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We show the impact that scalar structure deformation and mixing have on the fate
of plumes of waterborne contaminant transported through a chemically heterogeneous,
partially adsorbing porous medium at a typical Péclet number characterizing saturated
flows in subsurfaces, Pe = O(1). Via pore-scale lattice Boltzmann simulations, we follow
the dynamic of a passive scalar injected in a packed bed consisting of a mixture of
chemically inert and adsorbing spherical particles. By varying the fraction of adsorbers
ξ randomly and uniformly distributed in the porous volume, we find that the waterborne
solute forms concentration plumes emerging between pairs of adsorbing particles. This
deformation is a consequence of the different mechanisms of transport characterizing the
transport of molecules in the proximal and remote pores relative to the adsorbers, diffusion
and advection, respectively. The resulting isoscalar surface embedding the plumes grows
at a rate proportional to the average pore-scale velocity U and inversely proportional to the
adsorbers’ interparticle dimensionless distance, i.e., γ ∝ U/�ξ . We provide a quantification
of the characteristic diffusive timescale of the plume tη ∝ �2

ξ /Dm, which dissipates the
concentration differences in the vicinity of the adsorbers, with Dm being the molecular dif-
fusion coefficient. Thus, by quantifying the relative importance of the advection-sustained
stretching rate γ and plume mixing rate 1/tη for different values of fractions of adsorbers ξ ,
we establish a transition from diffusion- to advection-dominated macroscopic adsorption,
whose time evolutions scale as ∝ √

t and ∝ t , respectively. Such a transition is determined
by the number of adsorbers within the medium, with diffusion and advection dominating at
high and low fractions, respectively. Our numerical analysis provides �ξ /d ≈ 4/ ln(2)Pe−1

as the critical distance between adsorbers that sets the transition, with d being the pore size.

DOI: 10.1103/PhysRevFluids.8.024502

I. INTRODUCTION

The transport of waterborne solutes in porous media occurs in many natural processes and engi-
neering applications. Of particular interest in the context of environmental pollution is the transport
of contaminants in subsurfaces in both agricultural and urban environments. Such pollutants are,
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indeed, carried by moving fluids within soil media in agricultural landscapes as well in the urban
substrates devoted to controlling rain events, such as green areas and green roofs. In such subsurface
environments, a rain event is the usual triggering mechanism, which induces the movement of fluids
through porous spaces, carrying contaminants gathered from the external environment or internally
present in the soil media and mobilized by the flow. A notable example of such contaminant sources
is fertilizers, which occur as solid particles that dissolve in water infiltrating the subsurface and
cause pollution of aquifers and urban water systems. [1,2].

A promising solution to prevent such pollution scenarios is the introduction of adsorbers in the
soil media, such as biochar, which is able to adsorb the waterborne pollutants [3,4]. Biochar not only
provides a sink for waterborne contaminants but also supports plant growth [5]. In this scenario, the
porous system becomes strongly heterogeneous in its chemical adsorption capacity, being formed
of a mix of chemically inert and adsorbing particles. The identification of an effective strategy
for the introduction of adsorbers requires knowledge of not only the specific surface chemistry
determining the solute contaminant adsorption onto and into biochar particles but also the fluid-
dynamic mechanisms that govern the mobilization, transport, and spatial redistribution of solute
molecules transported within such a heterogeneously adsorbing porous medium.

The transport of a solute in a porous medium is a complex mechanism that may also exhibit
chaotic features in laminar flows through three-dimensional homogeneous materials. An early-time
pore-scale stretching regime dominated by advective forces is usually followed by a coalescence
diffusion-induced regime. In the former, scalar elements are deformed and spatially separated to
form a filamentary and heterogeneous structure of the transported concentration field. At longer
times diffusion brings these structures together, suppressing such an early-time heterogeneous
morphology [6,7]. These two regimes are well separated for high Péclet numbers, and the relative
importance of advection over diffusion can be enhanced by strong microstructural heterogeneities.
For instance, how the specific topological traits that distinguish three-dimensional porous materials,
a sequence of pore throats in the proximity of grain contact points and enlargements in the cores
of pore spaces, trigger stretching and folding of pockets of solute, leading to anomalous dispersion
and chaotic advection, has been shown [8,9]. This anomalous behavior may persist as long as the
advective forces are of the same order of magnitude as molecular diffusion, i.e., for a finite value of
the Péclet number Pe � 5 [10].

