
Real-time security margin control using deep reinforcement learning

Downloaded from: https://research.chalmers.se, 2025-07-01 00:38 UTC

Citation for the original published paper (version of record):
Hagmar, H., Eriksson, R., Le, A. (2023). Real-time security margin control using deep reinforcement
learning. Energy and AI, 13. http://dx.doi.org/10.1016/j.egyai.2023.100244

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Energy and AI 13 (2023) 100244

A
2

•
•
•
•
•

Contents lists available at ScienceDirect

Energy and AI

journal homepage: www.elsevier.com/locate/egyai

Real-time security margin control using deep reinforcement learning
Hannes Hagmar a,∗, Robert Eriksson b, Le Anh Tuan a

a Chalmers University of Technology, Gothenburg 412 96, Sweden
b Svenska kraftnät (Swedish National Grid), Sundbyberg 172 24, Sweden

G R A P H I C A L A B S T R A C T

H I G H L I G H T S

Deep reinforcement learning for real-time control of a dynamic security margin.
Permitting real-time control in a highly complex and non-linear control problem.
Allowing system operators to push their systems closer to the actual security limits.
Evaluation of a continuous-discrete action space for a more flexible control policy.
Providing an effective and low-system control of the secure operating limit.

A R T I C L E I N F O

Keywords:
Deep reinforcement learning
Preventive control
Proximal policy optimization
Secure operating limit

A B S T R A C T

This paper develops a real-time control method based on deep reinforcement learning aimed to determine the
optimal control actions to maintain a sufficient secure operating limit. The secure operating limit refers to the
limit to the most stressed pre-contingency operating point of an electric power system that can withstand a
set of credible contingencies without violating stability criteria. The developed deep reinforcement learning
method uses a hybrid control scheme that is capable of simultaneously adjusting both discrete and continuous
action variables. The performance is evaluated on a modified version of the Nordic32 test system. The results
show that the developed deep reinforcement learning method quickly learns an effective control policy to
ensure a sufficient secure operating limit for a range of different system scenarios. The performance is also
compared to a control based on a rule-based look-up table and a deep reinforcement learning control adapted

∗ Corresponding author.
E-mail address: hannes.hagmar@chalmers.se (H. Hagmar).
vailable online 21 February 2023
666-5468/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.egyai.2023.100244
Received 3 October 2022; Received in revised form 23 January 2023; Accepted 19 February 2023

https://www.elsevier.com/locate/egyai
http://www.elsevier.com/locate/egyai
mailto:hannes.hagmar@chalmers.se
https://doi.org/10.1016/j.egyai.2023.100244
https://doi.org/10.1016/j.egyai.2023.100244
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyai.2023.100244&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Energy and AI 13 (2023) 100244H. Hagmar et al.

t
s
v
T
a

for discrete action spaces. The hybrid deep reinforcement learning control managed to achieve significantly
better on all of the defined test sets, indicating that the possibility of adjusting both discrete and continuous
action variables resulted in a more flexible and efficient control policy.
1. Introduction

An electric power system that can withstand the loss of any single
system component (𝑁 −1) without losing stability is generally referred
o as being operated securely. To ensure that a power system is secure,
ystem operators continuously estimate security margins and take pre-
entive actions as soon as the security margins are deemed insufficient.
his paper is devoted to the determination of the optimal control
ctions to ensure a sufficient secure operating limit (SOL). The SOL is

the margin to the most stressed pre-contingency operating point that
can withstand a set of credible contingencies without violating defined
stability criteria [1]. The estimation of the SOL is computationally
demanding and requires time-domain simulations (or a quasi-steady-
state approximation) to account for the dynamic response after a
disturbance. However, it generally provides a better measure of the
security margin than conventional methods that are based on static
assessments.

Typical preventive control actions used to ensure sufficient security
margins include (1) management of reactive power resources and volt-
age control through tap changes and capacitor/reactor switching, and
(2) generation rescheduling and load curtailment intended to relieve
the loading of stressed transmission lines and buses [2]. Traditionally,
power system stability control has been based on look-up tables that
are pre-defined through offline simulations based on various typical
scenarios. However, as control actions and their level of activation are
correlated with different costs, such non-optimal control schemes can
significantly decrease the operational efficiency of the system.

Optimal control methods have in several studies been proposed to
deal with various types of power system stability control. However,
power systems exhibit complex characteristics with a large number
of states, nonlinear dynamics, and uncertainties [3]. To be able to
compute the optimal control actions in a time frame required by system
operators, simplifications of the system model or linear approximations
are typically required [2]. Data-based control schemes, such as in [4,5],
use an alternative approach based on an (offline) assessment of differ-
ent states and actions. The optimal actions for each state are stored
in a database and supervised learning algorithms are trained to map a
state to a set of optimized actions. However, the complexity in assessing
all the state–action pairs, especially if the number of available control
actions is high, may result in slow learning and makes the method not
suited to handle changes (e.g. in topology) of the underlying power
system.

In recent years, significant progress has been made in solving com-
plex control problems by using reinforcement learning (RL). RL is a
data-driven approach where a control agent learns an optimal pol-
icy through interactions with a real power system or its simulation
model [6]. Its combination with deep learning, called deep reinforce-
ment learning (DRL), has proven effective in solving complex control
problems in environments such as games [7,8], autonomous driv-
ing [9], and robotics [10]. DRL enables automatic high-dimensional
feature extraction, making the control agent capable of handling a large
number of states and actions that are involved in electric power system
control. Previous implementations of RL in the field of power system
stability control have so far mainly been focused on the control for
systems operated in either a normal state or in an emergency state [11].
Implementations include methods adapted for automatic voltage con-
trol using either conventional RL [12] or DRL [13], frequency con-
trol [14], optimal load shedding [15], transient angle stability [16],
and oscillation damping [17].

RL-based implementations adapted for preventive control purposes
2

(e.g., to maintain a secure N-1 operation) found in the literature are
relatively few. In [11], the authors argue that the reason may be
because these control problems have traditionally been formulated as
static optimization problems, which have typically been solved using
more conventional optimization methods. However, a few studies have
been conducted, including in [18], in which a RL-based implementation
for preventive control is developed with the aim to determine the
optimal control of active power generation for preventing cascading
failures and blackouts. Another study aimed at resiliency enhance-
ment was presented in [19], where a DRL framework for optimal
rescheduling strategies in distribution systems was presented. In [20],
a multi-objective RL scheme for generator set-points and compensation
devices was developed to enhance short-term voltage security. A DRL-
based method for predicting different strategies in security control was
presented in [21], with a study focus on angle stability. To the best of
our knowledge, there have been no previous implementations based on
DRL where the aim has been to determine the optimal control actions
to restore a sufficient security margin.

To achieve efficient preventive control, system operators are gen-
erally required to simultaneously control both discrete (e.g. switching
of a shunt capacitor) and continuous (e.g. the level of active power
generation rescheduling and load curtailment) action variables. How-
ever, state-of-the-art DRL algorithms such as deep Q-networks (DQN),
or deep deterministic policy gradients (DDPG) are generally designed
to only control either discrete or continuous action variables. A con-
ventional approach is to transform all control variables so that they
can be handled by a single control paradigm, for instance, by dis-
cretizing continuous variables or by approximating discrete actions
as continuous by user-defined thresholds in the action space [22].
Although these approaches can work relatively well in practice in
certain applications, they can also significantly impact the performance
and make the control problem harder to solve. Previous studies have
proposed adaptations of conventional DRL methods to extend them to
handle a hybrid action space consisting of both discrete and continuous
action spaces. In [23], a real-time demand response (DR) strategy was
proposed where a control policy of both discrete and continuous actions
was jointly optimized. In [24], a multiagent RL method was proposed to
compute both discrete and continuous actions simultaneously to control
various ancillary services provided by electric vehicles.

