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Abstract
This paper treats functional marked point processes (FMPPs), which are defined as
marked point processes where the marks are random elements in some (Polish) func-
tion space. Such marks may represent, for example, spatial paths or functions of time.
To be able to consider, for example, multivariate FMPPs, we also attach an additional,
Euclidean, mark to each point. We indicate how the FMPP framework quite naturally
connects the point process framework with both the functional data analysis frame-
work and the geostatistical framework.We further show that various existing stochastic
models fit well into the FMPP framework. To be able to carry out nonparametric sta-
tistical analyses for FMPPs, we study characteristics such as product densities and
Palm distributions, which are the building blocks for many summary statistics. We
proceed to defining a new family of summary statistics, so-called weighted marked
reduced moment measures, together with their nonparametric estimators, in order to
study features of the functional marks. We further show how other summary statistics
may be obtained as special cases of these summary statistics. We finally apply these
tools to analyse population structures, such as demographic evolution and sex ratio
over time, in Spanish provinces.
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1 Introduction

Many types of functional data, such as financial time series, animalmovements, growth
functions for trees in a forest stand, the spatial extensions of outbreaks of a disease over
timewith respect to the outbreak centres, populationgrowth functions of towns/cities in
a country, and different functions describing spatial dependence (e.g. LISA functions;
see Section 11 in SupplementaryMaterials and the references therein), are represented
as collections { f1(t), . . . , fn(t)}, t ∈ T ⊂ [0,∞), n ≥ 1, of functions/paths in some
k-dimensional Euclidean space R

k , k ≥ 1; note that the argument t need not represent
time, it could, for example, represent spatial distance. The common approach to deal
with such data within the field of functional data analysis (FDA) (Ramsay and Silver-
man 2005) is to assume that the functions fi , i = 1, . . . , n, belong to some suitable
family of functions (usually an L2-space) and are realisations/sample paths of some
collection of independent and identically distributed (iid) random functions/stochastic
processes {F1(t), . . . , Fn(t)}, t ∈ T , with sample paths belonging to the family of
functions in question.

For many applications, however, the following two adequate questions may quite
naturally arise:

1. Does it make sense to assume that the random elements F1, . . . , Fn , which have
generated the functional data set { f1, . . . , fn}, are in fact iid?

2. Is the study designed in such a way that the sample size n is known a priori, or is
n in fact unknown before the data set is realised?

The first question can be framed within the context of multivariate (Gaussian) random
fields/processes, and it has been addressed quite extensively in the literature; see, e.g.
Banerjee et al. (2014), Gelfand and Banerjee (2010), Genton and Kleiber (2015). The
second question, however, in particular in combination with the first question, has not
really been explored to any degree, and it would be beneficial to have a foundation
with a proper structure for such analyses.

Functional data sets (believed to be) generated in accordancewith the above remarks
will be referred to as functional marked point patterns, and Fig. 1 provides illustrative
examples of such data sets. The top panels show two functional marked point patterns
based on the centres of the provinces on the Spanish mainland. To each point, which
corresponds to a centre, we have associated the demographic evolution of the popula-
tion on logarithmic scale (left) and the sex ratio (right), over the years 1998–2017. In
the top right panel, for each of the 47 functions/provinces, the horizontal red dashed
line corresponds to y = 1, which illustrates the case where we have the same size
of genders in the province in question. The bottom panels show animal movement
tracks. The lower left panel shows the movement tracks of two Mongolian wolves,
starting from random initial monitoring locations (red squares); the data are taken
from the Movebank website. The lower right panel shows the movement tracks of 15
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Functional marked point processes… 531

Fig. 1 Top panels: Spanish province data. Log-scale demographic evolution (top left) and sex ratio (top
right) in 47 provinces of Spain, for the years 1998–2017. Bottom panel: Movement tracks. The movement
tracks of two Mongolian wolves (bottom left). Movement tracks of 15 Ya Ha Tinda elks in Banff National
Park, Canada (bottom right); the red squares are the starting points of the tracks

Ya Ha Tinda elk (Hebblewhite and Merrill 2008), starting from some random initial
monitoring locations.

Another setting where these questions also naturally arise is found in spatio-
temporal geostatistics (Montero et al. 2015). Assume that each of the data-generating
stochastic processes Fi (t) = Z(xi , t), t ∈ T , i = 1, . . . , n, is associated with a
spatial location xi ∈ W ⊂ R

d and that Z(x, t), (x, t) ∈ W × T , is a (Gaussian)
spatio-temporal random field. Here, the functions F1, . . . , Fn are clearly not indepen-
dent (ignoring pathological cases) and onemay further ask whether it would not in fact
make sense to assume that the sampling/monitoring locations x1, . . . , xn are actually
randomly generated. In addition, does it make sense to assume that the total number
of such locations was fixed a priori, or did these locations, for example, appear over
times (in relation to each other), thus allowing us to treat them as a randomly evolv-
ing entity with a random total number of components N ≥ 1? For instance, all the
weather stations monitoring precipitation in a given country/region have (most likely)
arrived over time, in relation to each other, rather than being placed at their individual
locations at the same time. For example, we do not know a priori how many stations
will have appeared during the period 2010–2040 and where they will be located.
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Taking these remarks into account, we argue that for many functional data sets
{ f1(t), . . . , fn(t)}, t ∈ T ⊂ [0,∞), n ≥ 1, it would make sense to assume i) that
n ≥ 1 is the realisation of some discrete non-negative random variable N and ii) that
(conditional on N = n) the random functions F1, . . . , Fn are possibly dependent. A
natural way to tackle the statistical analysis under such non-standard assumptions is
to assume that the functional data set is generated by a point process in some space
F of functions f : T → R

k . This would mean that we would model the functional
data set (a functional marked point pattern) as the realisation of a set of random
functions {F1(t), . . . , FN (t)}, t ∈ T , of random size N . Note that by construction, all
components Fi have the same marginal distributions. Under such a setup, a so-called
binomial point process (Møller and Waagepetersen 2004; van Lieshout 2000) would
yield the classical FDA setup mentioned above. Note that the idea of analysing point
patterns (collections of points) with attached functions has already been noted in the
literature (Comas 2009; Delicado et al. 2010).

It is often the case that these functions have some sort of spatial dependence.
For example, two functions fi and f j , with starting points fi (0) and f j (0) which
are spatially close to each other in R

k , either gain or lose from each other’s vicinity.
Accordingly, it seems natural to generate F1, . . . , FN conditionally on some collection
of random spatial locations Xi and some further set of random variables Li associated
with the random functions Fi ; conditionally on the spatial locations, the Li ’s would
influence the random functions Fi in a non-spatial sense. We argue that the natural set-
ting to do this is through functional marked point processes (FMPPs). More precisely,
we define a FMPP Ψ = {(Xi , (Li , Fi ))}Ni=1 as a spatial point process ΨG = {Xi }Ni=1
in R

d to which we assign marks {(Li , Fi )}Ni=1; note that by forcing all Li to take the
same value, we may reduce the FMPP to the collection {(Xi , Fi )}Ni=1.

We here take a full grip and provide a proper framework for FMPPs, where we in
particular take into account that for the standard point processmachinery to go through
(in particular the use of regular conditional probability distributions), one has to assume
that the mark space, and thereby the function space F , is a Polish space (Daley and
Vere-Jones 2008). In particular, one may then provide a reference stochastic process
XF , with sample paths in F , whose distribution νF on F acts as a reference mea-
sure which one integrates with respect to (in a Radon–Nikodym sense). We further
provide a plethora of examples from the literature which fit into the FMPP frame-
work and discuss these in some detail. Examples include geostatistics (Cressie and
Kornak 2003) with random sampling locations, point processes marked with ‘spatio-
temporal random closed sets’, e.g. spatio-temporal Boolean models (Sebastian et al.
2006), constructed functionalmarks, e.g. so-called LISA functions (Mateu et al. 2007),
and the Renshaw-Särkkä growth-interaction model (Cronie and Särkkä 2011; Cronie
et al. 2013; Renshaw and Särkkä 2001; Särkkä and Renshaw 2006). To be able to
carry out statistical analyses in the context of FMPPs, various moment characteris-
tics, such as product densities, are required and we here cover such characteristics.
A key observation here is that we, in contrast to previous works, completely move
away from the (arguably unrealistic) assumption of stationarity. We then proceed to
discussing various general marking structures, such as the marks having a common
marginal distribution and the marks being (conditionally) independent. To study inter-
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actions between functional marks, we further define new types of summary statistics
(of arbitrary order), which we refer to as weighted marked reduced moment measures
and mark correlation functionals. These summary statistics are essentially mark-test
function-weighted summary statisticswhich have been restricted to pre-specifiedmark
groupings. We study them in different contexts and show how they under different
assumptions reduce to different existing summary statistics. In addition, we provide
nonparametric estimators for all the summary statistics and show their unbiasedness.
We also show how these summary statistic estimators can be employed to carry out
functional data analysis when the functional data-generating elements are spatially
dependent (according to a FMPP). We finally apply our summary statistic estimators
to the data illustrated in the first two panels of Fig. 1, in order to analyse population
structures such as demographic evolution and sex ratio of human population over time
in Spanish provinces.

2 Functional marked point processes

Throughout, let X be a subset of d-dimensional Euclidean space R
d , d ≥ 1, which

is either compact or given by all of R
d . Denote by ‖ · ‖ = ‖ · ‖d the d-dimensional

Euclidean norm, by B(X ) the Borel sets of X ⊂ R
d and by | · | = | · |d the Lebesgue

measure on X ;
∫
dx denotes integration w.r.t. | · |. It will be clear from the context

whether | · | is used for the Lebesgue measure or the absolute value. We denote by
B(·)n the n-fold product of an arbitrary Borel σ -algebra B(·) with itself. Moreover,
we denote by μ1 ⊗ μ2 the product measure generated by measures μ1 and μ2 and by
μn
1 the n-fold product ofμ1 with itself. Recall further that a topological space is called

Polish if there is a metric/distance which generates the underlying topology and turns
the space into a complete and separable metric space. A closed ball of radius r ≥ 0,
centred in x ∈ S, where the space S is equipped with a metric dS(·, ·), will be denoted
by BS [x, r ] = {y ∈ S : dS(x, y) ≤ r}.

Consider a point process ΨG = {Xi }Ni=1, N ∈ N0 = {0, 1, 2, . . . ,∞}, on X
(Illian et al. 2008; Chiu et al. 2013). Throughout the paper, we refer to ΨG as a
ground/unmarked point process. To each point ofΨG , we may attach a further random
element, a so-called mark, in order to construct a marked point process Ψ . In this
paper, a mark is given by a k-dimensional random function/stochastic process Fi (t) =
(Fi1(t), . . . , Fik(t)), t ∈ T ⊂ [0,∞), a functional mark, possibly together with
some further random variable Li , which we refer to as an auxiliary/latent mark. The
resulting marked point process Ψ = {(Xi , (Li , Fi ))}Ni=1, N ∈ N0, will be referred to
as a functional marked point process (FMPP). Themain purpose of including auxiliary
marks is to control the supports of the functional marks, on the one hand, and on the
other hand, they may serve as indicators/labels for different types of points of the point
process, in a classical multi-type point process sense.
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2.1 Construction of functional marked point processes

To formally define a FMPP, we first need to specify the underlying mark space M.
The general theory for marked point processes (Daley and Vere-Jones 2003, 2008;
van Lieshout 2000) allows us to consider any Polish space M as mark space. Here,
we let the mark space be the Polish product spaceM = A × F given by the product
of

– a Borel subset A 
 Li of some Euclidean space R
kA , kA ≥ 1, referred to as the

auxiliary/latent mark space,
– a Polish function space F = Uk 
 Fi , k ≥ 1; each element f = ( f1, . . . , fk) ∈
F = Uk has components f j : T → R, j = 1, . . . , k.

Note that due to the Polish structures of these spaces, the Borel sets ofM are given by
the product σ -algebra B(M) = B(A × F) = B(A) ⊗ B(F) = B(RkA) ⊗ B(Uk) =
B(R)kA ⊗B(U)k . Explicit examples of auxiliary and functional mark spaces are given
in Supplementary Materials, Section 13.

Let Y = X × M and let Nl f be the collection of all point patterns, i.e. locally
finite subsets ψ = {(x1, l1, f1), . . . , (xn, ln, fn)} ⊂ Y , n ≥ 0; n = 0 corresponds to
ψ = ∅. Note that local finiteness means that the cardinality ψ(A) = |ψ ∩ A| is finite
for any bounded Borel set A ∈ B(Y). Denote the corresponding counting measure
σ -algebra on Nl f by Nl f (see Daley and Vere-Jones (2008, Chapter 9)); Nl f is the
σ -algebra generated by the mappings ψ → ψ(A) ∈ N0, ψ ∈ Nl f , A ∈ B(Y). By
construction, since point patterns here are defined as subsets, all ψ ∈ Nl f are simple,
i.e. ψ({(x, l, f )}) ≤ ψG({x}) ∈ {0, 1} for any (x, l,m) ∈ X × A × F .

