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Abstract—Reconfigurable intelligent surfaces (RISs) have
tremendous potential for both communication and localization.
While communication benefits are now well-understood, the
breakthrough nature of the technology may well lie in its capabil-
ity to provide and support localization capabilities. We present
an overview of RIS-enabled localization scenarios, considering
various numbers of RISs, single- or multi-antenna base stations,
narrowband or wideband transmissions, and near- and far-
field operations. Based on this overview, we also highlight key
research directions and open challenges specific to RIS-enabled
localization and sensing.

I. INTRODUCTION

Radio localization via wireless network infrastructure is a
service stemming from governmental mandates on positioning
emergency calls by network operators. Over time, especially
after introducing dedicated signals and procedures in 3GPP
R16, radio localization found many other applications, includ-
ing navigation, network optimization, geo-targeting, and aug-
mented reality [1], particularly for scenarios where the Global
Positioning System (GPS) is insufficient (or not available),
such as indoor environments, urban canyons, and tunnels. With
cellular localization, the user equipment (UE) state (compris-
ing UE location, time bias, but possibly also the orientation,
velocity, etc.) can be estimated based on a variety of measure-
ments from the received signal, including the signal strength,
time-of-arrival (ToA), angle-of-arrival (AoA), and angle-of-
departure (AoD). In the fifth generation (5G) of wireless
systems, radio localization can be accurately performed thanks
to a multitude of antennas and large radio bandwidth. In the
future sixth generation (6G), radio localization is envisioned to
be even more ubiquitous by utilizing reconfigurable intelligent
surfaces (RISs) [2].

Typical communication services require predominantly a
single base station (BS), whereas user localization often ne-
cessitates supplementary infrastructure, such as an additional
multi-antenna BS, relay, or RISs. Compared with the former
two options, the adoption of RISs provides a substantially
more cost- and energy-efficient solution, thanks to their sim-
pler hardware implementation as well as minimal deployment
and maintenance efforts than multi-antenna BSs and relays [3].
Additionally, RISs can be easily installed on common surfaces,
such as walls and billboards, and they are passive or have a
few active elements (e.g., as with the RIS design in [4]). Due
to their limited power consumption, they are even suitable for
delivering 3D ubiquitous features being installed on board of
unmanned aerial vehicles (UAVs) in emergency scenarios [5].

In Fig. 1, we compare two wireless systems with two single-
antenna UEs (a car and a laptop). The position of the car
can be estimated via the AoD and delay measurements from
the two multi-antenna BSs, while the location of the laptop
is estimated via the AoD and delay measurements from a
single BS and an RIS. We note that if in Fig. 1 the RIS was
not present, the laptop position could not be estimated via
the reflection from the wall since the position of the wall is
unknown.

In this article, we explore scenarios where localization
is enabled by RISs, namely multiple-input multiple-output
(MIMO), multiple-input single-output (MISO), single-input
multiple-output (SIMO), and single-input single-output (SISO)
setups with either wideband (WB) or narrowband (NB) sig-
naling, which operate in the far- or near-field regimes. The
investigated RIS-enabled scenarios rely on extremely limited
BS infrastructure, thereby leading to significant cost and
energy savings. These scenarios can be tailored to support
various innovative use cases in the context of Industry 4.0,
vehicular networks, and overall 6G networks, such as UAVs
and automated guided vehicles (AGVs) localization and navi-
gation, collaborative manufacturing, human-robot interaction
and hazards mapping, radar detection and localization of
passive objects, and so forth. While RIS-assisted localization
systems have been studied in many papers (see, e.g., [6], [7],
[8] and references therein), to the best of our knowledge, this is
the first paper that treats the feasibility aspects of RIS-based
localization in detail. We also support our discussion via a
novel experimental localization example at 60 GHz for one of
the considered RIS-enabled scenarios.