In this paper, we address the lack of preventive control methods and
introduce a new method based on DRL that in real-time can determine
the optimal control actions to maintain a sufficient SOL. Further, we
also evaluate the limitations of different action spaces in DRL and
propose a hybrid DRL control capable of adjusting both discrete and
continuous action variables simultaneously. The main contributions can
be summarized as:

• A DRL-based method that allows system operators to simultane-
ously monitor and control the advanced dynamic security mar-
gin SOL, which is not possible in real-time using conventional
optimization methods. The control problem is adapted from a
traditionally static optimization problem into a formulation that
can be efficiently handled by the DRL framework. The DRL-based
tool monitors the state through measurements, and if the security
margin becomes too small, optimized control actions are sug-
gested to system operators to steer the system back into a secure
operation again. If the actions are not sufficient in restoring the
security margin, the DRL-control reassesses the system state and
new actions are taken until the system security is fully restored.

• A DRL architecture based on the proximal policy optimization
(PPO) algorithm is developed that can handle a hybrid of continu-

ous and discrete action spaces simultaneously. The hybrid control

Energy and AI 13 (2023) 100244H. Hagmar et al.

t
a
t
t
S

2

c
g
w
t
r
t
a
T
t



a
r
s
c
f
g
p
w
t
t
p
b
r
d

is compared and evaluated with respect to more conventional
control schemes based on a single action space. The possibility
to use a hybrid action space ensures that the developed control
policy is capable of controlling a range of different devices to
make the system security margin restored efficiently.

• An evaluation into several aspects of the DRL control, including
robustness to different simulation scenarios and noise in the
inputs, is performed.

The remaining part of the paper is organized as follows. In Section 2,
he theory regarding RL and the adaptations for the hybrid control
re presented. In Section 3, the proposed method is presented with
he steps for training the DRL agent. In Section 4, the results and
he discussion are presented. Concluding remarks are presented in
ection 5.

. Reinforcement learning

Reinforcement learning is a data-driven approach used to solve
omplex and sequential optimal control problems. RL problems are
enerally modeled as discrete-time Markov decision processes (MDPs),
here an agent uses its policy to interact with the MDP to give a

rajectory of states, actions, and rewards. The received reward – also
eferred to as the reinforcement signal – is used to determine whether
he taken actions were effective. The most common objective of the
gent is to maximize the expected sum of future rewards over time.
hrough continuous interactions with the environment, the agent is
hen trained to achieve this goal [25].

In this paper, the considered MDP is comprised of: a state space
; a hybrid action space with both discrete and continuous actions ;

an initial state distribution with density 𝑝1(𝑠1); a stationary transition
dynamics distribution 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) which satisfies the Markov property
𝑝(𝑠𝑡+1|𝑠1, 𝑎1,… , 𝑠𝑡, 𝑎𝑡) = 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡); and a reward function 𝑅 ∶ × �
R. We denote 𝑎𝑡, 𝑠𝑡, and 𝑅𝑡 the action, the state, and the reward,
respectively, taken at time 𝑡 [25]. A parametrized policy is used to
select actions in the MDP. In the formulation used in this paper, the
policy is assumed to be stochastic and can be formulated by 𝜋𝜃(𝑎𝑡|𝑠𝑡) ∶
 ⟶ () where () is a set of probability measures on , 𝜃 ∈ R𝑛

is a vector of 𝑛 parameters, and 𝜋𝜃(𝑎𝑡|𝑠𝑡) is a conditional probability
density of taking action 𝑎𝑡 in state 𝑠𝑡 associated with the policy. The
return 𝐺𝛾

𝑡 is the total discounted reward from time step 𝑡 and onward,
defined as:

𝐺𝛾
𝑡 =

𝑇
∑

𝑘=𝑡
𝛾𝑘−𝑡𝑅(𝑠𝑘, 𝑎𝑘) (1)

where 0 < 𝛾 < 1 is a discounting factor. The value function is defined
as the expected total discounted reward in state 𝑠 when following the
policy: 𝑉 𝜋 (𝑠) = E

[

𝐺𝛾
𝑡 |𝑠𝑡 = 𝑠;𝜋

]

. The action-value function is defined as
the expected total discounted reward in state 𝑠 when taking action 𝑎
and then following the policy: 𝑄𝜋 (𝑠, 𝑎) = E

[

𝐺𝛾
𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎;𝜋

]

.

2.1. Policy gradients and actor–critic methods

Policy gradient methods are a class of model-free RL algorithms that
learns a parametrized policy that can select actions without requiring
a value function [26]. These methods seek to maximize a defined
objective function 𝐽 (𝜃) parametrized by 𝜃, and their updates commonly
approximate gradient ascent:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇̂𝐽 (𝜃𝑡) (2)

where ∇̂𝐽 (𝜃𝑡) is a stochastic estimate of the gradient of the objective
function with respect to 𝜃𝑡 [26] and 𝛼 is the learning rate used in the
optimization. One of the most commonly used gradient estimators in
RL has the following form:

̂ ̂ [̂]
3

∇𝐽 (𝜃𝑡) = E𝑡 ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝑡 (3) f
where the expectation Ê𝑡 [...] indicates an empirical average over a
batch of samples drawn from the MDP, ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡) is the gradient
of the parametrized policy, and 𝐴̂𝑡 is an estimator of the advantage
function at time step 𝑡, which can be formulated as:

𝐴̂𝑡 = 𝑄̂𝜋 (𝑠𝑡, 𝑎𝑡) − 𝑉 𝜋
𝜙 (𝑠𝑡) (4)

where 𝑉𝜙 and 𝑄̂𝜋 is an estimate of the value function and the action-
value function, respectively. In the problem formulation used in this
paper, relatively short episodic tasks are considered. This allows us
to use the sample return 𝐺𝛾

𝑡 from (1) to estimate the value of 𝑄̂𝜋 ,
same as the approach used in the REINFORCE algorithm [27]. The
value function is generally unknown and a function approximator is
instead used, parametrized by a weight vector 𝜙. The value function is
learned simultaneously as the policy, commonly by minimizing a new
cost function 𝐿(𝜙), based on the mean-squared error (or some other loss
function) between the true value function 𝑉 𝜋 (𝑠𝑡) and its approximation
𝑉 𝜋
𝜙 (𝑠𝑡):

𝐿(𝜙) = E𝜋

[

(

𝑉 𝜋 (𝑠𝑡) − 𝑉 𝜋
𝜙 (𝑠𝑡)

)2
]

(5)

By computing the gradient of 𝐿(𝜙) and taking stochastic gradient-
descent (or more efficient algorithms based on stochastic gradient-
descent such as RMSprop [28]) on batches of data, the parameter vector
𝜙 that minimizes the loss can be found. By definition, 𝐺𝛾

𝑡 is an unbiased
estimate of the value function and can thus be used as a target value in
the training [26]. The presented approach can be viewed as an actor–
critic architecture where the policy 𝜋𝜃 is estimated by the actor and
the value function 𝑉 𝜋

𝜙 is estimated by the critic. The parameters used
in forming the policy (𝜃) and the value function (𝜙) are in this paper
representing the node weights of two separate neural networks, and the
goal of training the networks is to find the optimal weights for these
networks.