Definition 1 Given some probability space (Ω,Σ, P), a point process Ψ =
{(Xi , Li , Fi )}Ni=1, N ∈ N0, on Y = X ×M = X ×A×F is a measurable mapping
from (Ω,Σ, P) to the space (Nl f ,Nl f ).

If a point processΨ onY is such that the ground/unmarked point processΨG = {x :
(x, l, f ) ∈ Ψ } is a well-defined point process in X , we call Ψ a (simple) functional
marked point process (FMPP) and when X ⊂ R

d−1 × R, d ≥ 2, and ΨG is a spatio-
temporal point process in X , we call Ψ a spatio-temporal FMPP.

Note that Ψ may be treated either as a locally finite random subset Ψ =
{(Xi , Li , Fi )}Ni=1 ⊂ Y , or as a randomcountingmeasureΨ (·) =∑(x,l, f )∈Ψ δ(x,l, f )(·)
= ∑N

i=1 δ(Xi ,Li ,Fi )(·) on (Y,B(Y)) with ground measure/process ΨG

(·) =∑x∈ΨG
δx (·) =∑(x,l, f )∈Ψ δ(x,l, f )(· × A × F) =∑N

i=1 δXi (·) on (X ,B(X )).

In the spatio-temporal case, it may be convenient to write ΨG = {(Xi , Ti )}Ni=1 to
emphasise that each ground process point has a spatial component, Xi ∈ R

d−1, as
well as a temporal component Ti ∈ R.

Remark 1 Since all of the underlying spaces are Polish, we may choose a met-
ric d(·, ·) on Y which turns Y into a complete and separable metric space, with
metric topology given by the underlying Polish topology. For example, we may con-
sider d((x1, l1, f1), (x2, l2, f2)) = max{dX (x1, x2), dA(l1, l2), dF ( f1, f2)}, where
dX (x1, x2) = ‖x1−x2‖d and themetrics dA(·, ·) and dF (·, ·)makeA andF complete
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and separable metrics spaces (van Lieshout 2000); whenA = R
kA orA is a compact

subset of R
kA , we may use dA(l1, l2) = ‖l1 − l2‖kA . In the spatio-temporal case,

it may be natural to consider dX ((x1, t1), (x2, t2)) = max{‖x1 − x2‖d−1, |t1 − t2|},
(x1, t1), (x2, t2) ∈ X ⊂ R

d−1 × R = R
d (Cronie and van Lieshout 2015), which is

topologically equivalent to dX ((x1, t1), (x2, t2)) = ‖(x1, t1) − (x2, t2)‖d .
We will write P(R) = PΨ (R) = P({ω ∈ Ω : Ψ (ω) ∈ R}), R ∈ Nl f , for the distri-

bution ofΨ , i.e. the probabilitymeasure thatΨ induces on (Nl f ,Nl f ).WhenX = R
d ,

for any ψ ∈ Nl f and any z ∈ R
d , we will write ψ + z to denote

∑
(x,l, f )∈ψ δ(x+z,l, f )

(or {(x+ z, l,m) : (x, l,m) ∈ ψ}), i.e. a shift ofψ in the ground space by the vector z.

If Ψ + z
d= Ψ , i.e. PΨ (·) = PΨ +z(·), for any z, we say that Ψ is stationary. Moreover,

Ψ is isotropic if Ψ is rotation invariant in the ground space, i.e. the rotated FMPP
rΨ = {(r Xi , Li , Fi )}Ni=1 has the same distribution as Ψ for any rotation r .

2.2 Components of FMPPs

We emphasise that any collection of elements {(X1, L1, F1), . . . , (Xn, Ln, Fn)} ⊂ Ψ ,
n ≥ 1, consists of the combination of:

– a collection of random spatial locations X1, . . . , Xn ∈ X ,
– a collection L1, . . . , Ln of random variables taking values in A,
– an n-dimensional random function/stochastic process {F1(t), . . . , Fn(t)}t∈T ∈

(Rk)n , with realisations in Fn ; formally, this is an unordered collection of n
stochastic processes in R

k with sample paths in F = Uk ⊂ { f | f : T → R}k .
In particular, ΨX×A = {(Xi , Li )}Ni=1 is a marked point process of the usual

kind, with locations in R
d and marks in A ⊂ R

kA , i.e. each auxiliary mark
Li = (L1i , . . . , LkAi ) is given by a kA-dimensional randomvector.Depending onhow
A and the distributions of the Li ’s are specified, we are able to consider an array of dif-
ferent settings. For example, ifA = {1, . . . , kd}, kd ≥ 2, each random variable Li has
a discrete distribution on A. Since ΨX×A hereby becomes a multi-type/multivariate
point process in R

d , one may call such FMPPs multi-type/multivariate (Daley and
Vere-Jones 2003; van Lieshout 2000; Gelfand et al. 2010). In Supplementary Mate-
rials, Section 13, we look closer at specific choices for A. It is often convenient to
write A = Ad to emphasise when we have a discrete auxiliary mark space, such as
Ad = {1, . . . , kd}, andA = Ac to emphasise when have a continuous space ((closure)
of an open set), such as Ac = R

kA .
Within the current definition of FMPPs, we may also consider the scenario where

the auxiliary marks play no role and thereby may be ignored. This may be obtained
by, for example, setting A = {c} for some constant c ∈ R, so that all auxiliary marks
attain the value c, or equivalently, setting Li = c a.s. for any i = 1, . . . , N , assuming
that c ∈ A. It is worth remarking that the inclusion of the auxiliary marks allows us to
impose an order on the points in the sense that we would consider a functional marked
sequential point process; van Lieshout (2006b) connects sequential point processes
with marked spatio-temporal point processes with mark space (0, 1).

Note that when we want to consider functional marks with realisations given by
functions f (t) = ( f1(t), . . . , fk(t)) ∈ R

k , t ∈ T , which describe spatial paths, we
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let k ≥ 2. Often the spatial locations Xi describe the initial location of such a path,
and it is then natural to assume that d = k ≥ 2 and f (t) ∈ X a.s. for any t ∈ T .
An application here would be that the marks describe movements of animals, living
within some spatial domain X ; recall Fig. 1.

Recall that each functional mark Fi (t) = (Fi1(t), . . . , Fik(t)) ∈ R
k , t ∈ T ⊂

[0,∞), i = 1, . . . , N , is realised in the measurable space (F ,B(F)), whereF = Uk ,
k ≥ 1, and U are Polish function spaces (products of Polish spaces are Polish). By
conditioning Ψ on ΨX×A, which includes conditioning on N , we obtain the random
functional

Ψ |ΨX×A = {F1|ΨX×A, . . . , FN |ΨX×A}
= {F1(t)|ΨX×A, . . . , FN (t)|ΨX×A}t∈T ⊂ F ,

which may be regarded as a stochastic process with dimension N and with the same
marginal distributions for all of its components. Due to the inherent temporally evolv-
ing nature of the functional marks, one may further consider some filtration ΣT , and
thus obtain a filtered probability space (Ω,Σ,ΣT , P), such that all Fi = {Fi (t)}t∈T ,
i = 1, . . . , N , are adapted to ΣT (see Supplementary Materials, Section 13.2, for
more details).

Remark 2 Formally, Ψ |ΨX×A may be obtained as the point process generated by the
family of regular conditional probabilities obtained by disintegrating PΨ with respect
to the distribution of ΨX×A on its point pattern space (Daley and Vere-Jones 2003,
Appendix A1.5.).

We impose the Polish assumption on U in order to carry out the usual marked point
process analysis (Daley and Vere-Jones 2003, 2008); note that U being Polish implies
that F is Polish and B(F) = B(Uk) = B(U)k . However, choosing a Polish function
space U is a delicate matter; note that Comas et al. (2011) did not address this issue. In
Supplementary Materials, Section 13.2, we consider functional mark spaces in more
detail and there we cover the two most natural choices for U , namely Skorohod spaces
and L p-spaces (Billingsley 1999; Ethier and Kurtz 1986; Jacod and Shiryaev 1987;
Silvestrov 2004). Note that these two classes of functions are not mutually exclusive.

Noting that, in general, the support supp( f ) = {t ∈ T : f (t) �= 0} ⊂ T of a
function f ∈ F need not be given by all of T , in some contexts it may be natural to
let ΨX×A govern the supports supp(Fi ) = {t ∈ T : Fi (t) �= 0 ∈ R

k}, i = 1, . . . , N .
To illustrate this idea, consider the case where d = 1 and X = T = [0,∞), so that
ΨG = {Ti }Ni=1 ⊂ [0,∞) is a temporal point process. In addition, assume that kA = 1
and that each auxiliary mark Li is some non-negative random variable, such as an
exponentially distributed one, which does not depend on ΨG . Let us think of Ti and
Li as a point’s birth time and lifetime, respectively. Defining the corresponding death
time as Di = Ti + Li , we may then, for example, let

Fi (t)|ΨX×A = (Fi1(t)|ΨX×A, . . . , Fik(t)|ΨX×A) = 0

for all t /∈ [Ti , Di ) a.s., where 0 is the k-dimensional vector of 0s. Note further
that there in addition to this may exist t ∈ [Ti , Di ) such that Fi (t)|ΨX×A = 0
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Functional marked point processes… 537

in some way (e.g. absorption), which is something governed by the distribution of
{Fi (t)|ΨX×A}t∈T on F . An explicit construction to obtain this when k = 1 would,
for example, be Fi (t) = 1[Ti ,Di )(t)Yi ((t−Ti )∧0), t ∈ T , for some stochastic process
Y (t), t ∈ [0,∞), which starts in 0.

2.3 Referencemeasures and reference stochastic processes

For the purpose of integration, among other things, we need a reference measure on
(Y,B(Y)). We let it be given by the product measure

ν(C × D × E) =[| · | ⊗ νM](C × (D × E)) = |C |νA(D)νF (E), (1)

where C × D × E ∈ B(Y) = B(X ) ⊗ B(A) ⊗ B(F), and we note that as usual, the
reference measure on the ground spaceX is given by the Lebesgue measure | · | = | · |d
on X ⊂ R

d , d ≥ 1. Moreover, we need νM = νA ⊗ νF to be a finite measure so both
νA and νF need to be finite measures on (A,B(A)) and (F ,B(F)), respectively.

Regarding the referencemeasure on the auxiliarymark space, in the Supplementary
Materials, Section 13, we provide a few examples based on different choices for A.
Most noteworthy here is that if A = Ad is a discrete space, then νA = νAd is a
discrete measure νAd (·) =∑i∈Ad

Δiδi (·), Δi ≥ 0 (e.g. the counting measure, given
by Δi ≡ 1), if A = Ac is a continuous space, then we may choose νA = νAc to be
the kA-dimensional Lebesgue measure on A, and if A is unbounded, e.g. A = R

kA ,
then we may choose νA to be some probability measure. IfA = Ad ×Ac is given by
a product of a discrete and a continuous space, then νA can be taken to be a product
measure νAd ⊗ νAc .

Turning to the functional mark space (F ,B(F)), consider some suitable reference
random function/stochastic process

XF = (XF
1 , . . . , XF

k ) : (Ω,Σ, P) → (F ,B(F)) = (Uk,B(U)k),

Ω 
 ω → XF (ω) = (XF
1 (ω), . . . , XF

k (ω)) = {(XF
1 (t;ω), . . . , XF

k (t;ω))}t∈T ,

(2)

where each XF (ω) ∈ Uk = F is commonly referred to as a sample path/realisation
of XF . This random element induces a probability measure

νF (E) = P({ω ∈ Ω : XF (ω) ∈ E}), E ∈ B(F), (3)

on F , which we will employ as our reference measure on F . Note that the joint
distribution on (Fn,B(Fn)) of n independent copies of XF is given by νnF , the n-
fold product measure of νF with itself. Moreover, if there is a suitable measure νU
on U , we let νF = νkU . Specifically, νF , or XF , should be chosen such that suitable
absolute continuity results can be applied. More specifically, the distribution PY on
(Fn,B(Fn)), n ≥ 1, of some stochastic process Y = {Y (t)}t∈T ∈ Fn = (Uk)n of
interest should have some (functional) density/Radon–Nikodym derivative fY with
respect to νnF , i.e. PY (E) = ∫E fY ( f )νnF (d f ) = EνnF [1E fY ], E ∈ B(Fn). Note that
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Kolmogorov’s consistency theorem allows us to specify the (abstract) distribution PY
of Y through its finite-dimensional distributions (on (Rk)n).

