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Abstract

Weight loss through bariatric surgery is efficient for treatment or prevention of obesity

related diseases such as type 2 diabetes and cardiovascular disease. Long term weight loss

response does, however, vary among patients undergoing surgery. Thus, it is difficult to

identify predictive markers while most obese individuals have one or more comorbidities. To

overcome such challenges, an in-depth multiple omics analyses including fasting peripheral

plasma metabolome, fecal metagenome as well as liver, jejunum, and adipose tissue tran-

scriptome were performed for 106 individuals undergoing bariatric surgery. Machine leaning

was applied to explore the metabolic differences in individuals and evaluate if metabolism-

based patients’ stratification is related to their weight loss responses to bariatric surgery.

Using Self-Organizing Maps (SOMs) to analyze the plasma metabolome, we identified five

distinct metabotypes, which were differentially enriched for KEGG pathways related to

immune functions, fatty acid metabolism, protein-signaling, and obesity pathogenesis. The

gut metagenome of the most heavily medicated metabotypes, treated simultaneously for

multiple cardiometabolic comorbidities, was significantly enriched in Prevotella and Lacto-

bacillus species. This unbiased stratification into SOM-defined metabotypes identified sig-

natures for each metabolic phenotype and we found that the different metabotypes respond

differently to bariatric surgery in terms of weight loss after 12 months. An integrative frame-

work that utilizes SOMs and omics integration was developed for stratifying a heteroge-

neous bariatric surgery cohort. The multiple omics datasets described in this study reveal

that the metabotypes are characterized by a concrete metabolic status and different
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responses in weight loss and adipose tissue reduction over time. Our study thus opens a

path to enable patient stratification and hereby allow for improved clinical treatments.

Introduction

Obesity is generally associated with several different comorbidities, with type 2 diabetes (T2D)

and cardiovascular diseases among the most common, and cross interaction of metabolic

responses from these co-morbidities makes it difficult to study metabolic alterations associated

with obesity. Thus, there is an increasing interest to study heterogeneous diseases like obesity

through the collection of multiple omics data from various cohorts [1–3]. Due to the heteroge-

neity of phenotypes within obese individuals it is, however, generally difficult to stratify

cohorts into groups, e.g. individuals with or without the metabolic syndrome, that can be com-

pared using traditional statistical methods when omics data are to be analyzed. The use of

machine learning methods is therefore gaining more attention for understanding and decon-

voluting multifactorial disease [4,5], in particular as it enables stratification of individuals in a

given cohort, without a priori knowledge of clinical labels.

Obesity is a growing worldwide epidemic, with an estimated 1.9 billion adults being over-

weight and another 650 million being obese [6–8], and it is associated with increased risk of

multiple comorbidities including T2D, hypertension, dyslipidemia, non-alcoholic fatty liver

disease and various types of cancers [9,10]. Numerous clinical approaches have been proposed

to model obesity and predict bariatric surgery outcomes, by using clinical parameters, artificial

intelligence and comparing predefined patient groups [11–14]. Another clinical definition for

describing individuals with multiple dysmetabolic morbidities, including obesity, is the meta-

bolic syndrome, where obese individuals fulfill two out of these four criteria: 1) fasting glucose

>100 mg/dl; 2) triacylglycerol > 150 mg/dl; 3) high-density lipoprotein(HDL) cholesterol <40

mg/dl for males and<50 mg/dl for females; 4) blood pressure above 130 systolic or 85 diastolic

[15]. The multitude of co-existing metabolic perturbations may also mask associations

between metabolic activities in different tissues, including the gut microbiota, hence posing a

challenge in systematically studying obesity, its’ implications and the outcome of surgical

intervention with higher resolution. A systems biology approach on the other hand could offer

detailed phenotypic profiling possibilities using omics analysis. Metabolomics has recently

been proposed as an approach to better comprehend obesity and linked comorbidities [16–18]

and identify optimal candidate groups for further interventions [19,20]. The gut metagenome

is a contributing factor to the complexity of obesity [21–25], although it’s causal role has yet to

be established [26]. Recent studies have pinpointed that the production and regulation of

metabolites of bacterial origin in humans, play an important role in metabolic diseases [24,27–

30]. Given these interactions, there is a clear need to propose a systems biology framework to

obesity population-based studies, to improve the identification of distinct sub-populations but

also drive the development of personalized interventions [31].

With the objective of getting novel insight into how metabolism in different tissues varies

in obese individuals and evaluate if grouping of patients according to metabolism is related to

their weight loss response to bariatric surgery, we generated multiple omics datasets from 106

individuals undergoing bariatric surgery. Specifically, we wanted to evaluate if the heterogene-

ity of a bariatric surgery population can be stratified phenotypically using metabotyping, i.e.

grouping according to the individuals fasting plasma metabolome, that captures the functional

output of a complex multi-organ system, human hosts and their microbes rather than by
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database under the accession number

PRJEB47902, (https://www.ebi.ac.uk/ena/browser/
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transcriptomics dataset has been deposited in the
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database under the accession number

EGAS00001005704. The metabolomics dataset
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traditional clinical classifiers, e.g. the metabolic syndrome. For this we established a novel

workflow that first utilizes metabolomics for unlabeled stratification of individuals with several

comorbidities and different pharmacological treatment regimens. We then analyzed transcrip-

tome data from liver, jejunum, mesenteric and subcutaneous adipose tissues along with shot-

gun metagenomic sequencing from fecal samples to produce a discriminatory multi-marker

signature of underlying metabolic phenotypes within obesity. The framework is solely based

on omics data types representative of various biological molecule classes (metabolome, tran-

scriptome, metagenome) and machine learning, instead of comorbidities, medications, and

disease-specific classifiers, thus making it suitable for studying multifactorial metabolic condi-

tions, besides obesity.

Methods

Ethics approval and consent to participate

The study was performed in accordance with the Declaration of Helsinki and was approved by

the Academic Medical Center Ethics Committee of the Amsterdam UMC. All participants

provided written informed consent.

BARIA cohort

The recruitment of participants was conducted from the BARIA [32] study with a total of 106

individuals included. The baseline characteristics of BARIA participants in the Self-Organizing

Map (SOM)-defined metabotypes are described in Table 1.

Individuals underwent a complete metabolic work-up at the start of their bariatric surgery

trajectory. Anthropometric measurements including height, weight and waist and hip circum-

ference were taken. In addition, body fat percentage using bioelectrical impedance and blood

pressure were measured. Fasting blood samples were used for the determination of hemoglo-

bin, HbA1c, glucose, lipid profile, alanine aminotransferase, aspartate aminotransferase, insu-

lin, and creatinine levels. Within three months before surgery, a 2-hour mixed meal tolerance

test was performed to assess insulin resistance and investigate dynamic alterations in circulat-

ing metabolites. Within three months before surgery, a 2-hour mixed meal tolerance test

(MMT) was performed to assess insulin resistance and investigate dynamic alterations in cir-

culating metabolites. The MMT consisted of a compact 125ml drink (Nutricia1) containing

in total 23.3 grams fat, 74.3 grams carbohydrates (of which 38.5 grams sugar) and 24.0 grams

protein. The participants received this meal after fasting for a minimum of nine hours. Time

point zero refers to the moment at which the participant had fully consumed the meal. Blood

samples were drawn via an intravenous line at baseline, 10, 20, 30, 60, 90 and 120 minutes. All

samples were stored at -80˚C until further processing.

Metabolome analysis

EDTA plasma samples under fasting conditions were collected from 106 BARIA participants.

Samples were shipped to METABOLON (Morisville, NC, USA) for performing analysis using

ultra high-performance liquid chromatography coupled to tandem mass spectrometry

(LC-MS/MS) untargeted metabolomics, as previously described [27]. The metabolomic counts

obtained, underwent significant curation via metabolites’ pre-filtering, imputation for subsets

of metabolites’ missing values and data normalization, in order to minimize the effect of arti-

facts in the downstream analysis. Out of 1345 metabolites measured by METABOLON, 652

metabolites were fully detected across all samples, 640 metabolites were partially detected

across all samples, and 53 metabolites were not detected and therefore had a missing value.
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The mean number of detected peaks (absolute abundance) for the fully detected metabolites in

the BARIA cohort was 52 583 199. Whereas the mean absolute abundance for fully detected

metabolites was 1 817 049. Metabolomics prefiltering and imputation were performed by uti-

lizing a variation of the Perseus platform [33]. Essentially, data has been pre-filtered so as to

have a maximum of 25% missing values for a metabolite across all samples. This was followed

by a log transformation of all the measured metabolites’ raw intensities across the entire data-

set. Then, we calculated the total data mean and standard deviation (by omitting missing val-

ues). Taking into account that the metabolite intensities distribution is approximately

following normality, we chose a small distribution 2.5 standard deviations away from the origi-

nal data mean towards the left tail of the original data distribution, with 0.5 standard deviations

Table 1. BARIA cohort: 106 participants clinical metadata summary for SOM-defined clusters.