2.2. Proximal policy optimization

In this study, we use the Proximal Policy Optimization (PPO) algo-
rithm, first presented in [29]. It is a policy gradient method that has a
relatively simple implementation, higher sample efficiency than many
other policy gradient methods, and is also well suited to adapt to handle
a hybrid action space. In this paper, we use the ‘‘clipped’’ version of the
PPO algorithm, with the objective function:

𝐽 𝑐𝑙𝑖𝑝(𝜃) = Ê𝑡
[

min
(

𝑟𝑡(𝜃)𝐴̂𝑡, clip
(

𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖
)

𝐴̂𝑡
)]

(6)

where 𝑟𝑡 is a probability ratio given by:

𝑟𝑡 =
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃old (𝑎𝑡|𝑠𝑡)

(7)

nd 𝜖 governs the clipping range of the objective function, and 𝜃old
efers to the vector of policy parameters used in sampling the tran-
itions and thus before any update of the policy parameters. The
lipped objective function ensures that we do not move too far away
rom the current policy, which allows us to run multiple epochs of
radient ascent on the samples without causing destructively large
olicy updates. The 𝑟𝑡-ratio is always equal to 1 for the first epoch,
hen current policy 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the same as was used to sample the

ransitions 𝜋𝜃old (𝑎𝑡|𝑠𝑡). For each epoch, the policy is trained to increase
he probability ratio 𝑟𝑡 above 1.0 when the advantage function is
ositive, thus making advantageous actions more probable to be chosen
y the policy. Similarly, the policy is trained to decrease the probability
atio 𝑟𝑡 below 1.0 when the advantage function is negative, making
isadvantageous actions less probable to be chosen by the policy in the

uture.

Energy and AI 13 (2023) 100244H. Hagmar et al.

t
a
d
t
t
b

2.3. Adaptations for continuous-discrete control

Most state-of-the-art RL approaches have been optimized to work
with either discrete or continuous action spaces [22]. A conventional
approach is to transform all control variables so that they can be
handled by a single control paradigm, for instance, by discretizing
continuous variables or by approximating discrete actions as contin-
uous by user-defined thresholds in the action space. Although these
approaches can work relatively well in practice in certain applica-
tions, they can also significantly impact the performance and make the
control problem harder to solve.

In this study, to handle a hybrid action space of both continuous and
discrete actions, we follow the implementation introduced in [22], with
a couple of adaptations. The hybrid policy 𝜋𝜃(𝐚|𝑠) is defined as a state-
dependent distribution that jointly models discrete and continuous
random variables. Independence between action dimensions, denoted
by 𝑎𝑖, is assumed and the hybrid policy can be written as:

𝜋𝜃(𝐚|𝑠) = 𝜋𝑐
𝜃(𝐚


|𝑠)𝜋𝑑

𝜃 (𝐚

|𝑠) =

=
∏

𝑎𝑖∈𝐚
𝜋𝑐
𝜃(𝑎

𝑖
|𝑠)

∏

𝑎𝑖∈𝐚
𝜋𝑑
𝜃 (𝑎

𝑖
|𝑠) (8)

where 𝐚 and 𝐚 are subsets of action dimensions with continuous and
discrete values respectively (where  and  represent continuous re-
spectively discrete action spaces), and 𝐚 is a vector of both discrete and
continuous actions. We represent each component of the continuous
policy 𝜋𝑐

𝜃 as a normal distribution:

𝜋𝑐
𝜃(𝑎

𝑖
|𝑠) = 

(

𝜇𝑖,𝜃(𝑠), 𝜎2𝑖,𝜃(𝑠)
)

(9)

where 𝜇𝑖,𝜃 and 𝜎𝑖,𝜃 are the parametrized mean value and standard
deviation of each continuous action dimension. We also represent
each component of the discrete policy 𝜋𝑑

𝜃 as a Bernoulli distribution
parametrized by state-dependent probabilities 𝑃𝑖,𝜃(𝑠):

𝜋𝑑
𝜃 (𝑎

𝑖
|𝑠) = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖𝑖

(

𝑃 𝑖
𝜃(𝑠)

)

(10)

where 𝜃 are the parameters of the policy components that we want
to optimize. In this paper, we will represent the outputs 𝜇𝑖,𝜃(𝑠), 𝜎2𝑖,𝜃(𝑠),
𝑃𝑖,𝜃(𝑠) as outputs from a branched neural network. The continuous-
discrete control and the used DRL architecture and its training are
further discussed in Sections 3.4 and 3.5.

3. Proposed framework for real-time security margin control

In this section, the framework used in the real-time security margin
control using DRL is presented. The DRL tool monitors the current state
through measurements and can suggest optimized control actions to
system operators whenever the SOL is below a certain threshold. The
definitions used for the SOL are presented along with the used test
system. The DRL agent’s implementation details are presented, which
include a thorough analysis of the neural networks, states, actions,
rewards, and how the training data was generated.

3.1. Test system and security margin definitions

All simulations have been tested on the modified version of the
Nordic32 test system, detailed in [30]. An overview of the system is
presented in Fig. 1 . The SOL is defined as the limit to the most stressed
state in which the system can still withstand a set of specified contin-
gencies without violating defined stability criteria [1]. Thus, it provides
a measure of how much further a system can be stressed and still be
able to maintain 𝑁 − 1 security and provides a basis for the available
transmission capacity of a power system. It has been shown to provide
a more accurate measure of the security margin than other methods
that are based on static assessments of the system, especially when the
system is characterized by a larger share of loads with fast restora-
tion dynamics [31]. To be able to account for the dynamic response
4

after a disturbance, the SOL requires analysis using either dynamic
simulations, approximations based on quasi-steady-state (QSS) [1], or
combinations of the two [32].

System stress is typically defined as a combination of load demand
increase and/or generation rescheduling, which are quantities that
the system operator can observe and control in the pre-contingency
state. A security margin is computed with respect to a set of credible
contingencies. To reduce the number of simulations, it is important to
perform contingency filtering to identify those contingencies that have
low security margins for the current operating point. The SOL with
respect to a chosen contingency can then be determined by a search
process similar to the ‘‘binary search’’ proposed in [1]. The process is
illustrated in Fig. 2 and is based on searching through a narrowing
interval by iteratively testing the system security with respect to a
dimensioning fault and different levels of system stress. The upper part
in Fig. 2 illustrates the search process when the state was not secure,
while the lower part in Fig. 2 illustrates the search process when the
state was secure. Black dots indicate a secure state, while white dots
indicate a state that is not secure. The search process is exemplified for
a secure starting state. If the starting state is found secure, the system
stress is increased by a total of 𝛥𝑃 . If the new state was found to be
secure, the system stress was again increased with 𝛥𝑃 . In case it was
found to be not secure, the system stress was instead reduced by 𝛥𝑃∕2.
The search process continued until a secure operating point was found
and when the step size in system stress change was sufficiently small.

In the following simulations, the system stress is achieved by in-
creasing the loads in the ‘‘Central’’ area of the modified Nordic32 test
system, while simultaneously adjusting the generation in the ‘‘North’’
area with the same amount. The power factors of all loads were kept
at their initial values and the distribution of the added load and
generation were scaled by the initial load or the rated capacity of
each generator. The dimensioning contingencies of concern will be the
three largest generators that are located in the ‘‘Central’’ area, namely:
generator g14, g15, and g16. The contingency resulting in the lowest
SOL is always dimensioning for the system. An initial step size of
𝛥𝑃 = 128 MW was used in the search process for the SOL and the
process was stopped whenever the step size in system stress is equal
to 1 MW.

In this study, the SOL was computed using dynamic simulations
generated with PSS®E 35.0.0. A relatively simple stability criterion was
used to determine whether a state was secure or not. The system was
considered secure if, at the end of the post-contingency evaluation, all
transmission bus voltages were above 0.90 pu. Although the modified
Nordic32 test system is characterized by sensitivity towards long-term
voltage instability, other types of instability can violate the defined
stability criterion. For instance, transient angle instability can cause
locally low voltages due to lost synchronism of certain generators.
Frequency stability has not been included in the analysis but has
been assumed to be stabilized by automatic frequency control actions
of generators after a disturbance. All dynamic simulations ran for a
maximum of 600 seconds but were stopped in advance if the case either
collapsed (any bus voltage below 0.7 pu) or if the system stabilized
early. This approach should ensure that the system had either stabilized
or become unstable at the end of each simulation.

