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SE–412 96 Göteborg Sweden
Telephone +46 (0)31-772 1000

Cover: Two braided giant atoms coupled to a structured waveguide, which is
represented as an array of coupled cavities. The figure is part of Paper B.

Chalmers Digitaltryck
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Theoretical quantum optics with giant atoms
ARIADNA SORO ÁLVAREZ
Department of Microtechnology and Nanoscience (MC2)
Applied Quantum Physics Laboratory
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Abstract

Giant atoms have emerged as new paradigm in quantum optics during the last
decade. These are quantum emitters that couple to light—or other bosonic
fields—at multiple discrete points, which can be spaced wavelengths apart. In
the short time since the giant-atom regime was first reached, it has been shown
that they offer more possibilities for design, control, manipulation, and tun-
abilily than small atoms do, which makes them promising assets for quantum
technologies. At the same time, due to the novelty of the field, most works to
date have only studied giant atoms in relatively simple setups, e.g., coupled to
open continuous waveguides. Thus, the papers appended here are an attempt
to broaden the field by studying giant atoms in environments that have not
been explored in depth before: continuous waveguides with chiral coupling and
structured waveguides.

In this thesis, we contextualize the papers with regards to previously-existing
knowledge and future applications in the fields of quantum optics and quantum
technology. We also provide a detailed description of the analytical tools that are
necessary to derive the results of the appended papers: we delve into Lindbla-
dian master equations, SLH formalism, and resolvent formalism, and we focus
particularly on the underlying assumptions and approximations behind these
techniques.

Keywords: Quantum optics, waveguide quantum electrodynamics, open
quantum systems, giant atoms, artificial atoms, continuous waveguides, struc-
tured waveguides, master equation, SLH formalism, resolvent formalism
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1 Introduction

What is quantum?—asked Vitaly, in a thick Russian accent and a skeptical tone,
on one of my first days as a PhD student. Not the question you expect to hear
from the most senior member of the Applied Quantum Physics division, yet I
have heard him ask it many times since, to all sorts of speakers—from students
to renowned researchers. Vot is qvantum?

To borrow from Elyse Myers, that’s a great question, I’d love to tell you.

1.1 The quantum revolutions

At the end of the nineteenth century, scientists seemed to have understood
the most fundamental principles of nature: from the motion of bodies, to the
propagation of electromagnetic fields, or the laws of thermodynamics. Little did
they know that the understanding of physics was about to drastically change at
the turn of the century, once they started delving into the atomic and subatomic
scales. Many novel counterintuitive ideas were postulated and subsequently
proved: energy comes in discrete quantities known as quanta, objects have
characteristics of both particle and waves, and there are limits to how accurately
the value of a physical quantity can be predicted prior to its measurement.
Under these principles, quantum mechanics was established, and many great
inventions were created, such as the transistor, the laser, and the atomic clock.
In turn, these inventions later gave us computers, optical fiber communication,
and global positioning system (GPS), all of which are vital to the world as we
know it today. This is what we call the first quantum revolution [1, 2].

Now a second revolution is underway—this one centered on the applicability
of more complex quantum phenomena, such as superposition, entanglement, or
squeezing. In this era, we not only talk about quantum mechanics or physics,
but also of quantum technologies, which can be divided in four main fields
according to their purpose. Quantum computing [3] aims at speeding up com-
putation on important optimization problems; quantum simulation [4] pursues
simulating complex physical systems, such as molecules for medical and chemi-
cal applications; quantum communication [5] wants to provide secure encryption
and communication channels; and quantum sensing and metrology [6] aims at
increasing precision and speed for a large variety of measurements.
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1. Introduction

Most of these quantum technologies have something in common: they rely
on the manipulation and generation of non-classical states of light. And in order
to achieve such control, it is essential to first achieve a deep understanding of
quantum optical phenomena, i.e., of phenomena concerning the interactions
between light and matter at the scale of individual quanta of light (photons). It
was, in fact, quantum optics that kickstarted the first quantum revolution, with
the modeling of the blackbody radiation spectrum by Max Planck in 1899. Since
then, the field has expanded—and keeps expanding—into many directions, in
part aided by emerging technologies that keep opening the door to unexplored
physical paradigms.

In this thesis, we focus on a specific platform to study quantum optics: wave-
guide quantum electrodynamics (WQED) [7]. As the name suggests, a wave-
guide is a structure that guides waves with minimal energy losses by restricting
the transmission of energy to one dimension. Thus, WQED is concerned with
the interaction between photons propagating in a waveguide and localized quan-
tum emitters, such as cold atoms or superconducting qubits, which are capable
of emitting and absorbing single photons. More in particular, in this thesis, we
use WQED to study a new paradigm of quantum emitters: the so-called giant
atoms.

1.2 Giant atoms

In quantum optics, we have typically assumed that atoms are small compared
to the light they interact with. That is because the radius of natural atoms
(r ≈ 10−10 m) is orders of magnitude smaller than optical (λ ≈ 10−7− 10−6 m)
or microwave wavelengths (λ ≈ 10−2 − 10−1 m).

However, in the last decades, quantum optics has expanded to systems
with artificial atoms, i.e., engineered quantum emitters such as quantum dots
(r ≈ 10−9 m) and superconducting qubits (r ≈ 10−4 − 10−3 m), designed to
have similar properties as natural atoms. In particular, an experiment in 2014 [8]
showed that the dipole approximation is not always valid by coupling a super-
conducting transmon qubit [9] to surface acoustic waves [10] (λ ≈ 10−6 m) at
multiple discrete points, spaced λ/4 apart. A subsequent theoretical study [11]
coined the term giant atom (GA), in contrast to a small atom, to refer to a
paradigm where a quantum emitter is large compared to the wavelength of the
field it interacts with, and where the multiple coupling points lead to interfer-
ence effects. A sketch illustrating the difference between a small and a giant
atom is shown in Fig. 1.1.

Since 2014, several experimental demonstrations of GAs have been achieved,
both with superconducting qubits coupled to surface acoustic waves [8, 13–23]
and to microwave waveguides [12, 24], and many other implementations have
been proposed [25, 26]. Recently, giant-atom physics have also been explored
beyond the atomic paradigm (natural or artificial two-/three-level systems) into
giant molecules [27–30] or giant spin ensembles [31].
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1.2. GIANT ATOMS

Small Atom a

Giant Atom

Braided Giant Atomsc

b
x1

Qa

Qb

Q

Q

Qb

Qa

2φ

x1
a x2

a

x1
b x2

b

50 Ω

50 Ω

1 mm

d
Waveguide Readout Qubits Flux lines

200 μm

x1 x2

x1
a x1

b x2
a x2

b

λ

λ

φ φ φ

γ

(a) Small atom

(b) Giant atom

Figure 1.1: (a) A small atom, treated as a point-like object because it is much
smaller than the wavelength λ of the field it interacts with. (b) A giant atom,
formed by coupling a small atom to a mode at two discrete locations, spaced
wavelengths apart. Figure adapted with permission from Ref. [12].

1.2.1 Properties and applications

While the appeal of GAs is partly owed to the pursuit of a fundamental un-
derstanding of light-matter interactions, the rapidly growing interest they have
generated is also motivated by their potential applications in the fields of quan-
tum computing [3] and quantum simulation [4, 32].

We present below some of the most remarkable features exhibited by GAs
and how they can be harnessed.

Tunable frequency-dependent relaxation rates

In the first theory paper in GAs back in 2014, it was shown that interference
between the coupling points of a GA leads to frequency-dependent relaxation
rates and Lamb shifts [11]. This dependence can be engineered with a number
of design parameters that increases linearly with the number of coupling points.
By using superconducting qubits as GAs, the atomic frequency can be tuned in
situ, making it possible to move between regions with high and low relaxation
rates during an experiment, as demonstrated in Ref. [12].

If we consider more than two atomic levels, other interesting applications
of the frequency-dependent relaxation rate open up. For instance, it is possi-
ble to engineer different relaxation rates for different transitions, thus allowing
population inversion and lasing, which in turn, can enable electromagnetically
induced transparency, as shown in Refs. [23, 24].

3



1. Introduction

(a) Separate (b) Nested (c) Braided

Figure 1.2: Different arrangements of two giant atoms with two coupling points
each. Figure adapted from Paper B.

It is worth noting that it is also possible to engineer frequency-dependent
relaxation rates and Lamb shifts by placing a small atom in front of a mirror.
However, this setup is only equivalent to a GA with two coupling points in a
unidirectional waveguide, and it is therefore not possible to increase the number
of coupling points, to have different coupling strengths at different points, or to
have more advanced scattering. This greatly limits the freedom in the design of
the frequency dependence, in comparison to a giant atom. As we will explain in
more detail in Chapter 3, tunable relaxation rates are also attainable for both
small and giant atoms when coupling them to structured environments—but in
such a case, giant atoms again offer more possibilities.

Waveguide-mediated decoherence-free interaction

Probably the most intriguing property yet found in GAs is their ability to inter-
act though a waveguide without decohering—a feature demonstrated both theo-
retically [33, 34] and experimentally [12]. By arranging two or more giant atoms
with their coupling points interleaved [see Fig. 1.2(c)], it is possible to suppress
their individual and collective relaxation rates while maintaining their exchange
interaction. In this way, they can exchange an excitation back and forth with-
out ever losing it into the waveguide, which is something small atoms cannot
do. In fact, small atoms can be prepared in so-called dark states—perfectly
subradiant—that are decoupled from the waveguide. In such a case, however,
only the dark state is protected from dissipation, while the decoherence-free in-
teraction between giant atoms protects the entire atomic Hilbert space, making
it much more robust and versatile. Thus, this property is of great interest in
the field of quantum computing, where a major hurdle consists in preventing
operation errors arising from decoherence and dissipation.

Moreover, decoherence-free interaction, together with the tunable frequency-
dependent relaxation rates, helps overcoming the difficulty that small atoms
pose in preparing many-body states. For instance, it has been demonstrated
that GAs can be engineered to generate entangled states of the qubits to perform
coherent quantum operations [12]. In the future, it may also be possible to use
setups with GAs to generate cluster or graph states, which can be used for
measurement-based quantum computing.
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1.3. OUTLINE OF THE THESIS

Oscillating bound states

In Ref. [35], it was shown that a giant atom with three or more coupling points
can harbor oscillating bound states, i.e., dynamical exchanges of excitations be-
tween the atom and the bosonic field. In contrast to bound states arising from
an impurity protected by an energy gap, the oscillating bound states appear
inside the continuous energy spectrum, which makes it possible to catch and re-
lease propagating photons in the waveguide. Furthermore, since the oscillating
bound states are a result of coexisting bound modes, their Hilbert space is larger
than those of previously known bound states, which should enable storage and
manipulation of more complex quantum states.