If such fluid-dynamic mechanisms responsible for the deformation of scalar elements have been
shown to be triggered by intense local perturbation of the flow field, such as strong geometrical
heterogeneities within the porous medium, less is known about the role of chemical heterogeneities
within subsurfaces. Scalar deformation of concentration fields is an important mechanism because
it determines the extent of the diffusive surface within the porous medium, the microscopic concen-
tration gradients, and the effective diffusion and adsorption in porous media. Water infiltration into
agricultural soil and urban green substrates during moderately intense rainfall events is of the order
of 10 mm/h, which implies that, in the typical millimeter-size pore space of soil media, the water
infiltration rate is of the same order as the molecular diffusive rate of contaminants [11]. With the
trend of increasing intensity of stormwater events in northern latitudes [12], the condition Pe � 1
is likely to be encountered even more frequently in such urban and agricultural areas. Within this
picture, the presence of chemical heterogeneities, such as adsorbing particles, may also act to alter
the distribution of concentrations within the pore interstices, possibly deforming the transported
scalar elements and affecting the pore-scale microscopic concentration gradients responsible for
delivering contaminants to the adsorbing sites via diffusion.

A pore-scale characterization of the transport is thus necessary to understand the behavior of
a waterborne contaminant flowing into a subsurface. Direct visualization of mixing in porous
media via high-resolution experimental images at high Péclet numbers recently confirmed the role
of diffusive and advective forces in deforming scalar elements and determining the rate of the
chaotic dispersion [13], the mixing of initially separated scalars [14], and, in turn, the intensity
of the chemical gradients that control pore-scale reaction and adsorbing mechanisms [10]. Such
experiments, complemented by pore-scale numerical studies, have supported the development of
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mathematical formulations able to predict the scalar structure deformation and mixing processes
of transported scalars in homogeneous and heterogeneous media at high Péclet numbers [7,15,16]
and their impact on reactive processes [17]. Nevertheless, research on the impact of pore-scale
heterogeneous adsorption on scalar structure deformation and mixing is scarce, including at low
Péclet numbers.

From a macroscopic perspective, adsorption in porous media can be regarded as a filtration
process which strongly depends on the pore-scale transport mechanisms, and macroscopic models
can be formulated in order to take into account the pore-scale geometrical features that affect
local fluid velocities [18]. In the presence of chemical heterogeneities of the medium surfaces
and of their adsorption processes, predictive macrohomogeneous models for contaminant transport
must include the effects of spatial variation of both pore-scale velocities, local disturbances in
hydraulic conductivities and local adsorption rates [19,20], which may greatly impact the fate of
the transported scalar. Effective velocity, dispersion, and reaction exhibit a complex dependence on
the physical parameters and Péclet and Damköhler numbers, making the prediction of such transport
mechanisms challenging from a mathematical point of view [21].

In the present study, we clarify the role that the introduction of chemically adsorbing particles
in inert, weakly heterogeneous porous media plays in the mechanisms of spatial mixing, diffusion,
and macroscopic transport and adsorption of a waterborne contaminant. We study such a scenario
via pore-scale numerical simulations while varying the volume fraction of adsorbents introduced
in a homogeneous packed bed for a moderate value of the Péclet number, Pe ∼ O(1), and typical
adsorption rates of a waterborne pollutant in carbonaceous material, such as biochar. We provide
a relationship between the fraction of adsorbers and the deformation processes of the transported
scalar, which allows us to determine the characteristic diffusive and advective timescales for contam-
inant transport. We show in which configurations diffusive mixing and advective transport determine
the macroscopic adsorption rate and the contaminant retention in such chemically heterogeneous
porous media.

