone.

Overall, this thesis contributes to the development of expressive programming
frameworks for data analysis with privacy and accuracy guarantees. The proposed
approaches are feasible and effective, as demonstrated through the implementation
of DPella and SpAR.
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Introduction

Constantly sharing personal information has been integrated into our daily rou-
tines. From our home devices, online interactions, and the services we use; to more
explicit disclosures such as filling out forms and answering surveys, our data is be-
ing collected, stored, sold, and processed by a wide range of agents. These agents
(e.g., research institutions, government agencies, and businesses) rely on collected
data to improve their services, understand populations, tailor policies, and make in-
formed decisions. Consequently, data processing is at the backbone of our society
and has the potential to impact our communities and lives positively. It is then de-
sirable to share our information with such agents for personal and societal gains.
However, the information provided often contains confidential and sensitive details
about ourselves that we expect to remain private and accessible only to those trusted
parties; unfortunately, this has not always been the case.

The mishandling of sensitive data has become commonplace among companies
and public institutions [17, 14, 21, 27]. As a result, many laws, regulations, and
agreements [6, 4, 16, 2] have been put in place recognizing the importance of pro-
tecting individuals’ privacy and mitigating the occurrence of privacy breaches. Im-
proper disclosure of the information is severely penalized with fines which might
put some companies out of business or heavily affect their reputation and compet-
itiveness [28, 1, 19, 3]. To make matters worst, when privacy breaches occur, they
are irreversible and have lingering consequences on those affected. These incidents
perpetuate distrust between the individuals and the agents interested in their data,
deterring the public from sharing their information in the future [10, 7, 11]. The vast
implications of privacy breaches then severely limit the potential usage of individ-
uals’ data and its availability altogether.

It is in everyone’s interest to avoid privacy breaches, but ensuring data privacy
is a complex problem. Companies, researchers, and policymakers have searched for
robust and concrete ways to define, ensure, and regulate data privacy. Decades of
trial and error have made it evident that data privacy cannot be achieved with a
few hacks or as an afterthought. Instead, it must be a fundamental approach that
can withstand technological changes and unforeseen risks while being feasible for
today’s needs.

Are our requirements for data privacy utopian? Should data analysis be halted
or reduced to preserve individuals’ privacy? Fortunately, that is not the case; var-
ious privacy-preserving techniques are available that allow us to perform statisti-
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cal data analyses while guaranteeing the privacy of individual participants. One
such approach is differential privacy [13], a mathematical and quantifiable defini-
tion of privacy that has gained popularity for its provable guarantees and applica-
bility. Nevertheless, as the problem of privacy is broad and intricate, it is essential
to clarify the domain in which differential privacy is applicable and the drawbacks
that it might have. Concretely, this dissertation explores some challenges concern-
ing the deployment and usability of differential privacy and addresses them in the
context of programming languages.

Before diving into the opportunities and challenges of differential privacy, it is
important to explore the context of privacy protection and its threats. Following
the reader can find a brief description of some well-known and relevant techniques
used by data analysts and privacy practitioners in their daily tasks. This primer will
serve as an introduction to the field of statistical data privacy and as a motivation
for the usage of the study and application of differential privacy.

I.1 Privacy protection in context

Data anonymization or de-identification. Is the process of removing person-
ally identifying information (PII) from datasets so that the remaining information
cannot be linked to specific individuals. In practice, these techniques require data
owners to pre-process datasets by purging explicit identifiability information such
as names and government-issued IDs; as well as potentially identifiability informa-
tion such as IP addresses or next of kin. The remaining data presents a best-of-both-
words scenario in which unscrupulous actors will not be able to identify the peo-
ple providing the information, and honest analysts will have useful data to perform
their studies.

The promise of yielding useful and privacy-preserving results has positioned
anonymization techniques as the de-facto approach among practitioners storing,
sharing, and processing sensitive data. This sense of assurance is further reinforced
by regulatory agents and globally common statutes in which anonymization is con-
sidered sufficient to protect individuals’ privacy [26]. Despise its apparent robust-
ness, data breaches still occur in the presence of anonymized data.

