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Abstract

Sequential-decision making is a critical component of many complex systems,
such as finance, healthcare, and robotics. The long-term goal of a sequential
decision-making process is to optimize the policy under which decisions are
made. In safety-critical domains, the search for an optimal policy must be based
on observational data, as new decision-making strategies need to be carefully
evaluated before they can be tested in practice. In this thesis, we highlight the
importance of understanding sequential decision-making at different stages of
this procedure. For example, to assess which policies can be evaluated with
the available data, we need to understand the policy that actually generated
the data. And once we are given a policy to evaluate, we need to understand
how it differs from current practice.

First, we focus on the evaluation process, where a target policy is evaluated
using off-policy data collected under a different so-called behavior policy. This
problem, commonly referred to as off-policy evaluation, is often solved with im-
portance sampling (IS) techniques. Despite their popularity, IS-based methods
suffer from high variance and are hard to diagnose. To address these issues,
we propose estimating the behavior policy using prototype learning. Using
the learned prototypes, we describe differences between target and behavior
policies, allowing for better assessment of the IS estimates.

Next, we take a clinical direction and study the sequential treatment of pa-
tients with rheumatoid arthritis (RA). The armamentarium of disease-modifying
anti-rheumatic drugs (DMARDs) for RA patients has greatly expanded over
the past decades. However, it is still unclear which treatment work best for
individual patients. To examine how observational data can be used to evaluate
new policies, we describe the most common patterns of DMARDs in a large
patient registry from the US. We find that the number of unique patterns
is large, indicating a significant variation in clinical practice which can be
exploited for evaluation purposes. However, additional assumptions may be
required to arrive at statistically sound results.
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Chapter 1

Introduction

Making decisions is central to many domains, from finance to healthcare. In
finance, an investor must decide how to allocate investments across a variety
of assets. In healthcare, a physician is faced with the decision of choosing the
medication that works best for a particular patient. In many cases, decisions
constitute a sequential process, where each decision may affect the outcome
of future decisions, and the outcome of the entire process is dependent on the
sequence of decisions made.

A decision-making policy is a mapping from a basis for decision to a
probability distribution over available decisions, here called actions. Depending
on the problem, such a basis may not only consist of information about the
current state of the system but also a history of previous states, actions, and
rewards. For example, previous medications and their associated rewards are
valuable information for selecting the next treatment for a patient, along with
their current health status.

The goal of sequential decision-making is to optimize the sequence of actions
to maximize the cumulative reward. Achieving this goal translates into finding
a policy with the highest possible value, where the value of a policy is defined
as the expected cumulative reward when acting as suggested by the policy. For
autoimmune diseases, for example rheumatoid arthritis, the reward is often
measured by negative disease activity, and treating a patient according to an
optimal policy means selecting medications that keep the disease activity as
low as possible through the course of the disease.

In safety-critical domains, the search for an optimal policy is limited by
the fact that it is generally not possible to deploy a policy without having
an estimate of its value. Since no data of actions and rewards are available
for an unverified policy, its value must be estimated based on data generated
by another policy. This problem is known as off-policy evaluation. The data-
generating policy and the policy to be evaluated are called the behavior policy
and the target policy, respectively. The true behavior policy is often unknown,
but it can be estimated from data. In healthcare, observational data of decisions
and rewards are plentiful in, for example, electronic health records.

The most popular approach to off-policy evaluation is importance sampling
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4 CHAPTER 1. INTRODUCTION

(IS) (Precup, 2000), where observed rewards are re-weighted to account for
the distributional mismatch between the target and behavior policies. The
standard IS value estimator is unbiased but known to suffer from high variance
(Mandel et al., 2014). The weighted IS estimator reduces variance at the cost of
introducing bias (Precup, 2000). A different set of methods perform off-policy
evaluation using a learned model of the decision-making environment (Mannor
et al., 2007). This approach has generally low variance but the bias induced by
the model approximation is hard to quantify. Finally, there are also doubly
robust methods which combine these ideas to lower variance and avoid bias
(Jiang & Li, 2016).

Regardless of how the off-policy evaluation problem is attacked, there is
a fundamental difficulty in the fact that the ground truth value is unknown.
After all, the estimated value is just a number, sometimes supplemented by a
confidence interval. At most we can compare it to the value of the behavior
policy, which is relatively easy to estimate. When using IS-based methods, we
can try to assess the estimate by, e.g., inspecting individual weights, but this
approach does not answer some of the most critical questions: In which type
of situations do the policies differ from each other? How do the differences
manifest themselves in the estimated value?