3.2. MDP formulation for security margin control

The SOL control problem is defined as an episodic MDP. At the
beginning of each episode, the DRL agent receives a representation
of the system state 𝑠𝑡 through a set of measurements. Depending on
he current policy 𝜋𝜃 , the DRL agent picks different actions which are
ctivated in the system. The taken actions and the transition dynamics
istribution cause the system state to change (𝑠𝑡 → 𝑠𝑡+1) and give rise
o a reward 𝑅𝑡. If the DRL agent managed to restore the SOL above
he defined threshold, or if a maximum number of time steps have
een reached, the episode ends. Otherwise, the DRL agent continues

Energy and AI 13 (2023) 100244H. Hagmar et al.
Fig. 1. One-line diagram of the modified Nordic32 system [30]. Loads and generators included in the continuous action space are marked in red, while shunt capacitors participating
in the discrete action space are marked in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
s
m
e
t
t
a
c
c
i
l
v
s
w
m
p
f
o
e
s

Fig. 2. Illustration of the search process for the SOL for a secure and a non-secure
initial operating point.

observing new states, actions, and rewards. The MDP for the SOL
control problem is defined as:
5

s

States: Ideally, the state used for the actor and the critic network
hould satisfy the Markov property and summarize all relevant infor-
ation required to determine the optimal policy and value function at

ach time step. The problem formulation used in this paper is related
o controlling a system in a pre-contingency steady state and therefore
he static state (represented by the voltage magnitude and angles of
ll buses in the system) should be sufficient. When evaluating different
hoices of state parameters, it was found that using a state vector 𝑠𝑡
onsisting of measurements of the bus voltage magnitudes of all buses
n the system and active and reactive power flow on all transmission
ines and transformers, provided a more stable convergence than using
oltage magnitudes and voltage angles. In addition, the current time
tep 𝑡 of the episode was also added to the state vector. Neural net-
orks are sensitive to input perturbations so to make the DRL agent
ore robust towards such errors, all state values were also randomly
erturbed by multiplying each value with a random number sampled
rom a normal distribution with a mean of 1 and a standard deviation
f 0.001. All states were then normalized by subtracting the mean of
ach state value and then dividing its standard deviation. The mean and
tandard deviation of each state value was computed from previously
ampled states and a list with a maximum of 10 000 historic states

Energy and AI 13 (2023) 100244H. Hagmar et al.

d
i
w
o
s
s

3

T
i
r
d
v
m
d
f
f
u
b
a
o
t
a

3

n
T

was stored. Once 10 000 states were added to the list, the mean and
standard deviation used for normalizing states became fixed.

Actions: the DRL agent can activate either continuous and/or dis-
crete action variables. The continuous actions were used to reschedule
power generation and perform load curtailment to reduce the transfer
of power through the system. This was achieved by reducing the
active load in the ‘‘Central’’ area at certain participating load buses:
4042, 4047, 4051, 1041, 1042, 1044, while simultaneously increasing
the generation in the ‘‘North’’ area at certain participating genera-
tors: G1, G5, G8, G9, G11, G12, G20. The active load decrease was
istributed on each of the participating load buses based on their
nitial load before the change, while the power factors of all loads
ere kept constant. The discrete action variables included the switching
f an additional 100 MVAr of reactive power support from any, or
everal, shunt capacitors. The discrete actions (𝐷1 −𝐷5) controlled the
hunt capacitors at the following buses: 𝐷1: 1041, 𝐷2: 1043, 𝐷3: 1044,
𝐷4: 1045, 𝐷5: 4041. The participating buses and equipment for the
continuous and the discrete actions are all marked in red respectively
blue, in the line diagram in Fig. 1.

State transition: The state transition dynamics are deterministic and
governed by a set of differential and algebraic equations used to build
the dynamic model in PSS®E.

Rewards: The reward 𝑅𝑡 for the taken actions was computed by
a combination of the resulting SOL and the costs for the continuous
(𝐶𝑐𝑜𝑛𝑡) and the discrete (𝐶𝑑𝑖𝑠𝑐) actions. In this study, the reward is
unitless, but should in real applications reflect the actual monetary cost
of different actions and the corresponding rewards of the control goal.
Any activation of the discrete actions contributed to a negative reward
of −5, representing the cost of the mechanical wear that is involved
in switching the shunt capacitors. The cost for the continuous actions
contributed to a negative reward of −0.1 per adjusted MW in the power
transfer. Changing a total of ± 200 MW would thus result in a negative
contribution to the reward of −20. This negative reward reflects the
system cost of market adjustments or load/generation curtailment. The
control goal is to always restore the SOL to a value equal to or above 30
MW, which would ensure that a sufficient security margin is achieved
and that the 𝑁 − 1 contingency criterion always would be satisfied
with some margin to account for possible inaccuracies. If the SOL was
below 30 MW, a negative reward of −50 was added to the total reward
for that time step. The negative rewards and the costs for the actions
are chosen so that the DRL agent should always strive to control the
system to achieve a sufficient SOL in as few steps as possible, while still
minimizing the actions activated. The final reward when accounting for
the resulting SOL was then computed as:

𝑅𝑡 =

{

𝐶𝑐𝑜𝑛𝑡 + 𝐶𝑑𝑖𝑠𝑐 + SOL − 50, if SOL ≤ 30 MW
𝐶𝑐𝑜𝑛𝑡 + 𝐶𝑑𝑖𝑠𝑐 , otherwise

(11)

3.3. Training data generation

An overview of the steps involved in training data generation and
the training of the DRL agent is illustrated in Fig. 3. The different
steps are detailed in the sections below. To speed up training, the
data generation was parallelized and multiple CPU cores were used to
generate data.

(1) Generate initial operating condition: A large range of different initial
OCs was generated to serve as training data for the algorithm.
All loads in the system were randomly and individually varied
by multiplying the active load value with a random variable
generated from a uniform distribution (using 90 % of the original
load as a lower limit and 130% of the original load as an upper
limit). The power factors of all loads were kept constant. The total
change in loading was distributed proportionally among all the
generators in the system based on the initial active power pro-
duced by each generator. The generated initial OCs were solved
by a full Newton–Raphson load flow and were re-initialized in
case the load flow did not converge.
6

t

Table 1
Design and hyperparameters used in training.

Parameter Values

Ar
ch

ite
ct

ur
e

Cr
iti

c

Number of inputs 499
Neurons in first layer 128
Neurons in second hidden layer 64
Final activation function Linear
Hidden layer activation RelU

Ac
to

r

Number of inputs 499
Neurons in common hidden layer 128
Neurons in each separate hidden layer 64
Final activation for 𝜇𝑐𝑜𝑛𝑡 Linear
Final activation for 𝜎𝑐𝑜𝑛𝑡 Softplus
Final activation for 𝑃 (𝐷𝑥|𝑠) Sigmoid
Hidden layer activation RelU

Tr
ai

ni
ng

Max Epochs (𝐾) 10
PPO clip parameter (𝜖) 0.2
Discount factor (𝛾) 0.99
Optimizer RMSprop [28]

(2) Sample state 𝑠𝑡 and actions 𝑎𝑡: Once an initial OC was generated,
the state 𝑠𝑡 was sampled from the system and passed to the actor
network. The actor network outputs parameters that form the
current hybrid policy 𝜋𝜃(𝐚|𝑠) from which a set of actions were
sampled. The actor network and how it is used to form the hybrid
policy is further detailed and discussed in Section 3.4.

(3) Take actions and solve load flow: Once the actions were sampled
and activated in the system, a new Newton–Raphson load flow
was computed which formed the state transition from 𝑠𝑡 → 𝑠𝑡+1.

(4) Compute the SOL: After the load flow for the new state was solved,
the SOL for the new operating point was computed following the
steps defined in Section 3.1.

