
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 
 
 

 
 
 
 
 
 
 

The Dark side of Obesity: 
Multi-omics analysis of the dysmetabolic morbidities spectrum 

 
 
 

DIMITRA LAPPA 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 
 
 

Department of Life Sciences 
 

CHALMERS UNIVERSITY OF TECHNOLOGY 
 

Gothenburg, Sweden 2023 
  



 ii 

The Dark side if Obesity: Multi-omis analysis of the dysmetabolic morbidities spectrum  
Dimitra Lappa 
 
ISBN 978-91-7905-815-9 
© DIMITRA LAPPA, 2023. 
 
 
Doktorsavhandlingar vid Chalmers tekniska högskola 
Ny serie nr 5281 
ISSN 0346-718X 
 
 
Division of Systems and Synthetic Biology 
Department of Life Sciences 
Chalmers University of Technology 
SE-412 96 Gothenburg 
Sweden 
Telephone + 46 (0)31-772 1000 
 
 
 
 
 
 
 
 
 
 
Cover: 
The spectrum of obesity always comes with a dark side. Here, multi-omics assist in the 
better comprehension of the dysmetabolic morbidities spectrum. 
 
Printed by Chalmers Reproservice 
Gothenburg, Sweden 2023 

  



 iii 

The Dark side of Obesity: Multi-omics analysis of the 
dysmetabolic morbidities spectrum 
 
Dimitra Lappa 
Department of Life Sciences (former Biology and Biological Engineering) 
Chalmers University of Technology 

Abstract 

Obesity is one of the most prevalent clinical conditions worldwide and is associated with 
a wide spectrum of dysmetabolic comorbidities. Complex cardio-metabolic disease 
cohorts, such as obesity cohorts are characterised by population heterogeneity, multiple 
underlying diseases status and different comorbidities’ treatment regiments. The 
systematic collection of multiple types of clinical and biological data from such cohorts 
and the data-analysis in an integrative manner is a challenging task due to the variables’ 
dimensionality and the lack of standardised know-how of post-processing. 

The main resource of this thesis has been the BARIA cohort, a detailed collection over 
time of multiple omics and demographic data from participants in bariatric surgery. 
BARIA datasets included plasma metabolites, RNA from hepatic, jejunal, mesenteric 
and subcutaneous adipose tissues and gut microbial metagenome, besides biometric 
data. The work presented in this thesis included the development of a systems biology 
integrative framework based on BARIA that (i) utilised unsupervised machine learning 
algorithms, self-organizing maps in particular, and multi-omics integrative frameworks, 
the DIABLO library, in order to stratify the BARIA heterogeneous obesity cohort and 
predict the bariatric surgery’s outcome. The thesis covered how BARIA can be the onset 
for (ii) studying molecular mechanisms related to type 2 diabetes (T2D) and G-protein 
coupled receptors (GPCRs) and for identifying a minimal set of biomarkers for obesity’s 
comorbidities such as (iii) non-alcoholic fatty liver disease (NAFL) and (iv) gallstones 
formation after bariatric surgery. 

The results indicated that the metabotypes comprising a bariatric surgery cohort 
exhibited a concrete metabolic status and different responses over time after the 
bariatric surgery. It has been demonstrated how obesity and T2D associated metabolites, 
such as 3-hydroxydecanoate, can increase inflammatory responses via GPCRs molecular 
activation and signalling. Last but not least, minimal sets of both evasive and non-evasive 
multi-omic discriminatory biomarkers for obesity’s dysmetabolic morbidities (NAFLD 
and gallstones after bariatric surgery) were obtained. Taking into consideration all the 
findings, this thesis presented how data-driven approaches can be used for studying in-
depth heterogeneous cohorts, hereby facilitating early diagnosis and enabling potential 
preventive actions. 

 

Keywords: Obesity, systems biology, multi-omics integration, metabotyping, self-
organizing maps, biomarkers, bariatric surgery, non-alcoholic fatty liver disease, 
gallstones, GPCR receptors 
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Background 
 

Obesity and comorbidities spectrum 

Obesity is a growing epidemic and is one if the leading preventable causes of death 
worldwide. Approximately 1.9 billion adults are overweight and among these 650 million 
are suffering from obesity[1–3]. Obesity is associated with increased risk for multiple 
comorbidities including cardiovascular disease, type 2 diabetes	mellitus (T2D), 
hypertension, dyslipidemia, non-alcoholic fatty liver disease (NAFLD), 
gastroesophageal reflux disease (GERD) and various types of cancer[4,5]. 

 

Figure 1: Obesity and associated comorbidities’ spectrum. 

 

Obesity definition 

Obesity’s official definition is the substantial accumulation of	body fat	that has a great 
impact in health[1]. The main classification of obese individuals is based on	body mass 
index	(BMI) – the ratio of a person's weight in	kilograms	to the	square	of their height 
in	meters. Being overweight corresponds to a BMI of 25 or higher, whereas being obese 
to a BMI of 30 or higher[2]. Other subdivisions of obesity, based on BMI, include class 
1 obesity with a BMI 30 to 35; class 2 obesity with BMI ranging from 35 to 40; and class 
3 obesity with 40+ BMI , class 3 obesity[6]. However, BMI does not account for the 
interindividual variation of lean body mass. Often, within the context of medical 
literature, the metric for obesity besides BMI, is the	body fat percentage	(BF%) – the 
ratio of the total weight of person's fat to his or her body weight, where BMI acts as an 
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approximation of BF%. Indicators of obesity are considered excess BF% of 32% for 
women and 25% for men[7]. 

 

Causes of Obesity 

The fundamental cause of obesity is the imbalance between calorie consumption and 
calorie expenditure. In a global scale there is increased consumption of high energy-high 
fat diets in combination with a more sedentary lifestyle[1]. Overprocessed food, 
urbanization, new means of transportation, more stationary professions are also inflicted 
by societal changes and associated with lack of supportive policies. 

Other causes of obesity, with lower prevalence include genetic predisposition and other 
diseases, mostly of endocrine and psychiatric nature. The discovery of leptin provided 
new insights in the pathophysiological mechanisms of obesity’s development. Leptin is 
a hormone produced peripherally in adipose tissue, but it effects the central nervous 
system, specifically the hypothalamus. Leptin essentially controls the appetite and leptin 
deficiency or leptin resistance can lead to overfeeding, which accounts for some genetic 
and acquired forms of obesity[8,9]. Certain physical and mental illnesses and the 
pharmaceutical substances used to treat them can increase the risk of obesity. These are 
congenital or acquired conditions such as hypothyroidism, Cushing’s syndrome, 
hormone growth deficiency[10] and disorders	such as	binge eating disorder	and	night 
eating syndrome[4]. Moreover, the risk of overweight and obesity is higher in patients 
with psychiatric disorders, especially depression, since obesity and	depression	influence 
each other mutually[11]. Obesity can also be drug-induced, with specific medication 
causing weight fluctuation, such as insulin, sulfonylureas, thiazolidines, antipsychotics 
and antidepressants, steroids, hormonal contraceptives and anticonvulsants[4]. 

 

Main obesity comorbidities 

T2D: One of the main comorbidities is T2D, a condition characterized by	high blood 
sugar,	insulin resistance, and relative inability to produce	insulin, whilst some people 
are	genetically	predisposed to T2D than others[12]. The most common attributes of the 
disease are thirst,	frequent urination, and unexplained	weight loss, increased hunger, 
feeling tired, and	sores	that do not heal[13]. The constantly elevated blood sugar levels 
can lead to other long term complications such as	heart disease,	strokes,	diabetic 
retinopathy,	kidney failure, and poor blood flow in the limbs which may lead 
to	amputations[12]. The main T2D diagnostic tools are blood tests such as	fasting plasma 
glucose,	oral glucose tolerance test, or	glycated hemoglobin. T2D is a preventable 
disease in a similar way to obesity: by a healthy diet and regular physical activity. The 
main T2D treatment involves exercise and	dietary changes. If high blood glucose levels 
persist after lifestyle changes, medication	is administered, with metformin	being the drug 
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most frequently prescribed[14,15].When the body is unable to produce insulin due to 
beta-cells failure[16], many T2D patients eventually require treatment with injectable 
insulin[17]. 

NAFL: NAFLD is excessive	accumulation of fat in the	liver	without another clear cause 
such as	alcohol use[18]. NAFLD mostly divides into two categories: non-alcoholic fatty 
liver	(NAFL) and	non-alcoholic steatohepatitis	(NASH). NAFL is more benign than 
NASH and usually with NAFL not progressing to NASH. NASH can eventually 
progress to more severe conditions like cirrhosis,	liver cancer,	liver failure, 
or	cardiovascular disease[19]. Risk factors for NAFLD include obesity and T2D, where 
over 90% of obese, 60% of	diabetic, and up to 20% of normal-weight people develop 
NAFLD[18,20]. Unfortunately, the only way to confirm NAFLD is via evasive methods, 
specifically via liver biopsy[21]. NAFLD, as obesity and T2D can be treated with weight 
loss, dietary interventions and exercise. Severe cases of NAFL and NASH can meet 
improvement after bariatric surgery and administration of pioglitazone	and	vitamin 
E[22], however, since 2017 NAFLD still remains the second most common reason 
for	liver transplantation	in both US and Europe[22].  

Cancer: Obesity is tightly linked to various types of cancer through a series of different 
molecular mechanisms[23]. From 2011 to 2015 about 37,670 new cancer cases in men 
(4.7%) and 74,690 new cancer cases in women (9.6%) were caused by obesity and 
overweight among people ages 30 and older[24]. There was a wide variation in cancer 
cases attributed to obesity as high as 51% for liver or gallbladder cancer and 49.2% for 
endometrial cancer in women and 48.8% for liver or gallbladder cancer and 30.6% for 
esophageal adenocarcinoma in men. In a global scale for 2012, excess body weight was 
responsible for approximately 3.9% of all cancers (544,300 cases), with the burden of 
these cancer cases higher for women (368,500 cases) than for men (175,800 cases)[25].  