In the first paper of this thesis, Paper I, we answer these questions by
estimating the behavior policy using prototype learning. Prototype learning
is an interpretable machine learning technique mostly used for classification
(Chen et al., 2019; Li et al., 2018). Here, we use the prototypical cases, which
are learned during model training and interpretable by a domain expert, as
a diagnostic tool for off-policy evaluation. We utilize that the prototypes are
representative cases of the space of decision bases and actions. By comparing
how the target and behavior policies suggest acting in each of the cases, we
obtain a compact summary of any differences between the policies. We can
also stratify estimated values into prototype-based contributions, allowing us
to understand in which situations the target policy yields higher reward than
the behavior policy, and vice versa.

The second paper, Paper II, focuses on a clinical application of sequential
decision-making, namely the sequential treatment of patients with rheumatoid
arthritis (RA). Although there are many effective drugs for RA, the search for
a working medication for individual patients is often based on trial-and-error.
A first step in developing new clinical guidelines is to understand current
practice. In particular, what opportunities do observational data offer to
evaluate new policies for clinical decision-making? In this work, we describe the
most common patterns in the sequential treatment of RA in a large US-based
patient registry. Our results show that there is a large practice variation, which
allows for evaluating new treatment strategies but also presents statistical
challenges in the evaluation process.



Chapter 2

Background

In this chapter, we provide necessary background for the papers included in
this thesis. We first formulate sequential decision-making in general terms
before discussing the specific case of sequential decision-making in healthcare.
Then, we introduce reinforcement learning as a tool for solving such problems
and learning optimal policies. Finally, we describe policy evaluation, focusing
on off-policy evaluation, before concluding the chapter with a brief description
of interpretable policy representations.

2.1 Sequential Decision-Making

Sequential decision-making can be seen as a sequence of interactions between
an agent and an environment, see Figure 2.1(a). At each stage t ∈ {0, . . . , T}
of the process, the agent executes an action At ∈ A based on an observed state
St ∈ S of the environment.1 The length of the process, T , is a finite random
variable, and S and A = {1, ...,K}, where K is the number of actions, denote
the state space and the action space, respectively. Next, the environment
transitions into a new state St+1, and the agent receives a reward Rt ∈ R as a
quality measure of the action taken. At all stages, states, actions and rewards
are random variables, of which observed values are denoted by lower-case
letters.

State transitions and rewards are defined by the dynamics p(St+1, Rt |
S0, A0, R0, . . . , St, At) of the environment. A common assumption is that the
decision process is Markov. In a Markov decision process (MDP), transitions
and rewards depend only on the most recent state-action pair, that is,

p(St+1, Rt | S0, A0, R0, . . . , St, At) = p(St+1, Rt | St, At).

Figure 2.1(b) shows the probabilistic graphical model (Koller & Friedman,
2009) for an MDP with T = 2.

To navigate through the potentially high-dimensional space of states and
actions, the agent follows a policy π ∈ Π. A policy can be either deterministic

1We assume that the same set of actions are available at all time steps.
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6 CHAPTER 2. BACKGROUND

(a) Sequential decision-making. (b) Markov decision process.

Figure 2.1: Left: Sequential decision-making is often described as an interaction
between the decision-maker, the agent, and an environment. At each stage t of
the process, the agent executes an action At based on the current state St of
the environment. The environment responds with a reward Rt and transitions
into a new state St+1. The long-term goal of the agent is to learn a policy that
maximizes the expected cumulative reward. Right: A common assumption is
that the decision process is Markov, meaning that state transitions, actions,
and rewards depend only on the most recent state-action pair.

or stochastic. A deterministic policy π : S → A is a mapping from a state S
to an action A, while a stochastic policy π : S → ∆A maps the state S to a
probability distribution over the action space. We use π(s) to denote the action
selected by a deterministic policy. For a stochastic policy, the probability of
taking action a in state s is denoted pπ(A = a | S = s).