All in all, in the short time since the giant-atom regime was first reached, we
have found that GAs offer more possibilities for design, control, manipulation,
and tunabilily than small atoms do, which makes them promising assets for
quantum technologies. At the same time, the field of quantum optics with
giant atoms is still very new and, due to this novelty, most works to date have
only studied GAs in relatively simple setups, e.g., coupled to open bidirectional
continuous waveguides. The papers appended in this thesis are an attempt to
broaden the field by studying GAs in environments that have not been explored
in depth before: continuous waveguides with chiral coupling (Paper A) and
structured waveguides (Paper B).

1.3 Outline of the thesis

This thesis is structured as follows. In Chapter 2, we present all the necessary
ingredients to describe giant atoms coupled to open continuous waveguides—
the setup studied in Paper A—, particularly in relation to the directionality of
light propagation. We start with the theory of open quantum systems, includ-
ing the derivation of a Lindbladian master equation and the introduction of the
SLH formalism. We then transition to a more applied side of cascaded quan-
tum systems, where we discuss chiral interfaces and ways of protecting against
decoherence.

In Chapter 3, on the other hand, we delve into giant atoms coupled to struc-
tured waveguides, which is the setup studied in Paper B. We discuss the limita-
tions of the tools presented in the previous chapter, and introduce the resolvent
formalism and other complex-analysis techniques to overcome them. We then
apply these methods to the spontaneous emission of a giant atom.

Finally, in Chapter 4, we give an overview of the appended papers, and we
conclude with an outlook on future research in Chapter 5.
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2 Continuous waveguides

An open quantum system is a quantum-mechanical system that is coupled to
a surrounding environment, often called a bath or a reservoir. In general, this
interaction changes the dynamics of the system and results in dissipation, such
that the information contained in the system is lost to its environment. In quan-
tum optical experiments, an open quantum system typically consists of one or
more quantum emitters (natural or artificial atoms) coupled to an optical fiber
or to a microwave transmission line (chip-integrated coaxial cable). These are
types of one-dimensional (1D) continuous waveguides, which support a contin-
uum of propagating modes that can be modeled by the following Hamiltonian
(ℏ = 1 throughout this thesis):

H =
∑
k

ωk a
†
kak, (2.1)

where ωk is the frequency of each mode, and a†k, ak are the creation and anni-
hilation operators, respectively [7, 36–38]. Since the sum is infinite and mode
spacing is infinitesimal, it is sometimes convenient to rewrite the Hamiltonian
as an integral:

H =

∫ ∞

0

dω ω a†ωaω =

∫ ∞

0

dk ωkvp a
†
kak, (2.2)

where vp is the phase velocity. The dispersion relation of the bath is given

by ω(k) = k · vp(k), which sets the density of states D(ω) = |∂ω(k)/∂k|−1
[38].

Continuous waveguides usually have trivial dispersion relations, often considered
linear [36, 37, 39].

In this chapter, we provide the formalism to describe the dynamics of a
quantum emitter (or an ensemble of them) coupled to a 1D open waveguide,
based on Refs. [40–43].

2.1 Lindbladian master equation for open
quantum systems

When dealing with open quantum systems, we are interested in how the system
dynamics are affected by the environment, but not so much in the dynamical

7



2. Continuous waveguides

processes taking place in the environment itself. In order to provide a mathemat-
ical description of such dynamics, we derive a master equation for the system’s
density matrix, which includes the effects of the interaction with the bath, but
traces out the bath’s degrees of freedom. Since the environment consists of in-
finitely many quantum systems, we need to make several approximations, which
fortunately are well justified in most experiments.

To illustrate the derivation of a master equation, we consider a model where
our quantum system is a two-level atom, coupled to a bath of an infinite number
of harmonic oscillators. The total Hamiltonian H is then the sum of the atomic
Hamiltonian Ha, the bath Hamiltonian Hb, and their interaction Hint:

H = Ha +Hb +Hint, (2.3)

Ha =
ωa

2
σz, (2.4)

Hb =
∑
k

ωk a
†
kak, (2.5)

Hint =
∑
k

gk(ak + a†k)(σ− + σ+), (2.6)

where ωa is the transition frequency of the atom; σz is the Pauli-Z matrix; σ±
are the ladder operators of the atom, such that σ+σ− = (1 + σz)/2; and gk
denotes the coupling strength between the atom and the bath.

Let ρtot(t) be the density operator of the total system (atom plus bath).
Then the Schrödinger equation reads

ρ̇tot = −i[H, ρtot], (2.7)

with H given by Eq. (2.3). In the interaction picture, henceforth denoted by ∼,
we can write Eq. (2.7) by separating the rapid motion generated by Ha + Hb

from the slow motion generated by Hint. Defining

ρ̃tot(t) ≡ ei(Ha+Hb)tρtot(t)e
−i(Ha+Hb)t, (2.8)

we obtain
˙̃ρtot(t) = −i[H̃int(t), ρ̃tot(t)], (2.9)

the solution of which is

ρ̃tot(t) = ρ̃tot(0)− i

∫ t

0

dτ
[
H̃int(τ), ρ̃tot(τ)

]
. (2.10)

By inserting Eq. (2.10) into Eq. (2.9) and tracing over the the bath degrees of
freedom, we obtain an equation for the atomic density matrix ρa:

˙̃ρa(t) = Trb

{
−i
[
H̃int(t), ρ̃tot(0)

]
−
∫ t

0

dτ
[
H̃int(t),

[
H̃int(τ), ρ̃tot(τ)

]]}
.

(2.11)
Note that all steps from Eq. (2.7) to Eq. (2.11) are exact and generalizeable

to any Hamiltonian of the form Eq. (2.3). To go forward, however, we need to
make some approximations.

8



2.1. LINDBLADIAN MASTER EQUATION FOR OPEN QUANTUM SYSTEMS

2.1.1 Born, Markov, and rotating-wave approxima-
tions

The Born approximation is based on the coupling gk being weak and the reser-
voir being large enough to be virtually unaffected by its interaction with the
atom. In this approximation, we first assume that the interaction is turned on
at t = 0 and that no correlations exist between the system and the bath at this
initial time. Therefore, the initial state factorizes as ρtot(0) = ρa(0) ⊗ ρb(0).
At later times, correlations between the system and the bath arise due to their
coupling. However, since we assume that the coupling is very weak and ρtot(t)
should only show deviations of order Hint from an uncorrelated state, we can
neglect higher-order terms, i.e., ρ̃tot(t) = ρ̃a(t)ρb(0)+O(Hint). Then, Eq. (2.11)
becomes, under the Born approximation,

˙̃ρa(t) = −
∫ t

0

dτ Trb

{[
H̃int(t),

[
H̃int(τ), ρ̃a(τ)ρb(0)

]]}
. (2.12)

The Markov approximation states that the bath has no memory, i.e., that
any imprint the atom makes on the bath at time t1 does not affect the dynamics
at a later time t2. It can be understood as follows: if the reservoir is large, we do
not expect it to preserve the minor changes caused by its interaction with the
atom for very long—at least, not long enough to significantly affect the future
evolution of the atom. Therefore, we can replace ρ̃a(τ) in Eq. (2.12) with ρ̃a(t)
to obtain a master equation in the Born-Markov approximation:

˙̃ρa(t) = −
∫ t

0

dτ Trb

{[
H̃int(t),

[
H̃int(τ), ρ̃a(t)ρb(0)

]]}
. (2.13)

To proceed from here is quite straightforward, so the remaining details of
the derivation are left out of the scope of this thesis and we refer the interested
reader to Refs. [40, 44].

The only non-trivial step left to take is the rotating-wave approximation
(RWA), through which we neglect the fast oscillating terms [45]. Explicitly,
the RWA is applied in the interaction picture, where terms in the Hamiltonians
that oscillate with frequencies ωa + ωb are neglected, while terms that oscillate
with frequencies ωa − ωb are kept. This is a valid approximation when the
bath frequency ωb is close to the atomic transition ωa, and the coupling is weak
(i.e., when ωa, ωb ≫ g), which is a safe assumption to make in the optical and
microwave regimes.

Finally, after all approximations have been made and the bath has been
traced out, we can transform back from the interaction picture to obtain a
master equation in the Lindblad form:

ρ̇a = −i

[
ω′
a

2
σz, ρa

]
+ ΓD[σ−]ρa, (2.14)

where D[X]ρ = XρX† − 1
2

{
X†X, ρ

}
are Lindblad superoperators, Γ is the

atomic relaxation rate, and ω′
a is the Lamb-shifted transition frequency. In a

9



2. Continuous waveguides

small atom, the relaxation rate is given by

Γsmall = 2πD(ωa)g
2(ωa), (2.15)

where D(ω) is the bath density of states and g(ωk) = gk is the coupling
strength [11]. For a giant atom, Γ also accounts for the interference between
coupling points and it therefore depends on the spacing between the points. As
we will see in subsequent examples [see, e.g., Table 2.1], it can take values up
to Γgiant ≤ N2Γsmall, where N is the number of coupling points [44].

It should be noted that we could have made the RWA earlier, for instance,
directly on Hint in Eq. (2.6), by neglecting the terms aσ− and a†σ+. However,
while that is a very common practice, it carries the consequence that ω′

a does
not accurately capture the Lamb shift of the transition frequency [40, 46, 47].
Thus, only if we are not interested in the exact value of the frequency shift
we can apply the RWA directly on the Hamiltonian, which is the case in both
appended papers.

A master-equation treatment like the one presented in this section is used in
Paper A to study the waveguide-mediated interaction between giant atoms in a
chiral setting. While such an approach had been used before for giant atoms [33],
variations in the direction of propagation of light had not been considered.
Since the setup in Paper A deals with more interconnected systems and a more
complex system-bath interaction, an accurate description of it requires some
additional formalism beyond the master equation derived here. In particular,
we use the SLH formalism, which we introduce in the following section.

2.2 SLH framework for quantum networks

The SLH framework [41–43] was developed in 2009 to model quantum input-
output networks, i.e., quantum optical networks made of local components that
interact via itinerant quantum bosonic fields. Its conception was motivated by
the need to simplify complicated descriptions of networks containing cascaded
quantum systems [48, 49], where the output from one system is used as the
input for another.

The SLH formalism is a modular framework where each local component is
treated as a black box that scatters the propagating fields according to some
pre-specified input-output behavior. In addition, it incorporates the quantum
nature of the itinerant fields and any quantum dynamics in the localized com-
ponents. The power of the SLH formalism lies in its ability to compose the
propagator for local components according to how they are connected in a net-
work.

In this section, we show the basics of the formalism and how it can be used
in conjunction with the master equation—a combination that we used to model
the setup in Paper A.

10



2.2. SLH FRAMEWORK FOR QUANTUM NETWORKS

2.2.1 SLH formalism

In the SLH formalism, an open quantum system with n input-output ports is
described by a triplet G = (S, L, H), where S is an n × n scattering matrix,
L is an n × 1 vector representing the coupling between the system and the
environment at the input-output ports, and H is the Hamiltonian of the system.
Let us elucidate why.