 

Obesity and treatment 

The primary suggestions of the World Health Organization (WHO) for restricting the 
obesity epidemic are eating in a healthier manner (consuming fruit, vegetables, legumes, 
whole grains and nuts), increasing the frequency and the intensity of physical exercise in 
combination with having supportive environments, communities and policies[2,26]. One 
less common way to treat obesity is via pharmacological regiments. The use of 
medications that alter appetite or calorie absorption can potentially regulate the weight, 
even though it might have a multitude of side-effects. The main tools for treating obesity 
medically are appetite suppressant drugs with cateholamine releasing agents such as 
amphetamines and phentermine[27]. Tirzepatide, semaglutide, and liraglutide, all GLP-
1 analogues, can affect the rate of gastric emptying and can also have neurologically-
driven effects on appetite[28]. Nevertheless, the most effective way to tackle with 
obesity, besides diet and physical activity, is via surgical intervention. 
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Bariatric surgery  

Bariatric surgery (weight-loss surgery) is considered the most effective obesity treatment 
option for durable weight loss[29] and overall reduces mortality from 40% to 23%[30]. 
Bariatric procedures can reduce cardiovascular risk, cause remission of T2D, reduce 
NAFL and lower the incidence and severity of depression syndromes, parallel to weight 
reduction[31]. Below are the three most common types of bariatric surgery procedures 
that are performed today: 

Roux-en-Y Gastric Bypass Surgery (RYGB): Gastric bypass is a non-reversible surgical 
operation, that can also be performed laparoscopically, that helps patients reset hunger 
and satiety by altering how both the stomach and small intestine handle food, in order 
to achieve and maintain weight loss goals. RYGB is designed in a manner that restricts 
food intake and malabsorption properties. In addition, RYGB is regulating gut 
hormones and their effect in hunger and satiety, even though complete hormonal 
mechanisms are still to be understood[32]. RYGB reduces the size of the stomach to a 
small pouch, which is then appended directly to part of the small intestine. This way 
fewer calories and nutrients from the food get absorbed. 

 

Figure 2: RYGB procedure. Creating a gastric pouch, by-passing portion of the stomach and appending 
the pouch straight to jejunum. 

 

This procedure leads to an increase in baseline satiety hormones, so that the patient feels 
full by consuming a smaller amount of food[31] RYGB is one of the most popular 
bariatric surgery procedures, with approximately 140,000 performed in 2005[31,33]. 
RYGB post-surgical guidelines call for strict adherence to a healthy pattern of eating 
(low-sugar and low-starch diet) and is considered the method with the most rapid weight 
loss with comorbidities improving even prior to massive weight-loss, such as T2D 
remission.  
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Sleeve gastrectomy: Sleeve gastrectomy (gastric sleeve) is a bariatric surgery	procedure 
where the stomach size is reduced by 85%, by removing completely a large part of it. 
The open edges are reattached thus creating the stomachs tubular or “sleeve”, shape. 
Recent research has that gastric sleeve affects the gut signaling hormones[34],	besides	
reducing	 the	 size	 of	 the	 stomach.	 The procedure is performed	laparoscopically,	 is 
irreversible and has less risk of side effects like ulcers or intestinal strictures[31]. Gastric 
sleeve post-operative weight loss is comparable to RYGB, although it is not as effective 
as RYGB at treating GERD or T2D. 

Biliopancreatic Diversion with Duodenal Switch (BPD/DS): BPD/DS is a less 
common bariatric procedure, anatomically and functionally irreversible[33]. 
The	stomach	gets re-sected and the remaining stomach part is "tubulized", disconnected 
from the duodenum and appended to the small intestine. Compared to the Sleeve 
Gastrectomy and RYGB, BPD/DS produces the best results in terms of durable weight 
loss and resolution of T2D. Similar to RYGB, BPD/DS causes significant alteration in 
gut hormones that control hunger and satiety, complementary  to its restriction and 
malabsorption properties[35].  

Bariatric surgery complications 

Bariatric surgery, as all surgical interventions can have post-operative complications. 
The most common side effects are nutrient malabsorption, nutritional deficiencies and 
is dumping syndrome [36], where food moves too quickly from the stomach to the small 
intestine. Other complications are osteopenia and hyperparathyroidism, due to low 
calcium absorption in the blood stream since the food is by-passing the stomach 
proceeding to the small intestine[34]. Bariatric surgery can affect kidney function 
causing nephrolithiasis (kidney stones) and in severe cases even renal failure[31,34]. 
Gallstones can also be formed in the post-surgical rapid weight-loss phase, which also 
require evasive treatment via cholesystectomy (gallbladder removal)[37]. 

 

Cost of obesity and challenges in healthcare 

Given the prevalence of obesity and all the diseases that are directly associated and 
caused by excessive weight, once can infer that there is an increasing burden in health 
care. Approximately 41.9% of United States (US) adults are obese (as measured from 
2017-2020), a rate that has increased significantly from a level of 30.5% in 1999-2000, 
according to Center of Disease Control (CDC)[38,39].	Obesity-related illnesses lead to 
increased risk for hospitalization and treatment. Obesity’s comorbidities account for 
14.3% of US healthcare spending, and also result in significant losses to the economy 
through decreased productivity[31]. The lack of early, non-evasive, diagnostic tools for 
obesity’s comorbidities can further add to the cost of healthcare, seeing that 
comorbidities such as NAFL require evasive biopsies for confirmation. Given that 
bariatric surgery is the most effective way to deal with obesity, once needs to account 
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for the costs related, ranging from $11,500 to $26,000 in the US[39]. Additionally, the 
cost for postoperative complications can add up to the expenses, even though the long-
term health benefits from weight loss are estimated to outweigh the direct cost of obesity 
and required treatment for directly linked diseases. Considering the risks, costs and 
effects of obesity there is an equivocal need for the [40]obesity epidemic to be contained 
and the healthcare costs implied to be restricted. The means of materializing this is 
getting a deeper understanding of the underlying mechanisms of obesity and identifying 
other ways for early diagnosis and treatments. This is achievable by conducting more 
studies on larger population obese cohorts and by emphasizing the generation of 
extensive multilayered datasets. 

 

Challenges posed by obesity longitudinal cohorts 

There is significant variation among obese individuals in the development and severity 
of these comorbidities. This complexity, poses a substantial challenge	to systematization 
and analysis of obesity, particularly since appropriate stratification of study participants 
is often complicated by multiple confounding comorbidities and medications. 
Confounding factors in combination with the natural interindividual variation in obesity 
can cause multiple metabolic perturbations. These perturbations of metabolism can 
conceal molecular mechanisms and signaling across different tissues, hence making it 
more difficult to identify and comprehend the pathophysiology behind obesity and 
comorbidities. From a clinical perspective, it is common to group individuals with 
obesity based on metabolic syndrome categories or treatment(s) for already existing 
comorbidities. Still, the emerging complexity of the contributing factors does not provide 
for a comprehensive framework to study obese populations. Using clinical parameters, 
numerous approaches have been proposed to model obesity and predict cardiovascular 
risk[41,42]. Once more, these approaches focused on identifying comorbidities 
associated with obesity, such as T2D and traditional clinical diagnostic 
markers.	 However, most of these studies did not account for the strong confounding 
effects from lifestyle or medication.	  

 

Systems Biology for studying in-depth complex cohorts 

A systems biology approach offers more possibilities for obtaining an in-depth 
phenotypic profile of obese individuals by using omics analysis. Systems biology 
encompasses the	computational	and	mathematical	analysis and modeling of 
complex	biological systems. It is a relatively new, emerging, interdisciplinary field that 
starting from biology, focuses on multiplex interactions within biological systems, using 
a holistic approach [43]. Systems biology primary goal is employing various techniques 
of modeling complex biological systems for discovering the	emergent properties 
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of	cells,	tissues	and	organisms	functioning as a	system, such as metabolic 
networks	or	cell signaling	networks[43,44].  

 

Figure 3.	Types of omics that contribute to integrated multi-omics. The top three omics are nucleic acid-
based omics methods. 

The most common methods for collecting quantitative data for the construction and 
validation of systems biology models are genomics, epigenomics, 
transcriptomics,	metabolomics,	proteomics	and	high-throughput techniques[45]. 
Metabolomics	is "systematic study of the unique chemical fingerprints that specific 
cellular processes leave behind"[46].	The	metabolome	represents the complete set of 
small compound molecules in a biological cell, tissue, organ, or organism, which are the 
end products of cellular processes[47]. Metabolomics, in the context of obesity, is 
consistently being used as a means of evaluating metabolic health, measuring the effect 
dietary intervention strategies and to identify predictive biomarkers characterizing a 
specific condition[48]. Transcriptomics	is the study of the ‘transcriptome,’ an entire set 
of transcripts, this includes their transcription and expression levels, functions, locations, 
trafficking, degradation and structure of the parent genes[49]. The expression of 
multiple transcripts in different physiological or pathological conditions via high-
throughput methods is used to investigate the relationships between transcriptome and 
phenotype in living entities[50]. The gut microbiome and its interactions with the host is 
another contributing factor to the obesity complexity spectrum[51–54]. The causal role 
of the gut microbiome in obesity and insulin resistance has been investigated via 
experimental models in animals[55,56]. Animal studies have, therefore, been extensively 
used to investigate the complex interaction between genes, diet, lifestyle, and the gut 
microbiota as well as the molecular mechanisms underlying obesity[57–59]. However, 
one of the main limitations of animal studies is the extent to which these results translate 
to humans[60]. These efforts have included not only biochemical profiling, but a 
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combination of metabolites and specific clinical parameters, with the aim to identify 
optimal candidate groups for further interventions[61,62]. Studies in humans have also 
identified associations between the microbiota and cardiometabolic disorders, but a 
causal role for the microbiome has not yet been established[63]. Recent studies have 
pinpointed the production and regulation of specific metabolites of bacterial origin in 
humans and shown that these play an important role in metabolic diseases such as 
T2D,	cardiovascular disease and other pathogenic conditions[53,54,64,65]. 

Given these complex interactions between the gut microbiota, host, and multiple 
obesity-associated comorbidities, there is a clear need to apply a more holistic systems 
biology approach to population-based studies of obesity to not only improve the 
identification of	distinct subpopulations with obesity but also drive the development of 
personalized interventions. Basing such analysis on multi-omics datasets instead of 
clinical metadata is preferable since clinical metadata can act as confounders[66,67]. 	 

 

Challenges in multiple data-types integration 

Although, systems biology can enable identification of novel biomarkers it has been 
challenging to integrate multi-omics data to gain novel mechanistic insights into the 
pathogenesis of disease, particularly since analysis of such data has traditionally been 
done by comparing predefined groups based on specific clinical parameters[68,69]. Due 
to natural population variation, comorbidities, and the heterogeneity of complex 
multigenic diseases like obesity and T2D it has, however, been difficult to extract 
molecular information from this approach[68]. 