A policy π induces a probability distribution pπ(S0, A0, R0, . . . , ST , AT , RT ).
In an MDP, represented by the graph in Figure 2.1(b), this distribution can be
factorized as

p(S0)pπ(A0 | S0)

T−1∏

t=0

p(St+1, Rt | St, At)pπ(At+1 | St+1)p(RT | ST , AT ),

where components not influenced by the policy lack the subscript π. Let Eπ

denote the expectation with respect to this distribution. Now, the value of π,
V π, is defined as the expected sum of rewards,

V π := Eπ

[
T∑

t=0

Rt

]
. (2.1)

The ultimate goal of a sequential-decision making process is to find a policy
with the highest possible value.2

2.2 Sequential Decision-Making in Healthcare

As a concrete example of sequential decision-making in healthcare, we consider
the sequential treatment of patients with rheumatoid arthritis (RA). RA is an

2The value of a policy is also called the average value function under that policy.
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autoimmune disease which affects the joints of the body, often with painful
inflammations and stiffness as a result. Patients with RA are typically treated
with different types of disease-modifying anti-rheumatic drugs (DMARDs), for
example biologic or targeted-synthetic DMARDs (b/tsDMARDS).

In this example, the decision-making agent corresponds to a rheumatologist
and each stage of the decision process to a clinical visit of a patient. The state
St contains information about the patient and their health status, for example
demographics, number of swollen joints, and comorbidities, while the action
At is a selected treatment. The reward Rt could be defined as the reduction of
disease activity between two visits (note that the reward may be negative). In
other applications, it is also common that there is only a final reward R = RT

awarded at the end of the sequence. As in most medical settings, the causes of
the patient’s response to the treatment, i.e., the dynamics of the environment,
are unknown.

Above, we formulated the sequential-decision making problem as a Markov
decision process, which is the standard setting in many domains. In healthcare,
however, there is generally no reason to believe that the Markov assumption
holds. For example, in RA treatment, the reward at stage t may not only
depend on the immediately preceding state and the most recent treatment
alone, but also on previous treatment strategies.

To obtain a more realistic model, we introduce the notion of history. The
history at stage t, Ht, comprises the states, actions and rewards up until this
point in time, i.e., Ht := (S0, A0, R0, S1, A1, R1, . . . , St). Let H0 := S0. The
fact that the history grows with time presents a potential difficulty, and it
may be necessary to consider only the most recent history or learn a function
that summarizes the history. In this setting, we define a stochastic policy
as a mapping from a history space H to a probability distribution over the
action space.3 Furthermore, the expectation in Equation (2.1) is computed
with respect to the distribution

p(H0)pπ(A0 | H0)

T−1∏

t=0

p(St+1, Rt | Ht, At)pπ(At+1 | Ht+1)p(RT | HT , AT ).

Note that this expression is the complete factorization of the joint distribution,
without independence assumptions.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning which provides
methods for solving sequential-decision making problems and learning optimal
policies. RL has drawn attention due to its recent success in, for example,
mastering board and computer games (Mnih et al., 2013; Silver et al., 2018),
adapting robots (Cully et al., 2015), and discovering faster algorithms for
matrix computation (Fawzi et al., 2022). RL has also been applied to problems

3In a healthcare context, a policy may also be referred to as a dynamic treatment regime
(Chakraborty, 2013).



8 CHAPTER 2. BACKGROUND

from the medical domain, for example the treatment of sepsis (Komorowski
et al., 2018), the management of mechanical ventilation (Prasad et al., 2017),
and mobile health (Tewari & Murphy, 2017). Here, we introduce two standard
RL algorithms, policy iteration and Q-learning, and explain how they can be
used in an offline setting when no data collection is allowed.

2.3.1 Policy Iteration

We have already defined the marginal value of a policy π, V π, in Equation
(2.1). Often, we are interested in the value of a single state s, defined as the
expected sum of rewards when following a policy π starting in s at time t:

V π
t (s) := Eπ

[∑T
t′=t Rt′ | St = s

]
. Assuming a Markov decision process with

dynamics p(St+1, Rt | St, At), the value is the same for all t, and we usually
write V π(s) to simplify notation. A well-known property of V π(s) is that it
satisfies the Bellman equation

V π(s) =
∑

a

pπ(a | s)
∑

s′,r

p(s′, r | s, a) [r + V π(s′)] ,

where s′ ∈ S.
Policy iteration is one of the most fundamental RL algorithms and relies on

the Bellman equation in the search for an optimal policy (Sutton & Barto, 2018).
As input, the algorithm takes an initial policy π and an initial value V π

0 (s),
both chosen arbitrarily. For simplicity, we exemplify with a deterministic policy
π(s) here. The algorithm iteratively approximates V π

1 (s), V π
2 (s), . . . according

to

V π
k+1(s) :=

∑

s′,r

p(s′, r | s, π(s)) [r + V π
k (s′)] .