II. NUMERICAL METHOD

A. Pore structure generation and surface adsorption

We generate a packed bed sample by solving the rigid-body dynamics of falling spherical
particles within a cylindrical container [22,23]. A cubic domain is then selected within the container,
and the volumetric space is discretized in equally sized voxels, so that the spherical particle diameter
and the domain size are d = 21.6 and �3

0 = 2563 computational nodes, respectively. We check planar
porosity values along the packing direction z to ensure that the selected volume is sufficiently distant
from the container walls and it is homogeneous [see Figs. 1(a) and 1(b)]. The volumetric porosity
is � = 0.39, from which we calculate the effective number of particles contained in the volume
space as n0 = �∗

0
3 (1 − �)6/π = 1939, with �∗

0 = �0/d being the dimensionless domain size along
the three Cartesian directions. We compute the pore size distribution via a watershed algorithm and
extract an equivalent average pore diameter ≈ d . For each simulation case, we select a random
fraction ξ of spherical particles (via a random uniform permutation of particles indexes), and along
their surface Sξ we assign a solute adsorbing rate expressed via the following, partially adsorbing,
first-order reaction kinetics:

Da c∗|Sξ
= − ∂c∗

∂λ∗
s

∣∣∣∣
Sξ

, (1)

where Da = kd2/Dm is the Damköhler number characterizing the ratio between the adsorption rate
k and diffusion rate Dm/d2 (with Dm being the molecular diffusion), c∗ = c(x, t )/c0 is the dimen-
sionless concentration at position x = (x, y, z) and time t that refers to the injected concentration
c0, and λ∗

s = λs/d is the dimensionless direction pointing inward to the adsorbing particle surface.
The adsorbing spherical particles are randomly and uniformly distributed in the volume space with
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FIG. 1. (a) Packed bed generation with spherical particles dropped in a cylindrical container (gray parti-
cles), within which a cubic domain of size �3

0 = 2563 computational units is selected (light blue particles). The
parts of particles laying outside the domain are cropped out, and the resulting effective number of particles
belonging to the domain is n0 = 1939. In each simulation, a fraction ξ of spherical particles is randomly
selected as adsorbers (yellow, shown for the case ξ = 0.05). (b) Average porosity � at each (x, y) plane, which
shows the homogeneity of the domain along the streamwise direction z. (c) Probability distribution function
of the number of adsorbing particles nξ contained within randomly chosen spherical boxes of diameter �ξ

(blue circles). The red line depicts the Poisson distribution for an average occurrence of events 〈nξ 〉 = 1. The
observed discrepancies between the measured probability and the Poisson distribution nξ can be ascribed to
finite-size effects, induced by the symmetric boundary conditions along the transverse directions and by the
finite particle size that impedes overlapping. (d) Snapshot of solute transport and adsorption, visualized via
dimensionless concentration c∗ injected from the top plane at z∗ = 0 with inlet concentration c∗

0 = 1. Note the
concentration sheet 
 at c∗ = 1/2 visible from the sharp change in the color of the solute.

an average dimensionless interparticle distance �∗
ξ = �ξ/d = �∗

0/
3
√

ξn0. Thus, the probability of
having a certain number of adsorbing particles nξ within an arbitrary spherical domain of radius
�ξ/2 follows a Poisson distribution with average rate 〈nξ 〉 = 1, as confirmed by the spherical-box
counting computation performed in the porous domains shown in Fig. 1(c).