The weakness of anonymization techniques is their incapacity to account for
data’s multiple degrees of identifiability. While PIIs are indeed attributes an adver-
sary can use to identify an individual, the same result can be achieved by combining
attributes that do not classify as personally identifiable. For instance, Sweeney [31]
demonstrated that the combination of ZIP code, birth date, and sex are unique to 87%
of the American population. Furthermore, when considering other available sources
of information, the probability of uniquely identifying individuals is increased by
cross-referencing with the anonymized data. It is then clear that data anonymiza-
tion is susceptible to privacy attacks and cannot always fulfill its promise of provid-
ing useful and privacy-preserving results.

Privacy attacks on anonymized data aim to reverse the process of anonymiza-
tion. Attackers can exploit the aforementioned vulnerabilities by associating anony-
mized records with non-anonymized information from different datasets, this tech-



I1. PRIVACY PROTECTION IN CONTEXT 3

nique is known as a linkage attack. Using non-anonymous data as background
knowledge, attackers are capable to trace back individuals (known as re-identification
attacks) or recover large portions of the original dataset (known as reconstruction
attacks). Even though these attacks might seem difficult to perform and unlikely to
succeed, concrete instances of such attacks abound. Consequently, I present two in-
famous cases in which sophisticated data administrators overestimated anonymiza-
tion guarantees and compromised the privacy of hundreds of people.

« AOL Searcher No. 4417749: To provide useful data for academic research,
AOL released a dataset of search queries performed by its users. The com-
pany anonymized said data by replacing user IDs with random numbers and
removing IP addresses. The combination of searches performed by a user
—whose identity was hidden behind an associated random number— were
naively considered non-identifiable attributes of that user. Later on, New York
Times journalists Barbaro and Zeller, prove this assumption to be false [8]. In
the article, the authors showcase how a set of searches can reveal particular
characteristics of the users. Concretely, they re-identified and presented user

"on

No. 4417749, a 62-year-old widow searching for "numb fingers", "60 single
men", "dog that urinates on everything", "homes sold in shadow lake subdivi-
sion gwinnett county georgia.', and "landscapers in Lilburn, Ga,". When noti-
fied about the vulnerabilities, AOL removed the dataset and apologized for its
publication, but, as pointed out by the authors, the data was already copied

and distributed on other sites; thus leaving AOL users’ permanently exposed.

+ Netflix competition: Netflix released a dataset containing movie ratings
provided by their users as part of training data for a competition to improve
their recommendation algorithm. To anonymize the dataset, user IDs were
replaced, several ratings were randomly altered and dates were modified. De-
spise their efforts, Narayanan and Shmatikov [25] demonstrated that more
80% of the users were identifiable by knowing the time and rating of only three
movies. By using publicly available ratings from the Internet Movie Database
(IMDB) as background knowledge, the authors were able to re-identify com-
mon users across the datasets, in addition to learning other potentially sensi-
tive information such as users’ apparent political preferences.

These examples exhibit the prevalence of using anonymization for privacy preser-
vation among practitioners, but more importantly, they demonstrate the theoret-
ical and practical limitations of this technique, casting substantial doubts about
anonymization’s power for ensuring privacy.

Summary statistics. A common refrain among data analysts is to "aggregate"
data to make it safe to share and release. The idea behind this approach is that it
provides a hide-in-the-bunch effect where individuals are not likely to be singled
out. Intuitively, this simple approach fulfills the promise of protecting individuals’
privacy, after all, how can an attacker know my specific salary if all that is shared
is the average income of people in my area? As it turns out, this intuition is full of
risks and potential mistakes.
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Region Age Sex Count

A 20 -29 F -
A 30 - 39 F 20
A 40 - 49 F 9
A 50 - 59 F 17
A 20 -59 F 49

Table I.1: Summary female population in region A

Straight-forward attacks can be foreseen under the presence of outliers or when
the population is not big enough to "hide" data points. In fact, the field of statisti-
cal disclosure control [29] aroused from the need to protect information on tabular
and aggregated data. Consequently, statistical organizations have devised various
methods to mitigate these attacks, among them, the threshold rule stands as the most
commonly used [5]. The threshold rule consists on requiring a minimum number of
respondents (per categorization) in order to provide the aggregated results. For in-
stance, applying a threshold of 5 would mean that at least 5 individuals must share
the same combination of age, sex, and region of residence in order to provide any
insights about a population with this categorization. Although the threshold rule is
simple to implement and seemly efficient to prevent issues with identifying eccen-
tric data points; the privacy guarantees are broken when the aggregated statistics
are reversible and the releases are accumulated through time.