Consider two cascaded quantum systems with HamiltoniansH1 andH2, such
that the output from system 1 becomes the input to system 2. Both systems
are coupled via an input-output port to the environment, by coupling operators
L1 and L2, respectively. Through input-output theory and quantum stochastic
calculus, it can be shown that the total system behaves as if it had a Hamiltonian
H = H1+H2+(L†

2L1−L†
1L2)/(2i) and was coupled to the environment via an

operator L = L1 +L2 [43, 44, 50]. This suggests that an open quantum system
could be assigned a doublet G = (L, H), and that the doublet corresponding to
two quantum systems in series would defined as follows:

G = G2 ◁ G1 = (L2, H2) ◁ (L1, H1) =

(
L1 + L2, H1 +H2 +

1

2i
(L†

2L1 − L†
1L2)

)
(2.16)

Now, the doublet above is still missing the S in SLH, i.e., the scattering
matrix. For a single-channel case, the S may describe the non-negligible distance
between two systems G1 and G2 through, for instance, an acquired phase shift
ϕ, which is inserted by placing the triplet Gϕ = (eiϕ, 0, 0) between G1 and G2.
Note that in such a case, the time it takes for an excitation to travel between
systems must be small compared to the timescale of the systems’ evolution.

On the other hand, the scattering matrix is also essential to describe many-
channel systems such as beamsplitters or circulators, which take several inputs
and mix them into several outputs.

Finally, another widely used component is the coherent drive. For example,
a coherent signal of |β|2 photons per second can be represented by the triplet
Gβ = (1, β, 0).

2.2.2 SLH composition rules

Now that we have introduced the different components of the SLH triplet, we
can compose them to build more complex quantum networks. For that, we
need the three fundamental composition rules for the SLH formalism: the series
product, the concatenation product, and the feedback operation (see Fig. 2.1).

As shown in Eq. (2.16), the series product is denoted by ◁ and describes
systems which are laid out in a cascaded way. Now accounting for the scattering
matrix, the series product is defined as:

G2 ◁ G1 =

(
S2S1, S2L1 + L2, H1 +H2 +

1

2i

(
L†
2S2L1 − L†

1S†
2L2

))
, (2.17)
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2. Continuous waveguides

(a) Series

G1 G2

=

G2 ◁G1

(b) Concatenation

G1

G2

=

G1 ⊞G2

(c) Feedback

G
a a

b b
c c

=

Gb→c

a a

b b

Figure 2.1: The three SLH composition rules: (a) series product, (b) concate-
nation product, (c) feedback operation.

which we note does not commute, i.e., it is not invariant under the permutation
of 1 and 2.

The concatenation product is denoted by ⊞ and is used in processes that
occur in parallel, and there is therefore no need to let one system evolve before
calculating the evolution of the other. Mathematically, it is defined as:

G1 ⊞G2 =

((
S1 0
0 S2

)
,

(
L1

L2

)
, H1 +H2

)
. (2.18)

The concatenation product may also be generalized to consider the case where
G1 is directly coupled to G2 by some interaction Hint. Then, we would just
need to replace H1 by H1 +Hint in Eq. (2.18).

The feedback operation describes the process of feeding the x-th output of
a system into the y-th input of the same system, a link denoted by x → y.
As shown in Fig. 2.1(c), this interconnection results in a triplet of reduced
dimension Gx→y = (Sred,Lred, Hred), where

Sred = S��x,y + S
�x,y

(1− Sx,y)
−1Sx,�y

Lred = L
�x
+ S

�x,y
(1− Sx,y)

−1Lx

Hred = H +
1

2i

(
L†S:,y(1− Sx,y)

−1Lx −H.c.
)
, (2.19)

and S��x,y is the scattering matrix with row x and column y removed; S
�x,y

(Sx,�y
)

denotes the column y (row x) of the matrix with the x-th (y-th) element re-
moved; S:,y is the entire y-th column; Sx,y denotes the element xy; L

�x
refers to

12



2.2. SLH FRAMEWORK FOR QUANTUM NETWORKS

the coupling vector with the x-th element removed; Lx is the x-th element of
the vector; and H.c. denotes Hermitian conjugate.

These three composition rules are sufficient to describe any arbitrary quan-
tum network that satisfies (i) the Born-Markov approximation, (ii) that the
bosonic fields propagate in a linear medium without dispersion, and (iii) that
the travel time between components is negligible compared to the relaxation
times of the systems. In fact, once we calculate the triplet G = (S,L, H) of the
network, we can extract the master equation

ρ̇ = −i[H, ρ] +

n∑
j=1

D[Lj ]ρ. (2.20)

2.2.3 Example: two atoms chirally coupled to a
continuous waveguide

Let us illustrate the SLH formalism for two small atoms [Fig. 2.2(a)] and two
giant braided atoms [Fig. 2.2(b)], which are some of the elementary setups
studied in Paper A.

Let us consider two atoms A and B with resonant frequencies ωA and ωB ,
respectively1. Taking the atoms to be two-level systems, their Hamiltonians can
be written as

HA =
ωA

2
σA
z , HB =

ωB

2
σB
z , (2.21)

regardless of whether they are small or giant.
The atoms are coupled to the waveguide at connection points identified by

their position xk and their bare relaxation rates γk, for k = 1, 2, 3, 4. At each
coupling point, we distinguish the decay rate to the right- and left-propagating
modes as γkR and γkL, in such a way that γkR + γkL = γk. The phase
shifts acquired between neighbouring coupling points are denoted by ϕk =
ω|xk+1 − xk|/v for k = 1, 2, 3, where ω and v are the frequency and velocity
of the traveling bosons, respectively. Note that in order for the setup to be
consistent with the assumptions behind the SLH formalism, we need to assume
that the coupling of each atom is weak compared to their transition frequency,
and that the travel time between connection points is negligible compared to
the relaxation times of all the atoms. Finally, in each propagation direction, we
can model the coupling between an atom j and the waveguide at a connection
point k with the jump operator L, in such a way that Lk =

√
γkσ

j
−.

With all the elements we established, we can now define an SLH triplet at
each connection point k:

Gk =


(
1,

√
γkσ

j
−,

1
2ωjσ

j
z

)
if k is the first coupling

point of atom j(
1,

√
γkσ

j
−, 0

)
otherwise.

(2.22)

1Not to be confused with the subscripts a, b from Sec. 2.1 denoting atom and bath.
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2. Continuous waveguides

(a) Small

A
|e⟩
|g⟩

ωA

γ1Rγ1L

B ωB

γ2L γ2R

x1 x2

ϕ

(b) Braided

A

γ1Rγ1L γ3L γ3R

B

γ2Rγ2L γ4L γ4R

x1 x2 x3 x4

ϕ1 ϕ2 ϕ3

(c) SLH scheme

G1R
▷

Gϕ1

▷
G2R

▷ . . .

GR

▷
Gϕn−1

▷
GnR

G1L
◁

Gϕ1

◁
G2L

◁ . . .

GL

⊞⊞⊞

◁
Gϕn−1

◁
GnL

Figure 2.2: Atoms coupled to a 1D continuous open waveguide. (a, b) A sketch
for (a) two small atoms, and (b) two giant braided atoms showing the relevant
parameters. (c) The SLH scheme that describes the input-output flows from
the setups in (a) and (b), and which is also applicable to an arbitrary number
of atoms with an arbitrary number of coupling points. All figures are adapted
from Paper A.

To account for the phase shift acquired between connection points k and k+ 1,
we define

Gϕk
= (eiϕk , 0, 0). (2.23)

We then take each propagation direction (right and left) separately and
apply a series product between all the triplets, as if the system was cascaded

14



2.2. SLH FRAMEWORK FOR QUANTUM NETWORKS

[see Eq. (2.17)]. In particular, for two small atoms, that is

GR

∣∣∣∣
sma

= G2R ◁ Gϕ ◁ G1R =

=

(
1,

√
γ2R σB

− ,
1

2
ωBσ

B
z

)
◁ (eiϕ, 0, 0) ◁

(
1,

√
γ1R σA

−,
1

2
ωAσ

A
z

)
=

=

(
eiϕ, eiϕ

√
γ1R σA

− +
√
γ2R σB

− ,

ωA

2
σA
z +

ωB

2
σB
z +

√
γ1Rγ2R

2i
[eiϕσA

−σ
B
+ −H.c.]

)
, (2.24)

GL

∣∣∣∣
sma

= G1L ◁ Gϕ ◁ G2L =

=

(
1,

√
γ1L σA

−,
1

2
ωAσ

A
z

)
◁ (eiϕ, 0, 0) ◁

(
1,

√
γ2L σB

− ,
1

2
ωBσ

B
z

)
=

=

(
eiϕ,

√
γ1L σA

− + eiϕ
√
γ2L σB

− ,

ωA

2
σA
z +

ωB

2
σB
z +

√
γ1Lγ2L

2i
[eiϕσB

−σA
+ −H.c.]

)
. (2.25)

Similarly, for two giant braided atoms, the triplets are

GR

∣∣∣∣
bra

= G4R ◁ Gϕ3
◁ G3R ◁ Gϕ2

◁ G2R ◁ Gϕ1
◁ G1R =

=
(
1,

√
γ4R σB

− , 0
)
◁ (eiϕ3 , 0, 0) ◁

(
1,

√
γ3R σB

− , 0
)
◁ (eiϕ2 , 0, 0)

◁
(
1,

√
γ2R σB

− ,
ωB

2
σB
z

)
◁ (eiϕ1 , 0, 0) ◁

(
1,

√
γ1R σB

− ,
ωA

2
σA
z

)
,

(2.26)

which results in the components

SR

∣∣∣∣
bra

=ei(ϕ1+ϕ2+ϕ3),

LR

∣∣∣∣
bra

=
(
ei(ϕ1+ϕ2+ϕ3)

√
γ1R + eiϕ3

√
γ3R

)
σA
− +

(
ei(ϕ2+ϕ3)

√
γ2R +

√
γ4R

)
σB
− ,

HR

∣∣∣∣
bra

=
1

2
(ωA + sin(ϕ1 + ϕ2)

√
γ1Rγ3R)σ

A
z

+
1

2
(ωB + sin(ϕ2 + ϕ3)

√
γ2Rγ4R)σ

B
z

+
1

2i

[(
eiϕ1

√
γ1Rγ2R + ei(ϕ1+ϕ2+ϕ3)

√
γ1Rγ4R − e−iϕ2

√
γ2Rγ3R

+ eiϕ3
√
γ3Rγ4R

)
σA
−σ

B
+ −H.c.