B. Numerical simulations of pore-scale transport

We investigate solute transport and adsorption in media with variable adsorption capacity in order
to mimic the process of waterborne contaminant treatment by means of the introduction of adsorbers
in the subsurface. We consider 11 simulation cases, 6 simulations cases with an increasing fraction
of adsorbers ξ = 1/160, 1/80, 1/40, 1/20, 1/10, 1/5 and Da = 1.3 and 5 simulation cases with
ξ = 1/160, 1/80, 1/40, 1/20, 1/10 and Da = 2.6. The values of Da = O(1) are chosen to represent
the balance between adsorption rates typically observed in biochar batch adsorption experiments, of
the order of 1 mg/L per 100 mg/L of solution over a minute, i.e., k = O(10−3 s−1), and the diffusion
rate of species in liquids within a typical 1 mm pore space, i.e., Dm/d2 = O(10−3 s−1). For each
simulation case, three random arrangements of the adsorbing particles are considered, for a total of
33 simulations. The computed data that follow thus refer to the ensemble averaged values among
such different realizations. The advection-reaction-dispersion equation (ARDE) for the transport
of the scalar concentration c∗(x, t ) is solved for a steady-state flow field, whose dimensionless
solenoidal jth Eulerian velocity component is u∗

j = u j (x)/U . The ARDE reads

∂c∗(x, t )

∂t∗ + ∂c∗(x, t )u∗
j (x)

∂x∗
j

= ∂

∂x∗
j

(
1

Pe

∂c∗(x, t )

∂x∗
j

)
, (2)

where U is the intrinsic average flow velocity in the medium, x∗
j = x j/d is the dimensionless jth

direction, ta = t/t∗ = d/U is the pore-scale characteristic advective time, and Pe = Ud/Dm is the
Péclet number. Equation (2) is solved via the lattice-Boltzmann methodology [24]. The steady-state
flow solution is achieved by solving the first lattice population within the void space of the porous
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medium, with no-slip boundary conditions at the fluid-solid interface and a pressure gradient acting
to force the flow along z. At the boundaries along the transverse directions x and y, the symmetry
is guaranteed with free-slip boundary conditions, while we impose periodic conditions along the
streamwise direction z. A second population is then computed for solving the transport of the passive
scalar c∗ with constant injection c∗(z = 0) = 1 and its adsorption at the boundaries Sξ , according
to Eq. (1) [25]. At the rest of the fluid-solid boundaries and at the outlet a zero-gradient condition
is imposed. The applied pressure gradient that drives the flow is chosen to achieve a Péclet number
representative of the balance between the infiltration rate in soil media during an intense rain event
and the diffusion rate of a solute within the pore space. The intrinsic average flow velocity in a
soil medium during an intense event is of the order of 10 mm/h [11]. The infiltration rate in a
typical pore space d ∼ 1 mm thus results in U/d = O(10−3 s−1), of the same order as the diffusive
rate, and the Péclet number Pe = 1.72 = O(1). The resulting behavior of the constantly injected
solute concentration will depend on the transport and adsorption mechanisms occurring within the
pore space, as illustrated and intuitively inferable from Fig. 1(d). Further numerical details and a
validation of the computational methodology are provided in the Appendix.

III. RESULTS

A. Plume stretching and surface growth

We follow the temporal evolution of the concentration of the transported scalar c∗. The scalar
concentration injected from the top boundary z∗ = 0 is transported and mixed within the pore
interstices, forming plumes of solute concentration whose characteristic size is affected by the
distribution of the adsorbing particles placed, on average, at a relative distance �∗

ξ within the
porous medium. Concentration plumes emerge across orthogonal fluid spaces whose perimeters
are defined by transversally aligned pairs of adsorbing particles, as depicted in Fig. 2. We found
that such plumes experience a stretching process developing linearly in time, which is induced
by the difference between bulk mass transport in the vicinity of the adsorbing particles, which is
hindered by adsorption, and the transport in the pores farther from such adsorbing sites, where the
concentration is freely advected. We report the growth of the plume surface 
, i.e., its stretching,
by computing the extent of the scalar sheet with a corresponding concentration value c∗ = 1/2,
i.e., an isoscalar surface. Thus, 
 represents the backbone concentration sheet halfway between the
maximum concentration and null-concentration areas, and with 
∗