(5) End episode and save transitions: The episode was ended if either
the SOL was restored above 30 MW (the defined security margin
for when the system was assumed to be secure) or if the current
time step was equal to 𝑇 = 8. At the end of all episodes, the
transition data gathered during the episode (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, . . . , 𝑠𝑇 , 𝑎𝑇 ,
𝑅𝑇) was stored and later used during training. The training data
generation was reiterated for a total of 𝑁 = 64 episodes before it
was trained on the generated data.

.4. Architecture of actor and critic network

The actor network is illustrated in Fig. 4 and further detailed in
able 1. It shares a common hidden layer, then a separate hidden layer

s used for each type of activation function. The network outputs pa-
ameters used in defining the Normal distribution (9) and the Bernoulli
istributions (10) that are used for the continuous and discrete action
ariables, respectively. The Normal distribution is parametrized by a
ean value 𝜇𝑐𝑜𝑛𝑡 and a standard deviation 𝜎𝑐𝑜𝑛𝑡, while the Bernoulli
istribution is parametrized by a single probability parameter ranging
rom 0 − 1. The mean value 𝜇𝑐𝑜𝑛𝑡 is computed using a linear activation
unction in the final layer. The standard deviation 𝜎𝑐𝑜𝑛𝑡 is computed
sing a Softplus activation function that ensures that the value never
ecomes negative. Finally, the Bernoulli distribution is achieved using
sigmoid activation function in the final layer that ensures that the

utput is bounded between 0 and 1. The critic network is separate from
he actor network and consists of a simple NN with two hidden layers
nd a linear final activation function, further detailed in Table 1.

.5. Training actor and critic networks

Once a batch of training data was sampled, the actor and critic
etworks were trained. The training was performed using the software
ensorflow in Python which automatically computes the gradients on

he defined cost functions. The critic network was first used to estimate

Energy and AI 13 (2023) 100244

7

H. Hagmar et al.

Fig. 3. Flowchart showing the generation of training data and the training of the actor and critic network.

Fig. 4. Architecture of the actor network showing the outputs forming the stochastic continuous-discrete policy.

Energy and AI 13 (2023) 100244H. Hagmar et al.

t
o
f
s
d
c
t
t

m
s
t
h
t
D
t
(
n
m
w
1
b
c
f
n
s
n

4

4

i
6
d
s
i
1
t
c

r
p
s
c
r
f
a
S
f
m

p
i
b
s

m
t
p
b
b
o

4

e
s

t
r
t
p
f
d
m
a
W
d
a
𝑃

4

f
F
t
i
n
t
a
i
t
t
r
e
s
a
t
m
r
e
t

4

Table 2
Learning rates over training iterations.

𝛼𝑎𝑐𝑡𝑜𝑟 𝛼𝑐𝑟𝑖𝑡𝑖𝑐
Training iteration ≤ 250 1 ⋅ 10−3 5 ⋅ 10−3

Training iteration > 250 1 ⋅ 10−4 5 ⋅ 10−4

the value function 𝑉 𝜋
𝜙 of each state. The returns 𝐺𝛾

𝑡 were estimated
using (1). The advantage estimates 𝐴̂𝑡 were estimated using (4) and
he estimated value of the state 𝑉 𝜋

𝜙 given by the critic network. A 𝛾
f 0.99 was used to compute the returns. The final objective function
or the actor network was computed by taking the mean value of all
amples for all 𝑁 episodes on 𝐽 𝑐𝑙𝑖𝑝. The critic objective function was
efined as the mean squared error (MSE) of the value function error,
omputed from (5). The final critic objective function was formed by
aking the mean value of all samples for all 𝑁 episodes on the MSE of
he value function error.

Once the actor and critic objectives were formed, they were opti-
ized using the RMSprop algorithm, which is an adaptable algorithm

uitable for gradient-based optimization of stochastic objective func-
ions. It should be noted that different optimization algorithms and
yperparameters were evaluated during the study design, but only
he settings that provided the best results are presented in Table 1.
ropout, a regularization technique where a certain percentage of

he connections between each layer of neurons are randomly masked
or ‘‘dropped’’) to reduce overfitting, was tested but was found to
ot improve the performance. The actor objective function was then
aximized with respect to 𝜃, while the critic network objective function
as minimized with respect to 𝜙. The training was performed for 𝐾 =
0 epochs on the whole batch of 𝑁 episodes simultaneously. It should
e mentioned that although a search for suitable hyperparameters was
onducted, the performance could have been improved even more by
urther optimizing training parameters such as the learning rate or the
umber of hidden neurons in each layer. To speed up training and
tabilize it during later stages, the learning rate was adjusted as the
umber of training iterations increased and is specified in Table 2.

. Results and discussion

.1. Training results

The hybrid DRL agent was trained for a total of 600 training
terations, corresponding to 38,400 different episodes and a total of
8,900 samples (each episode consisted of up to 8 time steps/samples,
epending on the episode length). The episode reward varied relatively
ignificantly between different episodes. To avoid terminating the train-
ng prematurely, the average episode reward was computed for every
00 training episodes. If the average reward did not improve compared
o the previous 100 training episodes, the training was assumed to have
onverged and was then stopped.

The training performance is presented in Fig. 5. The total episode
eward is presented in sub-figure (i), the final SOL of the episode is
resented in sub-figure (ii), and the number of episode time steps is pre-
ented in sub-figure (iii). The red line shows a centered moving average
omputed over the mean value of 500 episodes. To better visualize the
esults, only every 100th value during the training is illustrated in the
igure. The results show that the performance improved rapidly until
round 19,000 episodes, after which the policy managed to achieve a
OL above the threshold value of 30 MW using only a single time step
or a majority of the episodes. After this, the performance improved by
ainly optimizing the level of action activation for each scenario.

In Fig. 6, the development of the different policy parameters is
resented. The policy parameter governing the standard deviation 𝜎𝑐𝑜𝑛𝑡
ncreased at first, which was then followed by the mean value 𝜇𝑐𝑜𝑛𝑡
eing adjusted. After the model was trained on approximately 40,000
8

amples, the mean value 𝜇𝑐𝑜𝑛𝑡 stabilized. After that, the model improved t
ainly by reducing its exploration rate (the standard deviation 𝜎𝑐𝑜𝑛𝑡 and
he randomness of the discrete actions). In sub-figure (iii) of Fig. 6, the
robability of the taken action 𝐷3 is illustrated, showing that the policy
ecame more and more certain of whether the discrete action should
e activated or kept inactivated. Similar training development for the
ther discrete actions was observed as well.

.2. Test sets

The hybrid DRL control was tested on three different test sets to
valuate its performance to handle different types of seen and unseen
cenarios. Each of the test sets is detailed below.

1. Test set 1: Data generated in the same way as for the training
data, but using a deterministic policy instead.

2. Test set 2: Introducing new unseen OCs by increasing the vari-
ation of the generation and load configurations. Instead of ran-
domly adjusting each load between 80% to 120% as specified in
Section 3.3, the OCs were adjusted randomly between 70% to
130%.

3. Test set 3: Introducing larger measurement errors by multiply-
ing each state value with a random number with a mean of 1
and a standard deviation of 0.01.

During training, the actor used a stochastic policy which allowed it
o automatically explore the available action space. While the explo-
ation rate (the standard deviation of the continuous action space and
he randomness of the discrete action spaces) decreased during the final
art of the training, it would require a significantly longer training time
or it to reach a point where it essentially converged towards a fully
eterministic policy. When implementing the policy online it is then
ore suitable to transform the control policy into a deterministic one

nd always pick the actions that with the highest probability are optimal.
hen testing the algorithm, the continuous action was thus controlled

irectly by the mean value 𝜇𝑐𝑜𝑛𝑡. Each of the discrete actions was
ctivated whenever any of the defined Bernoulli probabilities satisfied
(𝐷𝑖|𝑠) ≥ 0.5.