As k → ∞, it can be shown that the sequence {V π
k (s)} converges to V π(s).

When the value of all states s ∈ S have been approximated, the policy is
updated according to

π(s) = argmax
a

∑

s′,r

p(s′, r | s, π(s))[r + V (s′)].

This update results in a greedy policy, i.e., a policy that always takes the
best-looking action. The policy improvement theorem ensures that such a
policy is at least as good as the initial policy. Policy iteration alternatively
approximates the values and improves the policy until convergence of the policy,
resulting in an optimal policy π⋆.

2.3.2 Q-Learning

Policy iteration and its close relative “value iteration” require full knowledge
of the environment, including its dynamics, which is often not available in
practice. Instead, most RL algorithms that have practical utility learn a policy
based on collected experience of the environment. One of the most popular
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algorithms that belongs to this category is Q-learning (Sutton & Barto, 2018).
“Q” stands for quality, and the Q-function, or action-value function, for a policy

π is defined as Qπ(s, a) := Eπ

[∑T
t′=t Rt′ | St = s,At = a

]
. It is the expected

sum of rewards when following π starting in state s and taking action a.

In Q-learning, starting with an arbitrarily initialized Q-function, the agent
interacts with the environment by following an exploration policy derived from
the Q-function. Typically, this policy is the ϵ-greedy policy which in state s
selects the action argmaxa Q(s, a) with probability 1− ϵ and with probability
ϵ selects an action uniformly at random. Every time the agent executes an
action A in a state S and observes the next state S′ and the reward R, the
Q-function is updated according to

Q(S,A) = Q(S,A) + α
[
R+max

a
Q(S′, a)−Q(S,A)

]
,

where α is a step size parameter.4 Note that the greedy action chosen in
the update may not be the action that would have been chosen under the
exploration policy. Since the Q-values are updated independently of the agent’s
policy, Q-learning is a so-called off-policy algorithm. With sufficient exploration,
the learned Q-function converges to the optimal Q-function, from which an
optimal policy can easily be derived.

2.3.3 Offline Reinforcement Learning

The continuous exploration of the environment in the Q-learning procedure
is not always practical. In safety-critical domains, for example, rolling out
the agent’s policy while learning the Q-function may be both dangerous and
unethical. Instead, the search for an optimal policy must be based on already
collected data. This setting is usually called offline RL or batch RL, in contrast
to traditional online RL. In offline RL, the task is to learn a policy from a

static dataset of transition tuples
(
s
(i)
t , a

(i)
t , s

(i)
t+1, r

(i)
t

)
.

There are many approaches to offline RL and we will not cover all of them
here. Instead, we briefly outline two simple methods that are connected to the
previous sections on online RL. First, Q-learning can be used in an offline setting
if we instead of letting the agent interact with the environment repeatedly
sample transition tuples from the static dataset. While this method works in
principle, it may suffer from distributional shift, see e.g., (Kumar et al., 2019).
Second, we can try to estimate the unknown dynamics of the environment
using the available data. Assuming an MDP, we can then use policy iteration
as described in Section 2.3.1, replacing the true dynamics p(s′, r | s, a) with an
estimate p̂(s′, r | s, a). For a more complete overview of offline RL, we refer to,
e.g., Levine et al. (2020).

4This version of the Q-learning algorithm assumes discrete states and actions.
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2.4 Policy Evaluation

Applying reinforcement learning to a sequential decision-making problem yields
a policy, which hopefully is at least “good” for the problem at hand. A different
problem is to understand how “good” a given policy is. This task translates
to computing the value of the given policy–––the target policy–––according
to Equation (2.1). Without complete knowledge of the system dynamics, the
expectation in Equation (2.1) is intractable. However, if it is possible to collect
trajectories, often called roll-outs, of the target policy, a simple Monte Carlo
estimator provides an unbiased estimate of its value:

V̂ π =
1

n

n∑

i=1

T∑

t=0

r
(i)
t .