ξ = (
/d2)/(��∗
0

3), we indicate
the dimensionless specific surface area of such a sheet per volume of void space. At the initial time
t = 0, the solute surface corresponds to a sharp front placed at the inlet cross section ��∗

0
2, thus

leading to 
∗
ξ (t = 0) = �∗

0
−1. In Fig. 3 we report the computation of 
∗

ξ showing the evolution of
the solute plume surface as a consequence of a linear time-dependent stretching process:


∗
ξ (t ) = 1

�∗
0

(1 + γ t ), (3)

where γ is the stretching rate,

γ = γ ∗ U

�ξ

, (4)

and γ ∗ is a constant prefactor, which, via a linear fitting, we determine is close to γ ∗ ≈ ln(2).
The stretching rate γ is proportional to the average pore-scale mass transport rate t−1

a = U/d and
inversely proportional to the characteristic length �∗

ξ , i.e., γ ∝ (ta�∗
ξ )−1. Thus, the plume surface

growth per fluid volume occurs faster for adsorbing particles placed at shorter distances. This
proportionality is a direct consequence of the linear growth process. Solute plumes emerge between
pairs of adsorbing particles placed, on average, along a perimeter proportional to their average
distance, i.e., πξ ∼ ��∗

ξ . The concentration sheet 
 grows following the extrusion of such a
perimeter line advected at a rate t−1

a along the streamwise direction. The average number of evolving
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FIG. 2. Snapshots of the spatial distribution of the concentration c∗ injected from the top boundary z∗ =
0 at a characteristic surface growth time t = 2�ξ /U . The snapshots are taken at y = �0/2 and reported for
(a) Da = 1.3 and �∗

ξ = 0.1, (b) Da = 1.3 and �∗
ξ = 0.025, (c) Da = 1.3 and �∗

ξ = 0.00625, (d) Da = 2.6 and
�∗

ξ = 0.1, (e) Da = 2.6 and �∗
ξ = 0.025, and (f) Da = 2.6 and �∗

ξ = 0.00625. The adsorbing particles contained
within the porous volume defined within y = [�0/2, �0/2 + �ξ /2] are represented by red circles. Plumes of
solute emerge across (x, y) cross-sectional fluid areas that are defined between pairs of adsorbing particles
separated by a distance of, on average, �ξ . At a time t ∝ �ξ /U , plume surface growth follows the extrusion of
the n2 ∝ �−2

ξ cross-sectional fluid areas of the perimeter πξ ∝ �ξ , the streamwise elongation scales as hξ ∝ �ξ

(which is qualitatively visible), and the total surface growth is statistically constant, 
∗
ξ �

∗
0 − 1 ∝ hξπξ n2 [see

also Eq. (5)].

plumes in the two-dimensional transverse plane (x, y) is n2 = (�∗
0/�

∗
ξ )2, and the concentration sheet

growth rate per unit inlet fluid area can be derived as

γ ∝ t−1
a n2πξ/��∗

0
2 = (ta�

∗
ξ )−1. (5)

We can interpret Eq. (5) as the measure of a kinetic roughening process of a scalar element whose
extent along the longitudinal direction (its roughness height) is induced by the flow velocity ∝ t−1

a
and whose transversal periodicity (its lateral correlation length) is proportional to the average adsor-
ber distance �∗

ξ . This surface growth behavior resembles a kinetic roughening process statistically
constant over a length �∗

ξ . We also note in Fig. 3 that for low values of fraction of adsorbers, i.e.,
ξ < 0.025, the computed values of 
 exhibit a sharp decay at long times because the plume sheet

 escapes the porous volume. However, we note that the linear trend holds for all cases, at least as
long as the surface 
 is contained within such a volume.