In many situations, a natural choice for νF is a Gaussian measure on B(F), i.e. one
corresponding to some Gaussian process XF , or the distribution corresponding to a
Markov process XF : (Ω,Σ, P) → (F ,B(F)). An often natural choice, which sat-
isfies both of these properties, is the k-dimensional standard Brownian motion/Wiener
process

XF = W = {W (t)}t∈T = {(W1(t), . . . ,Wk(t))}t∈T ∈ F = Uk,

which is generated by the corresponding Wiener measure WF on B(F). In certain
cases, one speaks of an abstract Wiener space or Cameron–Martin space. Here, issues
related to absolute continuity have been extensively studied, and explicit constructions
of Radon–Nikodym derivatives involve, for example, the Cameron–Martin–Girsanov
(change of measure) theorem. For discussions, overviews, and detailed accounts, see,
e.g. Kallenberg (2006), Rajput (1972), Maniglia and Rhandi (2004), Skorohod (1967)
and the references therein.

Note that integration of a measurable function h with respect to ν satisfies

∫

Y
h(x, l, f )ν(d(x, l, f )) =

∫

X

∫

A

∫

F
h(x, l, f )dxνA(dl)νF (d f )

=
∫

X

∫

A

∫

U k
h(x, l, f1, . . . , fk)

dxνA(dl)νU (d f1) · · · νU (d fk);

whenever the auxiliary marks are (partially) discrete, the integral overA is (partially)
replaced by a sum.

3 FMPP examples

The class of FMPPs provides a framework to give structure to a series of existing
models, and it allows for the construction of new important models and modelling
frameworks, which have uses in different applications. In Supplementary Materials,
Section 11, we provide an array of different models which fit into the FMPP structure.
More specifically, we look closer at the following examples:

– By letting the functional marks be random constant functions, we obtain (equiva-
lents of) point processes with real valued marks.

– Deterministic functional marks, obtained by letting Ψ |ΨX×A = { f1, . . . , fN }
for deterministic functions f1, . . . , fN ∈ F . A particular instance of this, which
we also look at extensions for, is the growth interaction process of Renshaw and
Särkkä (2001), which has been extensively employed for dynamical modelling
of forest stands; here, the functional marks are governed by a set of differential
equations.
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– For a (spatio-temporal) FMPP Ψ , where the spatial locations Xi are located in
some subset of R

2 and k = 1, i.e. F = U , so that Fi (t) = Fi1(t) ∈ R,
t ∈ T , we look closer at the temporally evolving random closed set Ξ(t) =⋃N

i=1 BX [Xi , Fi (t)] ⊂ R
2, t ∈ T . This provides a natural geometric interpreta-

tion for many FMPP settings (see Fig. 4 in Supplementary Materials, Section 16).
– Given a spatio-temporal k-dimensional random field Zx (t) ∈ R

k , (x, t) ∈ X ×T ,
k ≥ 1, we define spatio-temporal geostatistical marking/sampling of a random
field at random locations by letting Fi = {ZXi (t)}t∈T ∈ F = Uk , i = 1, . . . , N ,
conditionally on ΨX×A. Here, we, for example, look closer at spatio-temporal
geostatistics under such a random monitoring location setting.

– Constructed functional marks are constructed to reflect geometries of point con-
figurations in neighbourhoods of individual points. A typical example is given
by so-called LISA functions (local estimators), which we here formally define as
S(h, Xi ;ΨG\{Xi }) = Fi (h), h ∈ T = [0,∞), for some function S.

– We discuss spatio-temporal intensity-dependent markingwhichwe define to occur
if, conditionally onΨG and the auxiliary marks, the functional marks Fi (t), t ∈ T ,
i = 1, . . . , N , are given as functions t → h(ρG(Xi , t)), t ∈ T , i = 1, . . . , N , for
some (random) function h : R → R. For instance, we may have Fi (t)|ΨX×A =
a+bρG(Xi , t)+ ε(Xi , t), a, b ∈ R, where ε(x, t) is a spatio-temporal zero mean
Gaussian noise process.

In SupplementaryMaterials, Section 12, we additionally provide a few (further) exam-
ples of applications, and in SupplementaryMaterials, Section 16, we provide examples
of classical point process models which are functional marked.

4 Moment characteristics for FMPPs

Besides illustrating the connections above, the aim of this paper is to consider differ-
ent statistical approaches which allow us to analyse point pattern data with functional
marks. For a wide range of summary statistics, the core elements are intensity func-
tions and higher-order product density functions. We next consider product densities
and intensity reweighted product densities for FMPPs. In Supplementary Materials,
Section 13, we look closer at what these entities look like under various auxiliary and
functional mark space choices.

4.1 Product densities and intensity functionals

Let Ψ be a FMPP with ground process ΨG . Given some n ≥ 1 and some measurable
functional h : Yn = X n × An × Fn → [0,∞), consider

α
(n)
h = E

[∑�=
(x1,l1, f1),...,(xn ,ln , fn)∈Ψ

h((x1, l1, f1), . . . , (xn, ln, fn))

]

. (4)

Here,
∑�= denotes summation over distinct n-tuples. We first note that the nth-order

factorial moment measure α(n)(A1 × · · · × An) of Ψ is retrieved by letting h be the
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indicator function for the set A1×· · ·×An = (C1×D1×E1)×· · ·×(Cn×Dn×En) ∈
B(Yn) = B(X × M)n = B(X × A × F)n . Note further that α(n) coincides with
the nth-order moment measure μ(n)(A1 × · · · × An) = E[Ψ (A1) · · · Ψ (An)] when
A1, . . . , An ∈ B(Y) are disjoint.

Assume next that the nth-order (functional) product density ρ(n), i.e. the Radon–
Nikodym derivative of α(n) with respect to the n-fold product of the reference measure
ν in (1) with itself, exists. We have that α(n) and ρ(n) satisfy the following Campbell
formula (Chiu et al. 2013):

α
(n)
h

=
∫

(X×A×F)n
h((x1, l1, f1), . . . , (xn, ln, fn))α

(n)(d((x1, l1, f1), . . . , (xn, ln, fn)))

=
∫

X×A×F
· · ·
∫

X×A×F
h((x1, l1, f1), . . . , (xn, ln, fn))×

× ρ(n)((x1, l1, f1), . . . , (xn, ln, fn))
n∏

i=1

dxiνA(dli )νF (d fi )︸ ︷︷ ︸
=ν(dxi×dli×d fi )

. (5)

Heuristically, ρ(n)((x1, l1, f1), . . . , (xn, ln, fn))
∏n

i=1 ν(d(xi , li , fi )) is interpreted as
the probability of having ground process points in the infinitesimal neighbour-
hoods dx1, . . . , dxn ⊂ X of x1, . . . , xn , with associated marks belonging to the
infinitesimal neighbourhoods d(l1, f1), . . . , d(ln, fn) ⊂ A × F of the mark loca-
tions (l1, f1), . . . , (ln, fn).

Turning to the ground processΨG , throughα(n) wemay define the nth-order ground
factorial moment measure α

(n)
G (·) = α(n)(·×A×F) and its Radon–Nikodym deriva-

tive ρ
(n)
G with respect to the n-fold product | · |n of the Lebesgue measure | · |with itself,

which is called the nth-order ground product density. Note that by letting the function
h in (5) be a function onX only, we obtain a Campbell formula for the ground process
ΨG . Moreover, by the existence of ρ

(n)
G and ρ(n), it follows that (Heinrich 2013)

ρ(n)((x1, l1, f1), . . . , (xn, ln, fn))

= QM
x1,...,xn ((l1, f1), . . . , (ln, fn))ρ

(n)
G (x1, . . . , xn)

= QF
(x1,l1),...,(xn ,ln)( f1, . . . , fn)Q

A
x1,...,xn (l1, . . . , ln)ρ

(n)
G (x1, . . . , xn), (6)

where

QA
x1,...,xn : An → [0,∞), x1, . . . , xn ∈ X , (7)

QF
(x1,l1),...,(xn ,ln) : Fn = (Uk)n → [0,∞), (x1, l1), . . . , (xn, ln) ∈ X × A, (8)

are densities of the families

PA
x1,...,xn (D1 × · · · × Dn) =

∫

D1×···×Dn

QA
x1,...,xn (l1, . . . , ln)

n∏

i=1

νA(dli ), (9)
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PF
(x1,l1),...,(xn ,ln)(E1 × · · · × En)

=
∫

E1×···×En

QF
(x1,l1),...,(xn ,ln)( f1, . . . , fn)

n∏

i=1

νF (d fi ), (10)

(D1 × E1), . . . , (Dn × En) ∈ B(M) = B(A × F), of (regular) conditional prob-
ability distributions. We interpret QA

x1,...,xn (·) as the density of the conditional joint
probability distribution of n auxiliary marks in A, given that Ψ indeed has n points
at the locations x1, . . . , xn ∈ X . Similarly, QF

(x1,l1),...,(xn ,ln)
(·) is interpreted as the

density of the conditional joint probability distribution of n functional marks in F ,
given that ΨG has points at the n locations x1, . . . , xn ∈ X with attached auxiliary
marks l1, . . . , ln ∈ A. Recalling Sects. 2.2 and 2.3, we see that PF

(x1,l1),...,(xn ,ln)
(·) rep-

resents the probability distribution on (Fn,B(Fn)) of n components of Ψ |ΨX×A =
{F1|ΨX×A, . . . , FN |ΨX×A}, which may be seen as an n-dimensional random func-
tion/stochastic process {F1(t)|ΨX×A, . . . , Fn(t)|ΨX×A}t∈T ⊂ F . This distribution
is absolutely continuous with respect to the reference measure νnF , i.e. the distribution
of an n-dimensional version of the reference process XF , with density given by (8).
Note that ρ(n) is (partly) a functional since one of its component, QF

(x1,l1),...,(xn ,ln)
(·), is

a functional; here, we use the term ‘functional’ for anymappingwhich takes a function
as one of its arguments. The two regular probability distribution families (9) and (10)
constitute the so-called n-point mark distributions (Chiu et al. 2013):

PM
x1,...,xn ((D1 × E1) × · · · × (Dn × En))

=
∫

D1×···×Dn

PF
(x1,l1),...,(xn ,ln)(E1 × · · · × En)P

A
x1,...,xn (d(l1, . . . , ln))

=
∫

(D1×E1)×···×(Dn×En)

QM
x1,...,xn ((l1, f1), . . . , (ln, fn))

n∏

i=1

νA(dli )νF (d fi ).

The intensity measure is given by μ(A) = μ(1)(A) = α(1)(A) = E[Ψ (A)], A =
C × D × E ∈ B(Y), and since ρ(1) exists,

μ(A) =
∫

C×D×E
ρ(1)(x, l, f )dxνA(dl)νF (d f )

=
∫

C×D×E
QF

(x,l)( f )Q
A
x (l)ρG(x)dxνA(dl)νF (d f ), (11)

and we refer to ρ(x, l, f ) = ρ(1)(x, l, f ) = QF
(x,l)( f )Q

A
x (l)ρG(x) as the intensity

functional of the FMPPΨ . Here, ρG(·) = ρ
(1)
G (·) is the intensity of the ground process,

ΨG .

123



542 M. Ghorbani et al.

4.2 Correlation functionals

Pair correlation functions, which are not in fact correlations in the usual sense, are
valuable tools for studying second-order dependence properties of point processes.
These may be generalised to arbitrary orders n ≥ 2 to characterise n-point interactions
between the points of a point process, and here in the FMPP context, we will refer to
them as correlation functionals. Assuming that ρ and ρ(n), n ≥ 1, exist, the nth-order
correlation functional is defined as

g(n)
Ψ ((x1, l1, f1), . . . , (xn, ln, fn)) = ρ(n)((x1, l1, f1), . . . , (xn, ln, fn))

ρ(x1, l1, f1) · · · ρ(xn, ln, fn)

= γM
x1,...,xn ((l1, f1), . . . , (ln, fn))g

(n)
G (x1, . . . , xn), (12)

where

γM
x1,...,xn ((l1, f1), . . . , (ln, fn)) = γF

(x1,l1),...,(xn ,ln)( f1, . . . , fn)γ
A
x1,...,xn (l1, . . . , ln),

γA
x1,...,xn (l1, . . . , ln) = QA

x1,...,xn (l1, . . . , ln)

QA
x1(l1) · · · QA

xn (ln)
,

γF
(x1,l1),...,(xn ,ln)( f1, . . . , fn) = QF

(x1,l1),...,(xn ,ln)
( f1, . . . , fn)

QF
(x1,l1)

( f1) · · · QF
(xn ,ln)

( fn)
(13)

and

g(n)
G (x1, . . . , xn) = ρ

(n)
G (x1, . . . , xn)

ρG(x1) · · · ρG(xn)

is thenth-order correlation functionof thegroundprocess,ΨG .Note thatγF
(x1,l1),...,(xn ,ln)

(·) represents the conditional joint density of n functional marks, given their associ-
ated locations and auxiliary marks, divided by the conditional marginal densities of
these functional marks, given their corresponding associated locations and auxiliary
marks. An analogous interpretation holds for the second term, but then regarding the
auxiliary marks instead and conditioned only on the locations. The particular case
n = 2, i.e. g(2)

Ψ ((x1, l1, f1), (x2, l2, f2)) = γM
x1,x2((l1, f1), (l2, f2))g

(2)
G (x1, x2), is

referred to as the pair correlation functional (pcf) and we note that g(2)
G (x1, x2) =

ρ
(2)
G (x1, x2)/(ρG(x1)ρG(x2)) is the pair correlation function of the ground process

(Baddeley et al. 2000; Chiu et al. 2013). When n = 2, the first term on the right-
hand side in (12) may be expressed as γA

x1,x2(l1, l2)Q
F
(x1,l1),(x2,l2)

( f1| f2)/QF
(x1,l1)

( f1),

where QF
(x1,l1),(x2,l2)

( f1| f2) represents a conditional density on F of one functional
mark, F1, given another functional mark, F2, as well as the associated locations and
auxiliary marks.
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5 FMPPmodel structures

We next look closer at a few structural distributional assumptions and model struc-
tures for FMPPs. In the context of the auxiliary marks, we have already highlighted
some effects of imposing different independence assumptions on the marks. Here, we
mainly focus on two assumptions which will play a role in the statistical analysis:
common marginal mark distributions and (location-dependent) independent marking.
In Supplementary Materials, Section 16, we further provide a few different functional
marked classical point process models.