Here, n denotes the number of roll-outs and r
(i)
t is the reward awarded at stage

t in roll-out i.
As we already have pointed out, rolling out an unverified target policy π

is unacceptable in many situations. Instead, we must rely on data that have
already been collected under a different policy µ, commonly referred to as the
behavior policy. Estimating the value of π based on data from µ is referred
to as off-policy evaluation. To ensure identifiability of V π, we need to make
assumptions about the policies and the data-generating process. Before stating
these assumptions and formalizing off-policy evaluation, we introduce a concept
from causality: potential outcomes.

2.4.1 Potential Outcomes

The notion of potential outcomes represents what would happen under a certain
action (Rubin, 2005). For example, consider a one-stage decision process in
healthcare where two treatments a and a′ are available in state s, corresponding
to an individual patient. The potential outcomes under a and a′ are defined
as R(a) and R(a′), respectively. By selecting treatment a, we observe the
reward r corresponding to the potential outcome R(a). The potential outcome
or counterfactual R(a′), like the treatment effect ∆ := R(a)−R(a′), remains
unobserved. Consequently, treatment effects must be studied at population
level, for example through the conditional average treatment effect E [∆ | S].

The potential outcomes framework can be extended to multi-stage decision
processes (Robins, 1997). Let Āt denote a sequence of actions up to stage t.
The potential outcomes under Āt include states S0, . . . , St(Āt−1) and rewards
R0(A0), . . . , Rt(Āt). Clearly, as t grows, the total number of potential outcomes
quickly becomes very large. In this framework, the value of a policy π is defined

as Eπ

[∑T
t=0 Rt(Āt)

]
.

2.4.2 Off-Policy Evaluation

Off-policy evaluation raises the following question: What would happen if
we executed the unobserved actions as suggested by the target policy π?
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Answering this question requires counterfactual reasoning since we only observe
potential outcomes associated with actions taken under the behavior policy
µ. Specifically, we assume that we have access to a dataset D of n samples(
h
(i)
T , a

(i)
T , r

(i)
T

)
from the distribution pµ(HT , AT , RT ). To ensure that we can

estimate V π using observed data, we need to assume sequential ignorability
and overlap.

Assumption 1 (Sequential ignorability). For all stages t = 0, . . . , T and
for any sequence of actions āT , conditional on the history Ht, the action At

generated by the behavior policy µ is independent of future potential outcomes
Rt(āt), St+1(āt), . . . , ST (āt−1), RT (āT ). We say that the behavior policy µ
satisfies sequential ignorability.

Assumption 2 (Overlap). For all pairs of actions At ∈ A and histories
Ht ∈ H, pµ(At | Ht) > 0 whenever pπ(At | Ht) > 0. We say that overlap holds
between the target policy and the behavior policy.

In addition, we assume that any uncertainty in the target policy pπ (At | Ht)
originates from an exogenous variable. Under these assumptions, the value of
the target policy π can be written as

V π := Eπ

[
T∑

t=0

Rt

]
= Eµ

[
W

T∑

t=0

Rt

]
, (2.2)

with importance weight

W :=

T∏

t=0

pπ (At | Ht)

pµ (At | Ht)
. (2.3)

In practice, the behavior policy pµ (At | Ht) is often unknown. To compute the
importance weight in Equation (2.3), we must first fit an estimator p̂µ (At | Ht)
to the observed data. Now, we can compute a sample-based estimate of
Equation (2.2), the importance sampling (IS) estimate:

V̂ π =
1

n

n∑

i=1

wi

T∑

t=0

r
(i)
t with wi =

T∏

t=0

pπ

(
a
(i)
t | h(i)

t

)

p̂µ

(
a
(i)
t | h(i)

t

) .

If the target policy is deterministic, we replace pπ

(
a
(i)
t | h(i)

t

)
with the indicator

I
[
a
(i)
t = π

(
h
(i)
t

)]
.

By inspecting the importance weight in Equation (2.3), we note potential
problems with the IS estimate. For example, if p̂µ (At | Ht) is small and
pπ (At | Ht) is large, the estimate suffers from high variance. This problem
is often aggravated for long sequences. As a diagnostic, we can compute the
effective sample size

ne =
(
∑

i wi)
2

∑
i w

2
i

,

which tells us how many samples contribute to the estimate (Owen, 2013).
Ideally, ne should be close to n, but it can be significantly less.
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2.5 Interpretable Policy Representations

Once we have evaluated a new candidate policy with promising results, should
we then feel safe to deploy the policy in practice? Not without caution. Ideally,
we would also like to reason about how the new policy differs from the behavior
policy. To enable such reasoning when the behavior policy is unknown, we
need to model it with interpretability in mind. An interpretable model allows
us to understand the behavior policy, and this understanding is crucial if we
then want to examine how the behavior policy differs from the new policy.