Till recently there were limited options of computational tools that could perform “real” 
multiple omics type integration in a systematic manner. By way of high-throughput 
techniques and a rising trend in the  consolidation of larger cohorts with multiple data 
types the development of integrative omics tools has escalated[70]. The use of machine 
learning methods is therefore gaining more attention for the integration and analysis of 
various omics datasets thus  providing the means for the discovery of new biomarkers, 
more accurate disease prediction and delivery of precision medicine[71].	Machine 
learning methods in multi-omics integration can deconvolute multifactorial 
disease[72,73], in particular as it enables stratification of individuals in a given cohort, 
without a priori knowledge of clinical labels. 
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Aim and Scope 

We have established that stratifying obesity cohorts characterised by multiple 
comorbidities, various pharmaceutical treatments along with analysing their complex 
clinical and biological datasets is a very challenging task. This thesis aims to address the 
systematic modelling and studying in-depth such cohorts, based solely on biological data 
and not only clinical diagnostic criteria. Additional goals are discovering and 
comprehending molecular mechanisms behind metabolic diseases linked to obesity and 
obtaining minimal sets of biomarkers for predicting the occurrence of these diseases that 
need evasive biopsies and treatments. 

Therefore, through the detailed collection over time of multiple types of omics datasets, 
demographic data, biometric data from the BARIA cohort (Paper I), we developed a 
systems biology integrative framework that utilises Artificial neural Networks (ANNs) 
and unsupervised machine learning techniques (SOMs), for stratifying a heterogeneous 
obesity cohort and predicting the bariatric surgery’s outcome (Paper II). In order to 
identify, study and comprehend the molecular mechanisms that link T2D and obesity we 
employed animal models and in vitro experiments (Paper III). Lastly, we constructed a 
pipeline that can identify a minimal set of prognostic biomarkers for obesity’s 
comorbidities such as NAFLD and gallstones formation after bariatric surgery (Papers 
IV and V). 

 

Figure 4: Thesis’ aim, scope and structure 



 10 

  



 11 

PART I: Cohort, methods and computational tools 
 

The BARIA Cohort 

The material for analysing a complex cohort, that includes obese individuals in a 
longitudinal follow up comes from the BARIA study[74]. The BARIA participants are 
patients with morbid obesity scheduled for bariatric surgery. The scope of the study is 
assessing how gut microbial species and microbially produced metabolites affect the 
transcription in key tissues and and how baseline anthropometric and metabolic 
characteristics determine weight loss and glucose homeostasis after bariatric surgery[74]. 
The study was performed in accordance with the Declaration of Helsinki and was 
approved by the Ethical Review Board of the Academic Medical Center, Amsterdam 
(approval code: NL55755.018.15). All participants provided written informed consent. 

Paper I: BARIA 

The BARIA study aims to create and implement a systems biology approach for 
studying obesity and directly associated morbidities (T2D and NAFLD) by identifying 
gut microbial, immunological and metabolic markers and novel pathways in the 
pathogenesis of obesity in a large and well phenotyped bariatric surgery cohort (BARIA 
study). All the BARIA participants will be followed-up prospectively so as to identify 
mechanisms affecting the surgical outcome. 

During the bariatric surgery, different types of tissues are excised and are assessed for 
histology (paraffin embedded), gene regulation (RiboNucleic Acid (RNA)-sequencing) 
and protein expression (immunoblotting): 

• Hepatic tissue from the diaphragmatic surface of segment three or five of the liver 
• Jejunal tissue at the site of the jejunojejunostomy, approximately 50 cm from the 

Treitz ligament 
• Subcutaneous tissue (from one of the laparoscopic incisions in the upper 

abdomen) 
• Greater omentum and visceral fat tissue (omental appendices of the transverse 

colon) 

Furthermore, EDTA plasma metabolomic datasets are collected at baseline, scheduled 
follow-up visits and during the bariatric surgery. These include: 

• Peripheral Blood from individuals in fasting conditions 
• Peripheral Blood from individuals, two hours after the ingestion of a Mixed-Meal 

Tolerance Test (MMTT), so as to capture the post-prandial metabolic response 
• Portal vein blood samples, taken at the beginning of the surgery, only if 

considered safe by the surgeon. 
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Figure 4: A systems biology approach, identifying gut microbial, immunological and metabolic markers 
in a large and well phenotyped bariatric surgery cohort 

 

Additional types of data collected from the patients at both baseline and during post-
operative follow up controls are: 

• Faecal samples obtained at several time points, to analysed by shotgun 
sequencing	 

• Demographic and lifestyle metadata 
• Biometric metadata 
• MMTT: Within three months before surgery, a 2-hour MMTT was performed to 

assess insulin resistance and investigate dynamic alterations in circulating 
metabolites. The MMTT consisted of a compact 125ml drink (Nutricia®) 
containing in total 23.3 grams fat, 74.3 grams carbohydrates (of which 38.5 grams 
sugar) and 24.0 grams protein. The participants received this meal after fasting 
for a minimum of nine hours. Time-point zero refers to the moment at which the 
participant had fully consumed the meal. Blood samples were drawn via an 
intravenous line at baseline, 10, 20, 30, 60, 90 and 120 minutes. All samples were 
stored at -80oC until further processing. 

• Psychological questionnaires, prior during and after a MMTT 

BARIA study preliminary results 

The results of the preoperative MMTT of the patients included and operated in the first 
two years of the study were used to validate the reproducibility of the MMTT stimulated 
postprandial glucose, triglycerides and insulin curves. The BARIA individuals were 
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stratified into groups based on their glycaemic control as formulated in the American 
Diabetes Association (ADA) criteria: 

• normoglycemia (fasting glucose (FG) <100	mg	dL1; <5.6	mmol	L1) 
• impaired Fasting Glucose (FG) (100–125	mg	dL1; 5.6–6.9	mmol	L1) 
• and / or increased haemoglobin A1c (5.7–6.4%; 39–47	mmol	mol1) 
• diabetes mellitus (FG ≥126	mg	dL1; ≥7.0	mmol	L1) 

MMTTs prior to the bariatric surgery from 170 patients were analysed and clear 
differences were observed in glucose homeostasis between individuals. Individuals 
belonging to different groups of glycaemic control exhibited different profiles for 
MMTT stimulated plasma insulin, glucose and triglycerides. Triglycerides were higher 
at baseline and all following time points in individuals with Impaired Fasting Glucose 
(IFG), with or without increased Hba1c, as can be seen in Table 1: 

Table 1. Baseline characteristics and results of mixed meal test in 170 participants in the 
first two years of inclusion in the BARIA longitudinal cohort study.  

 
healthy IFG IHbA1c Comb T2D 

n 57 21 19 26 47 

age (years) 41.4 (11.1) 46.8 (11.7) 44.6 (9.5) 49.2 (9.2) 49.5 (10.2) 

sex (female) 45 (78.9) 20 (95.2) 17 (89.5) 16 (61.5) 31 (66.0) 

BMI 39.5 (3.9) 39.4 (3.1) 40.6 (7.1) 40.6 (3.6) 39.2 (4.5) 

hypertension 8 (14.0) 5 (23.8) 3 (15.8) 8 (30.8) 25 (53.2) 

Systolic BP (mmHg) 129.5 (16.6) 130.6 (13.6) 134.2 (15.8) 133.2 (12.0) 132.1 (13.7) 

Diastolic BO 
(mmHg) 

80.1 (11.3) 80.5 (8.2) 78.1 (13.2) 84.0 (7.9) 82.6 (9.4) 

insulin use 
    

10 (21.3) 

glucose (mmol/l) 5.1 (0.4) 5.9 (0.2) 5.2 (0.2) 6.1 (0.4) 7.4 (1.5) 

insulin (pmol/l) 84.8 (48.0) 89.4 (46.5) 79.2 (37.2) 111.2 (46.9) 180.2 (222.5) 

HbA1c (%) 5.31 (0.23) 5.41 (0.19) 5.79 (0.09) 5.88 (0.17) 7.10 (1.14) 

HOMA2 IR  1.60 (0.90) 1.71 (0.83) 1.48 (0.67) 2.14 (0.85) 2.44 (1.24) 

HOMA2 Beta (%) 125.4 (50.9) 98.1 (37.2) 112.6 (33.9) 105.8 (38.7) 87.3 (37.2) 

AUC glucose 
(mmol/l) 

137.1 (109.5) 122.5 (85.9) 194.6 (112.9) 211.7 (105.0) 386.3 (193.7) 

AUC insulin (mmol/l) 42.3 (30.4) 46.0 (29.4) 48.7 (21.4) 50.8 (20.8) 37.6 (31.5) 

eGFR (MDRD 
ml/min/1,73m2) 

94.5 (18.0) 92.7 (19.8) 95.6 (21.7) 94.7 (19.7) 95.7 (17.6) 

ASAT (U/l) 23.6 (4.9) 23.5 (6.5) 25.1 (5.5) 25.3 (4.9) 29.9 (14.0) 

ALAT (U/l) 28.6 (13.4) 28.3 (14.7) 33.7 (18.5) 30.4 (10.1) 42.1 (25.8) 

Cholesterol (mmol/l) 4.6 (1.0) 5.1 (1.2) 5.2 (1.0) 4.8 (1.1) 4.1 (0.9) 

HDLc (mmol/l) 1.12 (0.29) 1.13 (0.23) 1.16 (0.16) 1.08 (0.29) 1.05 (0.23) 

Triglycerides 
(mmol/L) 

1.08 (0.44) 1.58 (0.91) 1.10 (0.42) 1.79 (1.17) 1.40 (0.62) 

Inclusions stratified by glycaemic classification, as formulated in the American Diabetes Association criteria: 
normoglycemic (Healthy), impaired fasting glucose (IFG), increased haemoglobin A1c (IHbA1c), 
combination of IFG and IHbA1c (Comb) and Type-2 Diabetes Mellitus (T2DM). Categorical variables are 
displayed as absolute numbers (percentage), continuous variables as means (SD). 
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MMTTs were repeated for in 10 BARIA individuals and showed satisfactory intra-
individual reproducibility, with differences in plasma glucose, insulin and triglycerides 
within 20% of the mean difference. This constitutes the MMTT as a better estimate for 
glycaemic regulation than the oral glucose tolerance test[75] 

 

 

Figure 5: Reproducibility of mixed meal test (MMT). Bland Altman plots of MMT (repeated within 1 
week) for glucose, insulin and triglycerides. Blue line is mean of difference between measurements, red line 
is +/- 1.96*SD of mean difference, green line is +/- 20% of mean difference. A) Glucose area under the curve 
(AUC) in mmol/L*time. B) Glucose AUC percent change. C) Insulin AUC in mmol/L*time. D) Insulin 
AUC percent change. E) Triglycerides AUC in mmol/L*time. F) Triglycerides AUC percent change.  