5.1 Commonmark distributions

An assumption which may be realistic in a variety of different contexts is that the
marks are not necessarily independent but they have the same marginal distributions.
We next look closer at this setting and we note that the statements below should be
understood in an almost everywhere (a.e.) setting.

Definition 2 Let Ψ be a FMPP with ground process ΨG and consider the following
scenarios, defined conditionally on ΨG .

– Ψ has a common (marginal) mark distribution: The marginal one-dimensional
distributions of all marks (Li , Fi ), i = 1, . . . , N , are the same, i.e. they do not
depend on the spatial locations. Here, the 1-point mark distributions PM

x (D ×
E) = ∫D PF

(x,l)(E)PA
x (dl), x ∈ X , D × E ∈ A × F , satisfy PM

x (D × E) ≡
PM(D × E),

PM(D × E) =
∫

D×E
QM(l, f )νM(d(l, f ))

=
∫

D×E
QF

l ( f )QA(l)νA(dl)νF (d f ),

for some probability measure PM(·), with density QM(l, f ) = QF
l ( f )QA(l)

with respect to νM = νA⊗νF . This is, for example, the case whenΨ is stationary
(Schneider and Weil 2008, Thm 3.5.1.); PM(·) is then commonly referred to as
the mark distribution.

– Ψ has a common (marginal) functional mark distribution: each Fi |ΨX×A ∈
Ψ |ΨX×A, i = 1, . . . , N , has the same marginal distribution on (F ,B(F)), which
neither depends on its spatial location nor its auxiliary mark. Here, PF

(x,l) ≡ PF

and QF
(x,l) ≡ QF , (x, l) ∈ X × A.

Under the assumption of a common mark distribution, it may further be the case
that the common mark distribution PM coincides with the reference measure νM =
νA⊗νF (so νA and νF must be probabilitymeasures),which implies that QM(l, f ) =
QF

l ( f )QA(l) ≡ 1 and the correlation functionals satisfy
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g(n)
Ψ ((x1, l1, f1), . . . , (xn, ln, fn)) =QF

(x1,l1),...,(xn ,ln)( f1, . . . , fn)×
× QA

x1,...,xn (l1, . . . , ln)g
(n)
G (x1, . . . , xn). (14)

For example, νA may be a Bernoulli distribution with parameter p ∈ [0, 1] and
A = Ad = {0, 1}, and νF a Wiener measure WF , whereby (marginally) Li is a
Bernoulli random variable and Fi is a Brownian motion, which are independent of
each other.

Under the weaker assumption that Ψ has a common functional mark distribu-
tion, recalling the reference process XF in (2), which has νF as distribution, when
additionally PF = νF we here obtain that, marginally, each component Fi |ΨX×A,
i = 1, . . . , N , has the same distribution as XF . To provide an example for this
setting, note, for example, that for the (stochastic) growth-interaction model, con-
ditionally on N = 1, i.e. Ψ = {(X1, L1, F1)}, we have that the distribution of
F1|ΨX×A = {F1(t)|(X1, L1)}t∈T does not change with (X1, L1).

Remark 3 Note that when Ψ has a common functional mark distribution, we do not
necessarily assume that there is a common (marginal) auxiliary mark distribution, i.e.
that ΨX×A has a common mark distribution. Under such an assumption, all Li |ΨG ,
i = 1, . . . , N , have the same marginal distributions, which do not depend on the
spatial locations, whereby PA

x ≡ PA and QA
x ≡ QA, x ∈ X . Hence, if there is a

common auxiliarymark distribution aswell as a common functional mark distribution,
it follows that PM

x (D × E) ≡ PM(D × E) = PF (E)PA(D), D × E ∈ A × F ,
x ∈ X , i.e. Li and Fi are conditionally independent for any i = 1, . . . , N . This is a
stronger assumption than the assumption of a common mark distribution and it holds,
for example, when PM = νM = νA ⊗ νF .

5.2 Location-dependent independent marking and random labelling

We next turn to two common notions of mark independence: location-dependent inde-
pendent marking and random labelling.

Definition 3 We say that a FMPP Ψ is (location-dependent) independently marked if,
conditional on its ground process ΨG , all marks (Li , Fi ), i = 1, . . . , N , are indepen-
dent but not necessarily identically distributed (Daley and Vere-Jones 2003, Definition
6.4.III).

By further adding the assumption of a common marginal mark distribution to inde-
pendent marking, so that the marks become independent and identically distributed
as well as independent of the ground process ΨG , we obtain the definition of random
labelling.

Hereinafter, we will use the shorter term ‘independent marking’, thus leaving out
the part ‘location-dependent’, in keeping with Daley and Vere-Jones (2003). Under
independentmarking, eachmark (Li , Fi )may depend on its associated spatial location
and it follows that
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PM
x1,...,xn ((D1 × E1) × · · · × (Dn × En)) =

=
n∏

i=1

PM
xi (Di × Ei ) =

n∏

i=1

∫

Di

PF
(xi ,li )(Ei )P

A
xi (dli )

=
∫

D1×E1

· · ·
∫

Dn×En

n∏

i=1

QF
(xi ,li )( fi )Q

A
xi (li )︸ ︷︷ ︸

=QM
xi

(li , fi )

νA(dli )νF (d fi ) (15)

for any Di × Ei ∈ B(A × F), i = 1, . . . , n, and any n ≥ 1. Furthermore, under
random labelling, expression (15) reduces to

n∏

i=1

PM(Di × Ei ) =
n∏

i=1

∫

Di×Ei

QM(li , fi )νM(d(li , fi ))

=
n∏

i=1

∫

Di×Ei

QF
l ( fi )Q

A(li )νA(dli )νF (d fi ),

which further reduces to
∏n

i=1 νA(Di )νF (Ei ) if the common mark distribution coin-
cides with the reference measure νM = νA ⊗ νF ; this additionally implies that the
auxiliary and functional marks are (conditionally) independent of each other. Under
independent marking it clearly follows that the correlation functionals satisfy

g(n)
Ψ ((x1, l1, f1), . . . , (xn, ln, fn)) = g(n)

G (x1, . . . , xn), n ≥ 1.

Hence, if, for example, the pair correlation functional coincides with the pair cor-
relation function of the ground process, then the auxiliary and functional marks are
pairwise conditionally independent.

It is not always the case that one wants to have both the auxiliary and the functional
marks being independent. We next turn to the case where the functional marks are
independent.

Definition 4 If all the components of Ψ |ΨX×A = {F1|ΨX×A, . . . , FN |ΨX×A} are
independent, we say thatΨ has (location- and auxiliary mark-dependent) independent
functional marks.

WhenΨ has both independent functional marks and a commonmarginal functional
mark distribution, we say that Ψ has randomly labelled functional marks.

Here, it follows that (recall (13))

PF
(x1,l1),...,(xn ,ln)(E1 × · · · × En) =

n∏

i=1

PF
(xi ,li )(Ei ) =

n∏

i=1

∫

Ei

QF
(xi ,li )( fi )νF (d fi ),

g(n)
Ψ ((x1, l1, f1), . . . , (xn, ln, fn)) = γA

x1,...,xn (l1, . . . , ln)g
(n)
G (x1, . . . , xn),

for E1, . . . , En ∈ B(F) and n ≥ 1. Moreover, if Ψ has randomly labelled func-
tional marks then PF

(x,l) = PF and, if additionally PF coincides with νF , then
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PF
(x1,l1),...,(xn ,ln)

(E1×· · ·×En) =∏n
i=1 νF (Ei ) and the functional marks F1, . . . , FN

are independent copies of the reference stochastic process XF in (2).
Further, given that Ψ has independent functional marks, if we additionally assume

that the auxiliary marks are conditionally independent, so that PA
x1,...,xn (D1 × · · · ×

Dn) = ∏n
i=1 P

A
xi (Di ) = ∏n

i=1

∫
Di

QA
xi (li )νA(dli ), D1, . . . , Dn ∈ B(A), for any

n ≥ 1,we retrieve the classical definition of independentmarking for real valuedmarks
(Daley and Vere-Jones 2003, Definition 6.4.III), and consequently that of random
labelling by assuming that they are also identically distributed.

Remark 4 A weaker form of location- and auxiliary mark-dependent independent
functional marking, conditional independent functional marking, may be obtained
by assuming that

PF
(x1,l1),...,(xn ,ln)(E1 × · · · × En) =

n∏

i=1

PF
(x1,l1),...,(xn ,ln)(Ei ), E1, . . . , En ∈ B(F),

for any n ≥ 1 and some family {PF
(x1,l1),...,(xn ,ln)

(E) : (x1, l1), . . . , (xn, ln) ∈ X ×
A, E ∈ B(F)} of regular probability distributions. Note that here the distribution of a
functional mark may depend on all the spatial locations and auxiliary marks.

5.3 Poisson processes

Poisson processes (Daley and Vere-Jones 2003; Chiu et al. 2013), the most
well-known point process models, are the benchmark/reference models for rep-
resenting lack of spatial interaction and constructing other, more sophisticated
models. Given a positive locally finite measure μ on B(Y) = B(X × A ×
F), a functional marked Poisson process Ψ , with intensity measure μ, is sim-
ply a Poisson process on Y with the additional assumption that ΨG is well-
defined. When Ψ has a well-defined intensity functional ρ(·), i.e. when the
intensity measure in (11) satisfies μ(A) = ∫A ρ(x, l, f )ν(d(x, l, f )), it fol-
lows that ρ(n)((x1, l1, f1), . . . , (xn, ln, fn)) = ∏n

i=1 ρ(xi , li , fi ), whereby we have

g(n)
Ψ ((x1, l1, f1), . . . , (xn, ln, fn)) ≡ 1 for any n ≥ 1. Note that, formally, not every

(functional marked) Poisson process is actually a marked point process; we may not
necessarily have that ΨG is a well-defined point process in X (van Lieshout 2000, p.
8). That being said, we here clearly have an example of independent marking. When
there is a common functional mark distribution, all of the functional marks are given
by independent copies of the reference process XF in (2). In particular, if the reference
measure νF is given by aWiener measureWF onF , then the functional marks are iid
Brownian motions. Moreover, when Ψ has a common mark distribution, it becomes
randomly labelled and ρ(n)((x1, l1, f1), . . . , (xn, ln, fn)) = ρn

G > 0 if the common
mark distribution coincides with νM.

When we condition on N = n, we obtain a Binomial point process, which is
simply a random (iid) sample {(Xi , Li , Fi )}ni=1 of size n, with density f (x, l, f ) =
ρ(x, l, f )/n.
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6 Referencemeasure averaged reduced Palm distributions

In the statistical analysis, we will need to consider Palm conditioning with respect to
a given mark set (D × E) ∈ B(A × F); we interpret this as conditioning on the null
event that there is a point of ΨG at a given location, under the assumption that the
mark associated with this point belongs to (D × E). To be able to do so, we follow
van Lieshout (2006a), Cronie and van Lieshout (2016) and define the νM-averaged
reduced Palm distribution with respect to (D × E) ∈ B(A × F).