Learning an interpretable representation of the behavior policy can also
be a starting point for the process of developing a new policy for future
decision-making based on observational data. To obtain reliable off-policy value
estimates, we need to ensure that candidate policies have enough support in
the observed data. An interpretable description of the current policy helps us
to identify candidates that meet the criteria.

The most common types of interpretable machine learning models include
logical models, for example, decision trees, and scoring systems, which essen-
tially are linear models with integer coefficients; see (Rudin et al., 2022) for
an overview. A potential drawback with these models is that they require a
Markov state. They are less suitable for modeling p(A | H), i.e., the probability
of taking action A given the entire history H. Here, we focus on so-called
prototype-based techniques, which are more flexible in this regard.

In prototype learning, the probability p(A | H) is estimated by comparing
the input history to a few prototypical cases from the training data; the closer
the input history is to a certain prototype, the more that prototype influences
the estimated probability. Being real training examples, the prototypes are
interpretable by a domain expert. The prototype-based approach resembles
how a clinician selects treatment for a patient based on the patient’s similarities
with previously treated patients. The prototypes, which are learned during
training, can be represented as a prototype layer in a deep neural network (Chen
et al., 2019; Li et al., 2018), allowing for flexible and powerful models. The
encoding part of the network, which maps the input to the space of prototypes,
can be a sequence learning model, e.g., a recurrent neural network, capable of
handling sequential data (Ming et al., 2019).



Chapter 3

Summary of Included
Papers

In this chapter, we summarize the two papers that are included in this thesis.
Both papers are related to the process of developing new policies from obser-
vational data. The overall theme of the papers is to understand sequential
decision-making at different stages of this process. We focus on applications in
healthcare, where, for example, electronic health records provide a rich source
of observational data.

3.1 Paper I

In Paper I, we study off-policy evaluation in more detail. We focus on import-
ance sampling (IS) methods and the common case where the behavior policy
is unknown and must be estimated from data. While IS-based methods are
preferred due to their simplicity, they suffer from high variance when there
are significant differences between target and behavior policies. The analyst
can inspect individual IS-weights to detect outliers and compute the effective
sample size to get an idea of the reliability of the estimate. However, these
methods do not describe patterns in the difference between the policies. To
reuse the healthcare example, it may not be clear for which patients, and at
what stages, the treatment suggested by the target policy is different from that
suggested by the behavior policy.

To address this problem, we propose estimating the unknown behavior policy
pµ(A | H) using prototype learning. The prototypes induce a soft clustering
of the space of histories, and intuitively, each prototype is representative of a
certain type of histories. By inspecting the behavior and target policies for each
of the prototype cases, we get an overview of which action the policies would
suggest in different key situations. A domain expert can reason about any
differences between the policies and detect cases where the target policy suggests
questionable actions. We can also divide estimated values into prototype-based
components to describe situations where it would be beneficial to follow the

13
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Figure 3.1: In Paper I, we estimate the behavior policy using prototype learning.
We then use the learned prototypes as a diagnostic tool for off-policy evaluation.
Left: Visualization of three of the prototypes in the sepsis experiment. Each
prototype corresponds to a real patient and is interpretable by a domain expert.
Right: Comparison of the target policy, the “AI Clinician”, with the behavior
policy estimated from the data. We see that the target policy suggests actions
that are rare under the behavior policy.

target policy instead of the behavior policy, and vice versa.

We demonstrate our framework in a real-world example of the management
of sepsis in the intensive care unit. As target policy, we consider the so-called
AI Clinician (Komorowski et al., 2018), which is learned from offline data using
MDP estimation and value iteration, as described in Section 2.3. Using learned
prototypes as a diagnostic tool, we identity groups of patients who at the first
stage of treatment would have received an AI-recommended treatment that
is rare in the observed data, see Figure 3.1(b), highlighting the need for a
transparent comparison of the policies. A few of the prototypes are visualized
in Figure 3.1(a).