We also highlight that γ ∗U is the average solute velocity for a plume of concentration c∗ = 1/2.
At a time t , such a plume has traveled a distance along z that equals

h∗
ξ (t ) ≡ γ ∗Ut/d = (
∗

ξ (t )�∗
0 − 1)�∗

ξ , (6)

where the right-hand side is recovered from Eq. (3).
Given the low value of the Péclet number, the typical pore-scale advective stretching rate d/U

is rapidly suppressed by diffusion that brings together scalar elements. The observed linear time-
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FIG. 3. Evolution of the dimensionless concentration sheet per fluid volume 
∗
ξ , computed at c∗ = 1/2, at

dimensionless times tU/�ξ , with �ξ /U indicating the characteristic advection time for bulk transport between
adsorbers. Circles and triangles show data for Da = 1.3 and 2.6, respectively, while different colors denote
different adsorbing particle concentrations ξ . The shaded areas indicate the standard error computed for the
three different random realizations for each case. A linear time-dependent surface growth is observed, following

∗

ξ �
∗
0 − 1 = γ t , with γ = γ ∗U/�ξ being the surface growth rate, γ ∗ being a constant value, and �∗

0 being the
dimensionless length of the domain. The black dashed line indicates the solution of Eq. (3) for γ ∗ = ln(2).
Inset: the linear time-dependent trend is confirmed at a low value of ξ = 0.00625 in an additional simulation
performed in a larger computational domain 2�3

0 (red circles).

dependent stretching and surface growth of solute plumes suggest that the concentration plume’s
onset is first determined by diffusion, which homogenizes the pore-scale transport, mixing the solute
at the pore scale, while it later follows a linear deformation induced by the presence of adsorbers,
which differentiates the mass transport behaviors in the proximal and remote pores. Within this
picture, we are thus allowed to represent the solute evolution as a statistical average of independent,
well-mixed, individual plumes, which weakly interact with each other and deform under the action
of spatially varying transport rates within the fluid volume available between adsorbing particles.
The evolving shape of such individual plumes is well captured by snapshots of our simulations
depicted in Figs. 2 and 4(a). It takes approximately a time 1/γ (i.e., the average time that the solute
takes to encounter an adsorbing particle) to observe such a plume formation mechanism, after which
the solute concentration is transported along spaces defined by random pairs of adsorbing particles,
with clear effects of voiding and clustering of such particles during the solute plume evolution.

B. Diffusion broadening at short and intermediate times

As we discussed in the previous section, given the low value of the Péclet number and the weak
geometrical heterogeneity that characterizes our porous medium (which is composed of equally
sized spherical particles), we expect to rapidly observe a coalescence regime, where individual pore-
scale scalar structures are homogenized by diffusion [6]. Under these conditions, it is the presence
of spatially varying adsorption rates that yield the observed surface growth mechanism. The latter
arises from the difference in scalar transport along different pores: within the pores proximal to
the adsorbers, solute transport is governed by diffusion and adsorption directed along the normal
to the adsorbers’ surface, whereas within more remote pores bulk concentrations are transported
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FIG. 4. (a) Visualization of plume sheet surface evolution at different dimensionless times γ t (colors) for
a cross section (z, x) in the case with the fraction of adsorbers ξ = 0.05. The linear time-dependent surface
growth process extrudes a plume along its perimeter proportional to �ξ and 1/γ . Particle adsorbers within a
distance to the cross section of ±10d are sketched in light blue, and their radius is made inversely proportional
to such a distance to highlight their impact on solute transport. (b) Sketch showing the evolution of a scalar
point at the isoscalar surface 
 under the cooperating effects of advection and diffusion, with the coordinates
η and λ indicated. (c) Average shortest distance between 
 and adsorbers for Da = 1.3 (blue circles) and
Da = 2.6 (red lines), which results in rλ = �ξ /2.

by advection. This mechanism triggers the observed solute plume growth and stretching along the
space available between a pair of adsorbers.