The remainder of this paper is organized as follows. We
first provide some background on RIS operation, followed by
an introduction to the fundamentals of wireless localization.
The main part of this paper then covers the available RIS-
enabled localization scenarios, one of which is experimentally
evaluated. Finally, we list open research challenges.

II. RIS OPERATION MODE SUPPORTING LOCALIZATION

A planar array of elementary ultra-thin and ultra-low power
electronic circuits or metamaterials, each capable of realizing
distinct electromagnetic (EM) states, is known as reflective
RIS [9], [10]. Its dynamic reconfigurability according to
desired wireless networking objectives is enabled by a mul-
titude of unit elements, such as positive intrinsic negative
(PIN) diodes or varactors, which are usually managed by
a microcontroller that communicates with the rest of the
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Fig. 1: RIS-enabled localization: without RIS, several BSs are needed for localization, while with RIS, localization is possible with less infrastructure. The
symbols τ , φ, θ are used to indicate ToAs, AoDs, and AoAs, respectively.

network infrastructure in- or out-of-band [2], [3]. For example,
by appropriately configuring the state of the PIN diodes or
the bias voltage of the varactors, the resulting macroscopic
transformations of the radio waves impinging at the RIS can
be controlled, offering desired reflective beamforming towards
intended receivers. This beamforming mechanism is cost- and
power-efficient compared to multi-antenna BSs and relays,
which include transceiver radio-frequency chains (consisting
of signal converters and amplifiers, as well as frequency mix-
ers) and possibly networks of phase shifters, while imposing
certain installation constraints due to their large sizes.

In geometric propagation environments with mmWave and
sub-THz frequency bands, which are the focus of this article,
fine-grained control over the reflected EM field is essential
for accurate reflective beamforming, enabled by RIS ele-
ments of sub-wavelength sizes (e.g., λ/10 with λ being the
wavelength), despite inevitable strong inter-element mutual
coupling and possibly gray-scale-tunable EM properties. In
contrast, in stochastic sub-6 GHz rich scattering environments,
half-wavelength-sized elements suffice for supporting EM
wave fingerprinting in conjunction with supervised learning
for localization [11]. The channel modeling of RIS-enabled
smart wireless environments is an active area of research [3].
For localization purposes, sparse parametric models are often
used, where the channel is represented via a few geometric
components. The received signal in the downlink (DL) can be
calculated as a sum of individual rays reflected from each
RIS element at the UE location. When the UE is in the
geometric near-field of the RIS, this signal is a function of
the transmitted symbols, the BS position, the positions of the
RIS elements, and the UE position, among which only the last
one is unknown and needs to be estimated [12]. When the BS
and UE are in the far field of the RIS, i.e., when the distances
between the UE, BS, and RIS are much larger than the RIS
size, the wireless channel to the UE can be described by the
AoD, which consists of elevation and azimuth components.

III. WIRELESS LOCALIZATION FUNDAMENTALS

Radio localization methods are based on the premise that
received waves convey geometric information about the prop-
agation channel, which can be in turn used to determine
the locations of the wirelessly connected devices (i.e., UEs).
Broadly speaking, radio localization methods can be catego-
rized as data-driven and model-driven. In the former cate-
gory, we have methods such as fingerprinting and artificial-
intelligence-assisted localization, which rely on rich features
of the received radio signal, but without a structure that is easy
to model [11]. In this context, RISs generate richer multipath
and thus more effective radio signatures. The latter category
of model-driven methods harnesses approximate statistical
relations between the received radio signal and the signal prop-
agation geometry (including the UE location), and form the
bulk of radio localization techniques used in practice. Model-
based methods have a large number of benefits over data-
driven methods. They rely on decades of signal processing
methods and optimization techniques, usually offering lower
complexity than data-driven approaches, and are accompanied
by performance bounds that provide strong guarantees of
optimality and reliability [6], [12].