While the prototypes give interpretability, they also pose a limitation to
the model. We therefore compare the prototype model to standard baseline
models and plain neural networks. Evaluating the models on the sepsis data,
we find that the prototype model has the capacity to perform similarly to the
other models. The key hyperparameter is the number of prototypes controlling
the trade-off between interpretability and performance. In practice, we suggest
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using a small number of prototypes when comparing the policies and reasoning
about the data. Then, if needed, a more flexible model can be learned for the
importance sampling estimator.

3.2 Paper II

In Paper II, we take a clinical direction and study the sequential treatment of
patients with rheumatoid arthritis (RA) with disease-modifying anti-rheumatic
drugs (DMARDs). Most RA patients receive a conventional synthetic DMARD
(csDMARD) as their first treatment, and non-responders are further treated
with biologic and targeted synthetic DMARDs (b/tsDMARDs), usually tumor
necrosis factor inhibitors (TNFi) or Janus kinase inhibitors (JAKi) (Smolen
et al., 2020). However, how to continue treatment after initial csDMARD
failure is often unclear. As the number of available drugs grows, there is an
increasing need to improve clinical guidelines. Paper II takes a first step in
this direction by describing common treatment patterns in RA. As we have
previously discussed, having a good understanding of current practice is often
a prerequisite for developing new policies.

Using data from the CorEvitas RA registry (Kremer, 2016), we study
6015 b/tsDMARD-näıve patients, of whom 77% are female, who started their
first b/tsDMARD therapy, defined as the first line of therapy, between 2012 and
the end of 2021. We define a treatment pattern as a unique sequence of therapy
changes following and including the first-line therapy. Statistical estimates and
visualizations are used to provide a quantitative picture of standard practice
in the US, including first-line therapy selection and selection of sequential
therapies. A strength of our study is that we consider the whole sequences
of therapies and not only transitions between consecutive therapies, which is
more common in the literature (Fletcher et al., 2022; Zhao et al., 2022).

As first-line therapy, most patients start with a TNFi therapy, but we
observe a recent shift towards JAKi therapies. There is high variation in
subsequent treatment choices, leading to a large number of treatment patterns,
especially for longer sequences of therapies. Interestingly, we observe that
therapy cycling, i.e., returning to a therapy from a previously used therapeutic
class, is relatively common. We also find that the duration of the first lines of
therapy decreased over the past decade.

Our results indicate that there is a wide variation in clinical practice. Such
variation is necessary to evaluate new strategies that deviate from current
guidelines. However, it also presents challenges to evaluate new policies with
statistical reliability. For example, to evaluate later lines of treatment for RA,
we would need to make assumptions about patients with different treatment
histories to increase the amount of evaluation data. An alternative is to group
patients with respect to the set of drugs they have been treated with, without
regard to the actual order of drugs.
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Chapter 4

Concluding Remarks and
Future Directions

In this thesis, we studied sequential decision-making from the perspective of
policy understanding and policy evaluation. The need for policy understanding
is what ties this thesis together. In Paper I, we proposed learning an inter-
pretable model of the behavior policy to understand how it differs from a
target policy in off-policy evaluation. In Paper II, we took the first steps in
developing new clinical guidelines for the treatment of rheumatoid arthritis by
contributing with an understanding of current practice

As a continuation of the work presented in Paper II, we would like to
understand current practice even better by describing the contextual behavior
policy pµ(A | H). The idea is to learn an interpretable model, which allows
for verification by a domain expert. We also hope to use an interpretable
representation of the behavior policy to identify new policy candidates in
consultation with domain experts. Finally, we want to evaluate these candidate
using off-policy evaluation methods, hopefully providing new insights into how
patients with rheumatoid arthritis can be better treated.

One possibility is to model the behavior policy pµ(A | H) for rheumatoid
arthritis using prototype-based techniques as in Paper I. To obtain a well-
calibrated model, however, it may be necessary to build domain knowledge
into the model. For example, some treatments are not given to patients with
certain comorbidities. It is not certain that such relationships are captured
by, e.g., a logistic regression model, which is commonly used to estimate the
behavior policy. An interesting question, which extends beyond the specific
case of rheumatoid arthritis, is how such constraints can be learned from data,
without requiring available domain expertise.