]
, (2.27)
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2. Continuous waveguides

and

GL

∣∣∣∣
bra

= G1L ◁ Gϕ1 ◁ G2L ◁ Gϕ2 ◁ G3L ◁ Gϕ3 ◁ G4L =

=
(
1,

√
γ1L σB

− ,
ωA

2
σA
z

)
◁ (eiϕ1 , 0, 0) ◁

(
1,

√
γ2L σB

− ,
ωB

2
σB
z

)
◁ (eiϕ2 , 0, 0) ◁

(
1,

√
γ3L σB

− , 0
)
◁ (eiϕ3 , 0, 0) ◁

(
1,

√
γ4L σB

− , 0
)
,

(2.28)

which results in the components

SL

∣∣∣∣
bra

=ei(ϕ1+ϕ2+ϕ3),

LL

∣∣∣∣
bra

=
(√

γ1L + ei(ϕ1+ϕ2)
√
γ3L

)
σA
− +

(
eiϕ1

√
γ2L + ei(ϕ1+ϕ2+ϕ3)

√
γ4L

)
σB
− ,

HL

∣∣∣∣
bra

=
1

2
(ωA + sin(ϕ1 + ϕ2)

√
γ1Lγ3L)σ

A
z

+
1

2
(ωB + sin(ϕ2 + ϕ3)

√
γ2Lγ4L)σ

B
z

+
1

2i

[(
− e−iϕ1

√
γ1Lγ2L − e−i(ϕ1+ϕ2+ϕ3)

√
γ1Lγ4L

+ eiϕ2
√
γ2Lγ3L − e−iϕ3

√
γ3Lγ4L

)
σA
−σ

B
+ −H.c.

]
. (2.29)

Now, since propagation to the right and left directions occurs simultaneously,
we can concatenate the two triplets GR and GL according to SLH practice, such
that G = GR ⊞GL [see Eq. (2.18)]. This yields the components

S
∣∣∣∣
sma

=

(
eiϕ 0
0 eiϕ

)
L
∣∣∣∣
sma

=

(
eiϕ

√
γ1R σA

− +
√
γ2R σB

−√
γ1L σA

− + eiϕ
√
γ2L σB

+

)

H

∣∣∣∣
sma

=
ωA

2
σA
z +

ωB

2
σB
z +

1

2i

[(
eiϕ

√
γ1Rγ2R − e−iϕ√γ1Lγ2L

)
σA
−σ

B
+ −H.c.

]
,

(2.30)
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and

S
∣∣∣∣
bra

=

(
ei(ϕ1+ϕ2+ϕ3) 0

0 ei(ϕ1+ϕ2+ϕ3)

)
L
∣∣∣∣
bra

=

((
ei(ϕ1+ϕ2+ϕ3)

√
γ1R + eiϕ3

√
γ3R
)
σA
− +

(
ei(ϕ2+ϕ3)

√
γ2R +

√
γ4R
)
σB
−(√

γ1L + ei(ϕ1+ϕ2)
√
γ3L
)
σA
− +

(
eiϕ1

√
γ2L + ei(ϕ1+ϕ2+ϕ3)

√
γ4L
)
σB
−

)

H

∣∣∣∣
bra

=
1

2
(ωA + sin(ϕ1 + ϕ2)(

√
γ1Rγ3R +

√
γ1Lγ3L))σ

A
z

+
1

2
(ωB + sin(ϕ2 + ϕ3)(

√
γ2Rγ4R +

√
γ2Lγ4L))σ

B
z

+
1

2i

[(
eiϕ1

√
γ1Rγ2R + ei(ϕ1+ϕ2+ϕ3)

√
γ1Rγ4R − e−iϕ2

√
γ2Rγ3R

+ eiϕ3
√
γ3Rγ4R − e−iϕ1

√
γ1Lγ2L − e−i(ϕ1+ϕ2+ϕ3)

√
γ1Lγ4L

+ eiϕ2
√
γ2Lγ3L − e−iϕ3

√
γ3Lγ4L

)
σA
−σ

B
+ −H.c.

]
, (2.31)

for small and braided atoms, respectively.

Finally, with the triplets above, we can compute the time evolution of the
density matrix according to the master equation in Eq. (2.20), which results in
an expression of the form

ρ̇ =− i[H, ρ] +

n∑
j=1

D[Lj ]ρ =

=− i

[
ω′
A

σA
z

2
+ ω′

B

σB
z

2
+
(
gσA

−σ
B
+ +H.c.

)
, ρ

]
+ ΓAD[σA

−]ρ+ ΓBD[σB
− ]ρ

+

[
Γcoll

(
σA
−ρσ

B
+ − 1

2

{
σA
−σ

B
+ , ρ

})
+H.c.

]
, (2.32)

where ω′
j = ωj + δωj is the Lamb-shifted frequency of atom j ∈ {A,B}, g is the

exchange interaction between atoms, Γj is the individual relaxation rate of atom
j, and Γcoll is the collective relaxation rate for the atoms. The exact expressions
for these parameters are shown in Table 2.1.

On the one hand, the exchange interaction g is set by emission from connec-
tion points of one atom being absorbed at connection points of the other atom,
and it is the complex term in the Hamiltonians from Eqs. (2.30)–(2.31).

On the other hand, the relaxation rates Γj ,Γcoll are set by interference be-
tween emission from connection points belonging to the same atom (Γj), and
different atoms (Γcoll). They relate to the right (R) and left (L) collapse oper-
ators from Eqs. (2.30)–(2.31) as follows:

LR/L =
√

ΓA,R/L σA
− +

√
ΓB,R/L σB

− , (2.33)
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2. Continuous waveguides

Table 2.1: Frequency shifts, exchange interaction, individual and collective de-
cays [δωj , g,Γj ,Γcoll in Eq. (2.32)] for small and braided giant atoms chirally
coupled to a 1D open waveguide. We assume arbitrary phase shifts ϕ1, ϕ2, ϕ3

and arbitrary bare relaxation rates γkR, γkL at each coupling point k = 1, 2, 3, 4.

Parameter Topology Expression for two atoms, A and B

Frequency

shifts,

δωA, δωB

Small 0

0

Braided sin(ϕ1 + ϕ2)(
√
γ1Rγ3R +

√
γ1Lγ3L)

sin(ϕ2 + ϕ3)(
√
γ2Rγ4R +

√
γ2Lγ4L)

Individual

decays,

ΓA, ΓB

Small γ1R + γ1L

γ2R + γ2L

Braided γ1R + γ1L + γ3R + γ3L

+2 cos(ϕ1 + ϕ2)(
√
γ1Rγ3R +

√
γ1Lγ3L)

γ2R + γ2L + γ4R + γ4L

+2 cos(ϕ2 + ϕ3)(
√
γ2Rγ4R +

√
γ2Lγ4L)

Collective

decay,

Γcoll

Small eiϕ
√
γ1Rγ2R + e−iϕ√γ1Lγ2L

Braided eiϕ1
√
γ1Rγ2R + ei(ϕ1+ϕ2+ϕ3)

√
γ1Rγ4R

+e−iϕ2
√
γ2Rγ3R + eiϕ3

√
γ3Rγ4R

+e−iϕ1
√
γ1Lγ2L + e−i(ϕ1+ϕ2+ϕ3)

√
γ1Lγ4L

+eiϕ2
√
γ2Lγ3L + e−iϕ3

√
γ3Lγ4L

Exchange

interaction,

g

Small [eiϕ
√
γ1Rγ2R − e−iϕ√γ1Lγ2L]/2i

Braided [eiϕ1
√
γ1Rγ2R + ei(ϕ1+ϕ2+ϕ3)

√
γ1Rγ4R

−e−iϕ2
√
γ2Rγ3R + eiϕ3

√
γ3Rγ4R

−e−iϕ1
√
γ1Lγ2L − e−i(ϕ1+ϕ2+ϕ3)

√
γ1Lγ4L

+eiϕ2
√
γ2Lγ3L − e−iϕ3

√
γ3Lγ4L]/2i

with

Γj = ΓjR + ΓjL, for j = A,B (2.34)

Γcoll =
√
ΓA,RΓ

∗
B,R +

√
ΓA,LΓ

∗
B,L, (2.35)

where * denotes complex conjugate.
The procedure used in these examples follows the SLH scheme depicted in

Fig. 2.2(c), and it is the same used in Paper A, where we generalize it to a setup
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2.3. CHIRAL INTERFACES AND APPLICATIONS

of an arbitrary number of atoms with an arbitrary number of coupling points
to the waveguide, and for any chirality of the coupling.

2.3 Chiral interfaces and applications

In general, we say that atoms couple chirally to a waveguide when their bare
relaxation rate (the relaxation rate before any interference effects are taken into
account) is generally different towards the right and left directions, i.e., γR ̸= γL.
Consequently, there are two limiting cases: the bidirectional or nonchiral case,
where atoms couple symmetrically to the right and left (γR = γL), and the
unidirectional or cascaded case, where atoms couple to modes propagating in
only one direction (e.g., γL = 0).

Chirality emerges naturally in optical nanofibers when light is strongly trans-
versely confined [51–53] and it is also achievable in atomic waveguides [54] and in
microwave waveguides by using circulators [55–59], sawtooth lattices [60], or en-
tangled states between quantum emitters [28]. Even beyond photonic reservoirs,
other architectures with phononic [61–64] and magnonic waveguides [64–66] have
been proposed to realize chiral coupling.

Chiral quantum networks have been increasingly attracting interest in recent
years [67–76] since they have immediate applications in quantum information
processing. With two-level emitters representing stationary qubits, and photons
as ‘flying qubits’ for distributing quantum information in a quantum network,
the chiral light-matter coupling enables photons to be routed in between the
nodes. In particular, it has been shown how this coupling can be harnessed to
transfer quantum states between qubits and to manipulate stabilizer codes for
quantum error correction [27].

As a simple example, consider the setting in Fig. 2.2(a) with all γL = 0,
and with the emitter on the left in an arbitrary superposition cg |g⟩A + ce |e⟩A
(defined by the complex coefficients cg and ce) and the emitter on the right in
the ground state |g⟩B . Then the chiral setting could enable the quantum-state
transfer (cg |g⟩A + ce |e⟩A) |g⟩B → |g⟩A (cg |g⟩B + ce |e⟩B), whereby an arbitrary
superposition stored in emitter A is mapped to emitter B. Chiral coupling
serves here to convert the first qubit to a rightward-propagating photonic qubit,
and to increase the chance of reabsorption of this photon by the second qubit.

Let us take now the case of entanglement between emitters. On the one
hand, even the slightest directionalities in the couplings have been shown to
improve the maximum entanglement achievable as compared to nonchiral sys-
tems [68], while on the other hand, chirality can destroy collective emission
effects. Consider the spontaneous emission of an ensemble of two-level emitters.
Owing to the fact that all emitters are coupled to the same bath, the emission
differs strongly from that of independent emitters—an effect referred to as sub-
or super-radiance [77]. For instance, for bidirectional coupling, two small atoms
can share a single excitation that is prevented from decaying by destructive in-
terference between coupling points. This subradiant behavior, however, is not
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2. Continuous waveguides

possible if the atoms are coupled to a unidirectional waveguide, where the sym-
metry is broken and only one of the atoms “knows” about the presence of the
other [71]. Interestingly, we found in Paper A that giant atoms in the nested
configuration (i.e., where the coupling points of atom B are situated between
the points of atom A—see Fig. 1.2(b)) preserve the symmetry and thus exhibit
this subradiant behavior for any chirality of the coupling.