 

BARIA scope 

The BARIA cohort study is the means of generating a large phenomic systems biology 
database for subjects with morbid obesity, prior and after bariatric surgery. This 
knowledge database in combination with ANNs and machine learning will be the main 
platform for selecting microbiome-produced metabolites and for identifying their 
receptors in target tissues to deepen our understanding for obesity and its associated 
dysmetabolic morbidities.  
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Multi-omics extraction protocols and statistical analysis tools 

Metabolome 

EDTA plasma samples under both fasting and post-prandial conditions were collected 
BARIA participants. Samples were shipped to METABOLON (Morisville, NC, USA) 
for performing analysis using ultra high-performance liquid chromatography coupled to 
tandem mass spectrometry (LC-MS/MS) untargeted metabolomics, as previously 
described[76]. The metabolomic counts obtained, underwent significant curation via 
metabolites’ pre-filtering, imputation for subsets of metabolites’ missing values and data 
normalization, in order to minimize the effect of artifacts in the downstream analysis. 
Metabolomics prefiltering and imputation were performed by utilizing a variation of the 
Perseus platform[77]. Essentially, data has been pre-filtered so as to have a maximum of 
25% missing values for a metabolite across all samples. This was followed by a log 
transformation of all the measured metabolites’ raw intensities across the entire dataset. 
Then, we calculated the total data mean and standard deviation (by omitting missing 
values). Taking into account that the metabolite intensities distribution is approximately 
following normality, we chose a small distribution 2.5 standard deviations away from the 
original data mean towards the left tail of the original data distribution, with 0.5 standard 
deviations width. This new shrunken range corresponds to the actual lowest level of 
detection by the spectrometer. Here by drawing random values from this mini 
distribution, we filled the missing prefiltered data of choice. Normalization was 
conducted to the total signal for each sample, since each sample is a separate injection 
on the mass spectrometer. Effective control for changes in sample matrix affects 
ionization efficiency, hence there can be inevitable differences in how much each sample 
is loaded onto the column with each injection, etc. Therefore, we summed up the total 
ion intensity (i.e. total signal) for each of the samples and identified the sample with the 
lowest total signal. After this we could proceed to calculating the correction factor for 
each sample by dividing the total signal with the lowest total signal, 

𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝑭𝒂𝒄𝒕𝒐𝒓𝒊 =
Total	signal	for	each	individual	𝒔𝒂𝒎𝒑𝒍𝒆𝒊

Lowest	total	signal	intensity
. The next step is to divide each 

individual metabolite within a sample with the respective 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟( . All the 
calculations for imputing and normalizing the metabolomics dataset have been 
conducted with MATLAB_R2018b and the standard built-in packages. Differential 
significance analysis was conducted in R (version 3.6.3) and RStudio (version 1.2.5033). 
Statistical analysis has been performed with two methods: ANOVA(Analysis of 
Variance) and Kruskal Wallis test, with the use of HybridMTest package[78]. 
HybridMTest performs hybrid multiple hypothesis testing using empirical Bayes 
probability. The significance level and cut-off used for the dataset of fasting peripheral 
plasma was P<0.05 and was applied to metabolites that were significantly differential 
with both ANOVA and Kruskal Wallis methods. 
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Transcriptome 

Biopsies from liver,  jejunum, mesenteric adipose fat and subcutaneous adipose fat were 
collected at the time of the bariatric surgery[74]. RNA was extracted from biopsies using 
TriPure Isolation Reagent (Roche, Basel, Switzerland) and Lysing Matrix D, 2 mL tubes 
(MP Biomedical, Irvine, CA, USAs) in a FastPrep®-24 Instrument (MP Biomedical, 
Irvine, CA, USAs) with homogenization for 20 seconds at 4.0 m/sec, with repeated bursts 
until no tissue was visible; homogenates were kept on ice for 5 minutes between 
homogenization bursts if multiple cycles were needed. RNA was purified with 
chloroform (Merck, Darmstadt, Germany) in phase lock gel tubes (5PRIME) with 
centrifugations at 4°C, and further purified and concentrated using the RNeasy 
MinElute kit (Qiagen, Venlo, The Netherlands). The quality of RNA was analysed on a 
BioAnalyzer instrument (Agilent), with quantification on Nanodrop (Thermo Fisher 
Scientific, Waltham, MA, USA). Due to degradation of the RNA, libraries for RNAseq 
sequencing were prepared by rRNA depletion; library preparation and sequencing were 
performed at Novogene (Nanjing, China) on an HiSeq instrument (Illumina Inc., San 
Diego, CA, USA) with 150 bp paired-end reads and 10G data/sample. The average read 
count per sample from liver and jejunum tissues were 42 ± 15 million. For mesenteric 
and subcutaneous fat, the average read count per sample were 43.2 ± 20 million. The 
extracted fastq files were analyzed with nf-core/rnaseq[79], a bioinformatics analysis 
pipeline used for RNA sequencing data. The workflow processed raw data from FastQ 
inputs (FastQC, TrimGalore!), aligned the reads (STAR) with Homo sapiens GRCh38 
as reference genome, generates gene counts (featureCounts, StringTie) and performed 
extensive quality-control on the results (RSeqQC, dupRadar, Preseq, edgeR, multiQC). 
The pipeline was built using Nextflow. Differential gene expression analysis has been 
performed for liver, jejunum, subcutaneous adipose and mesenteric adipose tissues, 
respectively, in R (version 3.6.3) and RStudio (version 1.2.5033) with DESeq2[80] 
package. The statistical analysis method for calculating differential expression rates was 
the LRT test (log-ratio test). After False Discovery Rate (FDR) correction (FDR 5%) 
with multiple hypothesis testing with IHW[81] package, we analyzed genes with  P<0.05 
by DEGreport’s[82] degPatterns function, so as to identify subgroups of co-expressed 
genes. For these differentially significant co-expressed genes we performed gene 
enrichment with Enrichr platform[83,84] using KEGG (Kyoto encyclopedia of genes 
and genomes)  metabolic pathways[85].  

Gut Microbial Metagenome 

Fecal samples were collected on the day of surgery and immediately frozen at -80C. 
Total fecal genomic DNA was extracted from 100 mg of feces using a modification of 
the IHMS DNA extraction protocol Q[86]. Briefly, fecal samples were extracted in 
Lysing Matrix E tubes (MP Biomedical, Irvine, CA, USA) containing ASL buffer 
(Qiagen), and lysis of cells was obtained, after homogenization by vortexing for 2 
minutes, by two cycles of heating at 90°C for 10 minutes followed by three bursts of bead 
beating at 5.5 m/sec for 60 seconds in a FastPrep®-24 Instrument (MP Biomedical, 
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Irvine, CA, USAs). After each bead-beating burst, samples were placed on ice for 5 
minutes. The supernatants containing fecal DNA were collected after the two cycles by 
centrifugation at 4°C. Supernatants from the two centrifugations steps were pooled and 
a 600 µL aliquot from each sample was purified using the QIAamp DNA Mini kit 
(Qiagen, Venlo, The Netherlands) in the QIAcube (Qiagen, Venlo, The Netherlands) 
instrument using the procedure for human DNA analysis. Samples were eluted in 200 
µL of AE buffer (10 mmol/L Tris·Cl; 0.5 mmol/L EDTA; pH 9.0). Libraries for shotgun 
metagenomic sequencing were prepared using a PCR-free method; library preparation 
and sequencing were performed at Novogene (Nanjing, China) on an HiSeq instrument 
(Illumina Inc., San Diego, CA, USA) with 150 bp paired-end reads and 6G data/sample. 
MEDUSA[51] pipeline was used for pre-processing of raw shotgun metagenomics 
sequence data. MEDUSA is an integrated pipeline for analysis of short metagenomic 
reads, which maps reads to reference databases, combines output from several 
sequencing runs and manipulates tables of read counts. The taxon ids were input to 
taxize[87] package, so as to get full taxonomic information and ranking for the species. 
This dataset was input to DESeq2 and phyloseq[88] packages for conducting 
downstream differential statistical analysis. Similar to the BARIA transcriptomics 
counts, log normalization has been conducted based on gene counts geometric 
distribution.  
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PART II: Obesity, multi-omics and metabotypes 
 

It has been established that one of the ways to tackle morbid obesity is bariatric surgery. 
This weight-loss surgical procedure via direct interventions in the gastric tract can 
effectively assist in reducing both weight and the risk or occurrence of other life-
threatening conditions directly associated with obesity[33]. However, there is a great 
variability in the response to bariatric surgery. Many studies have shown that some 
patients regain weight 2-10 years post operatively[89–91]. 

 

Paper II: SOM 

In this paper we aimed to address the issue of post-operative weight loss responses of 
the BARIA participants. Thus, we developed an integrative framework that utilizes 
SOMs and multiple omics datasets. This approach resulted in the identification of 
distinct metabotypes within our BARIA inclusions, with a characteristic minimal omic 
biomarkers signature, that exhibited different response to surgery over time. 

Here, 106 BARIA participants were recruited and underwent a complete metabolic and 
omic work-up at the start of the bariatric surgery process. In the analysis we included 
the biometric and clinical metadata in baseline, presented in Table 2, along with the 
metabolomics, transcriptomics and gut microbial metagenomics datasets extracted and 
analysed as described in Part I. 

Table 2. BARIA cohort: 106 participants clinical metadata summary for SOM-defined 
clusters.  

Clinical Metadata BARIA population 

Demographic 

Participants (%) 106(100%) 

Female (% Total Participants, % of SOM Cluster) 84(79.2%) 

Male (% Total Participants, % of SOM Cluster) 22(20.8%) 

Anthropometric & clinical lab values 

Age (years) 46(20-14) 

BMI (kg/m2) 39.42(32.9-70) 

Waist circumference(cm) 84.3 ± 57.7 

Upper thigh circumference (cm) 122.5(103-165) 

Total Body Fat (%) 51(31.7-104.8) 
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Baseline characteristics of the 106 BARIA participants included in the study. Data is expressed as mean ± 
standard deviation. Categorical variables are presented as numbers and percentages. Non-normally 
distributed variables are presented as median with interquartile range. BMI: Body Mass Index, HbA1c: 
Hemoglobin A1c, HOMA-IR: Homeostatic Model Assessment of Insulin Resistance, HOMA-β: 
Homeostatic Model Assessment of beta-cell function, LDL: Low-Density Lipoprotein, HDL: High-Density 
Lipoprotein. 

 

Metabotyping with SOMs 

In order to be able to study the 106 BARIA inclusions in depth, without being biased 
from the bariatric surgery population’s underlying diagnosis and medical treatments, we 
had to choose criteria for stratifying the patient inclusions. The stratification concept 
that we implemented is metabotyping, phenotyping based on the metabolome[62]. Since 
the metabolome is the most direct phenotypic reader, that captures crosstalk between 
metabolic regulation and gut microbiota, metabotyping has recently been employed to 
better understand heterogeneous cohorts and link different metabotypes to obesity and 
its comorbidities[61,92–94]. 