.3. Test results

The performance of the hybrid DRL control when tested on the dif-
erent test sets is presented in Table 3, each consisting of 200 episodes.
or test set 1, the average episode length was 1.09 steps, indicating that
he hybrid DRL control managed to ensure a sufficient security margin
n a single time step for a majority of all scenarios. For test set 2, where
ew unseen OCs were introduced by increasing the variation by which
he loads and generation were initialized, showed good performance
s well. The average episode length increased slightly to 1.12 steps,
ndicating that some of the unseen OCs forced the hybrid DRL control
o require a few more steps before the SOL was restored. The average
otal episode reward for each of these test sets was −28.6 and −26.3,
espectively. For test set 3, where the impact of larger measurement
rrors on the state values was evaluated, the performance dropped
lightly. The average episode reward was reduced to −34.7, while the
verage episode length increased to 1.19 steps. Thus, for several of
he scenarios in the test set, the hybrid DRL control required slightly
ore time steps before the SOL was restored above the threshold. The

esults also indicate the importance of incorporating random errors that
xist in real power systems, but which are generally not present when
raining the method on purely simulated data.

.4. Comparing controls based on hybrid and discrete action spaces

The main advantage of the proposed hybrid DRL architecture is

he capability to simultaneously adjust both discrete and continuous

Energy and AI 13 (2023) 100244H. Hagmar et al.

t
t

a
h

Fig. 5. Performance and development over training samples and episodes: Sub-figures showing (i) episode rewards during all episodes; (ii) final SOL; (iii) episode length. The red
line indicates a moving average computed over the mean of 500 episodes. For better visualization, every 100th value is illustrated. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Development of policy parameters over episodes. Sub-figures showing (i) the mean value output 𝜇𝑐𝑜𝑛𝑡; (ii) the standard deviation output 𝜎𝑐𝑜𝑛𝑡; (iii) the probability of taking
he discrete action 𝑃 (𝐷3|𝑠). For better visualization, every 100th value is illustrated. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
c
ction variables. To evaluate the impact of this feature, the developed
ybrid control is compared to two other control policies which are only
9

r

apable of controlling a discrete action space: one which is based on a
ule-based look-up table control, while the other is based on DRL but

Energy and AI 13 (2023) 100244H. Hagmar et al.

f
o

o
b
T
t
c
e
s
l
S
a
i
s
a
r
t
w

4

o
a
c
b
d
S
t
u

Table 3
Average performance of the hybrid DRL control.

Test set 1 Test set 2 Test set 3

Episode reward −28.6 −26.3 −34.7
Episode length [steps] 1.09 1.12 1.19

Table 4
Discrete actions for the discrete-DRL control and the rule-based look-up table.

Action Initially Actions activated

number estimated SOL Load curtailment Switching of
[MW] [MW] reactive shunts

A1 SOL > 30 0 None
A2 0 < SOL ≤ 30 −50 𝐷1
A3 −100 < SOL ≤ 0 −100 𝐷1 +𝐷2
A4 −250 < SOL ≤ −100 −200 𝐷1 +𝐷2 +𝐷3
A5 −350 < SOL ≤ −250 −350 𝐷1 +𝐷2 +𝐷3
A6 SOL ≤ −350 −500 All

only adapted for discrete action spaces. Each of the two methods and
their actions are discussed in the following subsections.

4.4.1. Rule-based look-up table control
Conventional methods for preventive control typically rely on sys-

tem operators to choose actions by matching the current system state
with the nearest system state defined in a preventive control look-up
table. The difficulty of assessing raw measurements from the system,
require system operators to pre-process the system state, generally by
first computing the security margin and then, in case the security
margin is below a defined threshold, taking measures to restore it.
Thus, using a control based on a rule-based look-up table, a system
operator would have to (i) first estimate the security margin, (ii)
possibly activate actions to restore it, and finally (iii) re-evaluate the
security margin to ensure that it is above the defined threshold. In
comparison, the developed hybrid DRL control can take actions by
directly monitoring the system state, without the need for the additional
irst step (i) with time-consuming data pre-processing and computation
f the SOL.

Since the rule-based look-up table require an initial computation
f the SOL before any actions can be initiated, a penalty is added to
e able to compare its performance to that of the hybrid DRL control.
he pre-processing of measurement data and the initial computation of
he SOL corresponds to an additional episode step for the hybrid DRL
ontrol. Thus, a penalty of −50 (the penalty added for the DRL agent at
very time step it does not achieve its control goal) and an added time
tep for each episode, are added to the performance of the rule-based
ook-up table. However, for the scenarios when the initially estimated
OL was above the threshold value of 30 MW, no actions had to be taken
nd thus no penalty was added for those scenarios. Depending on the
nitially estimated SOL, different actions (A1-A6) were activated, each
pecified in Table 4. The actions activated controlled load curtailment
nd/or switching of reactive shunts which refer to the continuous
espectively discrete actions specified in Section 3.2. The actions and
heir SOL activation levels were designed to always ensure that the SOL
as restored above the threshold of 30 MW using a single action.

.4.2. DRL control adapted for discrete actions
The DRL control that only handles a discrete action space is devel-

ped using the same PPO algorithm as for the hybrid control but is
dapted only for a discrete action space. The discrete DRL control can
hoose from the same actions (A1–A6) defined in Table 4 as for the rule-
ased look-up control, but each of the actions is now instead chosen
irectly by the DRL agent without the need of an initially estimated
OL. The discrete DRL actor network has an identical architecture to
he one used for the hybrid control, but instead of forming outputs
sed in defining the Normal and Bernoulli distributions, it uses a
10
softmax activation function in the final layer. The used softmax func-
tion normalizes the outputs into a categorical probability distribution
consisting of six numbers (the available discrete actions A1–A6) where
each probability is proportional to the exponents of the input numbers:

𝑆(𝒛)𝑖 =
𝑒𝑧𝑖

∑6
𝑗=1 𝑒

𝑧𝑗
(12)

for 𝑖 = 1,… , 6 and 𝒛 =
(

𝑧1,… , 𝑧6
)

∈ R6, where 6 is the number
of available discrete actions. From the defined categorical probability
distribution, different discrete actions could then be sampled. The same
hyperparameters and number of training episodes as was used for the
hybrid DRL control and as is defined in Table 1 was used during
training, with the exception that a lower learning rate for the actor
and critic network of 𝛼𝑎𝑐𝑡𝑜𝑟 = 1 ⋅ 10−5 and 𝛼𝑐𝑟𝑖𝑡𝑖𝑐 = 5 ⋅ 10−5 was used,
respectively. The lower learning rates were used to ensure that the
discrete DRL agent did not converge to a sub-optimal policy due to a
too high initial learning rate.

4.4.3. Results
In Table 5, the total episode reward and the episode length for the

rule-based look-up table and the discrete DRL control are presented for
each of the defined test sets. For each metric and test set, the percentage
difference in performance compared to the hybrid DRL control is also
presented in parenthesis after each value. The results show that the
proposed hybrid DRL control performed significantly better on all of the
defined test sets. For instance, the (negative) average reward increased
from 109.0% for test set 3, to 153.7% for test set 1 when the rule-based
look-up table control was used. In the case of the discrete DRL control,
the (negative) average reward increased from 14.7% for test set 3, to
25.2% for test set 1.