Clinical Metadata SOM Cluster 1 SOM Cluster 2 SOM Cluster 3 SOM Cluster 4 SOM Cluster 5 BARIA

population

Demographic

Participants (%) 17(16%) 29(27.4%) 25(23.6%) 18(17%) 17(16%) 106(100%)

Female (% Total Participants, % of SOM Cluster) 13(12.2%, 76.5%) 25(23.6%, 86.2%) 18(17%, 72%) 14(13.2%, 77.8%) 14(13.2%, 82.4%) 84(79.2%)

Male (% Total Participants, % of SOM Cluster) 4 (3.8%, 23.5%) 4 (3.8%, 13.78%) 7 (6.6%, 28%) 4 (3.8%, 22.22%) 3 (2.8%, 17.6%) 22(20.8%)

Anthropometric

Age (years) 48(29–60)� 40(20–57)� 53(26–64)� 56(39–64)� 44(22–62)� 46(20–14)

BMI (kg/m2) 39.5(34–45.4) 38.2(32.9–60.9) 39.8(33–57.5) 38.3(33.8–47.1) 39.8(34.7–46.4) 39.42(32.9–70)

Waist circumference (cm) 125.3 ± 12.6 122.6 ± 12.3 123.7 ± 11.5 125.8 ± 12.2 123 ± 9.9 84.3 ± 57.7

Upper thigh circumference (cm) 135(120–149) 133(116–147) 130(103–165) 133(115–139) 136(123–144)

122.5(103–165)

Total Body Fat (%) 53.6(41.6–64.7) 54.1(31.7–94.9) 51.8(39.3–104.8) 56.5(40.6–78.9) 57.6(44–64.5) 51(31.7–104.8)

Fat Free Mass (kg) 60.9(54.1–93.8) 59.6(50.3–90.6) 59.1(47.5–90.2) 59.8(49.5–85.1) 60.8(54–83.5) 58.9(47.5–93.8)

Systolic blood Pressure (mmHg) 131.5(116–156) 132(102–155) 133(108–161) 136(115–193) 135(115–157)

132.5(102–193)

Diastolic blood Pressure (mmHg) 84.5(59–91) 81(54–99) 82(67–105) 80(45–121) 82(65–94)

81(45–121)

Clinical lab values

Fasting glucose (mmol/l) 5.8(4.8–11.4) 5.9(4.6–14.8) 5.7(5–13.8) 5.8(4.6–6.8) 5.6(4.5–8.7)

5.8(4.5–14.8)

HbA1c (mmol/mol) 5.7(5.3–9.1) 5.7(4.6–9.8) 5.6(5–9.3) 5.8(5.2–6.9) 5.5(5.2–8.3) 5.7(4.6–9.8)

HOMA-IR 1.7(0.6–3.4) 1.6(0.5–6.9) 2.2(0.5–4.7) 1.3(0.8–4.8) 1.5(0.8–4.8) 1.6(0.6–6.9)

HOMA2-β 108.7(38.3–183.2) 87.9(29.1–227.8) 112(52.7–226.2) 92.1(52.4–357.8) 104.2(50.8–185.5) 93.5(29.1–357.8)

Total Cholesterol (mmol/l) 5.4 ± 1.1 4.6 ± 1 4.9 ± 1.1 5.3 ± 1.2 4.3 ± 0.9 4.9 ± 1.1

Triglycerides (mmol/l) 1.5(0.8–3.5) 1.3(0.6–5.8) 1.4(0.8–6) 1.4(0.8–5.9) 1.2(0.6–1.9) 1.4(0.6–6)

HDL Cholesterol (mmol/l) 1.2(0.8–1.8)� 1.1(0.6–1.9)� 1.1(0.7–2.5)� 1.2(0.7–2.1)� 1.2(1–2.7)�

1.6(0.2–2.7)

LDL Cholesterol (mmol/l) 3.6 ± 1.1 2.9 ± 0.9 3.6 ± 0.9 3.4 ± 1.7 2.6 ± 0.8 3 ±1.1

Creatinine (μmol/l) 68(55–96) 63(46–83) 66(47–112) 75(56–172) 65(58–99)

66(46–172)

Glomerular Filtration Rate (kl/1.73m2) 85(70–91)� 90(71–91)� 86(62–91)� 78(26–90)� 89(66–91)�

88.5(26–91)

Baseline characteristics of the 106 BARIA participants included in the study. Data is expressed as mean ± standard deviation. Categorical variables are presented as

numbers and percentages. Non-normally distributed variables are presented as median with interquartile range. For comparison among metabotypes Kruskal-Wallis

test (extended Mann-Whitney U-test for multiple groups) was used.

‘�’ denotes differentially significant variables among the five metabotypes clusters (P<0.05). BMI: Body Mass Index, HbA1c: Hemoglobin A1c, HOMA-IR: Homeostatic

Model Assessment of Insulin Resistance, HOMA-β: Homeostatic Model Assessment of beta-cell function, LDL: Low-Density Lipoprotein, HDL: High-Density

Lipoprotein.

https://doi.org/10.1371/journal.pone.0279335.t001
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width. This new shrunken range corresponds to the actual lowest level of detection by the

spectrometer. Here by drawing random values from this mini distribution, we filled the miss-

ing prefiltered data of choice.

Normalization was conducted to the total signal for each sample, since each sample is a sep-

arate injection on the mass spectrometer. Effective control for changes in sample matrix affects

ionization efficiency, hence there can be inevitable differences in how much each sample is

loaded onto the column with each injection, etc. Therefore, we summed up the total ion inten-

sity (i.e. total signal) for each of the samples and identified the sample with the lowest total sig-

nal. After this we could proceed to calculating the correction factor for each sample by

dividing the total signal with the lowest total signal,

CorrectionFactori ¼
Total signal for each individual samplei

Lowest total signal intensity . The next step is to divide each individual

metabolite within a sample with the respective CorrectionFactori After imputation and normal-

ization, we obtained 986 metabolites. All the calculations for imputing and normalizing the

metabolomics dataset have been conducted with MATLAB_R2018b and the standard built-in

packages.

Differential analysis was conducted among the five SOM-defined Clusters in R (version

3.6.3) and RStudio (version 1.2.5033). Statistical analysis has been performed for fasting

peripheral plasma with two methods: ANOVA(Analysis of Variance) and Kruskal Wallis test,

with the use of HybridMTest package [34]. HybridMTest performs hybrid multiple hypothesis

testing using empirical Bayes probability. The significance level and cut-off used for the dataset

of fasting peripheral plasma was P<0.05 and was applied to metabolites that were significantly

differential with both ANOVA and Kruskal Wallis methods.

Clustering metabolome profiles with self- organizing maps

The fasting peripheral metabolomics were then input to the SOM toolbox [35] algorithmic

setup in MATLAB_R2014b. SOMs conducted unsupervised competitive learning and pro-

duced low-dimensionality visualizations by employing vector quantization [36,37], a topology

preserving projection. SOMs are essentially networks consisting of neurons in a lower dimen-

sional space than the initial dataset, visually represented in a 2-dimensional grid. Each neuron

has d-dimensions, equal to the number of features of the dataset and acts as a weight vector.

During the SOM training phase, the weight vectors are gradually shifted in each iteration of

learning, and the map gradually gets organized, so that neurons that are neighbors on the grid

get similar weight vectors throughout the iterative training.

In our analysis, SOM took as input a set of prototype vectors representing the data. Every

data item, here BARIA subject’s fasting metabolome, was mapped into one point (node or

neuron) in the map [38]. Mapping took place throughout the training phase of the SOM. The

number of nodes was calculated internally by a heuristic formula, given the number of input

vectors and their dimensionality, as�5 �
ffiffiffiffi
N2
p

, where N is the number of data items and the

number was slightly altered in order to fit hexagonal (instead of rectangular) nodes. The train-

ing method deployed in our study was batch training, where instead of taking each input vec-

tor separately and assigning a weight vector, the dataset was given to the SOM as a whole and

the new weight vectors are weighted averages of the data vectors. In order to assign the proto-

type vector to the node, the Euclidean distances among prototype vectors and each neuron

were calculated and set as the metric for the similarity measure. The “winner” node in the grid,

was the one with the smallest Euclidean distance from the input vector. Once the assignment

was complete, then the weights of the prototype vector along with the weights of the subset of

its spatial neighbors in the array, got updated [39,40]. This entailed that all these local re-

arrangements would be propagated along the grid, during the training epochs. As a result,
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after learning, more similar data items would be associated with nodes that are closer in the

array, whereas less similar items would be situated gradually farther away in the array.