The fasting peripheral metabolome was used as a scaffold for metabotyping. The dataset 
was given as input to the SOM toolbox[95,96]. SOM conducted unsupervised 
competitive learning and produced low-dimensionality visualizations by employing 
vector quantization[96,97]. Every data item, mapped into one point (node or neuron) in 
the map[98]. The SOM was trained with the batch training algorithm, where the 
assignment of the input vectors to the ANN’s nodes, was done by the calculation of the 
Euclidean distances among prototype vectors and each neuron. In each step of the 

Fat Free Mass (kg) 58.9(47.5-93.8) 

Systolic blood Pressure (mmHg) 132.5(102-193) 

Diastolic blood Pressure (mmHg) 81(45-121) 

Fasting glucose (mmol/l) 5.8(4.5-14.8) 

HbA1c (mmol/mol) 5.7(4.6-9.8) 

HOMA-IR 1.6(0.6-6.9) 

HOMA2-β 93.5(29.1-357.8) 

Total Cholesterol (mmol/l) 4.9 ± 1.1 

Triglycerides (mmol/l) 1.4(0.6-6) 

HDL Cholesterol (mmol/l) 1.6(0.2-2.7) 

LDL Cholesterol (mmol/l) 3 ±1.1 

Creatinine (µmol/l) 66(46-172) 

Glomerular Filtration Rate (kl/1.73m2) 88.5(26-91) 
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training, the node with the smallest Euclidean distance from the input vector was the 
“winner”. Then, the input vector got assigned to the winner node and the weights of the 
prototype vector (and its spatial neighbors) got updated[99,100]. In this manner all the 
local re-arrangements got propagated in the grid, during the training epochs. 
Consequently, the more similar data items are placed closer in the map. This resulted in 
48 nodes, which is a concrete reduction in the original dimensions of the dataset, 
nevertheless not as interpretable. 

We then subjected the map into further partitioning with 𝑘 −𝑚𝑒𝑎𝑛𝑠	clustering, aiming 
to get an even more comprehensible stratification. 𝐾 −𝑚𝑒𝑎𝑛𝑠  is sensitive to 
initialization, so to avoid this pitfall we ran a cross validation simulation for 100 times 
for each 𝑘  (starting from 48 nodes of the SOM going to 1 node with step of -1) for each 
with different random initializations. The best partitioning for each 𝑘 was selected based 
on Davies-Bouldin cluster validity index[101], for minimizing the partitioning error, 
resulted in 5 clusters. 

 

Figure 6:  Self-organizing maps reveal five distinct metabotypes within BARIA cohort. (A) Architecture 
of a competitive artificial neural network. Each individual’s complete metabolomic profile is assigned a 
weight. The weights are in turn assigned to neurons in the competitive layer of the neural network. In the 
competitive layer, SOM algorithm calculates the similarity metric (here Euclidean distance) between each 
metabolomic profile and the neurons and then updates the weights. After training, the network assigns the 
individual’s metabolomic profile to the “winner” output node, the node that is essentially more similar to the 
input metabolomic profile. Once this step is complete, all the nodes are comprising the SOM. Finally, all the 
nodes of the SOM are subjected to k-means clustering resulting in the partitioned topology, the metabotypes 
(SOM & k-means defined clusters). (B) Clustergram of hierarchical cluster analysis depicting the 
distribution of medically treated cardiometabolic comorbidities of the individuals in each of the metabotypes 
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(SOM & k-means defined clusters). The treated comorbidities are: hypertension, T2D, GERD and 
cholesterol. In parallel columns are the gender and metabolic syndrome status of each individual, 
respectively. (C) Clinical variables associated with obesity and their statistical significance across the 
metabotypes (SOM & k-means defined clusters): age (C. i), BMI (C. ii), HDL cholesterol (C. iii), LDL 
cholesterol (C. iv), creatinine  and (C. v), glomerular filtration rate (c. vi); statistical significance among 
metabotypes is calculated with Kruskal-Wallis test; the symbols indicating significance among metabotypes 
are ‘*’: P<=0.05, ‘**’: P<=0.01, ‘***’: P<=0.001. 

 

Significant differences among metabotypes in the multi-omics datasets 

The metabolomics analysis revealed pronounced changes in lysophospholipids, 
phosphatidylcholines, dicarboxylate fatty acids, sphingomyelins, and branched-chain 
amino acid metabolites among the five different metabotypes, especially metabotypes 2 
and 3 were most abundant in lipids (especially lysophospholipids and sphingomyelins) 
and amino acids (urea, arginine and proline metabolism). When the transcriptomics 
analysis results were subjected to gene enrichment analysis, they showed that KEGG 
metabolic pathways related to immune functions, fatty acid biosynthesis and elongation, 
protein-signaling and pathogenic pathways were regulated in different ways for each 
metabotype. Specifically, consistent upregulation of amino acid metabolic pathways was 
noted for metabotypes 4 and 5. In the gut microbial metagenome, the abundance of 
Prevotella and Lactobacillus species varied the most between the metabotypes, and 
metabotypes 4 and 5 had a lower abundance compared to metabotypes 2 and 3. 

mixOmics: DIABLO 

Data Integration Analysis for Biomarker discovery using Latent cOmponents 
(DIABLO)[103] performed supervised multi-omics data integration, by maximizing the 
correlation between co-expressed elements in the multi-omics datasets. DIABLO took 
as input all the differentially significant components from the omics datasets (289 
metabolites, 119 microbial species and 776 genes) and produced as output a minimal 
signature of total 113 markers that distinguish the 5 metabotypes. 
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Figure 7: DIABLO analysis and correlations among multiple omics datasets for the five defined SOM 
clusters. Circular correlation plot by DIABLO, for selecting top contributing components from each omics 
dataset (metabolites, genes, bacterial species). Correlation cut-off was r=0.7. The chosen elements constituted 
a highly correlated discriminatory signature for the five metabotypes. This signature involves a series of: i) 
Prevotella species (P. veroralis, P. copri, P. multisaccharivorax, P. oulorum, P. denticola, P. sp.  oral taxon 
299, P .bryantii, P. melaninogenica), Intestinibacter bartlettii, Anaerococcus prevotii; ii) lipid metabolites 
(especially phospatidylcholines); iii) liver genes enriched in oxidative phosphorylation, lipid metabolism 
and cardiomyopathy pathways; iv) subcutaneous adipose fat IL6 and SELE genes involved in inflammatory 
and immune system pathways; v) mesenteric adipose fat genes enriched in prolactine signaling, T2DM and 
PI3K-Akt signaling pathways. 

 

Bariatric surgery outcomes and metabotypes 

For assessing the stratification into metabotypes, we evaluated their responses over time 
to bariatric surgery by post-operative biometric controls (weight, waist-upper leg 
circumference) at three time points: three months, six months and 12 months after 
surgery.  
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Figure 8: Weight and fat loss progression at distinct time points after bariatric surgery for the five 
defined SOM clusters (metabotypes). (A) Weight (kg) of BARIA individuals at baseline, three months, six 
months and one year after bariatric surgery for each metabotype. (B) Weight loss(kg) of BARIA individuals 
at baseline, three months, six months and one year after bariatric surgery for each metabotype. (C) Waist 
circumference (cm) of BARIA individuals at baseline, three months, six months and one year after bariatric 
surgery for each metabotype. (D) Reduction of waist circumference(cm) of BARIA individuals at baseline, 
three months, six months and one year after bariatric surgery for each metabotype. (E) Upper leg 
circumference (cm) of BARIA individuals at baseline, three months, six months and one year after bariatric 
surgery for each metabotype. (F) Reduction of upper leg circumference(cm)of BARIA individuals at 
baseline, three months, six months and one year after bariatric surgery for each metabotype. Statistical 
significance among metabotypes is calculated with t-test and adjusted with FDR; the symbols indicating 
significance among metabotypes are ‘*’: P<=0.05, ‘**’: P<=0.01, ‘***’: P<=0.001 

 

Metabotypes 2 and 5 have the highest weight loss one year post-operatively (35kg and 
38 kg in average, respectively), metabotype 2 exhibits the largest waist circumference 
loss at three months after surgery (12cm) while metabotypes 1 and 5 are the best 
responders when it comes to upper leg circumference reduction, with the loss being 
consistent at all three time points. This trend is the same for weight loss, even if it was 
not confirmed by statistical significance testing. 

Metabotyping challenges and significance 

Metabotyping the BARIA individuals was done based on the results of unsupervised 
machine learning stratification. As a consequence, it was very difficult to directly 
compare the results with more traditional clinical classifiers. BARIA participants were 

80

100

120

140

Baseline 3months 6months 12months
Time

W
ei

gh
t(k

g)
SOM ClusterA

0

10

20

30

40

50

12months
Time

W
ei

gh
t L

os
s(

kg
)

SOM ClusterB

80

100

120

140

Baseline 3months 6months 12months
Time

C

0

10

20

30

40

Time

D

100

110

120

130

140

Baseline 3months 6months 12months
Time

E

0

10

20

30

Time

F

W
ai

st
 C

irc
um

fe
re

nc
e(

cm
)

W
ai

st
 C

irc
um

fe
re

nc
e 

Lo
ss

(c
m

)
U

pp
er

 L
eg

 C
irc

um
fe

re
nc

e 
Lo

ss
(c

m
)

U
pp

er
 L

eg
 C

irc
um

fe
re

nc
e(

cm
)

3months 6months

12months3months 6months

12months3months 6months

Cluster 1

Cluster 2

Cluster 3

Cluster 5

Cluster 4

Cluster 1

Cluster 2

Cluster 3

Cluster 5

Cluster 4

Cluster 1

Cluster 2

Cluster 3

Cluster 5

Cluster 4

Cluster 1

Cluster 2

Cluster 3

Cluster 5

Cluster 4

Cluster 1

Cluster 2

Cluster 3

Cluster 5

Cluster 4

Cluster 1

Cluster 2

Cluster 3

Cluster 5

Cluster 4

p=0.041
p=0.0099

p=0.048
p=0.042

p=0.045



 25 

also stratified based on the presence or absence of metabolic syndrome and the same 
pipeline for analyzing the multi-omics datasets was applied. There were no notable 
statistically significant differences in the metabolome, transcriptome, weight and 
adiposity loss in none of the three time points for the metabolic syndrome classification. 
Our analysis showed that metabolic syndrome diagnosis can indeed capture a fraction 
of the microbial variability within obesity. Even so, our suggested metabotyping 
approach can identify more gut microbial species across the spectrum of obesity and its 
related comorbidities. When it comes to heterogenous cohorts, there is always the issue 
of the confounders effect, such as age, gender, multiple medication etc. In this analysis 
the metabotyping effect remained in both the metabolome and the gut microbial 
metagenome even after regressing out confounders like age and gender. Rather than 
traditional clinical disease classifiers, this grouping method may reduce the confounding 
effects of such clinical metadata[66,67]. 