In the following, we focus our attention on model-driven
approaches and study the feasibility of localization problems
from a geometric standpoint by analyzing scenarios that would
be infeasible for conventional non-RIS techniques. As visual-
ized in Fig. 2, practical radio-based localization methods in 5G
systems rely on time-based measurements from several BSs,
where the propagation time of the direct line-of-sight (LOS)
signal path to or from a BS is proportional to the distance
between the UE and BS, but also includes an unknown clock
bias of the UE with respect to the BS. As a specific example,
under time-difference-of-arrival (TDoA), measurements from
4 synchronized BSs are needed to solve the 3D position-
ing and 1D clock bias estimation problem out of one-way
transmissions (i.e., uplink (UL) or downlink). In contrast,
under two-way round-trip time (RTT) measurements, when
signal exchanges between BS and UE naturally remove the
timing uncertainty, 3 BSs are sufficient for UE localization. To
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Fig. 2: An overview of the different location-relevant measurements under
standard 5G systems (in black) and potential RIS-enabled systems (in green).

complement delay-based measurements, angle measurements
(AoA and AoD) are employed, which, based on a codebook of
directional beams, constrain the UE to lie within an angular
sector. The sector size depends on the beamwidth, with the
latter being inversely proportional to the array size. We refer
the interested reader to [1] for a more detailed study on the
conventional localization methods and history.

The performance of model-based localization methods de-
pends on several fundamental metrics: identifiability, ambigu-
ity, resolution, precision, and accuracy. Note that this does
not correspond to an exhaustive list of metrics (which would
include latency, update rate, integrity, etc.), but merely to
convey the fundamentals.

• Precision and accuracy refer, respectively, to the spread
and bias of localization errors, but are usually treated
jointly (with either term being commonly used, though
we will use accuracy herein) through the localization er-
ror statistics (e.g., mean or median error, 90% confidence
interval). In principle, the accuracy can be arbitrarily
improved by increasing the signal-to-noise ratio (SNR).
In addition to link-level SNR, accuracy is also determined
by the deployment geometry (i.e., UE relative position
with respect to BSs), also referred to as Geometric
Dilution of Precision (GDoP) (e.g., in the GPS commu-
nity). Accuracy is arguably the definitive metric for any
localization method, as it accounts for both resolution and
identifiability.

• Resolution in our context refers to the separability of
perfectly correlated radio propagation paths in at least
one domain (which could be delay/Doppler, as commonly
used in radar, but also angle or polarization). Signal paths
that are not resolvable will be interpreted as a single path,
thus limiting the accuracy (irrespective of the SNR), and
leading to worse performance than predicted by analytical
bounds. The resolution is bounded by the available physi-
cal resources, i.e., bandwidth for delay/distance resolution
(and conversely time for frequency/Doppler resolution),
and antenna array aperture for angle resolution. Accord-
ingly, aiming at achieving better resolution (rather than
better accuracy), more bandwidth and larger arrays are,
in general, required to improve localization.

• Ambiguity and non-identifiability may still occur, even
with very high resolution. In particular, the solution to

the localization problem may be ambiguous (i.e., there
are several distinct solutions) or the problem may not
be identifiable (i.e., there exists a continuous space of
solutions). This happens, for instance, when the LOS
signal from one BS is missing due to an obstruction
or when the infrastructure deployment/coverage is not
sufficient. Ambiguity can generally be resolved by prior
information (e.g., an ambiguous GPS solution far away
from the earth’s surface can readily be discarded) and
occur generally intermittently. On the other hand, iden-
tifiability is more harmful, as there are many equally
valid solutions to the localization problem, most of which
cannot be discarded based on external information. We
note that identifiability is related to, but distinct from
observability in control theory, where observability refers
to the ability to estimate the user location over time.