Another interesting direction is to study off-policy evaluation from a different
perspective. Instead of asking if the available data allow us to evaluate a given
policy, we can ask: Given these data, what are the policies that we can evaluate
with statistical certainty? One possible approach is to identify policies that are
sufficiently similar to the behavior policy.

17





Bibliography

Chakraborty, B. (2013). Statistical methods for dynamic treatment regimes.
Springer. (Cit. on p. 7).

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., & Su, J. K. (2019). This looks
like that: Deep learning for interpretable image recognition. Advances
in neural information processing systems, 32 (cit. on pp. 4, 12).

Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can
adapt like animals. Nature, 521 (7553), 503–507 (cit. on p. 7).

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-Paredes, B., Barekatain,
M., Novikov, A., R Ruiz, F. J., Schrittwieser, J., Swirszcz, G., et
al. (2022). Discovering faster matrix multiplication algorithms with
reinforcement learning. Nature, 610 (7930), 47–53 (cit. on p. 7).

Fletcher, A., Lassere, M., March, L., Hill, C., Barrett, C., Carroll, G., &
Buchbinder, R. (2022). Patterns of biologic and targeted-synthetic
disease-modifying antirheumatic drug use in rheumatoid arthritis in
Australia. Rheumatology, 61 (10), 3939–3951 (cit. on p. 15).

Jiang, N., & Li, L. (2016). Doubly robust off-policy value evaluation for rein-
forcement learning. International Conference on Machine Learning,
652–661 (cit. on p. 4).

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles
and techniques. MIT press. (Cit. on p. 5).

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018).
The Artificial Intelligence Clinician learns optimal treatment strategies
for sepsis in intensive care. Nature medicine, 24 (11), 1716–1720 (cit. on
pp. 8, 14).

Kremer, J. M. (2016). The Corrona US registry of rheumatic and autoimmune
diseases. Clinical and Experimental Rheumatology, 34 (5 (Suppl. 101)),
S96–S99 (cit. on p. 15).

Kumar, A., Fu, J., Soh, M., Tucker, G., & Levine, S. (2019). Stabilizing
off-policy Q-learning via bootstrapping error reduction. Advances in
Neural Information Processing Systems, 32 (cit. on p. 9).

Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643 (cit. on p. 9).

Li, O., Liu, H., Chen, C., & Rudin, C. (2018). Deep learning for case-based
reasoning through prototypes: A neural network that explains its pre-

19



20 BIBLIOGRAPHY

dictions. Proceedings of the AAAI Conference on Artificial Intelligence,
32 (1) (cit. on pp. 4, 12).

Mandel, T., Liu, Y.-E., Levine, S., Brunskill, E., & Popovic, Z. (2014). Offline
policy evaluation across representations with applications to educa-
tional games. AAMAS, 1077 (cit. on p. 4).

Mannor, S., Simester, D., Sun, P., & Tsitsiklis, J. N. (2007). Bias and variance
approximation in value function estimates. Management Science, 53 (2),
308–322 (cit. on p. 4).

Ming, Y., Xu, P., Qu, H., & Ren, L. (2019). Interpretable and steerable se-
quence learning via prototypes. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
903–913 (cit. on p. 12).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., & Riedmiller, M. (2013). Playing Atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602 (cit. on p. 7).

Owen, A. B. (2013). Monte carlo theory, methods and examples. Stanford.
(Cit. on p. 11).

Prasad, N., Cheng, L.-F., Chivers, C., Draugelis, M., & Engelhardt, B. E.
(2017). A reinforcement learning approach to weaning of mechanical
ventilation in intensive care units. 33rd Conference on Uncertainty in
Artificial Intelligence (cit. on p. 8).

Precup, D. (2000). Eligibility traces for off-policy policy evaluation. Computer
Science Department Faculty Publication Series, 80 (cit. on p. 4).

Robins, J. M. (1997). Causal inference from complex longitudinal data. Latent
variable modeling and applications to causality, 69–117 (cit. on p. 10).

Rubin, D. B. (2005). Causal inference using potential outcomes: Design,
modeling, decisions. Journal of the American Statistical Association,
100 (469), 322–331 (cit. on p. 10).

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., & Zhong, C. (2022).
Interpretable machine learning: Fundamental principles and 10 grand
challenges. Statistic Surveys, 16, 1–85 (cit. on p. 12).

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A
general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science, 362 (6419), 1140–1144 (cit. on p. 7).
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