ANNS in combination with a multi-omics integrative framework were able to effectively 
stratify this bariatric surgery complex cohort and reduce the original dimensionality of 
the BARIA dataset. The metabotypes were also associated with different responses in 
terms of weight loss and reduction of waist and upper leg circumference to bariatric 
surgery. The main advantage of this methodology is the SOMs and k-means topological 
projection is reusable for projecting new metabolomes, without further training of the 
map. Given the lack of an external independent validation cohort, we can utilize this 
map not only for comparing the metabolic distance to new subjects but also to post-
operative metabolomes. This way we can identify the drivers of metabolism differences 
within this heterogeneous cohort. Moreover, this framework outperformed traditional 
clinical classifiers, such as metabolic syndrome, in capturing more metabolites, genes and 
gut microbial species that differed in the study population. 
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PART III: Dysmetabolic morbidities of obesity 
 

Paper III: Obesity, T2D & GPCRs 

One of the main comorbidities directly associated with obesity is T2D, where both 
diseases are linked with inflammation[104] and altered plasma levels of several 
metabolites[105]. Nevertheless, the molecular mechanisms behind these effects are not 
yet elucidated.  

G-Protein Coupled Receptors (GPCRs) are receptors expressed in e.g. immune cells, 
adipocytes, and endocrine cells and are involved in functions such as lipolysis, gut 
hormone secretion, insulin secretion, and chemotaxis[106,107]. GPCRs have been 
associated with different levels of SCFAs and other lipid metabolites[108–110] and have 
exhibited pro- or anti-inflammatory functions[106,111,112]. GPR84 is a medium-chain 
fatty acid (MCFA) predominantly pro-inflammatory receptor involved in inflammatory 
gene expression, cytokine release, and neutrophil migration[46–48]. Within the context 
of this Thesis, 3-hydroxydecanoate is a metabolite that was demonstrated to increase 
inflammatory responses via GPR84 activation and neutrophil migration and may 
potentially contribute to the chronic inflammation observed in T2D. 

Different levels of 3-hydroxydecanoate in T2D 

By analyzing the fasting and two-hour post-prandial metabolome of a MMTT from 106 
BARIA individuals, we identified the 3-hydroxydecanoate metabolite to be enriched in 
the circulation of obese individuals with T2D compared with non T2D controls. This 
difference is a strong indication of differential metabolism or absorption of 3-
hydroxydecanoate in T2D. 

For investigating whether 3-hydroxydecanoate levels in fasting and post-prandial states 
is regulated, an experimental setting involving mice was established. The mice were 
divided into two groups: conventionally raised (CONV-R) and germ free (GF). Mice 
were fasted overnight and then fed chow diet (not including 3-hydroxydecanoate). The 
levels of 3-hydroxydecanoate detected in the plasma serum of the mice were significantly 
reduced following the refeeding (Figure 9C), which could suggest that 3-
hydroxydecanoate is released during fasting-induced β-oxidation[113]. GF mice had 
higher levels of 3-hydroxydecanoate when compared with CONV-R mice (Figure 9D), 
suggesting that 3-hydroxydecanoate is not produced by the microbiota, but potentially 
regulated by it. 
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Figure 9: 3-hydroxydecanoate is enriched in obese patients with T2D and fasting induced in mice. (A 
and B) Peripheral plasma levels of 3-hydroxydecanoate (3-OH-C10) in obese individuals with or without 
T2D at A) fasting and B) after a 2	h mixed meal test (MMT). The data are presented as boxplots where the 
box shows the 25th, median and 75th	percentiles. The whiskers show minimum and maximum. (C) Plasma 
levels of 3-hydroxydecanoate in eye blood from CONV-R (N	= 14) mice. The mice were fasted for 16	h 
followed by refeeding and sampling for 4 h. (D) Plasma levels of 3-hydroxydecanoate in eye blood from 
GF and CONV-R mice after fasting for 4	h (N	= 6–10 mice/group). Data are shown as mean	± SEM (C and 
D). ∗∗p	<	0.01, ∗∗∗p	<	0.001, ∗∗∗∗p	<	0.0001. p values were determined by two-tailed Mann-Whitney test (A, 
B, and D) or Friedman’s test with Dunn’s post-hoc analysis (C).  

 

3-hydroxydecanoate increases fasting insulin resistance and adipose tissue inflammation 
in mice 

The next step was to assess if 3-hydroxydecanoate could affect glucose metabolism in 
mice. Mice were treated with daily intraperitoneal injections of 3-hydroxydecanoate for 
seven days. Fasting glucose did not differ between the 3-hydroxydecanoate treated and 
untreated mice groups. On the other hand, fasting insulin was significantly increased in 
the 3-hydroxydecanoate-treated group. Logically, 3-hydroxydecanate was next assessed 
for its effected in glucose tolerance via intraperitoneal glucose tolerance test, but no 
differences in glucose tolerance were noticeable. Based on this observation, 3-
hydroxydecanoate may affect early stages of impaired glucose metabolism that has not 
yet developed into glucose intolerance. 

It was also investigated if 3-hydroxydecanoate can modulate inflammation and affect 
inflammatory gene expression in adipose tissue and the liver. The assessment was done 
by looking into the expression of Tnf,	Ccl2, Il6	and	Il1b. The expression levels for all 
genes were increased in adipose tissue, implying that 3-hydroxydecanoate increases 
inflammation there.	 The subsequent step was looking into whether 3-hydroxydecanoate 
could increase the accumulation of immune cells in the tissues via marker staining 
(macrophage marker CD68, neutrophil marker Ly6G). Apparently, 3-
hydroyxdecanoate appears to increase infiltration of neutrophils and macrophages in 
adipose tissue. Transwell migration experiments (including primary murine immune 
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cells) showed that neutrophils migrated toward 3-hydroxydecanoate, but monocyte 
migration was not affected. 

3-hydroxydecanoate signals through GPR84- Gαi 

Due to the immuno-metabolic response of 3-hydroxydecanoate in mice, it was crucial to 
identify potential receptors for further studying the mechanisms behind its effects. 
xCELLigence[114,115] label-free signaling assay was performed and the result showed 
that 3-hydroxydecanoate can indeed activate cellular responses. A series of experiments 
with pre-incubated cells with inhibitors for different GPCRs was conducted and the 
outcome suggested that 3-hydroxydecanoate signals through both Gαi	and 
Gαq	pathways. Next the PRESTO-Tango assay was used to verify potential GPCR 
targets for 3-hydroxydecanoate, where the metabolite was identified to be a GPR84 
agonist. With the help of the inositol trisphosphate (IP3) accumulation assays it was 
possible to confirm that 3-hydroxydecanoate signals through GPR84- Gαi. 

Since the mechanisms relating 3-hydroxydecanoate to neutrophil migration and 
signaling through GPR84 and Gαi were established in animal models, we next 
investigated if 3-hydroxydecanoate could mediate migration of human peripheral 
neutrophils. A series of experiments with Transwell migration assays, pre-incubated 
neutrophils with or without PTX and human monocyte cell lines THP-1 could confirm 
that 3-hydroxydecanoate mediates neutrophil migration through GPR84- Gαi. but no 
monocyte migration. 
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Figure 10: 3-Hydroxydecanoate mediates neutrophil migration through GPR84 and Gαi. (A) Migration 
of human primary neutrophils toward 10	ng/mL IL-8 or DMSO vehicle (N	= 9). (B) Migration of human 
primary neutrophils toward 3-hydroxydecanoate (3-OH-C10), 2-hydroxydecanoate (2-OH-C10), and 
decanoate (C10) (N	= 3). (C and D) Migration of human primary neutrophils toward (C) 3-
hydroxydecanoate or (D)	embelin in the absence and presence of increasing concentrations of the GPR84 
antagonist	AR505962	(N	= 3–5). (E–G) Migration of human primary neutrophils toward (E)	octanoate 
(C8), (F)	laurate (C12), or (G)	myristate (C14) as well as their 2- and 3-hydroxy derivatives (N	= 3–4). (H) 
Migration toward 3-hydroxylaurate (3-OH-C12) in the absence or presence of 1	µM (6)	AR505962	(N	= 
3). (I) Paired comparison of MI toward IL-8 or 3-hydroxydecanoate after pre-incubation of human primary 
neutrophils with or without 200	ng/mL PTX for 16	h (N	= 3). (J) Migration of the human monocyte cell line 
THP-1 toward 20	ng/mL MCP-1 or 3-hydroxydecanoate (N	= 4). (K) Migration of THP-1 cells toward 
embelin in the absence or presence of the GPR84 antagonist	AR505962	(N	= 4). Data are shown as mean 
migration indexes (MI)	± SEM MI was calculated as the relative migration of samples compared to the 
vehicle control. ∗p	<	0.05, ∗∗p	<	0.01, ∗∗∗p	<	0.001, ∗∗∗∗p	<	0.0001. p values were determined by two-tailed 
Mann-Whitney test (A), 1-way ANOVA followed by Dunnett’s multiple comparisons test (B–H and J–K), 
and two-way repeated measures ANOVA followed by Sidak’s multiple comparison test (I). 

 

To summarize, we observed increased circulating levels of 3-hydroxydecanoate in 
individuals with T2D compared to	obese controls without T2D in fasting and post-
prandial metabolomics datasets. Yet, the source of 3-hydroxydecanoate, as well as its 
regulatory mechanisms in vivo is not yet established. The compound molecule of 3-
hydroxydecanoate has been detected in dairy dietary sources[116]. Nonetheless 
experiments conducted in CONV-R and GF mice confirmed that 3-hydroxydecanoate 
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is present in plasma and liver but not in adipose tissue or their diet. This finding suggests 
that the metabolite might be produced during mitochondrial β-oxidation[113]	 in	 the	
liver.	Furthermore, Gram-negative bacteria in the gut utilize 3-hydroxydecanoate for 
Lipopolysachcharide (LPS) biosynthesis[117]. Altogether, our data support that 3-
hydroxydecanoate may be produced as an intermediate molecule in mitochondrial β-
oxidation in the liver and that its bioavailability may be influenced by the gut microbiota. 
Our in vivo and in vitro experimental settings could confirm that administration of 3-
hydroxydecanoate to mice could increase fasting serum insulin levels, not impair their 
glucose tolerance and most importantly could promote tissue inflammation and immune 
cell migration adipose tissue. Last but not least, with a series of assays the mechanism 
for molecular signal transduction of 3-hydroxydecanoate mediated via GPR84- Gαi was 
spotted, which is of great relevance for potential drug design since targeting specific 
signaling pathway(s) allows for more precise cellular responses and reduces the risk of 
unwanted side effects. 