Definition 5 Given a FMPP Ψ , its family P
!x
D×E (Ψ ∈ ·) = P !x

D×E (·), x ∈ X , of
νM-averaged reduced Palm distributions with respect to (D × E) ∈ B(A × F), are
defined as the probability measures P !x

D×E (R), R ∈ Nl f ,

P !x
D×E (R) =

∫
D×E P !(x,l, f )(R)νM(d(l, f ))

νM(D × E)

=
∫
D×E E

!(x,l, f )[1R(Ψ )]νA(dl)νF (d f )

νA(D)νF (E)
,

where P
!(x,l, f )(Ψ ∈ ·) = P !(x,l, f )(·) denotes the reduced Palm distribution of Ψ at

(x, l, f ) ∈ X × A × F .

Recall that P !(x,l, f )(R), R ∈ Nl f , may be defined through the reduced Campbell–
Mecke formula (Daley and Vere-Jones 2008, Section 13.1): For any measurable
functional h : X × A × F × Nl f → [0,∞),

E

⎡

⎣
∑

(x,l, f )∈Ψ

h(x, l, f , Ψ \{(x, l, f )})
⎤

⎦

=
∫

X×A×F
E

!(x,l, f ) [h(x, l, f , Ψ )]
︸ ︷︷ ︸

=∫Nl f h(x,l, f ,ψ)P !(x,l, f )(dψ)

ρ(x, l, f )dxνA(dl)νF (d f ). (16)

Since P !(x,l, f )(·) is the distribution of the reducedPalmprocessΨ !(x,l, f ), heuristically,
P !(x,l, f )(·) is the conditional distribution of Ψ , given that Ψ has a point at (x, l, f )
which we neglect. Moreover, the probability measure P

!x
D×E (·) has expectation

E
!x
D×E [·] = 1

νA(D)νF (E)

∫

D×E
E

!(x,l, f )[·]νA(dl)νF (d f )

by Fubini’s theorem.
In particular, for a Poisson process on X × A × F , by Slivnyak’s theorem (Chiu

et al. 2013),

P
!x
D×E (Ψ ∈ ·) =

∫
D×E P(·)νA(dl)νF (d f )

νA(D)νF (E)
= P(Ψ ∈ ·), (17)
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the (unconditional) distribution of Ψ . Moreover, for a multivariate FMPP with A =
{1, . . . , kd}, we obtain

P
!x
{i}×E (Ψ ∈ ·) = νA({i}) ∫E P !(x,i, f )(·)νF (d f )

νA({i})νF (E)
=
∫
E P !(x,i, f )(·)νF (d f )

νF (E)
, i ∈ A,

i.e. the νF -averaged reduced Palm distribution of Ψi = {(x, f ) : (x, l, f ) ∈ Ψ ∩X ×
{i} × F} with respect to E ∈ B(F), which is independent of the choice of auxiliary
reference measure νA. When Ψ has a common mark distribution which coincides
with the reference measure, i.e. PM

x (D × E) ≡ PM(D × E) = νM(D × E) =
νA(D)νF (E), x ∈ X , we obtain a non-stationary and reduced version of the Palm
distribution of Ψ with respect to the mark set D × E found in Chiu et al. (2013, p.
135):

P !x
D×E (·) =

∫
D×E P !(x,l, f )(·)PA(dl)PF (d f )

PA(D)PF (E)

=
∫
D×E P !(x,l, f )(·)PA(dl)PF (d f )
∫
D×E P !(x,l, f )(Nl f )PA(dl)PF (d f )

.

This may now be interpreted as the conditional distribution of Ψ , given that it has
a point with location x with a mark belonging to D × E . Note further that under
stationarity we have that P !(x,l, f )(·) ≡ P !(0,l, f )(·) for any x ∈ X = R

d so the
reduced Palm distributions with respect to D × E all satisfy P !x

D×E (·) ≡ P !0
D×E (·). In

Supplementary Materials, Section 14, we mention n-point versions of the above.
To connect the above distributions to the reduced Palm distributions P !x

G (·), x ∈ X ,
of the ground process, let h in the reduced Campbell–Mecke formula (16) depend
only on the ground location and the FMPP:

E

⎡

⎣
∑

(x,l, f )∈Ψ

h(x, Ψ \{(x, l, f )})
⎤

⎦ =
∫

X

∫

Nl f

h(x, ψ)P̄ !x (dψ)ρG(x)dx,

where P̄ !x (dψ) = ∫A×F QM
x (l, f )P !(x,l, f )(dψ)νA(dl)νF (d f ) and P̄ !x (·) may be

interpreted as an average Palm distribution of Ψ , given that it has a point at x with
unspecified mark (Daley and Vere-Jones 2008, (13.1.13)). The measure P̄ !x (·) is a
distribution on the space (Nl f ,Nl f ) of marked point patterns, but by projecting it
onto the corresponding measurable space of unmarked point patterns, we obtain the
reduced Palm distribution P !x

G (·) ofΨG at x ∈ X (Daley and Vere-Jones 2008, p. 279).
For any non-negative and measurable function h on the product of the ground space
and the space of all unmarked point patterns,

E

⎡

⎣
∑

x∈ΨG

h(x, ΨG\{x})
⎤

⎦ =
∫

X
E

!x
G [h(x, ΨG)]ρG(x)dx,
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whereE
!x
G [·] denotes expectation under P !x

G (·).Moreover, whenΨ has a commonmark
distribution which coincides with the reference measure, we obtain that P !x

A×F (·) =
P̄ !x (·). Hence, under this assumption, the projection of P !x

A×F (·) onto the space of

unmarked point patterns is simply P !x
G (·).

7 Marked intensity reweightedmoment stationarity

To be able to treat the summary statistics considered in this paper, we first have to
introduce the notion of kth-order marked intensity reweighted stationarity (k-MIRS)
(cf. Cronie and van Lieshout 2016; Iftimi et al. 2019).

Definition 6 A FMPP Ψ with ΨG ⊂ X = R
d is called kth-order marked intensity

reweighted stationary (k-MIRS), k ∈ {1, 2, . . .}, if inf(x,l, f )∈X×A×F ρ(x, l, f ) > 0
and the nth-order correlation functionals (recall expression (12)), n = 1, . . . , k, satisfy

g(n)
Ψ ((x1, l1, f1), . . . , (xn, ln, fn))

a.e.= g(n)
Ψ ((x + x1, l1, f1), . . . , (x + xn, ln, fn)),

for any x ∈ R
d (recall that g(1)

Ψ (·) ≡ 1). In particular, the case k = 2 is referred to as
Ψ being second-order marked intensity reweighted stationary (SOMIRS) (Cronie and
van Lieshout 2016; Iftimi et al. 2019).

Note that, loosely speaking, this definition essentially states that after having scaled
away the effects of the varying intensity, the dependence structure, which is reflected
by the product densities, only depends on the distance between the points. Note further
that we have implicitly assumed that the product densities up to order k exist. Further
details about and examples of k-MIRS processes are mentioned in Supplementary
Materials, Section 15.

8 Summary statistics

Having provided various moment characteristics (Sect. 4) and notions of intensity
reweighted moment stationarity (Sect. 7) for FMPPs, we may now look closer at
how these can be exploited to study dependence structures in FMPPs. Characterising
dependence in marked point processes can, in general, be done in various different
ways. There are, however, essentially two main approaches which are studied:

1. Spatial interaction between groups of points of ΨG , based on different classifica-
tions of the marks.

2. Dependence between the marks, conditionally on the ground process.

The former approach may be carried out by means of marked second-order reduced
moment measures/K -functions, marked inhomogeneous nearest neighbour distance
distribution functions, marked inhomogeneous empty space functions and marked
inhomogeneous J -functions, which are defined in Iftimi et al. (2019), Cronie and van
Lieshout (2016), and van Lieshout (2006a). The last three of these are full-distribution
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summary statistics and require that the point process is k-MIRS for any order k ≥ 1,
whereas the first two are second-order statistics which require SOMIRS.We here study
the second approach, and to this end, we define some new summary statistics and,
as we shall see, they generalise most existing finite-order (marked) inhomogeneous
summary statistics.

Drawing inspiration from Cronie and van Lieshout (2016), Iftimi et al. (2019), and
Penttinen and Stoyan (1989), we have the following definition.

Definition 7 Assuming that 2 ≤ n ≤ k, let Ψ be k-MIRS and consider some test
function t = tn , by which we mean a measurable mapping t : Mn = (A × F)n →
[0,∞).

Given some W ∈ B(Rd) with |W | > 0 and D × E ∈ B(M) = B(A × F) with
νM(D × E) = νA(D)νF (E) > 0, the corresponding t-weighted marked nth-order
reduced moment measure is defined as

K(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · × Cn−1) = 1

|W |νM(D × E)
∏n−1

i=1 νM(Di × Ei )

× E

[ ∑

(x,l, f )∈Ψ ∩W×D×E

∑�=

(x1,l1, f1),...,(xn−1,ln−1, fn−1)∈Ψ \{(x,l, f )}

t((l, f ), (l1, f1), . . . , (ln−1, fn−1))

ρ(x, l, f )

n−1∏

i=1

1{xi − x ∈ Ci }1{(li , fi ) ∈ Di × Ei }
ρ(xi , li , fi )

]

(18)

for Ci × (Di × Ei ) ∈ B(Rd) × B(M) = B(Rd × A × F), νM(Di × Ei ) =
νA(Di )νF (Ei ) > 0, i = 1, . . . , n − 1. We further refer to

K
(D×E)

Śn−1
i=1 (Di×Ei )

t (r1, · · · , rn−1)

= K(D×E)
Śn−1

i=1 (Di×Ei )

t (BRd [0, r1] × · · · × BRd [0, rn−1]),

r1, . . . , rn−1 ≥ 0, as the t-weighted nth-order marked inhomogeneous K -function;

when r1 = · · · = rn−1 = r ≥ 0, write K
(D×E)

Śn−1
i=1 (Di×Ei )

t (r).

The interpretation of (18) is essentially provided by Lemma 1. Having scaled
away the individual intensity contributions of the points of Ψ , conditionally
on Ψ having a point at an arbitrary location z ∈ R

d with associated mark
(L(z), F(z)) ∈ D × E , which is neglected, (18) provides the mean of the random
variable t((L(z), F(z)), (L1, F1), . . . , (Ln−1, Fn−1))

∏n−1
i=1 1{(Li , Fi ) ∈ Di × Ei },

where the locations X1, . . . , Xn−1 of the points associated to n − 1 other marks
(L1, F1), . . . , (Ln−1, Fn−1) belong to the respective sets z + Ci , i = 1, . . . , n − 1.

Remark 5 We could just as well have chosen to absorb the indicator function∏n
i=1 1{(li , fi ) ∈ Di × Ei } into the test function t in (18). The current choice has

been made to emphasise the connection with the summary statistics in Cronie and van
Lieshout (2016) and Iftimi et al. (2019).
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In order to give a feeling for how the mark sets in (18) may be specified here in
the FMPP context, consider a bivariate FMPP, i.e. A = {1, 2}, where k = 1, so that
Fi : T → R. Next, let n = 2 and let D = {1}, D1 = {2}, E = { f ∈ F = U :
supt∈T | f (t)| > c} and E1 = { f ∈ F = U : supt∈T | f (t)| ≤ c}, for some positive
constant c. Here, we would thus restrict the t-weighted correlation provided by (18)
to only be between points of different types and, moreover, to be between the two
classes of functional marks which either exceed the threshold c or not (see Sect. 8.1
for examples of test functions). For instance, in the forestry contextAwould represent
the two species under consideration while c would be the threshold diameter at breast
height of the trees; if we would instead set D = D1 = A, we would ignore the species
and simply study the interaction between large and small trees, irrespective of the
trees’ species. Hence, we are able to study how large trees affect the survival of small
trees, which is something of interest in ecology (Platt et al. 1988; Møller et al. 2016).
We emphasise that it should be checked that the chosen sets Ei , i = 1, . . . , n − 1, are
indeed measurable, given the chosen function space (F ,B(F)).