Consider the aggregated data in Table 1.1 containing the summary statistics of
the female population in a certain region. Here the population of females is aggre-
gated within age ranges, additionally, the total population of females (known as a
marginal statistic) is provided. With this information, we can easily identify that
number of females between the ages of 20-29 is 49 — 20 — 9 — 17 = 3. Even though
this example presents an obvious scenario, reversing aggregations across many di-
mensions when marginal statistics are included is a well-known and common prob-
lem [9].

Releasing marginal statistics jeopardizes the privacy guarantees provided by
summary statistics, however, privacy-by-aggregation’s vulnerabilities exist beyond
marginal summaries. When aggregated data is produced over time, attackers are
provided with additional information that can be used to compare and infer sen-
sitive information. Say our previous example was produced for January, in which
{Region:A, Age:40-49, Sex: F} = 9; if the results of the following month are {Re-
gion:A, Age:40-49, Sex: F} = 10, it is easy to notice that one person has been added
thus, violating the threshold rule since less than 5 individuals are represented in the
difference between both counts. To make matters worst, if an attacker has previous
knowledge of Alice moving to region A in this period, they can infer that Alice is
between 40 to 49 years old.

The main problem with privacy-via-aggregation is that all methods of numeri-
cal aggregation can be used to reconstruct the original data. This phenomenon was
called the Fundamental Law of Information Recovery by Dwork and Roth [13] stating
that "overly accurate answers to too many questions will destroy privacy in a spec-
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tacular way". Intuitively, the more statistics generated from a single set of data, the
greater the chance of reconstructing the original data from those statistics; this is
simply because each release decreases the possibilities for the data that could have
produced those statistics. This is why prominent data managers including the U.S.
Census Bureau [24], Google [15], and Apple [18], have shifted their interest to more
robust tools for releasing privacy-preserving statistics such as differential privacy.

1.2 Differential privacy

Differential privacy [13] is a formal mathematical definition of privacy in aggre-
gate statistics (e.g., averages and histograms) and machine learning analysis (e.g.,
k-means and stochastic gradient descent). This formal framework has gained in-
creasing popularity during the past decades as its core mechanisms are a variant
of the classic randomized response [32], protecting individuals’ privacy with formal
guarantees of plausible deniability—i.e., when performing a statistical analysis over
a dataset, any participant can deny the presence of their information in the input
data. Accordingly, differential privacy ensures that anyone observing the result of
a differentially-private computation will likely make the same inferences about an
individual, whether or not their information is included as input for the analysis.
Furthermore, differential privacy specifies mathematical assurance for privacy pro-
tection against various privacy attacks such as re-identification, reconstruction, and
differencing attacks.

The success of differential privacy lies in the fact that it identifies algorithms as
the primary culprits for data breaches. Under differential privacy, data is not anony-
mized, as we have seen that this technique is susceptible to linkage attacks [30, 25,
8, 12]. Additionally, differential privacy does not rely on the potential privacy of
aggregated statistical results, as this approach is susceptible to reconstruction and
membership attacks [20, 12]. Instead, differential privacy focuses on how the algo-
rithms at hand can influence the relationship between the input (possibly sensitive)
data and the outcome of the computations. In this sense, differential privacy is not
a single tool or implementation but a criterion or property that many algorithms for
accessing sensitive personal data are devised to satisfy.

Intuitively, an algorithm (often referred to as query or analysis) is said to sat-
isfy differential privacy when it returns statically indistinguishable outputs when
given two datasets differing in the data of a single individual. In order to fulfill this
condition, differentially-private algorithms add calibrated noise to their result to
mask the absence, inclusion, or modification of someone’s information in the input
dataset. The strength of differential privacy’s guarantees can be tuned via the pri-
vacy parameter ¢'. This parameter is commonly referred to as the privacy loss as it
can be interpreted as the additional risk a participant is exposed to by partaking in
a specific data analysis. Consequently, the value of € directly influences the noise in
a computation’s result to ensure privacy. As € decreases, the strongest the privacy

n its general form, differential privacy is parametrized by (e, ), with € bounding the total privacy
loss and J referring to a failure probability of the DP guarantees.
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guarantees are; however, this comes at the cost of adding more noise, thus impact-
ing the results’ accuracy.