When having a very large number of SOM nodes, one cannot easily quantify the results,

hence the need for further grouping with a partitive approach. The resulting map was then

subjected into k−means clustering, as a built-in function of the SOM toolbox, for obtaining a

recommended partition of map nodes. An open question in this case was the number of clus-

ters, since k−means in general takes this as a predefined parameter. Since k−means is sensitive

to initialization, we ran a cross validation simulation for 100 times for each k (starting from

�5 �
ffiffiffiffi
N2
p

, which corresponds to the number of nodes of the neural network to 1 with step of

-1) for each with different random initializations. The best partitioning for each number of

clusters was selected using error criterion and the minimization of the Davies-Bouldin cluster

validity index [41]. Davies-Bouldin index is a metric of the ratio of the within cluster scatter, to

the between cluster separation. The index’s value is essentially the average similarity between

each cluster and its most similar one, averaged over all the clusters. This implies that the best

clustering scheme minimizes the Davies-Bouldin index. Eventually, when all the iteration for

the potential values of k were concluded, the minimum overall Davies-Bouldin index was cho-

sen, which resulted in the recommended partition of five clusters.

Transcriptome analysis

Biopsies from liver (106 samples), jejunum (105 samples), mesenteric adipose fat (104 samples)

and subcutaneous adipose fat (105 samples) were collected at the time of the bariatric surgery,

as previously described [32]. RNA was extracted from biopsies using TriPure Isolation Reagent

(Roche, Basel, Switzerland) and Lysing Matrix D, 2 mL tubes (MP Biomedical, Irvine, CA,

USAs) in a FastPrep1-24 Instrument (MP Biomedical, Irvine, CA, USAs) with homogeniza-

tion for 20 seconds at 4.0 m/sec, with repeated bursts until no tissue was visible; homogenates

were kept on ice for 5 minutes between homogenization bursts if multiple cycles were needed.

RNA was purified with chloroform (Merck, Darmstadt, Germany) in phase lock gel tubes

(5PRIME) with centrifugations at 4˚C, and further purified and concentrated using the

RNeasy MinElute kit (Qiagen, Venlo, The Netherlands). The quality of RNA was analysed on

a BioAnalyzer instrument (Agilent), with quantification on Nanodrop (Thermo Fisher Scien-

tific, Waltham, MA, USA). Due to degradation of the RNA, libraries for RNAseq sequencing

were prepared by rRNA depletion; library preparation and sequencing were performed at

Novogene (Nanjing, China) on an HiSeq instrument (Illumina Inc., San Diego, CA, USA)

with 150 bp paired-end reads and 10G data/sample. The average read count per sample from

liver and jejunum tissues were 42 ± 15 million. For mesenteric and subcutaneous fat, the aver-

age read count per sample were 43.2 ± 20 million.

The extracted fastq files were analyzed with nf-core/rnaseq [42], a bioinformatics analysis

pipeline used for RNA sequencing data. The workflow processed raw data from FastQ inputs

(FastQC, TrimGalore!), aligned the reads (STAR) with Homo sapiens GRCh38 as reference

genome, generates gene counts (featureCounts, StringTie) and performed extensive quality-

control on the results (RSeqQC, dupRadar, Preseq, edgeR, multiQC). The pipeline was built

using Nextflow.

Differential gene expression analysis for five SOM defined cluster participants has been per-

formed for liver, jejunum, subcutaneous adipose and mesenteric adipose tissues, respectively,

in R (version 3.6.3) and RStudio (version 1.2.5033) with DESeq2 [43] package. The statistical

analysis method for calculating differential expression rates was the LRT test (log-ratio test).

After FDR correction (FDR 5%) with multiple hypothesis testing with IHW [44] package, we

analyzed genes with P<0.05 by DEGreport’s [45] degPatterns function, so as to identify
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subgroups of co-expressed genes across the SOM clusters and assign a z score to each metabo-

type. For these differentially significant co-expressed genes we performed gene enrichment

with Enrichr platform [46] using KEGG(Kyoto encyclopedia of genes and genomes) metabolic

pathways [47]. Adjustment for the confounding factors of age and gender was conducted via

the built-in function of DESeq2.

Microbiome analysis

Fecal samples from 106 participants (108 fecal samples due to having two samples from two

participants) were collected on the day of surgery and immediately frozen at -80C. Total fecal

genomic DNA was extracted from 100 mg of feces using a modification of the IHMS DNA

extraction protocol Q [48]. Briefly, fecal samples were extracted in Lysing Matrix E tubes (MP

Biomedical, Irvine, CA, USA) containing ASL buffer (Qiagen), and lysis of cells was obtained,

after homogenization by vortexing for 2 minutes, by two cycles of heating at 90˚C for 10 min-

utes followed by three bursts of bead beating at 5.5 m/sec for 60 seconds in a FastPrep1-24

Instrument (MP Biomedical, Irvine, CA, USAs). After each bead-beating burst, samples were

placed on ice for 5 minutes. The supernatants containing fecal DNA were collected after the

two cycles by centrifugation at 4˚C. Supernatants from the two centrifugations steps were

pooled and a 600 μL aliquot from each sample was purified using the QIAamp DNA Mini kit

(Qiagen, Venlo, The Netherlands) in the QIAcube (Qiagen, Venlo, The Netherlands) instru-

ment using the procedure for human DNA analysis. Samples were eluted in 200 μL of AE

buffer (10 mmol/L Tris�Cl; 0.5 mmol/L EDTA; pH 9.0). Libraries for shotgun metagenomic

sequencing were prepared using a PCR-free method; library preparation and sequencing were

performed at Novogene (Nanjing, China) on an HiSeq instrument (Illumina Inc., San Diego,

CA, USA) with 150 bp paired-end reads and 6G data/sample.

MEDUSA [49] pipeline was used for pre-processing of raw shotgun metagenomics

sequence data. MEDUSA is an integrated pipeline for analysis of short metagenomic reads,

which maps reads to reference databases, combines output from several sequencing runs and

manipulates tables of read counts. The input number of total reads from the metagenome anal-

ysis were on average 23.4 ± 2.2 million reads per sample and the total aligned reads 16.6 ± 1.8

million reads per sample. The sequencing runs had high quality with almost 98% of the reads

passing the quality cut-off (~(20 million reads per sample). Out of the high-quality reads, on

average 0.04% aligned to the human genome, although the data had been cleaned for human

reads. Out of the high quality non-human reads, 78.4% aligned to MEDUSA’s software gene

catalogue. Quality filtered reads were mapped to a genome catalogue and gene catalogue using

Bowtie2 [50]. Statistical analysis was performed in R (version 3.6.3) and RStudio (version

1.2.5033) on rarefied count, (20 million reads per sample). The taxon ids were input to taxize

[51] package, so as to get full taxonomic information and ranking for the species. This dataset

was input to DESeq2 [43] and phyloseq [52] packages for conducting downstream differential

statistical analysis. Similar to the BARIA transcriptomics counts, log normalization has been

conducted based on gene counts geometric distribution. Statistical analysis test for calculating

differential expression rates was LRT. The IHW package, as part of DESeq2 suite, is utilized

for multiple hypothesis testing and adjusting the respective P values, with alpha significance

threshold set at P<0.05 and FDR at 5%. Adjustment for the confounding factors of age and

gender was conducted via the built-in function of DESeq2.

DIABLO correlation analysis and biomarkers minimal signature

DIABLO [53] stands for Data Integration Analysis for Biomarker discovery using Latent cOm-

ponents and performs supervised multi-omics data integration, by maximizing the correlation
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between co-expressed elements in the input datasets. DIABLO algorithm extends sparce Gen-

eralized Canonical Correlation Analysis [54] and by expanding the Partial Least Squares (PLS)

regression, used singular value decomposition for dimensionality reduction and selected co-

expressed (correlated) variables that could explain the categorical outcome of interest, in our

case the five SOM-derived metabotypes. DIABLO analysis was conducted in R (version 3.6.3)

and RStudio (version 1.2.5033) through the package of mixOmics [55] (version6.10.9). DIA-

BLO output a set of latent variables (components) based on the dimensionality and the impor-

tance of the input datasets. All the datasets in this study carried the same weight, hence the

DIABLO dataset matrix initialization design parameter was diagonal. The original input was

289 metabolites, 119 microbial species and 776 genes, all the differentially identified compo-

nents from the omics datasets. This chosen number of components could extract sufficient

information to discriminate all SOM-defined metabotypes. Then, a set of coefficients was

attributed to each variable, that indicated the importance of each variable in DIABLOMulti-

omics Datasets. The goal was to have maximization of the covariance between a linear combi-

nation of the variables from each input dataset and each categorical outcome. The algorithm

was optimized with a 10-fold validation over 10 training epochs. After tuning these two hyper-

parameters (number of variables from each dataset, choice of variables that maximize co-vari-

ance), DIABLO produced as output a minimal signature of total 113 markers that distinguish

the given metabotypes.