 

Paper IV: NAFLD 

NAFLD prevalence and connection to obesity 

NAFLD is now recognized as the most prevalent chronic liver disease worldwide and 
this prevalence increases to over 80% in individuals with obesity[18]. NAFLD comprises 
a range of clinical and histopathological abnormalities, caused by substantial fat 
accumulation in the liver. This fat build-up has been characterised as relatively benign, 
however, an estimated 30% of people with NAFL will develop NASH[118], a 
progressive form of liver disease that leads to fibrosis, cirrhosis, and hepatocellular 
carcinoma, that might even require liver transplantation. Women tend to  have a lower 
risk of developing NAFLD, but once the disease is established, women have a higher 
risk of disease progression[119].NAFLD prevalence is growing, and the lack of effective 
treatment options could increase the obesity-related burden on public health and 
economies. Therefore, it is crucial to develop appropriate, sex-specific, non-invasive 
diagnostic methods and treatment options for this disease. Here, we used a systems 
biology approach to identify factors that may contribute to NAFL development by deep 
phenotyping of 55 women, all participants in the BARIA study. We analysed 6 omic 
datasets including faecal metagenomics, plasma metabolomics, and liver, subcutaneous, 
and mesenteric adipose tissue transcriptomics, where the only difference between the 
subjects was the presence/absence of hepatic steatosis. Omics datasets included fasting 
and 2-hour MMTT plasma metabolome, liver and adipose tissue (subcutaneous and 
mesenteric) transcriptome, along with gut microbial metagenome. All the omics 
collected, extracted and analysed as described in Part I of the Thesis. For investigating 
differences in glucose metabolism between women with and without NAFL, glucose and 
insulin responses during a MMTT prior to bariatric surgery and one-year post-
intervention were also analysed. 
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Significant differences in omic datasets between women diagnosed with and without 
NAFL  

Microbial alpha diversity between women with and without NAFL was similar in the 
two groups, albeit large interindividual variation in the gut microniome composition was 
observed. The microbiome was dominated by Firmicutes in NAFL diagnosed BARIA 
individuals, while Bacteroidetes was the most dominant phylum in individuals without 
NAFL (Figure 11A). 57 bacterial species were differentially significant among 
individuals with and without NAFL (Figure 11A). Three bacterial species were at least 
twice as abundant in individuals with NAFL (Collinsela stercoris, Lactobacillus buchneri, 
Lactobacillus iners). In individuals without NAFL, 11 bacterial species were at least 
twice as abundant compared to individuals with NAFL (Prevotella oulorum, Prevotella 
sp. oral taxon 317, Prevotella sp. Oral taxon 472, Prevotella multisaccharivorax, 
Prevotella dentalis, and Prevotella bryanti, Lactobacillus delbrueckii, Enterococcus 
casseliflavus, Citrobacter rodentium, Yersinia enterocolitica, and Haemophilus 
pittmaniae).  
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Figure	11: Microbial species and phyla between individuals with and without NAFL. (A) Difference in 
total abundance of bacterial species indicated at the phylum level between individuals with and without 
NAFL. (B) Relative abundance and distribution within of differentially significant microbial species 
between individuals with and without NAFL. (C) 57 differentially significant microbial species between 
individuals with and without NAFL, after differential microbial species analysis with DESeq2 (adjusted 
p	<	0.1) Likelihood Ratio Test for significance. 

 

Phosphathidylcholine 1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) was lower in 
women with NAFL and was the only differentially significant metabolite in the fasting 
metabolome dataset. In the post-prandial metabolome two sphingomyelin metabolites 
were decreased in individuals with NAFL whereas diacylglycerol, a signaling lipid 
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previously linked to hepatic insulin resistance and NAFLD[120] was more abundant the 
NAFL diagnosed women. 1-carboxyethylisoleucine and 1-carboxyethylvaline, both 
Branched-Chained Amino Acids (BCAAs) derivative metabolites, were increased in 
individual with NAFL. Since BCAAS are associated with insulin resistance[121] we 
looked into the MMTT results. Insulin and glucose levels did not differ during the 
MMTT, suggesting that these alterations may be independent of altered glucose 
metabolism. 

In the transcriptomics datasets, KEGG pathway enrichment analysis using EnrichR, 
pinpointed to specific pathways that differed among individuals with and without NAFL. 
More specific: 

• In the hepatic transcriptome: Pathways involved in cancer proliferation, the 
hypoxia-inducible factor 1 (HIF-1) signaling pathway were enriched in 
individuals with NAFL while the only significant pathway that was enriched in 
individuals without NAFL was the pathway involved in arginine and proline 
metabolism 

• In the mesenteric adipose transcriptome: carbohydrate, galactose, sucrose, 
pathways associated with fat digestion and absorption and protein metabolism 
pathways were enriched in mesenteric adipose tissue from individuals with 
NAFL, while pathways involved in infectious disease were not enriched  

• In the subcutaneous adipose transcriptome interleukin (IL)-17, advanced 
glycation end products (AGE), tumor necrosis factor (TNF), signaling pathways 
were enriched in individuals with NAFL whereas response to oxidative stress was 
not enriched 

NAFL multi-omics signature 

The DIABLO computational framework used here for integrating various omics 
datasets successfully identified a highly correlated discriminatory signature for NAFL 
consisting of BCAA metabolites, diacylglycerol, liver genes involved in HIF-1 signalling, 
mesenteric adipose tissue genes involved in fat metabolism and subcutaneous adipose 
tissue genes that are part of mitochondrial translation/elongation. 
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Figure 12: DIABLO analysis and AUC predictive capacity for NAFL given each omic dataset. 
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For evaluating the DIABLO minimal biomarker signature for NAFL, we constructed a 
series of generalized linear models (GLMs) aimed to investigate whether this signature 
could outperform the clinical variables capacity to correctly predict NAFL. All the 
transcriptomics datasets and the chosen genes can very accurately predict NAFL, 
whereas the metabolome and metagenome datasets outperform the traditional clinical 
variables in NAFL predictive capacity, with an Area under the Curve (AUC) AUC = 
89.1% and 93.8%, respectively, versus AUC = 70.8%. 

The MMTT performed one year after weight-loss surgery revealed a clear difference in 
glucose and insulin response between individuals with and without NAFL, contrary to 
baseline findings. This outcome suggests that whole body metabolism is indeed different 
in this early phase of NAFL and is affected by the massive weight loss after bariatric 
surgery. 

Analysis of the gut microbiome showed that subjects with NAFL have a Firmicutes 
dominated microbiome, which is in line with previous literature[122,123]. However, they 
contradict recent reports where liver steatosis was anticorrelated with Firmicutes[124]. 
This might entail that there is not one unique microbiome signature for NAFLD given 
the multiple confounding factors such as age, sex, and disease state[125]. The subtle 
changes in the plasma post-prandial metabolome could emphasize that early changes in 
metabolism are more pronounced post meal than in fasting conditions. Since the 
composition of BCAA in cardiometabolic disease patients are often different, this 
attribute can be explained by insulin resistance in the liver or muscle[126]. Yet, insulin 
and glucose levels did not differ during the MMTT, so potentially these changes are 
independent of insulin resistance and could have been originated elsewhere, potentially 
the gut microbiome[127]. The analysis of the transcriptomics datasets is in line with the 
current concept that adipocyte dysfunction plays an important role in the 
pathophysiology of NAFLD[128,129]. Adipose tissue expansion (both subcutaneous 
and visceral) can lead to hypoxia-induced hypersecretion of adipocytokines, such as 
TNF and interleukin IL6, by the adipocytes as well as by the inflammatory immune cells 
that accumulate in adipose tissue of obese individuals [128,130]. These mediators, 
together with increased levels of lipid metabolites such as diacylglycerols observed 
during metabolic dysregulation, when they reach the liver via portal vein, can contribute 
to the development and progression of NAFLD[129]. The KEGG pathway enrichment 
of the differential significant genes of both mesenteric and subcutaneous adipose tissue 
revealed that pathways involved in fat and glucose metabolism and TNF signalling were 
upregulated in NAFL, respectively thus highlighting the potential role of the adipose 
tissue in the development of NAFLD. 

The associative results from DIABLO omics integrative analysis stress the interrelation 
between metabolites, bacterial species, and genes and can be used to generate 
hypothesis to further study the pathophysiology of NAFL in humans. 
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Paper V: Gallstones formation after bariatric surgery 

Gallstones: formation and relation to bariatric surgery 

Decreased secretion of bile acids, hypersecretion of cholesterol, rapid phase transitions 
of cholesterol in bile leading to the precipitation of cholesterol crystals, and impaired 
gallbladder motility with hypersecretion of mucus are some of the main factors leading 
to gallstones formation[131]. The gut microbiome can influence bile acid metabolism 
conversion of primary bile acids into secondary bile acids in the gut and has therefore 
been suggested as a potential driver of cholesterol gallstone formation[84,132,133].  

The rapid weight loss following bariatric surgery has been pinpointed as a risk factor for 
gallstone formation in about one-third of patients after bariatric surgery[37,134,135] and 
approx. 8–15% of these patients require cholecystectomy. The relationship between 
bariatric surgery and gallstone disease is yet to be investigated in depth. Therefore, 106 
individuals from the BARIA cohort were recruited. 

Gallstones and BARIA 

Out of these 106 inclusions, 88 BARIA individuals formed gallstones post-surgically. 32 
individuals (36.4%) had gallstones or sludge after surgery and 11 individuals underwent 
a cholecystectomy for symptoms of gallstone disease after a mean of 9.6 ± 4.8 months 
after bariatric surgery (range 5–20 months after surgery). The ultrasound showed 
gallstones in three of these patients. Among the remaining patients, three had sludge 
and 18 patients had gallstones on ultrasounds performed at one year after surgery in two 
patients and at two years in 19 patients. This study is the first to relate differences in 
metabolic activity of subcutaneous and visceral adipose tissue to the presence of 
gallstones in patients after bariatric surgery. Of the 88 included patients, 56 did not have 
gallstones at follow-up 1 (n	= 2) or 2 (n	= 54) years after bariatric surgery. Fecal 
microbiome analysis in these patients revealed species that might act protective against 
gallstone development. On the other hand, transcriptomic analysis of adipose tissue 
showed that altered lipid (cholesterol) metabolism might contribute to gallstone 
development after bariatric surgery. Moreover, several sulfated bile acids were higher 
concentrated in patients with gallstones. 