To get around the lack of subradiance for small atoms in chiral waveguides,
it was shown in Ref. [69] that one can coherently drive the system. In such a
case, the diatomic ensemble evolves to a dynamic equilibrium between drive and
dissipation where the stream of photons scattered from the first atom interferes
destructively with the photons scattered from the second [71]. In Paper A, we
showed that such a regime is also accessible for giant atoms.

2.4 Protection from decoherence

2.4.1 Subradiance

Let us delve into the aforementioned phenomenon of subradiance [77–80], i.e.,
the suppression of spontaneous emission by collective interference. We typically
label a many-atom state as subradiant whenever it decays slower than the relax-
ation of each individual atom. A perfectly subradiant state—that which does
not decay—is known as a dark state. In an atomic network, dark states |D⟩ are
nonradiative pure states which are annihilated by all collapse operators and are
eigenstates of the multiatom Hamiltonian [67, 69, 70, 79, 81], i.e., they satisfy

LR |D⟩ = LL |D⟩ = 0

H |D⟩ = µ |D⟩ , µ ∈ R.
(2.36)

By applying these conditions to the examples in Sec. 2.2.3 we find that, under
certain conditions for γk, ϕk and ωj , the possible dark states are |+⟩ and |−⟩,
which are maximally entangled states with one atom being excited and the other
being in the ground state2:

|±⟩ = 1√
2
(|eg⟩ ± |ge⟩). (2.37)

The conditions for the existence of dark states in small atoms are well known,
and have been studied since the discovery of superradiance by Dicke in 1954.
Conversely, these conditions had not been derived before for giant atoms, until
we did in Paper A. In fact, it was by applying the conditions from Eq. (2.36)
that we found that, while most diatomic configurations (including small atoms)

2There is no universal nomenclature for these states, but rather common naming practice
differs between fields. The plus state |+⟩ is also commonly referred to as the triplet |T ⟩ or
the symmetric |s⟩ state, whereas the minus state |−⟩ is also known as the singlet |S⟩ or the
antisymmetric |a⟩ state. We follow the notation |S/T ⟩ in Paper A and the notation |±⟩ in
Paper B.
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require the coupling to be bidirectional for dark states to exist, i.e., γR = γL,
the nested setting does not.

While collective emission phenomena have always been of interest to the
quantum-optics community, subradiance is receiving a recently renewed interest
in the context of quantum technologies: being able to access and harness dark
states is a key ingredient in the development of quantum memories [82–84] and
in the robust distribution of information in scalable quantum networks with
quantum repeaters [85, 86].

2.4.2 Decoherence-free interaction

Subradiance offers a way of protecting atoms against decoherence only when the
atoms are in the dark state. A much more robust way of protecting the atoms
is achieved by braided GAs through the so-called decoherence-free interaction
(DFI), which is independent of the states of the GAs, meaning that the entire
Hilbert space of the atomic ensemble is protected from decoherence.

As mentioned in the Introduction, this is one of the most promising proper-
ties of GAs and a feature of great potential in quantum computing applications,
a field which is currently largely limited by quantum decoherence and dissipa-
tion.

Waveguide-mediated DFI between two atoms A and B takes place when
the interference from their coupling points suppresses both the individual and
collective relaxation rates (Γj ,Γcoll = 0 ∀j ∈ {A,B}) while maintaining their
exchange interaction (g ̸= 0). Let us see when that happens.

By definition, an atomic ensemble does not decohere into the waveguide
when the individual decay rate of each atom is zero, i.e., Γj = 0 ∀j. From
the expressions in Table 2.1 for braided atoms, this implies that an excita-
tion acquires a phase π (mod 2π) between the coupling points of atom j [see
Fig. 2.3(a)], or equivalently, that the coupling points are separated by half the
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Figure 2.3: (a) Two braided giant atoms with the coupling points of each atom
separated by a phase shift of π (mod 2π), which is the distance that allows
them to interact without decohering. (b) Excitation exchange between two
atoms arranged in the setup from (a), showing a decoherence-free interaction.
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2. Continuous waveguides

excitation’s wavelength, λ/2 (mod λ). For this particular distance, the emis-
sion from each atom’s connection points interferes destructively, making the
sum over all atoms zero and thus preventing collective decay (Γcoll = 0). In
separate and nested atoms, the connection points of atom B are consecutive, so
the emission between them cancels the interaction (g = 0) when ΓB = 0. Un-
like these topologies, braided atoms have the particularity that no consecutive
points belong to the same atom, allowing a non-zero exchange interaction [see
Table 2.1]. As depicted in Fig. 2.3(b), this implies that an excitation can be
released from atom A to be reabsorbed by atom B and vice versa, in a perpetual
loop.

DFI was first described in Ref. [33] in 2018 and we showed that it holds for
waveguides of any chirality in Paper A.
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3 Structured waveguides

Structured waveguides are those which, contrary to continuous waveguides, have
nontrivial dispersion relations, such as band edges and band gaps. A simple
example is realized by a 1D array of coupled cavities, which creates a finite
propagating band with a speed of light that is controlled by the tunnel coupling
between neighboring cavities and thus can, in principle, be made arbitrarily
small. This is why structured waveguides are also known as slow-light waveg-
uides [87].

Many different platforms have been used to demonstrate phenomena arising
from the interaction between an atom and a structured environment [88]. These
include cold atoms coupled to either photonic crystal waveguides [89] or to an
optical lattice [90, 91], as well as superconducting qubits coupled to either a
microwave photonic crystal [92–94] or to a superconducting metamaterial [76,
95–98].

In general, a small atom coupled to a structured environment with its tran-
sition frequency tuned to the propagating band shows the typical exponential
decay of spontaneous emission. Conversely, when the atom is detuned away from
the band, i.e., when it is tuned to the band gap, it does not decay. This occurs
because atom-photon bound states are formed in the band gaps, where photons
become exponentially localized in the vicinity of the atoms, inhibiting their de-
cay [87, 99–101]. Even at the band edge of the continuum of propagating modes,
atoms show fractional decay due to the influence of bound states [102–104]. Fur-
thermore, multiple atoms coupled to the same reservoir can interact through the
overlap of their bound-state photonic wavefunctions [105–107]. These interac-
tions can be tuned by modifying the frequencies of the atoms and their coupling
strengths to the bath, which opens doors for applications in quantum compu-
tation and quantum simulation of many-body physics [108, 109].

Mathematically, a structured waveguide can be modeled with the same
Hamiltonian as a continuous waveguide [Eq. (2.1)], but with a different dis-
persion relation. For example, in Paper B we use that the bath Hamiltonian
rotating at the bath frequency can be expressed as Hb =

∑
k ω(k)a

†
kak, with

ω(k) = −2J cos(k), (3.1)

where J is the hopping rate between coupled cavities. This describes a contin-
uum of modes confined in an energy band E ∈ [−2J, 2J ], where the dispersion
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3. Structured waveguides

is linear around the middle of the band [ω(±π/2+ε) = ±2J sin(ε) ≈ ±2Jε] and
parabolic close to the band edges [e.g., ω(ε) ≈ −2J(1 − ε2/2)]. In turn, this
translates into a density of states

D(E) =
1

π
√
4J2 − E2

Θ(2J − |E|), (3.2)

that is nearly constant around the middle of the band (i.e., for energies E ≈ 0)
and diverges at the band edges (|E/J | ≈ 2) [110]. This divergence leads to non-
Markovian dynamics, such as the aforementioned appearance of atom-photon
bound states and fractional decay at the band edges. This non-Markovianity
prevents us from using the analytical tools described in Chapter 2, so in order to
accurately describe the dynamics of the system, we instead resort to complex-
analysis techniques based on Ref. [111].

3.1 Resolvent formalism

Let us consider a system with a total Hamiltonian H = H0 +Hint, where H0 is
the “unperturbed” Hamiltonian for which the eigenstates and eigenenergies are
known, and Hint represents the coupling between subspaces spanned by some
of the unperturbed eigenstates. This could be the case of the Hamiltonian used
in Chapter 2 [in Eq. (2.3)], where H0 = Ha+Hb, i.e., the sum of the bare atom
and bath Hamiltonians. There, we made many simplifications to be able to de-
scribe the atomic dynamics: we made the Born-Markov approximation, and we
assumed a linear dispersionless bath with negligible travel time between compo-
nents. With fewer simplifications, in many cases, we could take a perturbative
approach to solve the dynamics. However, sometimes, a deeper understanding
of certain physical phenomena requires going beyond perturbation theory and
taking into account some effects of Hint to all orders.

For this type of problem, we resort to the so-called resolvent formalism, based
on the definition of the resolvent G(z) = 1/(z−H) of the Hamiltonian H, with
z ∈ C. The relation between the resolvent G(z) and the unperturbed resolvent
G0(z) = 1/(z −H0) is an algebraic equation, much simpler to manipulate than
the integral equation connecting the evolution operators U(t) = exp{−iHt} and
U0(t) = exp{−iH0t}. The matrix elements of U(t) are then calculated from
the matrix elements of G(z) via a contour integral. Moreover, the analytical
properties of G(z) provide information about the different contributions to the
dynamics.

3.1.1 From resolvent to evolution operator

The time-evolution operator U(t, t′) of the Hamiltonian H = H0 +Hint is the
solution to the Schrödinger equation

i
d

dt
U(t, t′) = (H0 +Hint)U(t, t′), (3.3)
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3.1. RESOLVENT FORMALISM

with the initial condition U(t′, t′) = 1. In fact, the solution can be written as

U(t, t′) = U0(t, t
′)− i

∫ t

t′
dτU0(t, τ)HintU(τ, t′), (3.4)

where U0(t, t
′) = exp{−iH0(t− t′)}. Note that this expression is close to a

convolution product, but not quite, since τ varies between t′ and t. Fortunately,
by introducing new operators, we can convert it to a true convolution product,
which will transform into a simple product by Fourier transformation. We define

K+(t, t
′) = U(t, t′)θ(t− t′); K0+(t, t

′) = U0(t, t
′)θ(t− t′), (3.5)

where θ(t− t′) is the Heaviside function, equal to 1 for t > t′ and to 0 otherwise.
With these operators, we can rewrite Eq. (3.4) as a true convolution:

K+(t, t
′) = K0+(t, t

′)− i

∫ ∞

−∞
dτK0+(t, τ)HintK+(τ, t

′). (3.6)

We note that K+(t, t
′) satisfies the equation(

i
d

dt
−H

)
K+(t, t

′) = δ(t− t′), (3.7)

which is why the operator K+(t, t
′) is sometimes called the Green’s function.