We will see that (18) is closely related to the nth-order reduced moment measure
of the ground process (cf. Møller and Waagepetersen (2004, Section 4.1.2)),

KG(C1 × · · · × Cn−1) = 1

|W |E
⎡

⎣
∑

x∈ΨG∩W

∑ �=

x1,...,xn−1∈ΨG\{x}

1

ρG(x)

n−1∏

i=1

1{xi − x ∈ Ci }
ρG(xi )

⎤

⎦

=
∫

C1×···×Cn−1

g(n)
G (0, x1, . . . , xn−1)dx1 · · · dxn−1

= 1

|W |
∫

W
E

!x
G

⎡

⎣
∑ �=

x1,...,xn−1∈ΨG

n−1∏

i=1

1{xi − x ∈ Ci }
ρG(xi )

⎤

⎦ dx;

the last two equalities follow from the Campbell formula, the imposed nth-order
intensity reweighted stationarity of ΨG (which follows from Ψ being k-MIRS)
and the Campbell-Mecke formula. An n-point generalisation of the inhomogeneous
K -function Kinhom(r) = K (2)

inhom(r) of Baddeley et al. (2000) to the nth-order

intensity reweighted stationary setting is obtained by considering K (n)
inhom(r) =

KG(BRd [0, r ]n−1), where BRd [0, r ] denotes the closed origin-centred ball with
radius r ≥ 0. Note further that stationarity implies that α

(n)
G (C1 × · · · × Cn−1) =

ρn−1
G KG(C1 × · · · × Cn−1) and

ρn−1
G KG(C1 × · · · × Cn−1) = E

!0
G

⎡

⎣
∑�=

x1,...,xn−1∈ΨG

1{x1 ∈ C1, . . . , xn−1 ∈ Cn−1}
⎤

⎦ ,

where, clearly, in this case K (n)
inhom(r), r ≥ 0, yields an n-point generalisation of the

K -function of Ripley (1976). In addition, we will see in Lemma 1 that (18) is also
related to the following kernel (recall (13)).
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Definition 8 The (nth-order) intensity reweighted t-correlationmeasure (at x1, . . . , xn
∈ R

d ) is defined as

κ

Śn
i=1(Di×Ei )

t (x1, . . . , xn) =
∫

(D1×E1)×···×(Dn×En)

γM
x1,...,xn ((l1, f1), . . . , (ln, fn))×

× t((l1, f1), . . . , (ln, fn))νM(d(l1, f1)) · · · νM(d(ln, fn))︸ ︷︷ ︸
=νt (d(l1, f1)×···×d(ln , fn))

(19)

for xi ∈ R
d and Di × Ei ∈ B(A × F), i = 1, . . . , n, where the measure νt (M),

M ∈ B((A × F)n), is given by

νt (M) =
∫

M
t((l1, f1), . . . , (ln, fn))νM(d(l1, f1)) · · · νM(d(ln, fn)).

In other words, κ ·
t is a spatially dependent weighting of νt (·) and we interpret it as

the expectation of the random variable t((L1, F1), . . . , (Ln, Fn))
∏n

i=1 1{(Li , Fi ) ∈
Di × Ei }, conditionally on Xi = xi , i = 1, . . . , n, having scaled away the
individual mark density contributions. Note that since Ψ is simple, (19) vanishes
whenever xi = x j for any i �= j and, moreover, by the imposed nth-order marked

intensity reweighted stationarity, we further have that κ
(Di×Ei )

n
i=1

t (x1, . . . , xn) =
κ

(Di×Ei )
n
i=1

t (x + x1, . . . , x + xn) for a.e. x ∈ R
d . To highlight the connections with

Penttinen and Stoyan (1989), we refer to

κM
n

t (x1, . . . , xn) = κ
(A×F)

Śn−1
i=1 (A×F)

t (x1, . . . , xn), (20)

i.e. (19) with all mark sets set to A × F , as the (nth-order) intensity reweighted t-
correlation functional; note that it is interpreted as the expectation of the random
variable t((L1, F1), . . . , (Ln, Fn)), conditionally on Xi = xi , i = 1, . . . , n, having
scaled away the individual mark density contributions.

Lemma 1, towhich the proof is found in SupplementaryMaterials, Section 19, gives
reduced Palm and νM-averaged reduced Palm distribution representations of (18). It
also expresses (18) through (19) andKG , and it tells us that (18) is independent of the
choiceW ∈ B(Rd). From a statistical point of view, the main importance of Lemma 1
is related to nonparametric estimation—instead of repeated sampling to estimate (18),
we can simply estimate (18) by sampling over each point of the point pattern, which
is an effect of the imposed k-MIRS.

Lemma 1 The t-weighted marked nth-order reduced moment measure in (18) satisfies

νM(D × E)

n−1∏

i=1

νM(Di × Ei )K(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · × Cn−1)

=
∫

C1×···×Cn−1

κ
(D×E)

Śn−1
i=1 (Di×Ei )

t (0, x1, . . . , xn−1)KG(dx1 × · · · × dxn−1)
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=
∫

D×E
E

!(z,l, f )
[ ∑�=

(x1,l1, f1),...,(xn−1,ln−1, fn−1)∈Ψ

t((l, f ), (l1, f1), . . . , (ln−1, fn−1))

×
n−1∏

i=1

1{xi − z ∈ Ci }1{(li , fi ) ∈ Di × Ei }
ρ(xi , li , fi )

]

νA(dl)νF (d f )

= E
!z
D×E

[ ∑�=

(x1,l1, f1),...,(xn−1,ln−1, fn−1)∈Ψ

t((L(z), F(z)), (l1, f1), . . . , (ln−1, fn−1))

×
n−1∏

i=1

1{xi − z ∈ Ci }1{(li , fi ) ∈ Di × Ei }
ρ(xi , li , fi )

]

νM(D × E)

for almost every z ∈ R
d , where (L(z), F(z)) denotes the mark associated with the

reduced Palm conditioning under P
!z
D×E (·)

Hence, (18) may be expressed as a spatial dependence scaling (reflected byKG ) of
the spatially dependent mark-dependence function (19).

Looking closer at Lemma 1, we see that normalising (18) byKG can reveal features
of the marking structure, conditionally on the locations.

Definition 9 The normalised t-weighted marked nth-order reduced moment measure
is defined as

K̄(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · × Cn−1) = K(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · × Cn−1)

KG(C1 × · · · × Cn−1)

=
∫

C1×···×Cn−1

κ
(D×E)

Śn−1
i=1 (Di×Ei )

t (0, x1, . . . , xn−1)

νM(D × E)
∏n−1

i=1 νM(Di × Ei )

KG(d(x1, . . . , xn−1))

KG(C1 × · · · × Cn−1)
,

(21)

where the normalisation ofKG in the last term is a probability measure on C1 ×· · ·×
Cn−1.

In Supplementary Materials, Section 17, we look closer at how our summary statis-
tics change when we assume the existence of a common mark distribution.

When Ψ is independently marked, then κ ·
t (x1, . . . , xn) coincides with νt (·) for any

x1, . . . , xn ∈ R
d , whereby

K̄(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · × Cn−1)

= νt ((D × E) × (D1 × E1) × · · · × (Dn−1 × En−1))

νM(D × E)
∏n−1

i=1 νM(Di × Ei )
, (22)

i.e. it does not depend on C1, . . . ,Cn−1, and if Ψ has independent functional marks
only then

κ

Śn
i=1(Di×Ei )

t (x1, . . . , xn) =
∫

(D1×E1)×···×(Dn×En)

t((l1, f1), . . . , (ln, fn))
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γA
x1,...,xn (l1, . . . , ln)

n∏

i=1

νA(dli )νF (d fi ).

If the ground process is a Poisson process, we say that a FMPP Ψ is a FM ground
Poisson process and by (6) it then follows that

g(n)
Ψ ((x1, l1, f1), . . . , (xn, ln, fn)) = γM

x1,...,xn ((l1, f1), . . . , (ln, fn)).

This reduces to γA
x1,...,xn (l1, . . . , ln) when Ψ has independent functional marks and

we obtain the usual Poisson case when Ψ has independent marks. When Ψ is a FM
ground Poisson process, KG(C1 × · · · × Cn−1) =∏n−1

i=1 |Ci |, whereby

K̄(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · × Cn−1)

=
∫
C1×···×Cn−1

κ
(D×E)

Śn−1
i=1 (Di×Ei )

t (0, x1, . . . , xn−1)dx1 · · · dxn−1

νM(D × E)
∏n−1

i=1 νM(Di × Ei )
∏n−1

i=1 |Ci |

and by additionally assuming independent marking, K̄(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · ×
Cn−1) is given by (22) and K(D×E)

Śn−1
i=1 (Di×Ei )

t (C1 × · · · × Cn−1) is given by (22)
multiplied by

∏n−1
i=1 |Ci |.

Note that these observations may be used to statistically test independent (func-
tional) marking and Poisson assumptions.

8.1 Choosing test functions: analysing dependent functional data

By choosing different test functions t(·), we may extract different features from the
marks. In practice, in a statistical context, it is most likely that one will focus only
on the case n = 2; note the connections with Comas et al. (2011). Note in particular
that when n = 2, if we ignore the functional marks and set t((l1, f1), (l2, f2)) = l1l2,
(18) yields an intensity reweighted version of the classical mark correlation function
for the auxiliary marks. If, instead, t((l1, f1), (l2, f2)) = (l1 − l2)2/2, we obtain the
classicalmark variogram for the auxiliary marks (Illian et al. 2008). The question that
remains is how we should choose sensible tests functions t(·) which include also the
functional marks.

Starting with the simple case t(·) ≡ 1, we obtain νt = νnM and

κ
(D×E)

Śn−1
i=1 (Di×Ei )

t (0, x1, . . . , xn−1) =
∫

(D×E)×(D1×E1)×···×(Dn−1×En−1)

γM
x1,...,xn ((l, f ), (l1, f1), . . . , (ln−1, fn−1))νM(d(l, f ))

n−1∏

i=1

νM(d(li , fi )).
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By additionally letting n = 2 in (18), we retrieve the marked second-order reduced
moment measure K(D×E)(D1×E1)(C) of Iftimi et al. (2019), which measures inten-
sity reweighted interactions between points with marks in D × E and points with
marks in D1 × E1, when their separation vectors belong to C ∈ B(Rd). We stress
that this measure, and thereby also (18), is non-symmetric in the mark sets, i.e.
K(D×E)(D1×E1)(·) �= K(D1×E1)(D×E)(·) in general (Iftimi et al. 2019). In particular,
choosing C1 to be the closed origin-centred ball BRd [0, r ] of radius r ≥ 0, we obtain
themarked inhomogeneous K -function K (D×E)(D1×E1)

inhom (r)ofCronie and vanLieshout
(2016), which measures pairwise intensity reweighted spatial dependence within
distance r betweenpointswithmarks in D×E andpointswithmarks in D1×E1.More-
over, setting C1 = {a(cos v, sin v) : a ∈ [0, r ], v ∈ [φ,ψ] or v ∈ [π + φ, π + ψ]}
for φ ∈ [−π/2, π/2) and ψ ∈ (φ, φ + π ], we obtain a marked inhomogeneous
directional version which may be used to study departures from isotropy, and setting
C1 = {(x, s) : ‖x‖ ≤ r and |s| ≤ t} when Ψ is a spatio-temporal FMPP, we obtain a
spatio-temporal version K (D×E)(D1×E1)

inhom (r , t), r , t ≥ 0, of K (D×E)(D1×E1)
inhom (r) (Iftimi

et al. 2019).
Hence, for an arbitrary n, setting t(·) ≡ 1 in (18) we would obtain a definition

of a marked nth-order reduced moment measure, K(D×E)
Śn−1

i=1 (Di×Ei )(C1 × · · · ×
Cn−1), which has an analogous interpretation; it measures intensity reweighted spatial
interaction between an arbitrary point with mark in D × E and distinct (n − 1)-tuples
of other points where, respectively, the separation vectors between these points and
the D × E-marked point belong to Ci , i = 1, . . . , n − 1, and these points have marks
belonging to Di × Ei , i = 1, . . . , n − 1. Moreover, it may be of particular interest to
choose all Ci , i = 1, . . . , n − 1, to be the same set C1. For example, Ci = BRd [0, r ],
i = 1, . . . , n − 1, r ≥ 0, would yield an n-point version, K

(D×E)
Śn−1

i=1 (Di×Ei )

inhom (r),
of the marked inhomogeneous K -function of Cronie and van Lieshout (2016), which
may be used to analyse intensity reweighted interactions between a point with mark
in D × E and n − 1 of its r -close neighbours, which have marks belonging to the
respective sets Di × Ei , i = 1, . . . , n − 1.

It should be mentioned that when t(·) ≡ 1 under independent marking,

K̄(D×E)(Di×Ei )
n−1
i=1

t (·) ≡ 1, which may be used to statistically test for independent
marking.