At the core of every differentially-private algorithm lies the noise calibration
mechanism. Noise calibration is crucial to provide both useful and private results.
While the € parameter quantifies the desired level of privacy, we also need to con-
sider how susceptible the algorithm is to disclose an individual’s information when
the dataset changes. The quantification of how much an operation’s result changes
relative to its inputs is known as sensitivity. Together, € and the algorithm’s sensi-
tivity provide us with enough information to determine how much noise is needed
to achieve differential privacy.

1.2.1 Properties

The rigorous mathematical guarantees provided by differential privacy yield several
practical benefits for its users [13]:

Composability. Differential privacy features beneficial compositional properties
allowing analysts to create complex analyses using basic ones. The principle of se-
quential composition is one of the most basic ones stating that if a family of algo-
rithms A; satisfy ¢; differential privacy, then executing a sequence of the algorithms
satisfies ), ¢;-differential privacy. The principle of advanced composition can pro-
duce tighter limits on their total privacy loss when considering iterative algorithms.

Provable guarantees. Differential privacy is the only existing approach provid-
ing provable privacy guarantees for successive data releases.

Transparency. Differentially private algorithms and their parameters are not se-
crets to be protected. Opposite to traditional de-identification tools, knowing the
extent to which data has been transformed does not threaten the differential pri-
vacy guarantees. This transparency boosts reproducibility, accountability, and pub-
lic trust in the process of data analysis.

Post-processing resilience. Differential privacy guarantees that any subsequent
processing of data releases does not increase the risk of privacy violation for indi-
viduals.

Group privacy. While differential privacy is commonly used to protect privacy at
the individual level, it has been shown that its guarantees also translate to (weaker)
protection for groups of individuals. Concretely, an algorithm satisfying e-differential
privacy for individuals also provides ke-differential privacy for groups of size k.

1.2.2 Models and tools

Since differential privacy is a mathematical property, there are multiple ways in
which we can design algorithms to fulfill it. Depending on whether data collectors
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are trusted, differentially private algorithms can be executed centrally or locally. In
a centralized setting, the individuals transmit their raw data to trusted parties; it is
assumed that these entities will safely store the data and correctly use differential
privacy to access the information. In contrast, in a local setting, data collectors are
not trusted; therefore, each participant will perturb their response before sharing;
hence sensitive information is never stored in one location.

The local model seemingly provides the ideal scenario where privacy is guar-
anteed, and security is boosted by avoiding creating honeypots for hackers. How-
ever, several studies have shown that these algorithms do not perform as accurately
as those in the centralized model for the same level of privacy. Consequently, most
differential privacy tools—including those introduced in this dissertation—are based
on the centralized model.

Most frameworks for differential privacy are based on the same principle: they
provide a set of fundamental private analyses, which the analysts can use as build-
ing blocks to create more complex algorithms. This approach relies heavily on the
compositional property as this principle will determine the final privacy guarantees
of the combined analyses.

1.2.3 Challenges

Privacy-accuracy reasoning

Composability is a fundamental property for developing programming tools for dif-
ferential privacy. When combining building blocks, these tools ensure that the total
privacy loss of the resulting analysis does not exceed the desired privacy level. This
characteristic facilitates reasoning about an analysis’ total privacy loss as a budget
that is distributed and spent through the algorithms’ pieces.

Strongly connected to privacy is the concept of accuracy. Analysts might be in-
terested in controlling their algorithms’ privacy and accuracy. One could argue that
privacy is a concern solely for the individuals (and data holders), while accuracy is
a concern exclusively for the analysts (and those interested in the statistical anal-
yses). Unfortunately, reasoning about accuracy is less compositional than reason-
ing about privacy. Determining the accuracy of arbitrary user-defined algorithms is
complex as it depends on the specific task at hand and the specific error measure-
ment. In the literature, most of the standard algorithms for differentially-private
analyses are provided with accuracy estimations (in the form of confidence inter-
vals or error bounds); however, the accuracy of their combination is addressed on a
case-by-case basis. As a result, most programming frameworks for differential pri-
vacy do not offer any support for tracking, reasoning, and adjusting the accuracy of
the algorithms; the crucial task of predicting accuracy is left to the analysts.