Results

Metabolomics based stratification of bariatric surgery population via SOM

To create a multi-omics profile of obesity, a total of 106 individuals from the BARIA [32] bar-

iatric surgery cohort were recruited. The multiple omics analysis included metabolomics on

fasting peripheral blood samples, and we employed this dataset for stratification of the heterog-

enous group of individuals, independent of traditional clinical indexes, such as Body Mass

Index (BMI), hypercholesterolemia, hypertension and treatment for T2D. To enable stratifica-

tion based on the metabolomics data we built an unsupervised artificial neural network that

could group individuals based only on the similarity of their metabolome, a SOM. The SOM

[36] evaluated metabolomic similarity by calculating the Euclidean distances between com-

plete metabolomic profiles, and projected BARIA individuals with high inter-group similarity

onto a “map” of lower dimensionality compared to that of the initial dataset. The SOM was

trained with 106 prototype vectors, where each prototype vector corresponded to a BARIA

participant’s peripheral plasma metabolite profile, consisting of 986 metabolites (see Meth-

ods). Iterative training of the SOM resulted in a map of 48 nodes, all projected onto a hexago-

nal grid (Fig 1A).

These 48 nodes considerably reduced the dimensionality and further within-cluster vari-

ance was minimized using K−means [56], which preserved metabolomic distances and identi-

fied centroids of core metabolomes.

SOM and k-means clustering reveal five distinct metabotypes

Clustering the SOM with k−means identified five clusters (metabotypes), each with different

features (Fig 1A, Table 1), including unique distributions of comorbidities and medication

usage. Polypharmacy is a notable characteristic within this study population, including use of

medication for T2D (n = 20), hypertension (n = 30), hypercholesterolemia (n = 42) and gastro-

esophageal reflux disease (GERD, n = 16). Medication usage was distributed across the five

metabotypes and is shown in Fig 1B. Clusters 1 and 3 include most individuals simultaneously

treated for hypertension and high cholesterol (four and five individuals respectively), whereas
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cluster 2 includes individuals co-treated for hypertension, high cholesterol and T2D (four indi-

viduals). Nevertheless, the distribution of overlapping treated cardiometabolic comorbidities is

quite uniform among clusters and not skewed towards a particular metabotype. In order to

assess the effect of missing values and data imputation in SOM clustering, a separate mapping

analysis was conducted by using the unimputed metabolomics dataset. The final map cluster-

ing did not diverge from the original prediction. Hence, the ability of the SOM to assign simi-

lar items on the same node was not affected by the imputation of a minimal set of missing

metabolite values. We next assessed the biometric features of each metabotype, by performing

differential analysis on the clinical variables available. BMI, body fat, and waist circumference

did not significantly differ between clusters, however age, HDL cholesterol and glomerular fil-

tration rate varied between clusters (Fig 1C). Given that all BARIA participants are affected by

Fig 1. Self-organizing maps reveal five distinct metabotypes within BARIA cohort. (A) Architecture of a competitive artificial neural network. Each

individual’s complete metabolomic profile is assigned a weight. The weights are in turn assigned to neurons in the competitive layer of the neural network. In

the competitive layer, SOM algorithm calculates the similarity metric (here Euclidean distance) between each metabolomic profile and the neurons and then

updates the weights. After training, the network assigns the individual’s metabolomic profile to the “winner” output node, the node that is essentially more

similar to the input metabolomic profile. Once this step is complete, all the nodes are comprising the SOM. Finally, all the nodes of the SOM are subjected to k-

means clustering resulting in the partitioned topology, the metabotypes (SOM & k-means defined clusters). (B) Clustergram of hierarchical cluster analysis

depicting the distribution of medically treated cardiometabolic comorbidities of the individuals in each of the metabotypes (SOM & k-means defined clusters).

The treated comorbidities are: hypertension, T2D, GERD and cholesterol. In parallel columns are the gender and metabolic syndrome status of each individual,

respectively. (C) Clinical variables associated with obesity and their statistical significance across the metabotypes (SOM & k-means defined clusters): age (C. i),

BMI (C. ii), HDL cholesterol (C. iii), LDL cholesterol (C. iv), creatinine and (C. v), glomerular filtration rate (c. vi); statistical significance among metabotypes

is calculated with Kruskal-Wallis test; the symbols indicating significance among metabotypes are ‘�’: P< = 0.05, ‘��’: P< = 0.01, ‘���’: P< = 0.001.

https://doi.org/10.1371/journal.pone.0279335.g001
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severe obesity, the stratification based on their SOM metabolomic profile reveals that BMI and

treatment of cardiometabolic comorbidities are not the clinical features more accurately

describing and differentiating the metabotypes, but age, cholesterol and markers associated

with kidney function are important features. We also evaluated if there is any association

within the clusters and individuals having the metabolic syndrome and found that there was

no such association (Fig 1B). Furthermore, if we grouped the individuals according to having

or not-having the metabolic syndrome, we also found no separation according to age or other

clinical parameters besides those defining the metabolic syndrome (S1 Fig).

Metabolomic profiles characterized by lipid and amino acid metabolites

Following stratification of the individuals into the five metabotypes we performed differential

analysis of the metabolome for the five different metabotypes. Statistical analysis revealed 289

differentially significant metabolites. In comparison we only identified 3 differentially signifi-

cant metabolites when the cohort was grouped according to presence of the metabolic syn-

drome or no (S2 Fig), which shows that driving grouping of the cohort based on the

metabolomics data enables more detailed insight into metabolic differences among the indi-

viduals. KEGG pathway analysis revealed that the most highly enriched metabolite classes

among the 289 metabolites were lipids, amino acids and xenobiotics, followed by cofactors

and vitamins, nucleotides, carbohydrates, peptides, energy and partially characterized mole-

cules. Clusters 2 and 3 exhibited the highest relative abundance of differentially significant

metabolites, mainly lipids and amino acids (Fig 2A).

Among the enriched KEGG metabolic pathways that had the highest number of differen-

tially significant metabolites were fatty acids (Fig 2B), specifically 19 lysophospholipids, 16

dicarboxylate fatty acids, 14 sphingomyelins and 12 phosphatidylcholines. The amino acid

metabolic pathways with the most significant metabolites were arginine and proline metabo-

lism with 11 compounds, tyrosine metabolism with 8 metabolites, methionine, cysteine SAM

and taurine metabolism with 8 metabolites, too, while branched-chain amino acid metabolism

for isoleucine and valine had 7 metabolites. The top 20 differentially abundant metabolites are

a mixture of lipids, partially characterized molecules, peptides and amino acids, and some of

them, despite being the end product of endogenous ketogenesis produced by the liver, also

carry the potential of being the result of gut microbial metabolism, such as 3-hydroxybutyrate

and acetoacetate (Fig 2C). Our analysis identified lipid metabolites (especially lysophospholi-

pids and sphingomyelins) and amino acid metabolites (urea, arginine and proline metabolism)

being significantly altered among the clusters.

Hepatic and adipose tissue transcriptomes enriched for immune, amino

acid and lipid metabolism functions

To better understand the relationship between metabolite levels and gene expression, we next

sequenced RNA extracted from biopsies taken during bariatic surgery from liver, jejunum,

mesenteric adipose tissue and subcutaneous adipose tissue. We identified differentially

expressed genes between clusters and conducted gene set enrichment analysis. This analysis

revealed 682 hepatic genes differentially expressed across the five metabotypes. In contrast,

only four genes were differentially expressed in jejunum, whereas 45 and 49 genes were differ-

entially expressed in mesenteric and subcutaneous adipose tissue, respectively. These liver,

mesenteric and subcutaneous adipose tissue gene sets were subjected to enrichment analysis

for retrieving their functional profiles (S1–S4 Tables). Due to the low number of differentially

expressed genes in jejunum, we were unable to obtain a gene set enrichment signature for jeju-

num tissue. The top represented pathways in the liver included fatty acid elongation
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/saturation reflecting lipids in the plasma, glycan and sphingolipid biosynthesis, cell function

regulation (ErbB signaling pathway, protein export) and immune responses (Fig 3A).

The mesenteric adipose tissue was enriched for amino acid metabolic processes (Fig 3B)

reflecting amino acids in the plasma, and subcutaneous adipose tissue was found enriched in

many pathways related to pathogens (Fig 3C) and may reflect increased immune activation associ-

ated with metabolic disease. To investigate how these pathways are regulated across the five meta-

botypes, we examined the normalized gene expression levels of differentially expressed genes

among the clusters. The metabolic pathways enriched within the hepatic transcriptome exhibited

mixed directionality in regulation and were assessed individually, for each metabotype (Fig 3D).

Amino acid metabolic pathways in mesenteric adipose tissue exhibited consistent upregulation in

clusters 4 and 5 (Fig 3D). Transcriptome analysis from these three tissues showed distinct regula-

tion of lipid, amino acid, immune response and pathogenic pathways amongst the metabotypes.