We next turn to test functions which include the functional marks and we here
only consider the case n = 2. A natural starting point, we argue, is to consider
metrics (distances) between the (functional) marks. There are various choices to be
considered (see e.g. Deza and Deza (2009) and the references therein) and each may
reflect different features of the functional marks’ properties; although it may be natural
to use the metric having generated the assumed Polish topology of the function space
F , we may naturally consider different choices here. We here choose to consider the
following metrics as test functions: L p-metrics as defined in (28) in Supplementary
Materials, i.e. t( f1, f2) = dL p ( f1, f2) = (

∫
T | f1(t) − f2(t)|pdt)1/p, 1 ≤ p < ∞,

the uniform metric (or L∞-metric) t( f1, f2) = d∞( f1, f2) = supt∈T | f1(t) − f2(t)|
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(see also Section 13.2), and the symmetrised Kullback–Leibler (KL) divergence,

t( f1, f2) = K L(t1, t2) =
∫

T
log

(
f1(t)

f2(t)

)

f1(t)dt +
∫

T
log

(
f2(t)

f1(t)

)

f2(t)dt;

the rationale behind using the symmetrised KL divergence (as opposed to the usual
KL divergence) is that the test function t(·, ·) is permutation invariant/symmetrical. A
further choice is to consider angles, or rather inner products; t( f1, f2) = 〈 f1, f2〉 =∫
T f1(t) f2(t)dt . In the literature on functional clustering, a commonmeasure of prox-
imity between two functions is Ferraty and Vieu (2006)

t( f1, f2) = dL2

(
(d f1/dt)

k , (d f2/dt)
k
)

=
(∫

T
|(d f1(t)/dt)k − (d f2(t)/dt)

k |2dt
)1/2

,

where k ≥ 1, provided that the kth derivatives d fi (t)/dt , t ∈ T , i = 1, 2, exist.
When, conditionally on ΨX×A, all the functional marks have the same mean F̄(t) =
E[Fi (t)|ΨX×A], t ∈ T , which, for example, is the case when there is a common
functional mark distribution, we may consider a functional mark counterpart of the
test function for the classical variogram,

t( f1, f2) = tv( f1, f2) =
∫ b

a

(
f1(t) − F̄(t)

) (
f2(t) − F̄(t)

)
dt, (23)

where in practice, F̄(t) may be estimated by means of (1/n)
∑n

i=1 fi (t), i.e. the
average functional mark at time t for the observed functional part of the point pattern.
Note that for each of the above choices we may reduce the interval T to some smaller
interval [a, b] ⊂ T . Moreover, we may consider combinations of them by summing
them up.

Whenwewant to consider test functionswhich include both functional and auxiliary
marks, wemay exploitmetric preserving properties of certain operations (vanLieshout
2000, p. 8), such as summation andmaximum, and apply these to the above mentioned
test functions (metrics) for the functional marks and the metrics provided by Illian et
al. (2008, p. 343) for auxiliary marks in order to define a test function for general
purposes. When n = 2, one may, for example, consider the following two test func-
tions:

t((l1, f1), (l2, f2)) = dF ( f1, f2) + l1l2,

t((l1, f1), (l2, f2)) = max{dF ( f , fi ), ‖l1 − l2‖},

where dF (·, ·) is a metric on function space F as mentioned above. For general n, we
will follow the same procedure.

Moving away from the classical stationary setting to the current (intensity
reweighted) inhomogeneous setting makes the interpretation of the summary statis-
tics less straightforward. This added complexity is motivated by a number of factors.
Firstly, in practice it is often natural to assume that the (spatial) sampling does not
occur homogeneously. Further, one may be interested in dealing with modelling, for
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example, spatially varying correlations among the marks, but in the stationary case
this is not possible since the (higher-order) mark distributions need to be translation
invariant. Whether we consider the general inhomogeneous case or the special case
of stationarity, our summary statistics provide statistical insight into the link between
two different dependence structures, one with respect to the mark space and one with
respect to the ground space. When we use functional metrics as test functions, we
obtain a rather natural interpretation of (18). If we condition on the ground process,
then what we are left with is a quantity which only depends on the functional marks.
Moreover, if we consider a Poisson process on Y (recall (22)) then we essentially
obtain a mean distance between the random functions; note that we here have a ran-
dom number of iid random functions. Recalling the above discussion about marked
K -functions as special cases of (18), we see that in the general (non-Poisson) case we
essentially weight this mean distance by the marked K -function, i.e. we penalise it
based on the marked spatial interaction of Ψ . As an effect, when the interaction in the
underlying point process is weak, the outcome of the summary statistic is mainly gov-
erned by the marking structure. It may further be noted that by letting the test function
be the projection t( f1, f2) = f1(s) f2(u) for some fixed u, s ∈ T , we would instead
get a version of the mark correlation function and, consequently, we obtain weighted
second moment-like arguments for the functional marks (negative values of the test
function are handled by splitting quantities into positive and negative parts). More-
over, in principle, we could construct a test function such that our summary statistic is
the expectation of a covariance function estimator. In conclusion, various notions of
dependence/closeness of the functionalmarks can be obtained by considering different
test functions.

8.2 Nonparametric statistical inference

We next turn to the nonparametric estimation of our summary statistics. Specifically,
we here assume that we observe a FMPP Ψ within a bounded spatial domain W ∈
B(Rd), |W | > 0, i.e. we sample Ψ ∩ W × M = Ψ ∩ W × A × F .

Theorem 1 provides a nonparametric estimator of the t-weighted marked nth-order
reduced moment measure, and it provides a condition for edge corrections to render
it unbiased. Its proof is found in Supplementary Materials, Section 19.

Theorem 1 Consider a k-MIRS FMPP Ψ and a test function t = tn : Mn = (A ×
F)n → [0,∞),2 ≤ n ≤ k.Moreover, let D×E ∈ B(M) = B(A×F), νM(D×E) >

0, and Di × Ei ∈ B(M) = B(A × F), νM(Di × Ei ) > 0, i = 1, . . . , n − 1. The
estimator

K̂(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · × Cn−1) =
∑

(x,l, f )∈Ψ

∑�=

(x1,l1, f1),...,(xn−1,ln−1, fn−1)∈Ψ \{(x,l, f )}
w(x, x1, . . . , xn−1)

νM(D × E)
∏n−1

i=1 νM(Di × Ei )
t((l, f ), (l1, f1), . . . , (ln−1, fn−1))

×1{(x, l, f ) ∈ W × D × E}
ρ(x, l, f )

n−1∏

i=1

1{(xi , li , fi ) ∈ (W ∩ (x + Ci )) × Di × Ei }
ρ(xi , li , fi )

(24)
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is an unbiased estimator ofK(D×E)
Śn−1

i=1 (Di×Ei )

t (C1×· · ·×Cn−1), C1×· · ·×Cn−1 ∈
B(Rd)n−1, provided that the intensity function ρ(·) is known and that the edge cor-
rection function w(·) satisfies

∫

W

n−1∏

i=1

1{(xi + x) ∈ W }w(x, x1 + x, . . . , xn−1 + x)dx = 1

for almost any xi ∈ Ci , i = 1, . . . , n − 1. Note that
∏n−1

i=1 1{(xi + x) ∈ W } =
1{⋂n−1

i=1 {(xi + x) ∈ W }} = 1{x ∈⋂n−1
i=1 (W − xi )}.

Here, three relevant questions immediately arise: Which edge correction methods
satisfy the condition inTheorem1, and are there other (biased) edge correctionmethods
which still work well in practice? How do we deal with the rather abstract reference
measure νM = νA⊗νF in (24)? How should we deal with the unknown true intensity
ρ(·) in (24)?

Regarding the edge correction function w(·), letting t(·) ≡ 1 as well as assuming
that Ψ has a common mark distribution which coincides with the reference measure,
we obtain the estimator

K̂G(C1 × · · · × Cn−1) = K̂Mn

1 (C1 × · · · × Cn−1) =
∑

x∈ΨG

∑ �=

x1,...,xn−1∈ΨG\{x}

w(x, x1, . . . , xn−1)
1{x ∈ W }

ρG(x)

n−1∏

i=1

1{xi ∈ W }1{xi ∈ (x + Ci )}
ρG(xi )

of KG(C1 × · · · × Cn−1), based on ΨG ∩ W , and by looking closer at the case n = 2
in the literature [see, e.g. Cronie and van Lieshout (2016), Gabriel (2014, Appendix
1) and Baddeley (1998)], we get guidance in identifying suitable edge corrections.
We obtain that the following choices satisfy the condition of Theorem 1; the proof of
Corollary 1 is given in Supplementary Materials, Section 19.

Corollary 1 The minus sampling edge correction

w�(x, x1 + x, . . . , xn−1 + x) = 1

{

x ∈
n−1⋂

i=1

W � Ci

}/∣∣
∣
∣
∣

n−1⋂

i=1

W � Ci

∣
∣
∣
∣
∣
,

where � denotes Minkowski subtraction, and the translational edge correction

w∩(x, x + x1, . . . , x + xn−1) = 1

/∣∣
∣
∣
∣

n−1⋂

i=1

(W + (x + xi )) ∩ (W + x)

∣
∣
∣
∣
∣

both yield that the estimator in Theorem 1 is unbiased. Moreover, when the ground
space is given by R

d , d = 2, 3, and n = 2, also the isotropic or rotational edge
correction
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w∂(x, x + x1) = �(∂BRd [x, ‖(x + x1) − x‖])
�(∂BRd [x, ‖(x + x1) − x‖] ∩ W )

= �(∂BRd [x, ‖x1‖])
�(∂BRd [x, ‖x1‖] ∩ W )

yields an unbiased estimator (24); here � denotes length in R
2 or surface area in R

3

and ∂ is used to denote the boundary of a set.

There are clearly other edge correction methods such as rigid motion correction
which do not satisfy the condition in Theorem 1 but still work well in practice.

Turning to the second question, in analogy with Baddeley et al. (2000), Cronie
and van Lieshout (2016), Iftimi et al. (2019), Zhao and Wang (2010), define the
random measures ΞG(C; ρG) = ∑x∈ΨG∩C 1/ρG(x) and Ξ(C × D × E; ρ) =
∑

(x,l, f )∈Ψ ∩C×D×E 1/ρ(x, l, f ), C × D × E ∈ B(Rd × A × F), and note that
E [Ξ(W × D × E; ρ)] /E [ΞG(W ; ρG)] = |W |νM(D × E)/|W | = νM(D × E)

by the Campbell formula. Hence, ΞG(C; ρG) is an unbiased estimator of |W | and
ν̂M(D × E; ρ, ρG) = Ξ(W × D × E; ρ)/ΞG(W ; ρG) is a ratio-unbiased estimator
of νM(D × E), D × E ∈ B(A × F). Following a suggestion by Stoyan and Stoyan
(2000), in (24) it is advised to replace νM(D × E)

∏n−1
i=1 νM(Di × Ei ) by the corre-

sponding estimator to obtain a ratio-unbiased estimator which yields better estimates
in practice. This approach is referred to as the Hamilton principle. Moreover, in the
case of the minus sampling edge correction, the arguments above should be applied
to |W �⋂n−1

i=1 Ci | instead of |W |. Assuming k-MIRS for any order k ≥ 1 (see Sup-
plementary Materials, Section 15, for details) as well as some notion of ergodicity,
by following the steps of the proof of Iftimi et al. (2019, Theorem 2), one could also
show that (24) is strongly consistent, i.e. that it a.s. converges to (18) when we apply
an increasing domain asymptotic regime. This regime is obtained by replacing the
window W in (24) by a convex averaging sequence Wn , |Wn| → ∞ (Daley and Vere-
Jones 2008, Definition 12.2.I). The question of asymptotic normality of (24) is a more
delicate matter, however, and one would likely need to consider some notion of mixing
for the FMPP in question (cf. Biscio et al. 2018; Biscio and Waagepetersen 2019).

These observations directly connect to the third question, which is how we deal
with the fact that the true intensity function is unknown in practice. The most common
and natural approach is to replace ρ(·) in Theorem 1 by a plug-in estimator ρ̂(x, l, f ),
(x, l, f ) ∈ W × A × F . This, however, connects back to the problem of specifying
νM because to estimate ρ(·)we need to know νM—the intensity function is a Radon–
Nikodym derivative with respect to the referencemeasure. A pragmatic and (we argue)
not so restrictive approach is to assume that there is a common functional mark dis-
tribution which coincides with the functional mark reference measure νF . By doing
so, any intensity estimator is of the form ρ̂(x, l, f ) = ρ̂W×A(x, l) = Q̂A

x (l)ρ̂G(x),
(x, l, f ) ∈ W ×A×F , i.e. it does not depend on the functional mark values. In other
words, we are in the land of estimating intensity functions for point processes with
real valued marks or/and multivariate point processes. Hence, we may consider the
estimator

K̂(D×E)
Śn−1

i=1 (Di×Ei )

t (C1 × · · · × Cn−1) =
∑

(x,l, f )∈Ψ

∑ �=

(x1,l1, f1),...,(xn−1,ln−1, fn−1)∈Ψ \{(x,l, f )}
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w(x, x1, . . . , xn−1)

νM(D × E)
∏n−1

i=1 νM(Di × Ei )
t((l, f ), (l1, f1), . . . , (ln−1, fn−1))

× 1{(x, l, f ) ∈ W × D × E}
ρ̂W×A(x, l)

n−1∏

i=1

1{xi ∈ W ∩ (x + Ci )}1{(li , fi ) ∈ Di × Ei }
ρ̂W×A(xi , li )

(25)

ofK(D×E)(Di×Ei )
n−1
i=1

t (C1×· · ·×Cn−1). Moreover, taking the Hamilton principle into
account, we would here replace the reference measure related parts in (25) by the esti-
mators |̂W | = Ξ(W ; ρ̂G), ν̂M(D × E; ρ̂W×A, ρ̂G) and ν̂M(Di × Ei ; ρ̂W×A, ρ̂G),
i = 1, . . . , n − 1. This is indeed quite remarkable—we may estimate a statistic based
on something as abstract as a measure on a Polish function space, as well as a Radon–
Nikodym derivative with respect to it, without ever having to know or consider any
of these entities. Now, it should be noted that the Hamilton principle reference mea-
sure estimators may be ignored for certain intensity estimators since these estimators
already satisfy |̂W | = Ξ(W ; ρ̂G) = |W | and ν̂M(D×E; ρ̂W×A, ρ̂G) = νM(D×E)

(Cronie and van Lieshout 2018; Moradi et al. 2019). Note finally that if we impose
the stronger assumption that there is a common mark distribution PM (auxiliary and
functional marks) which coincides with νM, or if we do not consider any auxiliary
marks, we simply replace ρ̂W×A(·) above by ρ̂G(·).