In fact, it is a retarded Green’s function because it is non-zero only for t > t′.
Conversely, we can define the advanced Green’s function

K−(t, t
′) = −U(t, t′)θ(t′ − t), (3.8)

which obeys the same evolution equation as K+ but satisfies different boundary
conditions.

We now introduce the Fourier transform of K+(t, t
′), which depends only on

t− t′, so by redefining t := t− t′, we can write

K+(t) = − 1

2πi

∫ ∞

−∞
dE e−iEtG+(E), (3.9)

or, inversely,

G+(E) =− i

∫ ∞

−∞
dt eiEt

exp{−iHt}θ(t)︷ ︸︸ ︷
K+(t) = −i

∫ ∞

0

dt ei(E−H)t =

= lim
η→0+

−i

∫ ∞

0

dt ei(E−H+iη)t = lim
η→0+

1

E −H + iη
, (3.10)

were η is a positive real number that tends to zero, and G+(E) is called retarded
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3. Structured waveguides

propagator1. Similarly, the advanced Green’s function and propagator satisfy

K−(t) = − 1

2πi

∫ ∞

−∞
dE e−iEtG−(E), (3.11)

G−(E) = lim
η→0+

1

E −H − iη
. (3.12)

Notice that, now, the integral from Eq. (3.6) becomes a simple product by
Fourier transform, thus resulting in the algebraic equation

G+(E) = G0+(E) +G0+(E)HintG+(E), (3.13)

where G0+ is the retarded propagator associated with H0.
The simple form ofG±(E) suggests the introduction of the resolvent operator

of the Hamiltonian H,

G(z) =
1

z −H
, (3.14)

as a function of the complex variable z. Then, the retarded (advanced) propa-
gator G+(E) [G−(E)] is simply the limit of G(z) when z tends to the point E
on the real axis, with a positive (negative) value of its imaginary part:

G±(E) = lim
η→0+

G(E ± iη). (3.15)

Finally, the time-evolution operator U(t) = K+(t) − K−(t) is expressed by a
contour integral of G(z):

U(t) =
1

2πi

∫ ∞

−∞
dE e−iEt[G−(E)−G+(E)] =

=
1

2πi

∫
C++C−

dz e−iztG(z), (3.16)

where C+ (C−) is a line situated immediately above (below) the real axis and
followed from right (left) to left (right). For t > 0 (t < 0), the contribution of
C− (C+) is zero.

3.1.2 Singularities of the resolvent

It becomes patent from Eq. (3.16) that we can determine properties of U(t)
from the analytical properties of G(z). In fact, the matrix elements of G(z)
are analytic functions of z in the whole complex plane except for the real axis,
where they have two types of singularities:

• Real poles, located at the discrete eigenvalues of the Hamiltonian H, and

1Since K+ and G+ are interchangeable by Fourier transform, sometimes, it is K+ which is
referred to as the retarded propagator, and G+ receives instead the name of retarded Green’s
function.
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3.1. RESOLVENT FORMALISM

• Branch cuts, extending over the intervals corresponding to the continuous
spectrum of H. A cut appears when the matrix elements of G(z) do not
tend to the same value when z tends from below or from above toward a
point on the real axis, located on the cut.

Now, it is possible to analytically continue G(z) from, e.g., the upper half-plane
towards the lower half-plane, into the so-called second Riemann sheet. In this
case, the continued function is not necessarily analytic outside the real axis and
may have

• Complex poles, which describe unstable states of the system, i.e., states
having a complex energy and characterized by exponential damping.

3.1.3 From level-shift operator to resolvent

The identity Eq. (3.13) can be applied to give the perturbative expansion of
G(z) in powers of V , and iterated to yield

G(z) = G0(z) +G0(z)HintG(z) =

= G0(z) +G0(z)HintG0(z) +G0(z)HintG0(z)HintG0(z) + . . . (3.17)

Then, the matrix elements of G(z) between two eigenstates ⟨l| and |m⟩ of
H0, with unperturbed energies El and Em, read

Glm(z) =
1

z − El
δlm +

1

z − El
H int

lm

1

z − Em

+
∑
i

1

z − El
H int

li

1

z − Ei
H int

im

1

z − Em
+ . . . , (3.18)

where |i⟩ are eigenstates of H0, Glm(z) = ⟨l|G(z)|m⟩, and H int
im = ⟨i|Hint|m⟩.

Note that this expression is quite simple, consisting only of products of matrix
elements of Hint and of unperturbed energy denominators. In this way, we
can regroup the terms where a denominator 1/(z − Ee) involving a particular
unperturbed state |e⟩ appears x times, and then formally sum the perturbation
series. Let us take l = m = e. Then, the zero-order term in Hint of Eq. (3.18) is
just 1/(z − Ee) and thus contains this denominator once. Meanwhile, the next
terms in the expansion contain the denominator at least twice. If we require
them to contain the denominator only twice, then we can express the sum as

Σe(z) = H int
e +

∑
i ̸=e

1

z − Ei
H int

ie +
∑
i ̸=e

∑
j ̸=e

H int
ei

1

z − Ei
H int

ij

1

z − Ej
H int

je + . . . ,

(3.19)
but we can generalize it to contain the denominator x times. In fact, it is
sufficient to sum the contributions corresponding to different values of x to
obtain

Ge(z) =

∞∑
x=1

[Σe(z)]
x−1

(z − Ee)x
=

1

z − Ee

∞∑
x=0

[
Σe(z)

z − Ee

]x
=

1

z − Ee − Σe(z)
, (3.20)

which is an exact expression for Ge(z) = ⟨e|G(z)|e⟩.
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Projection of the resolvent

Equation (3.20) can also be derived using projection operators. Consider the
subspace spanned by some eigenvectors {|a⟩ , |b⟩ , . . . , |l⟩} of the unperturbed
Hamiltonian H0. If they are orthonormal, the projector onto the subspace is

P = |a⟩⟨a|+ |b⟩⟨b|+ · · ·+ |l⟩⟨l| . (3.21)

The projector onto the complementary subspace is then Q = 1 − P . Since the
subspaces are orthogonal, then PQ = QP = 0, and since the states |a⟩ , |b⟩ , . . . , |l⟩
are eigenstates of H0, then [P,H0] = [Q,H0] = 0. From these two relations, we
derive that

PH0Q = QH0P = 0. (3.22)

Let us now take the definition of resolvent and manipulate it by multiplying
on the right by P and on the left by P or Q:

G(z) =
1

z −H
=⇒ (z −H)G(z) = 1

=⇒


P (z −H) (P +Q)︸ ︷︷ ︸

1

G(z)P = P 2︸︷︷︸
P

Q(z −H)
︷ ︸︸ ︷
(P +Q)G(z)P = QP︸︷︷︸

0

=⇒
{
P (z −H)[PG(z)P +QG(z)P ] = P

Q(z −H)[PG(z)P +QG(z)P ] = 0

=⇒


P (z −H) PP︸︷︷︸

P

G(z)P + P (z−H0 −Hint︸ ︷︷ ︸
−H

) QQ︸︷︷︸
Q

G(z)P = P

Q(z−H0 −Hint︸ ︷︷ ︸
−H

) PP︸︷︷︸
P

G(z)P +Q(z −H) QQ︸︷︷︸
Q

G(z)P = 0

=⇒

P (z −H)P [PG(z)P ] +���*
0

PQz −����: 0
PH0Q− PHintQ[QG(z)P ] = P

���*
0

QPz −����: 0
QH0P −QHintP [PG(z)P ] +Q(z −H)Q[QG(z)P ] = 0

(3.23)

We can solve the system of equations above for PG(z)P by substitution of
QG(z)P to obtain

P

[
z −H0 −Hint −Hint

Q

z −QH0Q−QHintQ
Hint

]
PG(z)P = P. (3.24)

For this expression, we define the level-shift operator Σ(z) as follows:

Σ(z) = Hint +Hint
Q

z −QH0Q−QHintQ
Hint, (3.25)
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whose perturbative expansion in powers of Hint reads

Σ(z) = Hint +Hint
Q

z −H0
Hint +Hint

Q

z −H0
Hint

Q

z −H0
Hint + . . . . (3.26)

Rewriting Eq. (3.24) in terms of the level shift operator [Eq. (3.25)] yields

PG(z)P =
P

z − PH0P − PΣ(z)P
, (3.27)

which generalizes equation Eq. (3.20). The form of Eq. (3.27) suggests that
PΣP can be considered as a “Hamiltonian” (ignoring the dependence on z) in
the subspace spanned by {|a⟩ , |b⟩ , . . . , |l⟩} being added to PH0P and allowing
us to determine the shifts of the perturbed levels relative to unperturbed levels.
This is why Σ(z) is called the level-shift operator.

3.2 Residue theorem

Before we move on to applying the resolvent formalism to a physical scenario,
let us review one last concept from complex analysis: the residue theorem.

Consider a function f(z) that has a pole of order m at z = a. Then by
definition of a pole,

f(z) =
A−m

(z − a)m
+

A−m+1

(z − a)m−1
+ · · ·+ A−1

(z − a)
+ g(z), (3.28)

where g(z) is analytic near and at a, and the coefficient A−1 is called the residue
Res(f, a) of the function f(z) relative to the pole a [112]. Formally,

Res(f, a) = A−1 = lim
z→a

(
1

(m− 1)!

(
d

dz

)m−1

[(z − a)mf(z)]

)
. (3.29)

It follows from the above definition that, if a is a simple pole of f(z), the residue
of f(z) at that pole is limz→a[(z − a)f(z)].

The residue theorem states that if f(z) is analytic throughout a contour C
and its interior except at a number of poles a1, . . . , an inside the contour, then

1

2πi

∫
C

f(z)dz =

n∑
j=1

Res(f, aj) wind(C, aj), (3.30)

where wind(C, aj) is the winding number of C around aj [112]. Note that
wind(C, aj) = 0 if aj falls outside the contour.

3.3 Example: a giant atom in a structured
waveguide

Consider the simplest setup from Paper B: a single giant atom with two con-
nection points coupled to a structured waveguide, and suppose we want to find
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the time evolution of the atomic population. We can start by writing the total
Hamiltonian as the sum H = H0 +Hint, with

H0 = ∆σ+σ− +
∑
k

ω(k)a†kak (3.31)

Hint =
g√
N

∑
k

[(
eikn1 + eikn2

)
akσ

+ +H.c.
]
, (3.32)

where ∆ is the detuning of the atom with respect to the bath frequency, σ±

denote the atomic ladder operators, a†k, ak are the creation and annihilation
operators of the cavity modes, ω(k) is given by the dispersion relation from
Eq. (3.1), N is the number of coupled cavities conforming the bath, and np

denotes the position of the p-th coupling point. Note that we have applied the
RWA directly on the Hamiltonian, which requires that the atomic and bath
resonant frequencies are much larger than the coupling strength g, and, as
explained in Sec. 2.1.1, will not yield an accurate value of the Lamb shifts.