Metabotypes exhibit distinct microbial community composition

Since the gut microbiota is known to be correlated with development of comorbidities linked

to obesity [57–59], we also generated a gut microbiota profile for the BARIA individuals from

Fig 2. Differentially abundant metabolites and metabolic pathways among the five defined SOM clusters (metabotypes). (A) Relative abundance and

distribution of differentially significant metabolites among SOM and k-means defined clusters. Clusters two and three are most abundant in lipids (especially

lysophospholipids and sphingomyelins) and amino acids (urea, arginine and proline metabolism). (B) Distribution of differentially significant metabolic

pathways among SOM and k-means defined clusters, where numbers within each dot indicate how many metabolites of that particular specific pathway were

differentially abundant across clusters. (C) Top 20 differentially significant metabolites among the SOM and k-means defined clusters, (P<0.05).

https://doi.org/10.1371/journal.pone.0279335.g002
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shotgun metagenomic sequencing of fecal DNA. Statistical analysis revealed 119 differentially

abundant species among the SOM metabotypes, the top 30 of which are shown in Fig 4A and

are dominated by Bacteroidetes and Firmicutes, especially Lactobacillus.
Out of the 119 differentially abundant species, 70 belonged to Firmicutes phylum, 22 to

Bacteroidetes, 11 to Actinobacteria, 11 to Proteobacteria, one to Chloroflexi, one to Cyanobac-

teria, one to Euryarchaeota, one to Spirochaetes and one to Fusobacteria. Within Firmicutes,

Clostridia are more highly abundant for cluster 2 and Weisella for clusters 2, 4 and 5. Within

Bacteroidetes, Bacteroides and Prevotella species are significantly more abundant in clusters 1,

2 and 3. For Actinobacteria, Bifidobacterium are considerably more abundant in 1 and 2,

whereas species within Enterobacteriaceae family have higher abundance for clusters 4 and 5

(Fig 4B, S5 Table). In order to assess if there is a difference in alpha and beta diversity among

metabotypes, we used a series of metrics (Observed, Chao1, ACE, Shannon, Simpson, Inverse

Simpson for alpha diversity and Whittaker index along with dispersion analysis for beta diver-

sity), shown in S3 and S4 Figs. Our metagenomics pipeline displayed that none of the different

alpha diversity metrics reach statistical significance. The beta dispersion (with centroids)

Fig 3. Differentially enriched KEGG metabolic pathways among the five defined SOM clusters (metabotypes). (A) Top 15 differentially enriched KEGG

metabolic pathways for hepatic transcriptome among the SOM and k-means defined clusters, ranked based on their scores after differential gene expression

analysis (DESeq2, P<0.05) and gene set analysis (GSA with EnrichR). (B) Top 15 differentially enriched KEGG metabolic pathways for mesenteric adipose

transcriptome among the SOM and k-means defined clusters, ranked based on their scores after differential gene expression analysis (DESeq2, P<0.05) and

gene set analysis (GSA) with EnrichR). (C) Top 10 differentially enriched KEGG metabolic pathways for subcutaneous adipose tissue transcriptome among the

SOM and k-means defined clusters, ranked based on their scores after differential gene expression analysis (DESeq2, P<0.05) and gene set analysis (GSA with

EnrichR). (D) 20 highest scoring KEGG metabolic pathways according to EnrichR GSA score for liver, mesenteric adipose and subcutaneous adipose tissues. Z
score indicates different levels of differentially expressed pathways, for each SOM and k-means defined cluster.

https://doi.org/10.1371/journal.pone.0279335.g003
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results coupled with a permutational ANOVA (PERMANOVA) analysis (for 999 permuta-

tions) showed F = 0.19 and P = 0.9431. As seen in S4 Fig, the SOM-defined clusters largely spa-

tially overlap but appear to have different centroids and different dispersions. Nevertheless, the

large inter-individual variation cannot account for the negative PERMANOVA results, either.

In such cases, there is a need to have a correct specification of the mean-variance relationship

by means of multivariate extensions of GLM with methods such as negative binomials,

DESeq2 [43]. The DESeq analysis revealed that despite the non-statistically significant diversi-

ties, there are SOM-defined clusters that are enriched in specific genera, such as Bacteroides,
Prevotella and Lactobacillus.

As comparison, when the patients were grouped after presence or absence of metabolic syn-

drome, we only identified 54 differentially significant species. Similarly, none of the alpha

diversity or beta diversity metrics or ordination were statistically significant. (S5 and S6 Figs).

Out of the 54 significant gut microbial species 33 species belonged to Firmicutes phylum, 10 to

Bacteroidetes, six to Actinobacteria, four to Proteobacteria and one to Fusobacteria (S7 Fig, S6

Table). Within Firmicutes, there is a trend for Lactobacillus species to be two to 8 times signifi-

cantly less abundant in metabolic syndrome BARIA individuals. In contrast, statistically signif-

icant Streptococcus species are twice as abundant in metabolic syndrome diagnosed

individuals. The majority of the gut microbial species belonging to Bacteroidetes is two to

Fig 4. Differentially significant microbial species and phyla among the five defined SOM clusters (metabotypes). (A) Top 30 from 119 differentially

significant microbial species among the SOM & k-means defined clusters, after differential analysis with DESeq2 (P<0.05). (B) Relative abundance and

distribution of differentially significant microbial species for the top 4 most abundant phyla for SOM & k-means defined clusters.

https://doi.org/10.1371/journal.pone.0279335.g004
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three times depleted in metabolic syndrome diagnosed BARIA individuals, whereas Actino-

bacteria levels are elevated in metabolic syndrome. Differentially significant Proteobacteria

tend to be depleted in metabolic syndrome.

Our analysis showed that metabolic syndrome diagnosis can indeed capture a fraction of

the microbial variability within obesity. Even so, our suggested metabotyping approach can

identify more gut microbial species across the spectrum of obesity and its related

comorbidities.

Individual metabotypes display unique clinical and multiple omics features

Our collective analyses show that the five different metabotypes clearly associate with unique

gene expression and microbial community composition patterns and hence represents groups

of individuals having distinct differences in their metabolism. To further explore these unique

patterns, we next performed a detailed evaluation of the molecular fingerprints of each meta-

botype using the findings from the multiple omics datasets differential analysis.

17 individuals had metabotype 1 (13 women/four men), and they had the highest fat free

mass 60.9 (54.1–93.8) kg and the highest total cholesterol (5.4 ± 1.1 mmol/L). Of these, four

participants were treated for hypertension, three for T2D and four for GERD, whereas almost

half the cluster’s population (8 participants) was treated for high cholesterol. It is noticeable

that three out of four male participants were co-treated for hypertension, GERD/H. pylori
infection and cholesterol (Fig 1B). Isobutyrylcarnitine was at a higher level in this metabotype

(see S6 Table) compared with the other metabotypes, and the same was observed for the tyro-

sine metabolic pathway intermediate 4-methoxyphenol. When associating the differentially

significant fasting metabolites with anthropometric features (S8 and S9 Figs), we observed neg-

ative correlations between sphingomyelins, fasting glucose (r = -0.8, P<0.001), HbA1c (r =
-0.6, P<0.01) and age (r = -0.5, P<0.01) specifically for this metabotype. In summary, metabo-

type 1 was characterized by high cholesterol, males using medication, downregulation of

immune response pathways in the liver, lower abundance in Prevotella and higher abundance

in Bacteroides (Fig 4B) compared to other metabotypes.

Metabotype 2 was the largest cluster consisting of 29 participants. It was female dominated

(25 females/four males) and had the youngest individuals of 40 (20–57) years of average age

with a BMI of 38.2 (32.9–60.9) kg/m2. The highest number of T2D individuals was noted here

(n = 8), with the highest mean HbA1c value at 42 ± 12 mmol/mol. The individuals were the

most heavily medicated, since it contained 11 individuals with treatment for dyslipidemia, 6

with hypertension along with the individuals affected by T2D, of which four participants were

treated for all conditions simultaneously. When considering the metabolome, lysophospholi-

pids, 1-arachidonoyl-GPC�(20:4)�, 1-linoleoyl-GPC(18:3)�, 1-linoleoyl-GPE(18:2)�, 1-oleoyl-

GPE(18:1), 1-palmitoyl-GPC(16:0)� and 1-stearoyl-GPC(16:0) were higher in comparison to

the majority of the clusters. Similarly, branched-chain amino acid (BCAA) metabolites 1-car-

boxyethylvaline, 1-carboxyethylisoleucine and valine were all at elevated levels. 3-hydroxyo-

leoylcarnitine, 3-hydroxydecanoate and 2-hydroxybutyrate-2-hydroxyisobutyrate were

positively correlated with both glucose and HbA1c (r = 0.5, P<0.001) (S8 and S9 Figs). To

summarize, metabotype 2 represented the youngest individuals, yet the individuals being most

heavily medicated for comorbidities. The individuals have high abundance of BCAAs and

hydroxy fatty acids, even though fatty acids biosynthetic pathways were downregulated in

mesenteric adipose fat. In the gut microbiome Prevotella, Bacteroides and Lactobacillus species

were found to be highly abundant (Fig 4B).