Significant differences in omic datasets between BARIA individuals that did and did not 
develop gallstones after bariatric surgery 

The multi omics datasets employed for this study included gut microbial metagenome, 
liver, mesenteric adipose and subcutaneous adipose tissue transcriptome as well as 
fasting metabolome from the BARIA individuals. All omics extractions were conducted 
as described in Part I of the Thesis. For the transcriptome datasets the paired-end reads 
first trimmed and cropped using trimmomatic[136], version 0.38 with the following 
settings: HEADCROP: 6, SLIDINGWINDOW: 4:15, and MINLEN: 50. The resulting 
read sets were then mapped using kallisto[137], version 0.46.0 against the GRCh38 
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assembly of the human genome with sequence bias correction, 100 bootstrap samples 
(options --bias, -b 100, and --rf-stranded). Downstream differential significance analysis 
for both the transcriptomics and microbiome data and differential abundance analyses 
were performed using the the DESeq2 with Wald significance testing and parametric 
fitting. Specifically, for the gut microbiome Significance levels were calculated using the 
adonis function from the vegan[138] R package, version 2.5-7 and were adjusted for sex 
.For the metabolomics data, differences in metabolite concentrations between the two 
participant groups were calculated using the Wilcoxon signed-rank test, of 
which	P	values were adjusted for multiple testing using the Benjamini-Hochberg[139] 
procedure. 
 
There were no significant differences observed with alpha and beta diversity metrics in 
the gut microbial metagenome between the individuals that did and did not develop 
gallstones after bariatric surgery. However, differential abundance analyses at species 
level (with DeSeq2 with independent hypothesis weighting) revealed 41 bacterial species 
that were significantly differently abundant between groups (adjusted	P	≤ 0.05 and log2 
fold change ≤1 or ≥1). Bacteroides intestinalis,	Finegoldia magna,	Ruminococcus 
gnavus, and	Prevotella buccalis	were more abundant in patients with gallstones,	than in 
patients without gallstones. In patients without gallstones, higher abundance of 37 
bacterial species was observed, of which the majority were members of the 
Lactobacillaceae (12 species) and Enterobacteriaceae (7 species), as illustrated in	Figure 
13B. 

 

 

Figure 13: 1Intestinal microbiota composition in patients with and without gallstones after bariatric 
surgery. A: Significantly differentially expressed bacteria. The first four species are more abundant in 
patients with gallstones (gray). The following 37 species were more abundant in patients without gallstones 
(red). B: Taxonomy of negatively associated bacteria. For example, of the 37 species that were more 
abundant in patients without gallstones, 12 were members of the Lactobacillaceae and 7 belonged to the 
Enterobacteriaceae. 
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Transcriptomic analysis of liver tissue revealed a significant increased expression of four 
genes in patients with gallstones compared with patients without 
gallstones:	TEX14,	MPPED1,	GREB1, and	AC005666.1. that are involved in different 
pathways regulating cell division. In subcutaneous adipose tissue nine differentially 
significant genes were upregulated in patients with gallstones 
(ALB,	APOA1,	TAT,	TRPV5,	CYP4F2,	CTSE,	HMGCS2,	MOGAT2, and	ALDOB) 
and four in patients without gallstones (DRP2,	MT1A,	SFRP5, and	ANGPTL7). Finally, 
in visceral adipose tissue, two genes were significantly more often expressed in patients 
with gallstones.  

Secondary bile acids metabolites showed higher concentrations among in patients with 
gallstones. When comparing to patients without gallstones, the bile acids 
glycochenodeoxycholate 3-sulfate, glycochenodeoxycholate glucuronide, glycocholate, 
glycodeoxycholate 3-sulfate, glycohyocholate, glycolithocholate sulfate, 
taurochenodeoxycholic acid 3-sulfate, and taurolithocholate 3-sulfate were increased, as 
seen in Figure 14: 

 

 

Figure 14:	3Plasma metabolites with different concentrations between patients with and without 
gallstones. Bile acids are increased in patients with gallstones after	P	value adjustment per subpathway. 

 

The higher abundance of	Ruminococcus gnavus in patients with gallstones after bariatric 
surgery, is in accordance with recent studies that identified it as a biomarker for 
gallstones[140].	Exogenous alcohol consumption has been associated with a decreased 
risk of gallstone formation[141], so the abundance of Klebsiella 
pneumoniae	(Enterobacteriaceae) and Lactobacillaceae, that are able to produce 
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microbial ethanol[142,143] is a possible protection factor against gallstones. Bile salt 
hydrolase (BSH) plays a role in bile acid-mediated signaling pathways, which regulate 
lipid absorption, glucose metabolism, and energy homeostasis and can be produced by 
Lactobacillaceae species[144], which are therefore studied as possible cholesterol-
lowering probiotics[145,146]. Accumulation of adiposity tissue is a known risk factor for 
gallstone formation in both men and women[147,148]. In visceral and subcutaneous 
adipose tissue of patients with gallstones, we identified metabolic pathways involved in 
inflammatory response and lipid metabolism, including cholesterol and fatty acid 
metabolism. Up to 50% of cholesterol in obese patients is stored as free cholesterol in 
the adipose tissue, which is the state of cholesterol when excreted via bile[149–151]. In 
the rapid weight loss phase following bariatric surgery, adipose tissue mass is reduced, 
possibly resulting in the release of a large amount of free cholesterol to the liver which 
can result in gallstone formation. So increased gene expression of genes involved in 
tissue regulation in patients without gallstones might be indicative of more adaptive 
tissue state, acting as a protective mechanism against gallstone formation during this 
post-operative weight loss stage. Also in line with previous studies, increased plasma 
levels of conjugated bile acids were observed in patients with gallstones, probably due 
to lower excretion of bile acids into the gallbladder[152,153].  

Conclusively for the first time, differences in metabolic activity of subcutaneous and 
visceral adipose tissue were associated with the presence of gallstones in patients after 
bariatric surgery. This analysis revealed gut microbial species that might act protective 
against gallstone development. Alterations in cholesterol metabolism could affect 
gallstone development after bariatric surgery, whilst several sulfated bile acids were 
higher concentrated in patients with gallstones.   
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Summary and Conclusions 
 

The contributions of this thesis can be summarized in metabotypes with different 
responses to bariatric surgery, the establishment of metabolites’ affinity mechanisms to 
GPCR receptors and minimal set of evasive and non-evasive biomarkers for NAFL and 
gallstones formation after bariatric surgery. 

The BARIA study (Paper I), as a tool for investigating into an obese population, can 
add more understanding in how specific molecule compounds and gut-microbiota affect 
metabolism, glucose metabolism and NAFLD. The observed differences in the BARIA 
participants glucose and lipidemic status indeed establishes the heterogeneity within the 
bariatric surgery inclusions. The intra-reproducibility of MMTT sets up its importance 
and as another investigative tool. 

The data-driven methodology of using BARIA cohort as an anchor for combining 
SOMs, metabotyping and DIABLO correlation analysis (Paper II) enabled the 
identification of an underlying common yet discriminatory minimal multi-omics 
signature among obese individuals, that could lead to predictive markers of the bariatric 
surgery outcome. This approach can also constitute a valuable tool for studying other 
multifaceted metabolic disorders. 

This association framework can be the starting point for selecting candidate compounds, 
such as metabolites for a more thorough examination and provide mechanistic insight 
into the causality of pathogenicity originating in the tissues, mediated by bacteria and 
materializing via metabolites and clinical metadata. Through this framework, it has been 
possible to directly link increased levels of a MCFA metabolite (3-hydroxydecanoate) 
to T2D and through detailed experimental settings to establish the GPR84 receptor 
activation and neutrophil migration molecular mechanisms behind this (Paper III). 

Within the contexts of NAFLD, this computational approach suggested that there is 
substantial crosstalk between omics sets and that in early stages of the disease, adipocyte 
dysfunction is the predominant factor in disease development followed by gut microbial 
composition and plasma metabolites (Paper IV). 

When it comes to post-operative complications of obesity, such as gallstones formation, 
the present study observed that higher abundance of specific gut microbial species in 
patients without gallstones prior to bariatric surgery could possibly act protectively, 
whereas specific lipid, inflammation, cholesterol pathways in adipose tissue, can lead in 
gallstone formation after bariatric surgery (Paper V).  
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Future Perspectives  
 

It is evident that there is this ingoing trend to phenotype in detail complex populations 
with respect to multigenic diseases and therefore there is a need for going beyond the 
traditional methods of statistical analysis and binary clinical disease classifiers, to be able 
to effectively phenotype these patients. The volume of data has massively increased 
leading to a new scientific field of “Big-Data”, hence the complexity and dependencies 
among data grow exponentially as well. Machine learning and integrative techniques are 
on the rise and are the only way to deconvolute the complex signals in heterogenous 
populations. This deconvolution is the basis for selecting out key components, such as 
metabolites, genes and microbial species for proceeding into detailed research and 
experimental setting aiming to identify pathophysiological mechanisms and then 
selecting targeted interventions, thus further contributing to the personalized medicine 
approach. 

The BARIA cohort is an excellent resource for investigating obesity and its associated 
co-morbidities. The materials included in the papers that comprise this thesis come from 
the first ~100 inclusion of the cohort. Currently, more than 300 bariatric surgeries have 
been performed and the respective omic datasets have been collected, whereas the 
metabolome, transcriptome and gut microbial metagenome have been extracted and are 
being analysed. These new inclusions can act as a validation cohort, given the uniqueness 
of BARIA in multi-omics and detailed follow-up. Hence, the hypotheses, initial 
assumptions and preliminary outcomes from these 5 Papers of this Thesis can be 
extended and validated further. Identifying key factors and biomarkers for obesity and 
each associated comorbidity may indeed provide diagnostic and therapeutic leads to 
control epidemic. We might be able to predict more accurately biometric features after 
bariatric surgery (weight loss) and broaden our prognostic capability in the status of 
associated comorbidities, such as the post-surgical resolution of T2D, NAFLD and the 
prevention of gallstone formation. We can implement the systems biology framework in 
combination with into other cohorts for stratifying inclusions and then overlay the 
related comorbidities for deepening our knowledge of these medical conditions. 

The results and methods presented within this thesis illustrate how data-driven 
approaches can facilitate early diagnosis and enable potential preventive actions through 
the study of heterogeneous cohorts. 
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