There are several (equivalent) approaches to assess identi-
fiability, including geometry and Fisher information analysis.
The geometric approach is generative, in the sense that, it
constructs the manifold that constrains the solution based
on each measurement, and then, determines the dimension-
ality of the intersection of these manifolds. An identifiable
problem would thus have a zero-dimensional manifold as
the solution. Instead, a Fisher information analysis aims at
characterizing the amount of location information conveyed
by measurements, given both the known statistics of the latter
and the true UE location. More specifically, it determines the
local curvature of the likelihood function. This curvature is
described by a matrix, called the Fisher information matrix.
When this matrix is not full-rank, the likelihood is locally flat
along at least one dimension in the vicinity of the true location,
rendering the problem infeasible. An example of an infeasible
localization problem is TDoA-based localization with 2 BSs
(the intersection of two hyperboloids is a 1D manifold).

In the following section, we discuss the expected advantages
of RIS-empowered settings in terms of localization feasibility,
when compared to conventional settings in similar scenarios
and operating contexts.

IV. RIS-ENABLED LOCALIZATION SCENARIOS

In this section, we present several localization scenarios
wherein UE 3D positioning can be achieved. In addition to
positioning, we discuss whether the UE velocity, clock bias,
and orientation are identifiable. We focus on the downlink
direction since it facilitates the positioning of multiple UEs
at once. We consider minimal localization scenarios, meaning
that if a single BS or RIS is removed, 3D positioning is
no longer possible. Besides, we assume that all the BSs are
synchronized with each other, while the UE is not.

We consider both NB and WB signals, where only in the
latter case the ToA estimation can be performed. Moreover,
depending on the scenario, the BSs and the UE are equipped
with either a single or multiple antennas, where angle mea-
surements are only possible in the latter case. We list relevant
scenarios in Table I, which are also illustrated in Fig. 3.
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Fig. 3: Scenarios of feasible 3D UE positioning. The symbols τ , φ, and θ indicate ToAs, AoDs, and AoAs, respectively.

TABLE I: Identifiability analysis of 3D UE positioning in the downlink. The abbreviations pos, vel, and ori stand for position, velocity, and orientation,
respectively.

Scenario/example paper Signaling Measurements Identifiable State Positioning is possible also
SISO 0 RISs, 4 BSs WB TDoA 3D pos, clock, 3D vel with 3 BSs and RTT measurements
SISO 1 RIS, 1 BS [13] WB TDoA, AoD 3D pos, clock, 2D vel in near-field w/o LOS to BS
SISO 2 RISs, 1 BS NB AoD 3D pos, 3D vel w/o LOS to BS
SISO 1 RIS, 0 BSs [14] WB RTT, AoD 3D pos, 1D vel N/A
MISO 0 RISs, 2 BSs NB AoD 3D pos, 2D vel N/A
MISO 1 RIS, 1 BS [15] NB AoD 3D pos, 2D vel in near-field w/o LOS to BS
SIMO 0 RISs, 3 BSs NB AoA 3D pos, 3D vel, 3D ori N/A
SIMO 1 RIS, 1 BS NB AoD, AoA 3D pos, 2D vel, 3D ori N/A
MIMO 0 RISs, 2 BSs NB AoD, AoA 3D pos, 2D vel, 3D ori N/A
MIMO 1 RIS, 1 BS NB AoD, AoA 3D pos, 2D vel, 3D ori in near-field w/o LOS to BS

A. SISO localization

SISO with 4 BSs in the absence of an RIS (Fig. 3 (a)): We
consider the standard cellular localization protocol with four
synchronized BSs transmitting WB pilots and generating three
TDoAs or four ToAs. The UE position can be estimated by
intersecting the three hyperboloids corresponding to the three
TDoA measurements. Next, based on the UE position estimate
and the measured ToAs, we can obtain the clock bias allowing
the UE to be synchronized to the BSs. By measuring the RTTs
instead of the TDoAs, UE localization becomes feasible even
with three BSs via intersecting the three spheres identified by
the three RTTs and centered in the corresponding BSs. Lastly,
we can derive the UE velocity vector in 3D via four measured
Doppler shifts (i.e., radial velocities).