There were 18 individuals having metabotype 3 and this metabotype had the highest per-

centage of males among the clusters (11 females/7 males). The individuals exhibited the
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highest HOMA2-IR at 2.2 (0.5–4.7) and the highest HOMA2-β at 112 (52.7–226.2). It included

three individuals with T2D (out of 6 in total treated for T2D), 10 hypertensive (out of 13 in

total treated for hypertension) and 12 individuals treated for dyslipidemia (out of 15 in total

treated for high cholesterol), whereas three were treated for T2D, hypertension and dyslipide-

mia at the same time. Even though the anthropometrics differed, the individuals of metabotype

3 had similar metabolome and microbiome profiles as metabotype 2, but with varying tran-

scriptome patterns. Similar to metabotype 2, lysophospholipids, 1-arachidonoyl-GPC� (20:4)�,

1-linoleoyl-GPC (18:3)�, 1-linoleoyl-GPE (18:2)�, 1-oleoyl-GPE (18:1), 1-palmitoyl-GPC

(16:0)� and 1-stearoyl-GPC (16:0) were detected in equally high levels in the individuals of

metabotype 3. Noticeably, all sphingomyelins were elevated for individuals in this metabotype

(S6 Table). Cluster 3 appeared to be the most insulin resistant and most treated for dyslipide-

mia, in spite of the highly abundant metabolome in lysophospholipids and sphingomyelins. In

essence, hepatic upregulation of immune responses and subcutaneous adipose tissue upregula-

tion of pathogenic-related pathways (Fig 3D), in conjunction with high Prevotella and Lacto-
bacillus abundance (Fig 4B) completed the cluster’s omics profile.

18 individuals had metabotype 4, including two individuals with T2D, 7 with hypertension

and 8 treated for high cholesterol. The median age was the highest in this cluster compared to

all others at 56 (39–64) years. Cluster 4 had the highest total body fat at 56.5 (40.6–78.9) kg.

BARIA individuals stratified within this metabotype exhibited the highest creatinine at 75 (56–

172) μmol/L, and lowest glomelular filtration rate at 78 (26–90) kl/1.73m2. The transcriptomics

datasets from liver tissues exhibited a very strong negative regulation of cortisol synthesis, glu-

tamatergic synapse, cGMP-PKG signaling pathway and GABAergic synapse. When focusing

on the gut microbial species, individuals of metabotype 4 had many changes in the microbial

composition, and the abundance of some of the species correlated with plasma glucose, low-

density lipoprotein (LDL) cholesterol and cholesterol (S10 Fig). In outline, the individuals of

metabotype 4 had potentially impaired kidney function, high body fat, downregulation of syn-

aptic pathways in the liver, upregulation of fatty acid metabolic process in mesenteric adipose

tissue, upregulation of pathogenic-related pathways in subcutaneous adipose tissue and

increased levels of Clostridium, Streptococcus and Klebsiella in the gut microbial metagenome.

17 individuals had metabotype 5, with dominance of females (14 females/three males) and

the median age of the individuals in this cluster was the second youngest, 44 (22–62) years.

The participants were relatively treatment naïve, only four were treated for T2D, three for

hypertension and three participants for dyslipidemia, with very little overlapping treatments.

1-carboxyethylvaline, 1-carboxyethylisoleucine and valine positively correlated with HbA1c

(r = 0.4, P<0.01) (S8 and S9 Figs). In conclusion, metabotype 5 corresponded to a relatively

young cluster, with no striking comorbidity treatment, upregulated fatty acid metabolic path-

ways and immune response pathways in the liver and highly abundant in Citrobacter.
In order to ensure that this analysis of the multiple omics datasets is not confounded by

covariates such as age and gender, we adjusted our statistical analysis to account for these two

factors, in addition to our previous analysis. For the metabolome, we observed 174 metabolites

being differentially significant among SOM-defined clusters, instead of 226 that we had before.

In spite of that, the relative distribution of differentially significant pathways and their % path-

way abundance remains identical (S11 Fig). As far as the Metabolite Specific Pathways is con-

cerned, the same pathways appear to be most abundant, such as lysophospholipids,

phosphatidylcholines, dicarboxylate fatty acids, and branched-chain amino acid metabolites

and also maintain their distribution among the metabotypes.

In the hepatic and adipose tissue transcriptome analysis, we noticed a direct effect from the

confounders. This is expected since even if the genetic making(genome) of men and women is

the same, the transcriptome is distinctly dimorphic with dissimilar disease susceptibilities [60].
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Pathogenic pathways along with compound degradation pathways were more dominant in the

liver transcriptome enrichment, especially in clusters 1 and 2 (S12 Fig). In general, after the

confounders removal there is a more distinct pattern of nutrients catabolism, degradation and

absorption and less presence of inflammatory pathways in the hepatic transcriptome when

comparing to the pathways that we obtained in our previous enrichment analysis. Surprisingly,

the mesenteric adipose tissue was once more enriched for amino acid metabolic processes, in

fact the same pathways as before including phenylalanine, tyrosine, tryptophan biosynthesis

and fatty acids metabolism. In subcutaneous adipose tissue we also obtained a different set of

enriched metabolic pathways, this time not including pathogenic pathways. Instead, we

observed similar pathways as in the mesenteric adipose tissue, primarily amino acid and fatty

acid metabolic pathways.

In the metagenomics dataset analysis 109 gut microbial species being differentially signifi-

cant among SOM-defined clusters, instead of 288 that we had before. However, removing

those confounders does not affect the overall profiling of the dataset, especially in the most

dominant Phyla of Bacteroidetes and Firmicutes (S13 Fig). Even after the model adjustment,

Prevotella, Bacteroides and Lactobacillus remained the most dominant species with exactly the

same distribution among the SOM-defined metabotypes.

Multi-omics integration elucidates discriminatory signature and

associations between datatypes

To reveal key interactions between multi-omics data sets, we used DIABLO [53] to identify how

the five metabotypes are associated with altered expression in different tissues and an altered

gut microbiota. Initially, we provided the differentially abundant metabolites, genes from liver,

jejunum, mesenteric and subcutaneous adipose tissue, and gut microbial species for each

BARIA individual, along with their respective metabotype membership, as input to the algo-

rithm. DIABLO simultaneously calculates the correlations among all input multiple omics data-

sets and selects a minimal set of input variables that differentiate the metabotypes. The

computational framework used here for integrating various omics datasets successfully identi-

fied a highly correlated discriminatory signature for SOM-defined obesity phenotypes that

includes multiple Prevotella species (P. veroralis, P. copri, P. multisaccharivorax, P. oulorum, P.

denticola, P. sp. oral taxon 299, P. bryantii, P. melaninogenica), Intestinibacter bartlettii, Anaero-
coccus prevotii, lipid metabolites (especially phospatidylcholines), hepatic function associated
genes, lipid metabolism and cardiomyopathy pathways, subcutaneous adipose tissue IL6 and

SELE genes involved in inflammatory and immune system pathways and mesenteric adipose

tissue genes enriched in prolactin signaling, T2D and PI3K-Akt signaling pathways (S14 Fig).

Metabotypes are associated with weight loss response to bariatric surgery

In order to define the clinical value of metabotyping, we had to assess the metabotypes’

response to bariatric surgery. Hence, we performed a longitudinal biometrics post-operative

control of the BARIA obese individuals at three time points: three months, six months and 12

months after surgery, where we monitored the weight, waist circumference and upper leg cir-

cumference. It is noteworthy that there are no distinct statistically significant responses in the

weight loss or waist circumference reduction immediately after bariatric surgery (3 months

after surgery), contrary to what would be expected (Fig 5A and 5B).

There is a trend that metabotypes 2 and 5 have the highest weight loss one year post-opera-

tively (35kg and 38 kg in average, respectively). Metabotype 2 exhibits the largest waist circum-

ference loss at three months after surgery (12cm) even if this is not deemed statistically

significant (Fig 5C and 5D). However, there is a clear pattern in the reduction of adipose tissue
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in the upper leg circumference. Metabotypes 1 and 5 are the best responders when it comes to

upper leg circumference reduction, with the loss being consistent at all three time points.

Upper leg circumference loss is significant (P<0.05) when compared to the worst responder

cluster, metabotype 3 (Fig 5E and 5F). This trend is the same for weight loss, regardless of

being confirmed by statistical calculations.

Surprisingly, when the BARIA individuals were grouped according to having or not-having

metabolic syndrome, there were no notable statistically significant differences in weight and

adiposity loss in none of the three time points.