Proof of sensitivity for user-defined functions

Noise calibration is at the backbone of every differentially private algorithm. To
sample the adequate noise required to satisfy differential privacy, we need to con-
sider the desired privacy level (¢) and the sensitivity of the algorithm at hand (a mea-
surement of how volatile it is to changes in its inputs). Unfortunately, determining
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the sensitivity of arbitrary operations can be challenging. For this reason, most pro-
gramming tools for differential privacy do not support the definition of arbitrary op-
erations. Instead, they are equipped with predefined operations whose sensitivity is
known, avoiding sensitivity calculations altogether. However, even though prede-
fined operations have allowed for many exciting analyses, it severely constrains the
kind of computations we can perform on the datasets, thus limiting access to valu-
able information.

Several programming frameworks have been proposed to compute the sensitiv-
ity of user-defined operations. The typical approach to statically computing the sen-
sitivity of a program consists of providing a language with a type system enriched
with sensitivity annotations. Then, when combining the provided primitives, the
type system will keep track of the program’s global sensitivity. Unfortunately, most
of these frameworks are never fully deployed because they often rely on advanced
features not available in mainstream programming languages, thus requiring creat-
ing full-stack languages from scratch. Moreover, those frameworks that manage to
create a functioning prototype lack acceptance by data analysts since the tools are
based on niche programming devices (e.g., linear and modal types) unknown out-
side academic circles.

I.3 Statement of contribution

This dissertation encompasses a series of works proposing several programming
techniques to help non-experts write differentially private algorithms and reason
about the different components of these algorithms. With the deployment of such
techniques, we expect to equip data analysts with tools where i) they can create data
analysis satisfying differential privacy by construction, ii) they can reason about the
privacy-accuracy trade-offs before execution and, iii) they are not limited to a set of
predefined algorithms to create their own.

At a high level, the contributions of this dissertation can be grouped into two
categories, each of them tackling one of the challenges listed above:

1.3.1 Addressing challenge 1

We created DPella, a programming framework for differentially-private algorithms
that allows data analysts to reason compositionally about privacy-accuracy trade-
offs at compile time. DPella’s main novelty is that it exemplifies how programming
frameworks can internalize the use of probabilistic bounds for composing different
confidence intervals or error bounds in an automated way. DPella leverages taint
analysis to detect statistical independence of the noise added by its different primi-
tives; this information is then used to achieve better error estimates. Finally, since
DPella’s analysis is data-independent, it showcases how mainstream statically-typed
languages can be used to perform differential privacy analysis as part of their type-
checking process without relying on any runtime execution or information.

These results are recorded in our work "A Programming Language for Data Pri-
vacy with Accuracy Estimations." In 2021 ACM Transactions on Programming Lan-
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guages and Systems (TOPLAS) [23] which in turn is an extension of our previous
work "A Programming Framework for Differential Privacy with Accuracy Concen-
tration Bounds." In 2020 IEEE Symposium on Security and Privacy (SP) [22]. The for-
mer is the only one included in this dissertation as it encompasses both results; the
main differences between both works are highlighted in a subsequent section A.1.

1.3.2 Addressing challenge 2

We proposed a sound calculus (Aspar) for statically determining the sensitivity of
user-defined programs while avoiding using linear and relational refinement types.
Our approach relies on a novel use of parametricity—a well-known abstract unifor-
mity property enjoyed by polymorphic functions—together with type constraints
and type-level naturals to verify a program’s sensitivity by simply type-checking.
Its simplicity facilities embedding Agpay into mainstream richly-typed programming
languages.

We introduced SpAR, a concrete implementation of Asp. as a library for the
Haskell programming language. The library Sparis implemented as an embedded
domain-specific language which allows us to leverage Haskell’s advanced type in-
ference to provide some support for sensitivity inference via type error—a feature
that, to our knowledge, has not been explored before. Finally, we complemented our
findings with the implementation of classic examples (such as summing, mapping,
and sorting elements of a vector) to demonstrate how Sparcan be used to prove user-
defined programs’ sensitivity. The main result of this work opens the door to inte-
grating procedures for automatically proving the sensitivity of user-defined analy-
ses into the programming workflow, e.g., by using SPAR’s sensitivity proofs as an
input to other Haskell-based DP frameworks.
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