SISO with 1 RIS and 1 BS (Fig. 3 (b)): We assume a SISO
system with a single RIS as in [13]. By using WB pilots, we
can obtain the ToAs for the direct (i.e., the path BS-UE) and
the reflected (i.e., the path BS-RIS-UE) paths, from which
we calculate the resulting TDoA, which corresponds to a
hyperboloid in 3D space. By using different RIS phase profiles
for different transmissions, the AoD from the RIS to the UE
can be estimated, which geometrically translates to a half-line.
Therefore, we can calculate the UE position by intersecting
this half-line and the above-mentioned hyperboloid, while
deriving the clock bias from the UE position estimate and
the measured ToAs. Moreover, we can exploit the Doppler

shifts on the direct and the reflected paths to estimate the UE
2D velocity. Furthermore, if the UE is in the near-field of the
RIS, its position can be found by leveraging on the wavefront
curvature, even with a blocked direct path.

SISO with 2 RISs and 1 BS (Fig. 3 (c)): Let us assume
a SISO system with two RISs. In this scenario, we can
perform UE positioning even with NB signaling, which does
not allow ToA estimation. Indeed, the UE position can be
estimated by intersecting the two half-lines corresponding
to the AoDs from the RISs. The direct BS-UE path does
not carry any position information, thus localization can be
performed even when the direct path is blocked. Nonetheless,
the direct path provides Doppler information and enables us
to estimate the UE velocity in 3D. Later in this paper, we
perform experimental measurements to further investigate this
scenario.

SISO with 1 RIS in the absence of a BS (Fig. 3 (d)): A
single-antenna full-duplex UE can estimate its own location by
transmitting WB pilots to the RIS and processing the reflected
signals, thus (strictly) not requiring any BS (see [14]). In this
scenario, we can measure the RTT and the AoD from the RIS
to the UE. Geometrically, they respectively correspond to a
sphere centered in the RIS and a half-line originated in the
RIS, whose intersection returns the UE position estimate. As
the Doppler shifts can only be measured along the RIS-UE
direction, the UE velocity can be estimated in 1D. However,
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if the UE motion direction is a priori known, the 1D estimate
fully identifies the UE velocity vector (e.g., for UEs moving
along a highway).

B. MISO localization

We consider a MISO system, where multi-antenna BSs
allow estimating the respective AoD towards the UE (see e.g.,
[15]). Here, we can perform UE positioning with only 2 BSs
and no RIS as shown in Fig. 3 (e). Here, the UE position can be
estimated by intersecting the two half-lines corresponding to
the two AoDs from the BSs. Since ToAs measurements are not
required, we can employ NB pilots. Similarly, UE localization
can be achieved by replacing one of the BSs with an RIS as
shown in Fig. 3 (f), thus obtaining a MISO system with 1 RIS
and 1 BS, and leveraging on the AoDs from the BS and the
RIS.

C. SIMO localization

In a SIMO system, it is possible to estimate the AoAs from
the BSs at the UE in the UE’s frame of reference, which
depends on its orientation. We first consider a scenario with no
RIS and 3 BSs using NB pilots as shown in Fig. 3 (g). To show
that the user position is identifiable, we define θi,j to be the
angle between the direction of arrival from the ith BS and that
of the jth one. Note that θi,j can be calculated based on the
measured AoAs and does not depend on the UE’s orientation.
Now consider any arbitrary plane that includes the ith and the
jth BS. If the user is in this plane, then it should create a θi,j
angle with these BSs. One can show that the locus of these
points is described by an arc of a circle containing the two
BSs and its reflection by the line that passes through the two
BSs. Since this argument holds for all the planes that contain
ith and jth BSs, to obtain all the points that create θi,j angle
with the two BSs, we should rotate this curve around the line
that connects them. The generated surface is either the inner or
the outer part of a spindle torus. Observe that the user should
locate on the intersection of the three surfaces corresponding
to θ1,2, θ1,3, and θ2,3, which, in general, has dimension zero
(is a set of finite points). Therefore, the problem of user
localization is identifiable. After estimating the UE position
the UE orientation also can be found by means of any two
AoAs.