The episode length for the rule-based look-up table was significantly
higher for all of the test sets, mostly caused by the requirement of
the look-up table control to take two steps (one to estimate the initial
SOL, and one to verify that the SOL had been restored) whenever the
initial SOL was below the threshold value of 30 MW. The average
episode length for the discrete DRL control was in a similar range
as for the hybrid DRL control for the different test sets. However,
although both the hybrid DRL control and the discrete DRL control
required a similar number of time steps in each episode, the hybrid
DRL control achieved a significantly better total episode reward on each
test set. This indicates that the possibility of both adjusting discrete
and continuous action variables results in a more flexible control policy
that more efficiently can adjust the SOL of a power system. In Fig. 7, a
histogram showing the total episode reward difference between (a) the
hybrid DRL control and the look-up table control, and (b) the hybrid
DRL control and the discrete DRL control, is presented for the different
scenarios included in test set 1. The results show that in 76.5% and
73.5% of all scenarios respectively, the hybrid DRL control achieved a
better performance than the other types of control.

Finally, it should be stressed that the choice of which method to
compare the hybrid DRL control to is not trivial. A typical choice would
be to evaluate it against some optimization-based control method.
However, evaluating a dynamic security margin (the SOL) with respect
to a number of different contingencies and choosing from a wide range
of different actions is a highly non-linear and non-convex optimization
problem. Solving such a problem with optimization-based methods
would either require significant simplifications in the model or would
be too time-consuming to achieve in the time frame required by system
operators, making the comparison impractical.

5. Conclusion

This paper introduces a new method for optimal control to maintain
a sufficient SOL in real-time. The optimal control method is based on

DRL and introduces a hybrid control scheme that can simultaneously

Energy and AI 13 (2023) 100244H. Hagmar et al.

c
D

c
(
e
s
c
s
i
d
T
l
s
t
t

t
t
f
o
e
w

Table 5
Average performance when using a rule-based look-up table control. Values in parenthesis present the percentage increase in
the average performance of the hybrid DRL control.

Rule-based look-up table Discrete DRL control

Episode reward Episode length Episode reward Episode length
[steps] [steps]

Test set 1 −72.6 (153.7%) 1.77 (61.9%) −35.9 (25.2%) 1.10 (1.4%)
Test set 2 −62.3 (136.4%) 1.65 (47.3%) −33.3 (26.4%) 1.11 (−0.9%)
Test set 3 −72.6 (109.0%) 1.77 (47.7%) −39.9 (14.7%) 1.16 (−3.3%)
Fig. 7. Histogram showing the episode reward difference between (a) the hybrid DRL
ontrol and the look-up table control and (b) the hybrid DRL control and the discrete
RL control, given for test set 1.

ontrol both discrete (switching of a shunt capacitor) and continuous
generation rescheduling and load curtailment) action variables to
nsure that the SOL is above defined threshold values. The method
howed good performance on the developed test sets and managed to
ontrol the SOL above the defined threshold values for a single time
tep for a majority of the scenarios. When tested on disturbance scenar-
os that included larger measurement errors, the method’s performance
ropped, which highlights the need for representative training data.
he method was further compared to the performance of a rule-based

ook-up table and a discrete DRL control, which both controlled the
ame number of discrete actions. The results showed that the control of
he hybrid DRL agent achieved significantly better on all of the defined
est sets.

Future research work includes (i) extending the study to evaluate
he impact of various topology changes; (ii) adapting and expanding
he stability criteria to also include other stability phenomena such as
requency stability; (iii) further evaluating the generalization capability
f DRL control to handle scenarios not included in the training; (iv)
valuate the performance and the impact on training data requirements
hen adapting the method for larger systems.
11
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Hannes Hagmar reports financial support was provided by Energiforsk
AB under project numbers EVU10450 amd EVU10140. Hannes Hagmar
also reports financial support was provided by Svenska Krafnät.

Data availability

The authors are unable or have chosen not to specify which data
has been used.

References

[1] Van Cutsem T, Moisse C, Mailhot R. Determination of secure operating limits
with respect to voltage collapse. IEEE Trans Power Syst 1999;14(1):327–35.
http://dx.doi.org/10.1109/59.744551.

[2] Capitanescu F, Van Cutsem T. Preventive control of voltage security mar-
gins: A multicontingency sensitivity-based approach. IEEE Trans Power Syst
2002;17(2):358–64.

[3] Zima M, Andersson G. Model predictive real-time control of electric power
systems under emergency conditions. In: Savulescu S, editor. Real-time stability
in power systems. Springer; 2004, p. 367–85. http://dx.doi.org/10.1007/978-3-
319-06680-6_12.

[4] Cai H, Ma H, Hill DJ. A data-based learning and control method for long-term
voltage stability. IEEE Trans Power Syst 2020;35(4):3203–12. http://dx.doi.org/
10.1109/TPWRS.2020.2967434.

[5] Li Q, Xu Y, Ren C. A hierarchical data-driven method for event-based load
shedding against fault-induced delayed voltage recovery in power systems. IEEE
Trans Ind Inf 2021;17(1):699–709. http://dx.doi.org/10.1109/TII.2020.2993807.

[6] Ernst D, Glavic M, Wehenkel L. Power systems stability control: Reinforcement
learning framework. IEEE Trans Power Syst 2004;19(1):427–35. http://dx.doi.
org/10.1109/TPWRS.2003.821457.

[7] Mnih V, Kavukcuoglu K, Silver D, Rusu D, Veness AA, et al. Human-level
control through deep reinforcement learning. Nature 2015;518:529–33. http:
//dx.doi.org/10.1038/nature14236.

[8] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, et al. Mastering
the game of go without human knowledge. Nature 2017;550:354–9. http://dx.
doi.org/10.1038/nature24270.

[9] Sallab AE, Abdou M, Perot E, Yogamani S. Deep reinforcement learning
framework for autonomous driving. Electron Imaging 2017;2017(19):70–6.

[10] Gu S, Holly E, Lillicrap T, Levine S. Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: 2017 IEEE international
conference on robotics and automation. 2017, p. 3389–96. http://dx.doi.org/10.
1109/ICRA.2017.7989385.

[11] Glavic M. (Deep) reinforcement learning for electric power system control
and related problems: A short review and perspectives. Annu Rev Control
2019;48:22–35. http://dx.doi.org/10.1016/j.arcontrol.2019.09.008.

[12] Vlachogiannis JG, Hatziargyriou ND. Reinforcement learning for reactive power
control. IEEE Trans Power Syst 2004;19(3):1317–25. http://dx.doi.org/10.1109/
TPWRS.2004.831259, cited by: 83.

[13] Wang S, Duan J, Shi D, Xu C, Li H, et al. A data-driven multi-agent autonomous
voltage control framework using deep reinforcement learning. IEEE Trans Power
Syst 2020;35(6):4644–54. http://dx.doi.org/10.1109/TPWRS.2020.2990179.

[14] Sun J, Zhu Z, Li H, Chai Y, Qi G, et al. An integrated critic-actor neural
network for reinforcement learning with application of ders control in grid
frequency regulation. Int J Electr Power Energy Syst 2019;111:286–99. http:
//dx.doi.org/10.1016/j.ijepes.2019.04.011.