Discussion

Here we present a novel unsupervised machine learning framework for stratification of indi-

viduals in human volunteer cohorts, with a high prevalence and variance of comorbidities.

Fig 5. Weight and fat loss progression at distinct time points after bariatric surgery for the five defined SOM clusters (metabotypes). (A) Weight (kg) of

BARIA individuals at baseline, three months, six months and one year after bariatric surgery for each metabotype. (B) Weight loss(kg) of BARIA individuals at

baseline, three months, six months and one year after bariatric surgery for each metabotype. (C) Waist circumference (cm) of BARIA individuals at baseline,

three months, six months and one year after bariatric surgery for each metabotype. (D) Reduction of waist circumference(cm) of BARIA individuals at

baseline, three months, six months and one year after bariatric surgery for each metabotype. (E) Upper leg circumference (cm) of BARIA individuals at

baseline, three months, six months and one year after bariatric surgery for each metabotype. (F) Reduction of upper leg circumference(cm)of BARIA

individuals at baseline, three months, six months and one year after bariatric surgery for each metabotype. Statistical significance among metabotypes is

calculated with t-test and adjusted with FDR; the symbols indicating significance among metabotypes are ‘�’: P< = 0.05, ‘��’: P< = 0.01, ‘���’: P< = 0.001.

https://doi.org/10.1371/journal.pone.0279335.g005
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This framework enables a naïve to clinical labels stratification based on fasting metabolome

rather than purely clinical parameters that may fail to accurately encompass the multitude of

nuances in human population-based studies. The main findings of our study revealed pro-

nounced changes in lysophospholipids, phosphatidylcholines, dicarboxylate fatty acids, sphin-

gomyelins, and branched-chain amino acid metabolites among the five different metabotypes;

KEGG metabolic pathways related to immune functions, fatty acid biosynthesis and elonga-

tion, protein signaling and pathogenic pathways were regulated in different ways for each

metabotype; the abundance of Prevotella and Lactobacillus species varied the most between the

metabotypes, and metabotypes 4 and 5 had a lower abundance compared to metabotypes 2

and 3. Multi-omics integration enabled reducing the dimensionality and identified a concrete

biomarker signature able to differentiate between the five distinct metabotypes. The differ-

ences in metabolism among the individuals in the five metabotypes are associated with differ-

ent responses in terms of weight loss and reduction of waist and upper leg circumference to

bariatric surgery.

A considerable advantage of our approach is that SOM and k-means clustering effectively

reduced the initial omics dimensionality and resulted in a reusable topological projection of

the metabolome. Given the lack of an external multimodal multiple omics dataset for validat-

ing our results, establishing a metabolome mapping that can recognize or characterize new

unknown inputs can be proven useful. New metabolomes can be projected into the same map,

without the requirement of further algorithmic training. That way we can compare metabolic

distances among new BARIA inclusions or even the potential post-surgical metabolomes of

the initial 106 inclusions. Comparing the post-operative metabolome with the baseline pre-

operative state could provide further mechanistic comprehension of the pathophysiological

mechanisms of obesity and the responses to the bariatric surgery intervention in the future.

Also using the multi-parameter metabolic syndrome as a classifier was here shown not to

enable new insight into what drives differences in metabolism within the cohort. Metabotyp-

ing identified more gut microbial species among BARIA individuals, whereas the metabolic

syndrome classification captured a fraction of the microbial variability. It has been previously

attempted in animal studies to model interactions between genes, gut microbiota and the

molecular mechanisms underlying obesity [61–63], but their clinical application to humans

has been limited [64] so far. Increased microbial variability among metabotypes along with the

results from the KEGG pathways enrichment in liver and adipose tissues could be the effect of

gut microbial species in the hosts’ gene regulation. In the metabotype comparison, the statisti-

cally significant anthropometric features of age and glomerular filtration rate along with the

differentially significant KEGG pathways could plausibly reflect the process of cellular and bio-

logical senescence [65,66]. The detection of senescence in the metabolome by our proposed

SOM and k-means methodology, without prior knowledge of biometric characteristics

strengthens our claim that the identified metabotypes stand as different representations of

human metabolism among the BARIA obese individuals.

Our findings reveal that the overall effect of the metabotyping is still present in both the

metabolome and the gut microbial metagenome even after regressing out confounders like age

and gender. What has changed after the correction, is that metabolite compounds and gut

microbial species that were less abundant in the initial dataset have now been eliminated after

confounder adjustment.

On the other hand, confounding factors appear to have a more direct effect on the tran-

scriptome, even if enrichment analysis exhibited the distinct regulation of lipid, amino acid,

and pathogenic pathways amongst the metabotypes.

A limiting factor that needs to be considered when interpreting our findings is the selection

of the eligible individuals for bariatric surgery. The significant variability within human
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cohorts is often not possible to capture in a finite number of clinical variables. For example,

classifiers for obesity-associated comorbidities such as hypertension, T2D, and dyslipidemia

may be treated as binary variables (present vs. absent) [9], however the overall wellness of an

individual with any of these disorders can vary significantly as a function of how well managed

each of these conditions are, among many other factors. The BARIA exclusion criteria for sur-

gical interventions have to be strictly met for minimizing the risks and complications of such

an evasive procedure. As a result, the BARIA inclusions might not fully represent the obesity

spectrum. Many of differentially significant metabolites that were identified by our pipelines

are directly implicated in inflammatory pathways. A clinical inflammatory marker, such as

C-Reactive Protein (CRP) would be very valuable for confirming this observation. However,

CRP at baseline did not exhibit any overall statistical significance among the SOM-defined

clusters and was not available in the one year follow up (S15 Fig). There is a visible trend in

weight loss and leg/waist circumference reduction among the SOM and k-means defined clus-

ters over time. Nonetheless the statistically significant differences among all the identified

SOM clusters were not conclusive, probably due to statistical power. Despite the 106 BARIA

inclusions and the high quality of the omics dataset, each cluster contains 17–29 individuals,

which might account for the values of the statistically significant results.

Conclusions

The principal contribution of this study is the detailed omics dataset for obese individuals, that

includes metabolome, microbiome and especially transcriptome from multiple tissues. Our

findings suggested that participants’ stratification based on metabotyping could enhance our

ability to get molecular insights into the causes of diseases from multi-omics integrative analysis.

The combination of SOM metabotyping and DIABLO correlation analysis highlights the data-

driven nature of this approach. DIABLO analysis enabled the identification of an underlying

common yet discriminatory minimal multi-omics signature for the SOM-defined metabotypes,

that could lead to predictive markers of the bariatric surgery outcome. In this light, use of bio-

logic parameters such as the plasma metabolome, as a direct readout of the overall status of an

entire multiorgan system host and its microbiome, to determine grouping of individuals, offers

a unique approach that may more accurately classify individuals into distinct disease physiologi-

cal states [11,12,67]. Rather than traditional clinical disease classifiers, this grouping method

may reduce the confounding effects of such clinical metadata [68,69]. The multiple omics data-

set’s association framework can be the starting point for selecting candidate compounds for a

more thorough examination and provide mechanistic insight into the causality of pathogenicity

originating in the tissues, mediated by bacteria and materializing via metabolites and clinical

metadata. The multi-omics integrative framework implemented could also be utilized as a

hypothesis generating tool for comprehending cardiometabolic disease. Our data suggest that

self-organized metabotyping, based only on metabolite distribution, with no other prior knowl-

edge on the individuals’ clinical status in combination with DIABLO integrative analysis, con-

stitute a valuable computational approach studying multifaceted metabolic disorders.

Supporting information

S1 Fig. Clinical variables distribution between BARIA individuals diagnosed with and

without Metabolic Syndrome. (i) Fasting glucose (ii) Hba1c, (iii) HOMA2_IR, (iv) Systolic

Blood Pressure, (v) Triglycerides and (vi) HDL cholesterol statistical significance calculated

with Kruskal-Wallis test, symbols indicating significance among metabotypes: ‘�’: P< = 0.05,

‘��’: P< = 0.01, ‘���’: P< = 0.001.

(TIF)
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S2 Fig. Differentially significant metabolites between BARIA individuals diagnosed with

and without Metabolic Syndrome. Statistical analysis conducted with HybridMTest and

adjusted p value with Estimated Bayesian Probability (P<0.05).

(TIF)

S3 Fig. Different measures of microbial species alpha diversity (Observed, Chao1, ACE,

Shannon, Simpson, Inverse Simpson) for gut microbial species species among the SOM

clusters (metabotypes). None of the alpha diversity metrics reach statistical significance.

(TIF)

S4 Fig. Beta diversity (Whittaker measure) and homogeneity of multivariate dispersions

for gut microbial species species among the SOM clusters (metabotypes). Average Euclid-

ean distances in principal coordinate space between the samples and their respective group

centroid are: Cluster1 = 0.3946, Cluster2 = 0.3828, Cluster3 = 0.3777, Cluster4 = 0.3718, and

Cluster 5 = 0.3769. The Whittaker diversity index did not reach statistical significance.