In the single-excitation subspace, the eigenstates of the unperturbed Hamil-
tonian H0 consist of an atomic excitation |e⟩ := |e, 0⟩, and a photonic excitation
in mode k ∈ [−π, . . . , π − 2π

N ], |k⟩ := |g, k⟩. It is the interaction term Hint

that couples the subspace {|e⟩} with {|k⟩}. We can then define the projector
P = |e⟩⟨e| and its complementary Q =

∑
k |k⟩⟨k|, and use the techniques de-

scribed in the previous section, but in inverse order: we will first derive the
matrix elements of the level-shift operator and, from there, we will deduce the
resolvent and the time-evolution operator.

Let us start with the perturbative expansion of the level-shift operator in
powers of Hint shown in Eq. (3.26), truncated to second order:

Σ(z) = Hint +Hint
Q

z −QH0Q−QHintQ
Hint ≈ Hint +Hint

Q

z −H0
Hint. (3.33)

It is nontrivial to see why this truncation is justified, so let us elucidate. Assume
the eigenstate |e⟩ of H0 is well isolated from all the other discrete eigenstates of
H0. Let us examine Eq. (3.19) near z = Ee, which is whereGe(z) [see Eq. (3.20)]
takes on the most important values. All the energy denominators involved in
the expansion of Σe(z) are large because the other discrete energies of H0 are
assumed to be far from Ee. Nevertheless, even if Ee falls within the continuous
spectrum of H0, the sums over the intermediate states associated with this
continuous spectrum involve delta functions and principal parts which do not
lead to any divergnce. Thus, if Hint is small compared to H0, the perturbative
series Eq. (3.19) is rapidly convergent and it is completely valid to approximate
Σe(z) by retaining only a finite number of terms.

It is important to remark that a perturbative approximation for Σe(z) does
not correspond to a perturbative approximation for Ge(z), since Ge(z) obtained
by truncation of Σe(z) still contains arbitrarily high powers of Hint. In other
words, the truncation in Eq. (3.33) is equivalent to making a partial resumma-
tion of the perturbation theory.
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Now, we can go back to the level-shift operator in Eq. (3.33) and calculate
the matrix element Σe(z) = ⟨e|Σ(z)|e⟩, known as the self-energy of the atom:

Σe(z) =�����:0
⟨e|Hint|e⟩ +

∑
k

⟨e|Hint
|k⟩⟨k|
z −H0

Hint |e⟩ =

=
g2

N

∑
k

(eikn1 + eikn2)(e−ikn1 + e−ikn2)

z − ω(k)
=

=
2g2

N

∑
k

1 + cos(k(n2 − n1))

z − ω(k)
. (3.34)

Henceforth, we use the dispersion relation ω(k) = −2J cos(k) and that the
distance between coupling points is d = n2 − n1. In the continuum limit, i.e.,
when N → ∞, the sum over k becomes an integral:

∑
k

2π
N →

∫
k
dk. Therefore,

we can write the self-energy like

Σe(z) =
g2

π

∫ π

−π

1 + cos(kd)

z + 2J cos(k)
dk =

=
g2

π

∫ π

−π

dk

z + 2J cos(k)
+

g2

π

∫ π

−π

eikd

z + 2J cos(k)
dk, (3.35)

where, in the second integral, we have substituted the cosine for an exponential
because odd functions do not contribute to the integral. Now, we can introduce
the change of variable z̃ = eik such that 2 cos(k) = z̃ + z̃−1 and dk = −iz̃−1dz̃,
and integrate over the unit circle:

Σe(z) = − ig2

π

∮
dz̃

zz̃ + Jz̃2 + 1
− ig2

π

∮
z̃ddz̃

zz̃ + Jz̃2 + 1
=

= − ig2

πJ

∮
(1 + z̃d)dz̃

(z̃ − f+)(z̃ − f−)
, (3.36)

where the function (1+z̃d) is an entire function, i.e., it does not have singularities
in the complex plane, and the poles of the denominator are

f±(z) =
−z ±

√
z2 − 4J2

2J
. (3.37)

Applying the residue theorem [Eq. (3.30)], we obtain that∮
(1 + z̃d)

(z̃ − f+)(z̃ − f−)︸ ︷︷ ︸
F (z̃)

dz̃ = 2πi
∑
±

Res(F, f±) wind(S
1, f±) (3.38)

where the residues are

Res(F, f±) = lim
z̃→f±

(z̃ − f±)F (z̃) =
1 + fd

±
f± − f∓

=

=
±J√

z2 − 4J2

1 +(−z ±
√
z2 − 4J2

2J

)d
 , (3.39)
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and the winding number is zero for the poles that fall outside of the unit circle
S1, i.e.,

wind(S1, f+) =

{
1 Re{z} > 0

0 Re{z} < 0
, wind(S1, f−) =

{
0 Re{z} > 0

1 Re{z} < 0.
(3.40)

Therefore, we can insert the results of the residue theorem into Eq. (3.36) to
obtain the final expression of the self-energy:

Σe(z) = sgn(Re{z}) 2g2√
z2 − 4J2

1 +(−z + sgn(Re{z})
√
z2 − 4J2

2J

)d
 .

(3.41)
According to Eq. (3.20), the resolvent matrix element corresponding to the

excited state of the atom is then

Ge(z) =
1

z −∆− Σe(z)
, (3.42)

with ∆ being the atom-cavity detuning. Lastly, we can express the probability
amplitude of an initially excited GA, for t > 0, as follows from Eq. (3.16):

Ce(t) = − 1

2πi

∫
C

Ge(E + i0+)e−iEt dE, (3.43)

where the contour C is shown in Fig. 3.1.
The derivation presented here is used in Paper B for a single giant atom.

For two atoms, the procedure is similar, but a bit trickier, since the G(z) is not
diagonal in the basis {|eg⟩ , |ge⟩} (where one atom is excited and the other one
is in the ground state), thus making it harder to calculate the matrix elements.
An outline of the procedure to follow in such a case is presented in the Appendix
of Paper B.

3.3.1 Contributions to the probability amplitude

In Fig. 3.1, we illustrate the different singularities of the resolvent that we in-
troduced in Sec. 3.1.2 applied to the example of a giant atom coupled to a
structured waveguide:

• Branch cuts. They are introduced by the dispersion relation into the self-
energy [Eq. (3.41)] through the presence of the square root. It implies we
cannot close directly the integral with a semicircle in the lower half-plane.
By defining the branch cuts at the band edges, we can continuously close
the contour by taking a detour around them.

• Real poles. They are isolated poles of the resolvent [Eq. (3.42)] that fall
outside the continuum, i.e., they satisfy z −∆− Σe(z) = 0 and |z| > 2J .
They correspond to the atom-photon bound states.
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Band Band gapBand gap

Im(z)

Re(z)

Branch cutBranch cut

Unstable
poles

Bound
state

Bound
state

Figure 3.1: Contour of the integral in Eq. (3.43), with contributions from
the poles of the resolvent [Eq. (3.42)] and the branch cuts at the band edges
(|Re(z)/J | = 2). Figure extracted from Paper B and inspired by Ref. [110].

• Complex or unstable poles. They arise from the analytical continuation of
G(z) into the second Riemann sheet, i.e., the surface contained between
the branch cuts, which can be done by replacing

√
. . . with −√

. . . in
Σe(z) [Eq. (3.41)]. They satisfy |Re{z}| < 2J and are responsible for the
spontaneous emission of the atom into the bath when ∆ ∈ [−2J, 2J ].

Then, the probability amplitude Ce(t) can be calculated as a sum of the
different contributions [110]:

Ce(t) =
∑

α∈branch
cuts

Cα(t) +
∑

β∈poles

Rβe
−izβt, (3.44)

where Cα has the form of Eq. (3.43) and Rβ is the residue of the real and
unstable poles that we obtain through the residue theorem and that gives the
overlap of the initial wave function with the poles, i.e.,

Rβ =
1

1− ∂zΣe(z)

∣∣∣∣
z=zβ

. (3.45)

In particular, the contribution of the detour around the branch cuts to
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Eq. (3.44) can be written as

Ce(t)

∣∣∣∣
UBC

=− 1

2πi

∫ 0

−∞
Ge(2J + iy)e−i(2J+iy)t dy

− 1

2πi

∫ −∞

0

G2RS
e (2J + iy)e−i(2J+iy)t dy,

Ce(t)

∣∣∣∣
LBC

=− 1

2πi

∫ 0

−∞
G2RS

e (−2J + iy)e−i(−2J+iy)t dy

− 1

2πi

∫ −∞

0

Ge(−2J + iy)e−i(−2J+iy)t dy, (3.46)

where UBC and LBC denote upper and lower branch cut, respectively, and the
superscript 2RS stands for second Riemann sheet.

Finally, we note that the poles and the branch-cut integrals can be solved nu-
merically, thus allowing us to simulate the exact dynamics of the atom through
Eq. (3.44).

3.4 Non-Markovian effects

Unlike in Chapter 2 for continuous waveguides, here we have not made the
Markovian approximation at any point in our derivation, thus allowing us to
discern non-Markovian behaviors when computing the time evolution of the
atoms.

3.4.1 Unstable poles and branch cuts

In the previous section, we mentioned that the unstable poles of the resolvent
are responsible for the spontaneous emission of the atoms into the bath when
the atoms are tuned to the band.

Within the Markovian approximation, we assume that the coupling g is
sufficiently weak such that Σe(E + i0+) ≈ Σe(∆) [110]. Then, Ce(t) can be
easily solved applying the residue theorem around the pole z = ∆ + Σe(∆) to
yield Ce(t) ≈ exp{−i[∆ + Σe(∆)]t}. It then follows that we can split Σe(∆) into
its real and imaginary parts, and identify the frequency-dependent Lamb shift
δe(∆) = Re{Σ(∆)} and the decay rate Γe(∆) = −2 Im{Σ(∆)} as follows [111]:

Σe(∆) = δe(∆)− i
Γe(∆)

2
. (3.47)

Moreover, using the same approximation for Ck(t) shows that the modes dom-
inating the emission will be those satisfying ω(k) ≈ ∆ [110].

Now, solving the exact pole equation of the resolvent as we outlined in
Sec. 3.3 allows us to go beyond the Markov approximation and obtain a more
accurate profile of the decay rate Γe(∆). In fact, we can depict such a profile
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by plotting both Γe(∆) = −2 Im{Σ(∆)} (Markov) and Γe(∆) = −2 Im{z} with
z being the poles (beyond Markov), and clearly illustrate where the Markovian
approximation breaks down. This is what we did in Paper B, and we showed
that, as expected, the middle of the band falls in the Markovian regime, whereas
the approximation breaks down close to the band edges.