[15] Huang Q, Huang R, Hao W, Tan J, Fan R, et al. Adaptive power system
emergency control using deep reinforcement learning. IEEE Trans Smart Grid
2020;11(2):1171–82. http://dx.doi.org/10.1109/TSG.2019.2933191.

http://dx.doi.org/10.1109/59.744551
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb2
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb2
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb2
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb2
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb2
http://dx.doi.org/10.1007/978-3-319-06680-6_12
http://dx.doi.org/10.1007/978-3-319-06680-6_12
http://dx.doi.org/10.1007/978-3-319-06680-6_12
http://dx.doi.org/10.1109/TPWRS.2020.2967434
http://dx.doi.org/10.1109/TPWRS.2020.2967434
http://dx.doi.org/10.1109/TPWRS.2020.2967434
http://dx.doi.org/10.1109/TII.2020.2993807
http://dx.doi.org/10.1109/TPWRS.2003.821457
http://dx.doi.org/10.1109/TPWRS.2003.821457
http://dx.doi.org/10.1109/TPWRS.2003.821457
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb9
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb9
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb9
http://dx.doi.org/10.1109/ICRA.2017.7989385
http://dx.doi.org/10.1109/ICRA.2017.7989385
http://dx.doi.org/10.1109/ICRA.2017.7989385
http://dx.doi.org/10.1016/j.arcontrol.2019.09.008
http://dx.doi.org/10.1109/TPWRS.2004.831259
http://dx.doi.org/10.1109/TPWRS.2004.831259
http://dx.doi.org/10.1109/TPWRS.2004.831259
http://dx.doi.org/10.1109/TPWRS.2020.2990179
http://dx.doi.org/10.1016/j.ijepes.2019.04.011
http://dx.doi.org/10.1016/j.ijepes.2019.04.011
http://dx.doi.org/10.1016/j.ijepes.2019.04.011
http://dx.doi.org/10.1109/TSG.2019.2933191

Energy and AI 13 (2023) 100244H. Hagmar et al.
[16] Glavic M. Design of a resistive brake controller for power system stability
enhancement using reinforcement learning. IEEE Trans Control Syst Technol
2005;13(5):743–51. http://dx.doi.org/10.1109/TCST.2005.847339, cited by: 28;
All Open Access, Green Open Access https://www.scopus.com/inward/record.
uri?eid=2-s2.0-26244451387&doi=10.1109%2fTCST.2005.847339&partnerID=
40&md5=e49eebd30d08b62fd80f11f48811de64.

[17] Hashmy Y, Yu Z, Shi D, Weng Y. Wide-area measurement system-based low fre-
quency oscillation damping control through reinforcement learning. IEEE Trans
Smart Grid 2020;11(6):5072–83. http://dx.doi.org/10.1109/TSG.2020.3008364.

[18] Zarrabian S, Belkacemi R, Babalola AA. Reinforcement learning approach for
congestion management and cascading failure prevention with experimental
application. Electr Power Syst Res 2016;141:179–90. http://dx.doi.org/10.1016/
j.epsr.2016.06.041.

[19] chen Zhou Z, Wu Z, Jin T. Deep reinforcement learning framework for resilience
enhancement of distribution systems under extreme weather events. Int J Electr
Power Energy Syst 2021;128:106676. http://dx.doi.org/10.1016/j.ijepes.2020.
106676.

[20] Dong Y, Xie X, Shi W, Zhou B, Jiang Q. Demand-response-based distributed
preventive control to improve short-term voltage stability. IEEE Trans Smart Grid
2018;9(5):4785–95. http://dx.doi.org/10.1109/TSG.2017.2670618.

[21] Li Q, Yu Y, Lin T, Fu X, Du H, et al. Deep reinforcement learning-based fast
prediction of strategies for security control. In: 2021 IEEE 5th conference on
energy internet and energy system integration. 2021, p. 2737–42. http://dx.doi.
org/10.1109/EI252483.2021.9713426.

[22] Neunert M, Abdolmaleki A, Wulfmeier M, Lampe T, Springenberg T, et al.
Continuous-discrete reinforcement learning for hybrid control in robotics. In:
Conference on robot learning. PMLR; 2020, p. 735–51.
12
[23] Li H, Wan Z, He H. Real-time residential demand response. IEEE Trans Smart
Grid 2020;11(5):4144–54. http://dx.doi.org/10.1109/TSG.2020.2978061.

[24] Qiu D, Wang Y, Zhang T, Sun M, Strbac G. Hybrid multi-agent reinforcement
learning for electric vehicle resilience control towards a low-carbon transition.
IEEE Trans Ind Inf 2022;1. http://dx.doi.org/10.1109/TII.2022.3166215.

[25] Silver D, Lever G, Heess N, Degris T, Wierstra D, et al. Deterministic policy
gradient algorithms. In: Xing EP, Jebara T, editors. Proceedings of the 31st
international conference on machine learning. 32 of proceedings of machine
learning research, Bejing, China: PMLR; 2014, p. 387–95.

[26] Sutton RS, Barto AG. Reinforcement learning: an introduction. MIT Press; 2018.
[27] Williams RJ. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Mach Learn 1992;8(3–4):229–56.
[28] Tensorflow Keras Optimizers: RMSprop. https://www.tensorflow.org/api_docs/

python/tf/keras/optimizers/RMSprop.
[29] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy

optimization algorithms. 2017, arXiv preprint arXiv:1707.06347.
[30] Van Cutsem T, Glavic M, Rosehart W, Canizares C, Kanatas M, et al. Test systems

for voltage stability studies. IEEE IEEE Trans Power Syst 2020;35(5):4078–87.
[31] Hagmar H, Tuan LA, Eriksson R. Impact of static and dynamic load models on

security margin estimation methods. Electr Power Syst Res 2022;202:107581.
http://dx.doi.org/10.1016/j.epsr.2021.107581.

[32] Van Cutsem T, Grenier M-E, Lefebvre D. Combined detailed and quasi steady-
state time simulations for large-disturbance analysis. Int J Electr Power Energy
Syst 2006;28(9):634–42. http://dx.doi.org/10.1016/j.ijepes.2006.03.005.

http://dx.doi.org/10.1109/TCST.2005.847339
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26244451387&doi=10.1109%2fTCST.2005.847339&partnerID=40&md5=e49eebd30d08b62fd80f11f48811de64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26244451387&doi=10.1109%2fTCST.2005.847339&partnerID=40&md5=e49eebd30d08b62fd80f11f48811de64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26244451387&doi=10.1109%2fTCST.2005.847339&partnerID=40&md5=e49eebd30d08b62fd80f11f48811de64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26244451387&doi=10.1109%2fTCST.2005.847339&partnerID=40&md5=e49eebd30d08b62fd80f11f48811de64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26244451387&doi=10.1109%2fTCST.2005.847339&partnerID=40&md5=e49eebd30d08b62fd80f11f48811de64
http://dx.doi.org/10.1109/TSG.2020.3008364
http://dx.doi.org/10.1016/j.epsr.2016.06.041
http://dx.doi.org/10.1016/j.epsr.2016.06.041
http://dx.doi.org/10.1016/j.epsr.2016.06.041
http://dx.doi.org/10.1016/j.ijepes.2020.106676
http://dx.doi.org/10.1016/j.ijepes.2020.106676
http://dx.doi.org/10.1016/j.ijepes.2020.106676
http://dx.doi.org/10.1109/TSG.2017.2670618
http://dx.doi.org/10.1109/EI252483.2021.9713426
http://dx.doi.org/10.1109/EI252483.2021.9713426
http://dx.doi.org/10.1109/EI252483.2021.9713426
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb22
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb22
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb22
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb22
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb22
http://dx.doi.org/10.1109/TSG.2020.2978061
http://dx.doi.org/10.1109/TII.2022.3166215
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb25
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb25
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb25
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb25
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb25
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb25
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb25
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb26
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb27
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb27
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb27
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb30
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb30
http://refhub.elsevier.com/S2666-5468(23)00016-2/sb30
http://dx.doi.org/10.1016/j.epsr.2021.107581
http://dx.doi.org/10.1016/j.ijepes.2006.03.005

	Real-time security margin control using deep reinforcement learning
	Introduction
	Reinforcement learning
	Policy gradients and Actor–Critic methods
	Proximal Policy Optimization
	Adaptations for continuous-discrete control

	Proposed Framework for Real-time Security Margin Control
	Test system and security margin definitions
	MDP formulation for security margin control
	Training data generation
	Architecture of actor and critic network
	Training actor and critic networks

	Results and discussion
	Training results
	Test sets
	Test results
	Comparing controls based on hybrid and discrete action spaces
	Rule-based look-up table control
	DRL control adapted for discrete actions
	Results

	Conclusion
	Declaration of Competing Interest
	Data availability
	References