(TIF)

S5 Fig. Differentially significant microbial species and alpha diversity between BARIA

individuals diagnosed with and without Metabolic Syndrome. (a) Different measures of

microbial species alpha diversity (Observed, Chao1, ACE, Shannon, Simpson, Inverse Simp-

son) and none of the alpha diversity metrics reach statistical significance. (b) Differentially sig-

nificant microbial species between BARIA individuals diagnosed with and without Metabolic

Syndrome, after statistical analysis with DESeq2 (P<0.05).

(TIFF)

S6 Fig. Beta diversity (Whittaker measure) and homogeneity of multivariate dispersions

for gut microbial species species between BARIA individuals diagnosed with and without

Metabolic Syndrome. Average Euclidean distances in principal coordinate space between the

samples and their respective group centroid are: MetabolicSyndrome = 0.3776 and NoMetabo-

licSyndrome = 0.3992. The Whittaker diversity index did not reach statistical significance.

(TIF)

S7 Fig. Relative abundance and distribution of differentially significant microbial species

between BARIA individuals diagnosed with and without Metabolic Syndrome. (a) Relative

abundance and phyla composition of the differentially significant microbial between BARIA

individuals diagnosed with and without Metabolic Syndrome. (b) Distribution of differentially

significant microbial species across phyla between BARIA individuals diagnosed with and

without Metabolic Syndrome.

(TIF)

S8 Fig. Spearman correlation between the first 145 differentially significant metabolites

and clinical variables among the SOM clusters (metabotypes). Significance codes are ‘���’

0.001 ‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘ ‘ 1.

(TIFF)

S9 Fig. Spearman correlation between the last 144 differentially significant metabolites

and clinical variables among the SOM clusters (metabotypes). Significance codes are ‘���’

0.001 ‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘ ‘ 1.

(TIFF)

S10 Fig. Spearman correlation between differentially significant gut microbial species and

clinical variables among the SOM clusters (metabotypes). Significance codes are ‘���’ 0.001
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‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘ ‘ 1.

(TIFF)

S11 Fig. Differentially abundant metabolites and metabolic pathways among the five

defined SOM clusters (metabotypes) adjusted for the confounding factors of age and gen-

der. (A) Relative abundance and distribution of differentially significant metabolites among

SOM and k-means defined clusters. Clusters two and three are most abundant in lipids (espe-

cially lysophospholipids and sphingomyelins) and amino acids (urea, arginine and proline

metabolism). (B) Distribution of differentially significant metabolic pathways among SOM

and k-means defined clusters, where numbers within each dot indicate how many metabolites

of that particular specific pathway were differentially abundant across clusters. (C) Top 20 dif-

ferentially significant metabolites among the SOM and k-means defined clusters, (P<0.05).

(TIFF)

S12 Fig. Differentially enriched KEGG metabolic pathways among the five defined SOM

clusters (metabotypes)), adjusted for the confounding factors of age and gender. (A) Top

15 differentially enriched KEGG metabolic pathways for hepatic transcriptome among the

SOM and k-means defined clusters, ranked based on their scores after differential gene expres-

sion analysis (DESeq2, P<0.05) and gene set analysis (GSA with EnrichR). (B) Top 15 differ-

entially enriched KEGG metabolic pathways for mesenteric adipose transcriptome among the

SOM and k-means defined clusters, ranked based on their scores after differential gene expres-

sion analysis (DESeq2, P<0.05) and gene set analysis (GSA) with EnrichR). (C) Top 10 differ-

entially enriched KEGG metabolic pathways for subcutaneous adipose tissue transcriptome

among the SOM and k-means defined clusters, ranked based on their scores after differential

gene expression analysis (DESeq2, P<0.05) and gene set analysis (GSA with EnrichR). (D) 20

highest scoring KEGG metabolic pathways according to EnrichR GSA score for liver, mesen-

teric adipose and subcutaneous adipose tissues. Z score indicates different levels of differen-

tially expressed pathways, for each SOM and k-means defined cluster.

(TIFF)

S13 Fig. Differentially abundant metabolites and metabolic pathways among the five

defined SOM clusters (metabotypes), adjusted for the confounding factors of age and gen-

der. (A) Relative abundance and distribution of differentially significant metabolites among

SOM and k-means defined clusters. Clusters two and three are most abundant in lipids (espe-

cially lysophospholipids) and amino acids (urea, arginine and proline metabolism). (B) Distri-

bution of differentially significant metabolic pathways among SOM and k-means defined

clusters, where numbers within each dot indicate how many metabolites of that particular spe-

cific pathway were differentially abundant across clusters. (C) Top 20 differentially significant

metabolites among the SOM and k-means defined clusters, (P<0.05).

(TIFF)

S14 Fig. DIABLO analysis and correlations among multiple omics datasets for the five

defined SOM clusters. (a) Total correlation matrix for the differentially significant metabo-

lites, genes, microbial species from all the different omic datasets after Sparce Principal Least

Squares Regression with mixOmics DIABLO. Highest total dataset correlation was observed

for differentially significant genes from the liver RNASeq dataset and mesenteric adipose tissue

at r = 0.89, followed by the metabolomics dataset with the liver RNASeq at r = 0.57 and the

metagenomics dataset with both liver and mesenteric adipose tissue RNASeq at r = 0.53. (b)

Circular correlation plot by DIABLO, for selecting top contributing components from each

omics dataset (metabolites, genes, bacterial species). Correlation cut-off was r = 0.7. The cho-

sen elements constituted a highly correlated discriminatory signature for the five metabotypes.
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This signature involves a series of: i) Prevotella species (P. veroralis, P. copri, P. multisacchari-
vorax, P. oulorum, P. denticola, P. sp. oral taxon 299, P.bryantii, P. melaninogenica), Intestini-
bacter bartlettii, Anaerococcus prevotii; ii) lipid metabolites (especially phospatidylcholines);

iii) liver genes enriched in oxidative phosphorylation, lipid metabolism and cardiomyopathy

pathways; iv) subcutaneous adipose fat IL6 and SELE genes involved in inflammatory and

immune system pathways; v) mesenteric adipose fat genes enriched in prolactine signaling,

T2DM and PI3K-Akt signaling pathways.

(TIFF)

S15 Fig. C-Reactive protein associated with obesity and its statistical significance across

the metabotypes (SOM & k-means defined clusters. Statistical significance among metabo-

types is calculated with Kruskal-Wallis test and p value has been adjusted with FDR.

(TIFF)

S1 Table. A. Differentially significant genes in liver tissue among the 5 SOM clusters (metabo-

types). ENSGeneID: Ensemble Gene ID Identifier, MeanCluster: Mean gene expression in a

particular cluster, padj: Log Ratio Test adjusted p value, as calculated by DESeq2. B. Differen-

tially significant genes in mesenteric adipose tissue among the 5 SOM clusters (metabotypes).

ENSGeneID: Ensemble Gene ID Identifier, MeanCluster: Mean gene expression in a particular

cluster, padj: Log Ratio Test adjusted p value, as calculated by DESeq2. C. Differentially sig-

nificant genes in subcutaneous adipose tissue among the 5 SOM clusters (metabotypes).

ENSGeneID: Ensemble Gene ID Identifier, MeanCluster: Mean gene expression in a particular

cluster, padj: Log Ratio Test adjusted p value, as calculated by DESeq2.

(XLSX)

S2 Table. Differentially significant gene set enrichment results for all tissues. DEGGroup:

Groups assigned by DEG Report software, representing genes with similar expression levels

enriched in KEGG pathways, Cluster_DEGScore: z score assigned by DEG Report software,

representing the expression levels of enriched KEGG pathways for each cluster, p value: Wil-

coxon p value assigned by Enrichr software indicating the statistical significance of the

enriched KEGG pathway, EnrichrCombinedScore: Score assigned by Enrichr software indicat-

ing the significance of the enriched KEGG pathway.

(XLSX)

S3 Table. Differentially significant gut microbial species among the 5 SOM clusters (meta-

botypes). MeanMicrobialSpeciesAbundanceCluster: Mean microbial species abundance in a

particular cluster, padj: Log Ratio Test adjusted p value, as calculated by DESeq2.

(XLSX)

S4 Table. Differentially significant metabolites among the 5 SOM clusters (metabotypes).

MeanMetaboliteAbundanceCluster: Mean metabolite abundance in a particular cluster, padj:

Estimated Bayesian Probability adjusted p value.

(XLSX)

S5 Table. DIABLO all multi-omics datasets correlation matrix.

(XLSX)

S6 Table. Differentially significant gut microbial species between BARIA individuals diag-

nosed with Metabolic Syndrome and with No Metabolic Syndrome. padj: Log Ratio Test

adjusted p value, as calculated by DESeq2.

(XLSX)
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