Furthermore, localization is possible with 1 RIS and 1 BS
as illustrated in Fig. 3 (h). In this scenario, we can measure
two AoAs and one AoD from the RIS. Using the two AoAs,
we can locate the user on (part of) a spindle torus, whose
intersection with the line corresponding to the AoD locates
the UE. Then the UE orientation can be estimated via the two
AoAs.

D. MIMO localization

In MIMO systems, both AoAs and AoDs can be estimated.
Therefore, UE localization is possible with no RIS and 2
BSs (Fig. 3 (i)) or with 1 RIS and 1 BS (Fig. 3 (j)). In both
cases, the UE position can be estimated via the two AoDs (by
intersecting the two corresponding half-lines) while the UE
orientation can be derived from the two AoAs.

E. Conventional vs RIS-enabled localization

We now provide a qualitative comparison between two of
the aforementioned scenarios: Scenario 1: SISO with 2 RISs
and 1 BS and Scenario 2: MISO with 0 RISs and 2 BSs.
Although both scenarios use two AoDs to localize the UE, in
the former case, the AoDs are measured from the RISs, while
in the latter one they are measured from the BSs. We compare
the two methods in terms of cost, energy consumption, and
accuracy. RISs have lower manufacturing and installation costs
than multi-antenna BSs. Furthermore, since RISs are almost
passive devices, they consume much less energy than BSs.
Therefore, Scenario 1 is preferable to Scenario 2 in terms of
cost and power consumption. As far as localization accuracy
goes, we need to consider two countering effects: the number
of antennas and cascaded path loss. As RISs can have many
more reflecting elements than the BSs antennas, they can
produce narrower beams and higher beam resolution. However,
compared to the signal received directly from the BS, the
reflected signal through an RIS suffers from a much larger path
loss, which reduces the SNR and subsequently the localization
accuracy. Therefore, the comparison in terms of localization
accuracy depends on several factors, such as the RIS and BS
array sizes, carrier frequency, and network geometry (e.g., BSs
and RISs placement), which are tied to the specific parameters
of the localization system.

V. AN EXPERIMENTAL LOCALIZATION CASE

In this section, we experimentally validate the SISO local-
ization scenario with 1 BS and 2 RISs, as described earlier.
The laboratory experimental setup operating at 60 GHz is
illustrated in Fig. 4 (a). As real RIS hardware prototypes are
still under development (and hence, not yet available), we
deploy two commercial transceivers as RISs and a two-port
millimeter-wave vector network analyzer (VNA). We configure
one of the VNA ports as the transmitter, i.e., the BS, and
the other port as the receiver, i.e., the UE. Two transceiver
modules BFM6010 from SiversIMA, operating over the 57–
71 GHz frequency band, are used to emulate the two RISs.
Each module contains a transmitter and a receiver, which are
equipped with an antenna array of size 16×4. To emulate
an RIS with those modules, we loop the receiver I and Q
signals back to the transmitter I and Q ports and apply
the desired beamforming (in terms of relative phase shifts)
before transmitting the up-converted signal. A common local
oscillator is used by the transmitter and the receiver for signal
up- and down-conversion to avoid frequency offsets.