Around the band edges, the branch-cut contributions to the probability am-
plitude are also more prominent than at the band center [110, 113]. However,
they never take prevalence over the contributions from the poles, and they are
only relevant at the initial time of decay (small t), quickly decaying due to the
exponential in Eq. (3.46). Therefore, although we include these contributions
in both analytical and numerical results of Paper B, the branch cuts are not
responsible for any of the main phenomena studied in that manuscript.

3.4.2 Time delay

Another consequence of solving the atomic dynamics exactly is that we observe
time-delay effects, which arise from the time it takes an excitation to travel
between two points through the bath. These become relevant in processes gov-
erned by interference effects, such as subradiance and DFI.

In Paper B, we talk about subradiance not as the collective interference effect
between two atoms, but as the destructive interference between two coupling
points of the same atom. While that may very well be abuse of language, we
believe it is justified since, in the single-excitation regime, the subradiance that
takes place between two small atoms is identical to that of a giant atom with two
coupling points. In any case, the perfect subradiance is deteriorated by losses to
the bath during the time it takes for the interference to build up, i.e., the time it
takes for the excitation to travel between coupling points. The deterioration of
the atomic population is exponentially worse with increasing distance between
coupling points.

Similarly, DFI between two braided giant atoms is also worsened by the
delay of the interference, in addition to an exponential deterioration over time
caused by the imaginary part of the unstable poles that sustain the interaction.

3.4.3 Fractional and other anomalous decay

As mentioned at the beginning of Chapter 3, atom-photon bound states (real
poles of the resolvent) cause fractional decay at the band edges [102–104].
This occurs because the spontaneous emission of the atom is counteracted by
the hybridization with the bound state, prompting an initial exponential de-
cay with a few beatings that stabilizes to a nonzero value of the population
(|Ce(t → ∞)|2 ̸= 0).

Similarly, other anomalous decay takes place due to the existence of other
poles. As we described in Sec. 3.4.1, in the Markovian regime, the atomic pop-
ulation of each atom is dominated by a single pole. However, with increasing
distance between coupling points and increasing detuning from the middle of
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the band (|∆| < 2J), more poles appear and, as their contributions become
relevant, the population exhibits beatings and other anomalous behavior. This
can be understood through Eq. (3.44), where the atomic probability amplitudes
become a sum of exponential functions with different frequencies and weights.
In fact, this is the very reason why DFI is destroyed close to the band edges, as
we showed in Paper B.
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4 Paper overview

In this chapter, we give an overview of the two appended papers upon which this
thesis is based. Both papers are theoretical studies about the coupling of GAs
to a certain environment and how that bath mediates the dynamical interaction
between several GAs.

4.1 Paper A – Chiral quantum optics with
giant atoms

In Paper A, we studied the interaction between atoms chirally coupled to a
continuous open waveguide. We began by considering simple setups: two small
atoms and two giant atoms with two coupling points each, in all the possible
configurations of coupling points (separate, nested, and braided). For simplicity,
we first assumed all points had the same coupling strength γ, but that it was
different in each propagation direction, i.e., γR ̸= γL.

By using SLH formalism, we derived a master equation to model their dy-
namics in the same way we did in Sec. 2.2.3.

We showed that braided giant atoms can interact without decohering re-
gardless of the chirality of their coupling to the waveguide, and we derived
the phase-shift conditions for that to occur, as explained in Sec. 2.4.2. With
this, we demonstrated that the most robust way we know of protecting against
decoherence was also robust against variations in directionality.

In the spirit of searching for ways to protect the atoms against decoherence,
we also investigated dark states. We derived conditions for the existence of such
states in undriven atomic ensembles, as outlined in Sec. 2.4.1. We showed that,
unlike small atoms, nested giant atoms allow for perfect subradiance regardless
of the chirality of their coupling.

We also went further and looked at the effects of coherently driving the
system, since it is known [69] that this is a way to get around the absence
of dark states for small atoms in chiral settings. We showed that, when a
drive is considered, two giant atoms evolve to a dynamic equilibrium between
drive and dissipation, where the scattered photons from the first atom interfere
destructively from those of the second atom. This is the same behavior as
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for two small atoms, except that we showed giant atoms can populate these
driven-dissipative dark states faster.

Finally, we generalized all results to an arbitrary number of atoms with an
arbitrary number of coupling points, and presented interesting configurations
that could be used to harness DFI and dark states.

4.2 Paper B – Interaction between giant
atoms in a one-dimensional structured
environment

In Paper B, we studied giant atoms coupled to a structured waveguide, modeled
as an array of evenly spaced coupled cavities with nearest-neighbor interaction,
and with the dispersion relation introduced at the beginning of Chapter 3.

First, we considered a single giant atom, and from the system-bath Hamil-
tonian, we characterized the energy spectrum of the total system and the wave
function of the bound states. Then, we looked into the dynamics of the atom,
both through numerical simulations and through complex-analysis techniques,
as detailed in Sec. 3.3. In particular, we showed how the interference between
coupling points of the atom affects its relaxation, and how the poles of the re-
solvent provide a much more accurate description of the decay rate than the
Markovian prediction does close to the band edges. We related those results to
the time evolution of the atomic population, when the atom is tuned to different
regions of the band structure.

With a single atom fully characterized, we modeled the interaction between
two giant atoms and analyzed the differences between tuning the atoms to the
continuum and to the band gap. Within the band, we showed that DFI is best in
the continuous-waveguide case, i.e., in the middle of the band, but also possible
for other detunings. We also demonstrated, through different metrics, how
DFI deteriorates exponentially with increasing distance between the coupling
points. By mapping the DFI mechanism to the singularities of the resolvent
introduced in Sec. 3.1.2, we dissected the dynamics into different contributions
and showed the significance of time delay and other non-Markovian effects.
Lastly, we identified DFI as the multiple-giant-atom analogue of subradiance.

In the band gap, we showed that GAs can interact through the overlap of
bound states in the same way small atoms do. That raised the question: what
kind of interaction is best—giant atoms inside the band (DFI), giant atoms
outside the band (bound-state overlap), or small atoms outside the band (bound-
state overlap)? We concluded that the answer depends on three parameters: the
coupling strength, the distance between coupling points, and the detuning of the
atoms from the cavities. In particular, giant atoms can provide an advantage
over small atoms in some regions of the parameter space, for instance, when
restricting the maximum coupling strength achievable per coupling point. We
also found that there is a trade-off between good population exchanges and high
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4.2. PAPER B – INTERACTION BETWEEN GIANT ATOMS IN A
ONE-DIMENSIONAL STRUCTURED ENVIRONMENT

interaction rates. All in all, while for some parameters giant atoms can interact
more strongly and over longer distances than small atoms, the preference of a
giant-atom design over a small-atom design should depend on the experimental
constraints and the intended application.
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5 Outlook

The appended papers upon which this thesis is built consider setups that are
simplifications of real-life systems and thus carry limitations in how well they
actually represent them. In this final chapter, we discuss those limitations and
how to overcome them in the future.

In both articles and throughout this thesis, we considered giant atoms as two-
level systems. While this is sometimes a good approximation, it is not always the
case, for instance, for superconducting qubits with small anharmonicity [9, 114].
It would therefore be interesting to study the atoms as three-level Ξ, Λ, V , or ∆
systems, since this is a regime that has barely been explored in giant atoms [24,
26, 115], in particular with regards to adiabatic-passage techniques [116–118].

Another limitation that both appended papers share is the assumption of the
single-excitation regime, i.e., that there is at most one photon in the system. In
fact, in Paper A we do consider the possibility of both atoms being excited simul-
taneously, but we never actually populate that state. Going beyond the single-
excitation subspace would allow us to study collective emission effects, such as
superradiant bursts [119, 120] and multi-excitation subradiant states [121], as
well as multiphoton bound states in structured environments [87, 98].

In the same way as we could extend the dimensionality of the excitation
space, we could also extend the dimensionality of the reservoir. In fact, we
are currently investigating two-dimensional structured baths, which have been
shown to foster unconventional quantum optical behavior [25, 110, 122].

For structured waveguides, it would also be interesting to look at more elab-
orate band structures [88, 123], which can be engineered by tuning the hopping
rate J between neighboring cavities. For instance, alternating a low hopping
rate J1 with a higher one J2 > J1, which is achieved by spacing the cavities
further apart (J1) or closer together (J2), represents the Su-Schrieffer-Heeger
(SSH) model of a photonic topological insulator [76, 124]. These kind of inter-
faces that support richer band structures have been shown to lead to nontrivial
topological properties [76, 113, 125–128]. Moreover, when trying to match the
theoretical predictions to experimental data, it could be a good idea to extend
the current model of the bath to include next-to-nearest-neighbor interaction,
since it it has been proven to be necessary in some architectures [98].

One more assumption we made in both appended papers is that we neglected
external sources of decoherence, such as coupling to other baths, in order to
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single out the reservoir we were interested in studying. However, in experiments,
these other sources might become unavoidable and/or non-negligible in some
instances, e.g., when the rate of interaction between atoms is low, or when the
atoms are very long-lived. Thus, a more realistic approach would be needed
when investigating applications that rely on the atoms not decaying too fast,
such as the implementation of quantum gates.

Finally, from a more applied standpoint, it would be exciting to conceive
more concrete proposals and turn more giant-atom theory into experiment. For
instance, let us take the model presented in Paper A, which is ready to be
implemented using superconducting qubits coupled to a transmission line with
circulators inserted to provide the chirality [56]. Problems arise in the imple-
mentation due to the limitations of currently available circulators: they either
are lossy and off-chip, and therefore they require additional space in the ex-
perimental setup, or they are on-chip and require active control by dynamic
modulation [58, 129]. In recent years, a few proposals for passive on-chip super-
conducting circulators have emerged [59], interestingly two of them involving
giant atoms [130] and giant molecules [29]. However, since each come with their
own set of limitations, it remains to be seen whether giant atoms will be the
solution to nonreciprocal chiral routing.

In the context of continuous waveguides, many other giant-atom features
can be exploited. As shown in Ref. [12], the decoherence-free interaction en-
ables the creation of any quantum many-body state among the atoms, since
the interaction can be used to form a universal set of quantum gates. The in-
teraction of this many-body system with the environment represented by the
waveguide can then be turned on and off for quantum simulations by controlling
the phase shifts ϕj in the setup, e.g., by tuning the atomic frequencies. Simi-
larly, the universal gate set can be used to create entangled states that then are
released into the waveguide for quantum communication or measurement-based
quantum computing.

On the other hand, with the technology available today, the setup from Paper
B is readily implementable with superconducting qubits coupled to either a mi-
crowave photonic crystal [92–94] or to a superconducting metamaterial [76, 95–
98]. This platform has great potential for quantum gate implementation [98]
and quantum simulation [32], as it has been recently demonstrated by an ex-
periment simulating the Bose-Hubbard model [108], as well as by a proposal for
the implementation of variational quantum algorithms [109].
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