In Supplementary Materials, Section 18, we briefly indicate how one could exploit
the nonparametric estimators above to carry out minimum contrast-based parametric
inference.

8.3 Simulation study

Wenext conduct a brief simulation experiment to illustrate howour summary statistics,
i.e. the t-weighted marked nth-order reduced moment measures in (18), can be used
to analyse FMPP data. The main idea is to show that the t-weighted nth-order marked
inhomogeneous K -function can be used to test for random labelling, i.e. independence
between functional marks and their associated spatial locations. To generate a point
patternwith a randomcurve associatedwith each spatial location,we consider a spatio-
temporal Gaussian random field which we sample spatially at the spatial coordinates
generated by a spatial point process inW = [0, 1]2; in practice, we have to sample the
spatially referenced curves over a fine temporal grid t1 < · · · < tk . The procedure is as
follows: first we generate spatial coordinatesψG = {xi }ni=1 according to the following
twodistinct scenarios: an inhomogeneous Poissonwith intensityρG(x) = 50(x21+x2),
x = (x1, x2) ∈ W , and a Thomas process with offspring dispersion parameter 0.075,
parent intensity 25 and expected number of offspring for each parent being 4. The
obtained point patterns are generated using the functions rpoispp() and rThomas()
in the R package spatstat (Baddeley et al. 2016). To each spatial location xi of the
generated point pattern ψG , we assign a function fi (t) = z(xi , t), t ∈ T = [0, 10],
which is obtained by sampling a realisation z(x, t), (x, t) ∈ W × T , of a stationary
spatio-temporal Gaussian random field Z at the spatial point pattern location xi , using
either a double exponential or Gneiting covariance function for Z ; the simulation is
carried out using the RFsim() function of the R package CompRandFld (Padoan and
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Bevilacqua 2015). The double exponential covariance function is a separable model
given by

C(r , t, θ) = τ 2 exp (−‖r‖ /αs − |t |/αt ) ,

where θ = (τ 2, αs, αt ), τ 2 is the variance of the spatio-temporal process, and αs and
αt are positive spatial and temporal scale parameters, respectively. For this model, we
set the parameters to τ 2 = 1, αs = 0.4 and αt = 0.5 in our simulations.

Separable models such as double exponential models are often chosen for con-
venience rather than for their ability to fit the data well and these models are rather
limited, because of their lack of flexibility in modelling space–time dependencies. For
such reasons, we would also like to consider a non-separable covariance model and
we here choose a model from the Gneiting class of covariance functions (Gneiting
2002), which is given by

C(r , t, θ) = τ 2

((|t |/αt )
α + 1)β/2 exp

(

− (‖r‖ /αs)
γ

((|t |/αt )α + 1)γβ/2

)

,

where τ 2, αt and αs are as in the double exponential model, and α and γ are the
smoothness parameters which take values in (0, 2]. The non-separability parameter β

takes values in [0, 1] and the model is separable if β = 0. In our simulation study, we
set τ 2 = 1, αt = 1, αs = 0.4, α = 1, γ = 1 and β = 0.5.

For each scenario, we use the test function (23) in the estimator in expression (25);
note that we here assume that there is a common mark distribution and that there are
no auxiliary marks present. Since we in practice have to sample each functional mark
discretely in time (over a fine temporal grid), each observed function fi is represented
by a collection fi (t1), . . . , fi (tk), i = 1, . . . , n. As a result, the distance mapping (23)
for any two observed functions f1 and f2 is approximated by

t̃v( f1, f2) = b − a

k

k∑

j=1

(
f1(t j ) − f̄ (t)

) (
f2(t j ) − f̄ (t)

)
, (26)

where a = 0, b = 10 and f̄ (t) = 1
n

∑n
i=1 fi (t). In all our examples, we set n =

50; note that we here assume an equidistant sampling scheme. We thus focus on
pairwise interactions and we letC1 be given by the balls BR2 [0, r ], r ≥ 0, whereby we
obtain a weighted K -function, where we use Ripley’s isotropic edge correction (recall
Corollary 1) to correct for edge effects. Moreover, we estimate the intensity function
of the ground process nonparametrically and with local edge correction utilising the
density.ppp() function of the R package spatstat (Baddeley et al. 2016). To select the
bandwidth, we use the criterion of Cronie and van Lieshout (2018), i.e. the spatstat
function bw.CvL().

In order to study whether there is random labelling, we create a large number of
new realisations (here 499), each obtained by randomly assigning the functional marks
to the spatial points xi ∈ ψG , which are kept fixed. We then compute our summary
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Fig. 2 Top panel: K̂t (r) for the simulated data using a double exponential covariance function for the
spatio-temporal Gaussian random field (solid line), average and simulated 95% envelopes from 499 random
relabellings of the functional marks (dashed lines). Left: for the inhomogeneous Poisson process. Right:
for the Thomas process. Bottom panel: as top panel but using the Gneiting covariance function instead

statistic for each of these new realisations and generate pointwise 0.05 level envelopes
based on them. If the summary statistic of the unpermuted/actual data goes outside
the envelopes we proceed with the assumption that the functional marks are indeed
not randomly labelled (cf. Diggle 2013; Iftimi et al. 2019; Illian et al. 2008).

Figure 2 shows K̂t (r) for the data and pointwise 0.05 level envelopes based on
499 permutations of the generated functional marks from a spatio-temporal Gaussian
random field with a double exponential covariance function with spatial coordinates
generated from the inhomogeneous Poisson process (top left) and the Thomas process
(top right). The bottom panels are as in the top panels, but the Gneiting covariance
function has been used instead. As one would expect, the functions go outside the
envelopes and thus suggest that we are not dealing with a randomly labelled pro-
cess. Hence, the subsequent analyses of the data should proceed accordingly, i.e. not
assuming that the functional data in question have been generated according to an iid
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procedure. Looking closer at the deviations from the envelopes in Fig. 2, it becomes
visibly clear that the behaviour of our summary statistics is influenced by both the
spatial dependence structure of the ground process and the structure of the functional
marking mechanism.

9 Data analysis: Spatial variation of population characteristics in
Spain

Here, we numerically illustrate how our proposed setting and methods may be applied
to real data. In particular, we will focus on the summary statistics and show their
potential usefulness for extracting features in Spanish province population growth;
see the discussion in Fig. 1. The boundary and centre coordinate data of the provinces
of Spain are extracted as shapefiles from the R package raster (Hijmans 2019) and the
statistical information about the population is taken from the web page of the Spanish
Institute of Statistics (www.ine.es).

To better understand the structure and dynamics of populations, two key points are
having information about i) the spatial distribution of and the magnitude variation in
the demography and ii) the population growth rate. In anthropology and demography,
demographical evolution and sex ratio are two important population characteristics
which can change over time because of, for example, birth and death rates, economical
situations or migration. However, it is natural to expect that these indices are much
more similar in neighbouring regions/provinces than in distant regions/provinces. As
highlighted in Sect. 1, one of the most important aspects of the analysis is to deduce
whether the functionalmarks, i.e. the demographic evolution and sex ratio, are spatially
dependent. Note that the emergence of the regions and their centres is something that
occurred a long time ago, i.e. not in connection to the time frameof the functionalmarks
considered. However, we believe that this does not reduce the interest in analysing the
functional mark structures in the data.

Similar to the simulation study, for both the demographic evolution and sex ratio
curves, we use the test function (23) in the estimator in expression (25); note that
we here also assume that there is a common mark distribution and that there are no
auxiliary marks present. In both cases, we observed the functions for 20 distinct years,
starting from 1998. Hence, each such observed function fi can be represented as the
collection fi (t1), . . . , fi (t20), i = 1, . . . , n. As a result, for any two observed functions
f1 and f2, we approximate the distance function (23) by (26), with k = 20, a = 1998
and b = 2017. Hence, as simulation studywe focus on pairwise interactions andwe let
C1 be given by the balls BR2 [0, r ], r ≥ 0, whereby we obtain a weighted K -function,
where we use the same procedure as in the simulation study for edge correction and
estimation of the intensity of the ground process.

The analysis is illustrated in Fig. 3. The top left panel shows the spatial point pat-
tern of the centres of 47 Spanish provinces. The other three panels show the resulting
functional marked K -functions for the Spanish provinces functional marked point
pattern (Fig. 1). The transformed K̂t (r) for the data together with simulated pointwise
95% envelopes generated from 39 simulations of a homogeneous Poisson process,
obtained by keeping the functional marks fixed, is shown in the top right panel; the
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Fig. 3 Spatial point pattern of the centres of 47 provinces on the Spanish mainland (top left panel).
(K̂t (r))1/3 for the demographic evolution in 47 provinces of Spain (solid line), average and simulated
pointwise 95% envelopes under the homogeneous Poisson process for (K̂t (r))1/3 (dashed lines) (top right
panel). Bottom left: as top right panel but average and simulated 95% envelopes from 39 random rela-
bellings of the demographic evolution data (dashed lines). Bottom right: as left but for the sex ratio data. In
the bottom panels the curves are shown only for r ≥ 48.27 km since for the smaller distances the estimated
functional mark K -function vanishes

obtained intensity estimate was quite flat, so we proceeded by assuming homogene-
ity. Such envelopes are obtained for each value of r by calculating the smallest and
largest simulated values of (K̂t (r))1/3; see (Diggle 2013). This suggests that the func-
tional marked Poisson process model does not fit the functional marked data set in
the first panel of Fig. 1 well. Recalling the theoretical form of our summary statistics
under Poisson assumptions, we see that the current Poisson assumption puts particular
emphasis on the functional mark structures. However, some regular model intuitively
makes the most sense in terms of describing the location data and as a follow-up one
could fit a regular model, e.g. a Strauss model, to the ground point pattern and repeat
the analysis above. Note that the transformation (K̂t (r))1/3 is just for visualisation pur-
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poses and plays no actual role—the reason for employing a cubic root transformation
instead of the common square root for the spatial point processes is the potentiality of
having negative values for K̂t (r). The bottom panels show the transformed version of
K̂t (r) for the data and the pointwise 0.05 level envelopes based on 39 permutations of
the demographic evolution on logarithmic scale (left) and sex ratio (right), holding the
corresponding locations fixed. For r < 48.27 km, K̂t (r) = 0 and is thus not depicted
in the last two panels. These functions suggest that there is no spatial dependence
between the functional marks, which points to that the way the population size and the
sex ratio have evolved from 1998 to now in different provinces are spatially indepen-
dent. Hence, the subsequent analyses of the data may proceed by assuming that the
functional data here have been generated according to an iid procedure. Consequently,
we may proceed with a classical FDA approach for the functions and a separate spatial
point pattern analysis for the centres.

10 Discussion

In principle, the current definition of FMPPs may also accommodate situations where
we want to consider locations Xi ∈ S and functional marks Fi (t) ∈ S, t ∈ T ⊂
[0,∞), which live on some (Polish) space S other than some Euclidean space; for
example, S could be a linear network (Baddeley et al. 2016; Dejby 2017) or a sphere
(Møller and Rubak 2016). For instance, in the linear network case, each functional
mark would describe themovement along S of the i th point/event/individual, whereby
we would have a setup for modelling, for example, cars driving on a road network
during a given time period.

One could also extend the current setting to having T be an arbitrary (connected)
subset of R

d , for some arbitrary d ≥ 1, so that when d ≥ 2 the variable t in each Fi (t)
represents a ‘spatial’ location and Fi : T → R

k is a k-variate random field/process.
Moreover, this would allow us to let T be any suitable interval in R, not necessarily a
subset of [0,∞), e.g. T = R.

We have proposed a general framework to analyse dependent functional data, with
an emphasis on themathematical and statistical aspects of this framework. Awealth of
particular cases and models can be treated using our approach, and thus, a plethora of
real problems can be analysed using this new context. Although only one specific data
analytic example have been illustrated here, we believe that we have clearly indicated
that many different types of data can be analysed using our framework.
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