To perform localization in 2D, each of the two RISs
iteratively sets 63 beampattern configurations, which generate
different azimuth AoDs. The received power to the UE is
recorded for each of the beams and each of the RISs. Fig. 4 (b)
illustrates the received power from the two RISs in a 2D
plane by assigning the crossing point of each pair of beams
(i.e., 632 points), the sum of normalized1 received powers.
The estimation of the AoDs at the UE side is performed by
selecting the beam that provides the largest received power for

1The values are normalized by the maximum received power from each
RIS.
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Fig. 4: (a) The experimental localization setup at 60 GHz and (b) the
normalized received power for different possible UE positions. The true and
estimated UE positions are shown by a cross and a star, respectively.

each RIS. Hence, the UE position is given by the intersection
of such two beams, which corresponds to the point with
maximum value in Fig. 4 (b), marked by a red star. It can
be seen that the estimation is within the 10-cm radius of the
ground truth value (marked by a red cross).

It should be noticed that the UE can receive a certain power
even when the beam is not directed towards it. Apart from the
imperfect beams, localization error is caused by limited beam
resolution, power measurement errors, and geometrical factors.
In terms of the last point, for any AoD estimation routine, the
localization error increases with UE distance. Furthermore, if
real RISs are used instead of the transceivers, additional im-
pairments (e.g., losses) could reduce the localization accuracy.

VI. CONCLUSIONS AND RESEARCH CHALLENGES

We have argued that a decisive breakthrough of RISs lies
in their capacity to make localization feasible in lightweight
operating contexts, where conventional systems would fail or
necessitate more physical resources. The qualitative analysis
conducted in this paper confirms that the introduction of RISs
can significantly reduce the requirements on the infrastructure,
by replacing BSs with RIS, thus reducing cost and power

consumption. The use of RIS for lightweight localization
introduces a multitude of related research questions.

• Integrated communication and localization: The pro-
vision of distinct services in an RIS-enabled wireless
environment raises novel challenges in terms of multi-
purpose RIS optimization (e.g., localization-optimized
vs. communication-optimized configurations), protocols
(e.g., in-band vs. out-of-band control, RIS resource shar-
ing in complex multi-user multi-operator ecosystems, BS-
RIS synchronization) and architectures (e.g., seamless
integration within open RAN).

• Mobility support: The continuous tracking of mobile UEs
would benefit from both NLoS channel detection (for
proper RIS activation) and low-latency location-based
RIS control capabilities (thus requiring prior UE location
and uncertainty at any time).

• Uncontrolled multipath - robustness and exploitation: In
practice, apart from the LOS path, other signal compo-
nents reach the UE after being scattered by the surround-
ing objects. If such components are not resolved at the
UE, they interfere with the LOS signal and deteriorate
the localization accuracy. If the NLOS components are re-
solvable in at least one domain (angle, delay, or Doppler),
they can be separated from the LOS signal, but, more
importantly, they can contribute to UE localization and
environmental mapping.

• RIS deployment: Both RIS cardinality and placement
must be optimized with respect to both communication
metrics and localization/sensing accuracy and coverage,
while being competitive in comparison with conventional
BSs deployment (in terms of overall power consumption
and coordination efforts). This also relates to the issue of
RIS location and orientation calibration.

• RIS operating modes: Alternative RIS usages are also
being considered to support localization and sensing func-
tionalities with minimal deployment costs (e.g., vehicle-
mounted reflective RISs, BS-free or multi-static radar-like
approaches, hybrid RISs supporting also the Rx mode for
sensing both connected UEs and passive objects).

• Estimation algorithms: Dedicated location/speed/attitude
state estimators for UEs and passive objects (i.e., up to
9D), as well as source separation and data association
schemes (e.g., between measured radio variables and
controlled multipath components), should enable efficient
channel-based simultaneous localization and mapping,
while benefiting from the geometric near-field propaga-
tion properties offered by large RISs.

• Security: While RIS-aided integrated communications
and localization can be inherently secured through con-
trolled spatial filtering, they can also contribute to
channel-based physical-layer security through enhanced
multipath diversity. On the other hand, passive reflective
RISs can be used for undetectable location-based attacks
against legitimate communication links.

ACKNOWLEDGMENT

The authors would like to thank Hugo Ssi Yan Kai and
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