Advection within the remote pores primarily acts along a direction tangential to the adsorbing
surface. At the same time, diffusion brings solute species from the plume core to the adsorbers’
surface along a normal direction. We refer to these two directions as η and λ, respectively [see
the sketch in Fig. 4(b)]. For instantaneous step concentration input, along a generic direction x j ,
diffusion broadening can be described by the solution of Fick’s law,

c∗(x j, t ) = 1

2
− 1

2
erf

(
x j − Ut√

4Dmt

)
, (7)

and the absolute value of the dimensionless gradient at x∗
j = Ut/d follows as

∂c∗(x j, t )

∂x∗
j

= 1

2
√

πσ ∗ , (8)

where we make use of the diffusion length σ ∗ = √
Dmt/d .

We thus compute the average gradient on the concentration sheet 
 (indicated by the averaging
operator 〈·〉
) along the tangential and normal directions via the projection of the local gradient
along the segment connecting the local position with the closest adsorbing particle centers. In Fig. 5
we show the result of such a computation. In particular, in the insets of Fig. 5, we show that Eq. (8)
describes diffusion broadening along η, i.e., the direction tangential to the adsorbers, very well.
Along the direction normal to the closest adsorber, i.e., λ, we observe a similar behavior provided
that Eq. (8) is multiplied by a prefactor of ∼1/2. Such a prefactor reminds us that diffusion acts to
broaden the plume along two symmetric directions, ±λ.

We also observe that an equilibrium state is found after the initial diffusion broadening, where
σ ∗ and the concentration gradients tend to a constant value. We relate such an equilibrium to the
presence of adsorbers. In particular, let us consider a contaminant molecule traveling within the
medium. As a consequence of the continuous plume stretching and bulk transport mechanism,
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FIG. 5. Evolution of the average solute concentration gradient computed along the plume surface 
.
(a) Gradient component along the tangential direction η, 〈∂c∗/∂η∗〉
 , exhibiting equilibrium at tη = �2

ξ /2Dm

for both Da = 1.3 and Da = 2.6 (inset). (b) Gradient component along the normal direction λ, 〈∂c∗/∂λ∗〉
 ,
exhibiting equilibrium at tλ = �2

ξ /8Dm for both Da = 1.3 and Da = 2.6 (inset). The dashed lines indicate the
solution of Eq. (8) with a prefactor of 1/2 in the two cases along the normal direction λ (the two panels on the
right).

the molecule travels between the adsorbers at an average distance �ξ/2 from the closest adsorber [see
the sketch in Fig. 4(b)]. The computation of the distance between the isoscalar 
(c∗ = 1/2) and the
closest adsorbers confirms this value of the average distance, as reported in Fig. 4(c). Consequently,
diffusion broadening mixes the plume and dissipates the concentration differences within a volume
embedded between adsorbers whose radius is ∼�ξ/2 and which is advected along the tangential
direction η.

For an instantaneous step concentration input, the typical diffusive time that dissipates the
concentration differences within such a moving volume can be found via the unidirectional diffusion
equation along the positive direction η,

√
Dmtη = �ξ/2, which gives

tη = �2
ξ

4Dm
. (9)

Along the other direction, since diffusion occurs symmetrically along ±λ, the characteristic time
results from

√
2Dmtη = �ξ/2, that is,

tλ = �2
ξ

8Dm
. (10)

Figure 5 shows that these two characteristic times determine the onsets of an equilibrium state
in the plume concentration gradients very well. This is an interesting result because it provides
a relationship between the chemical heterogeneity length scale and adsorption mechanisms in the
vicinity of the concentration plume. At times t < tλ adsorption at the adsorbers’ surface is primarily
diffusion controlled, limited by the number of species carried by diffusion. At longer times, in
particular t > tη, adsorption becomes reaction controlled, and a balance is found between diffusion
and adsorption, which stops diffusion broadening in the vicinity of the plume.

We also notice that for the considered values of Da = O(1), the particle adsorption rate has a
minor effect on the concentration gradients and plume mixing mechanism.

C. Transition from diffusion to advection controlled macroscopic adsorption

At the macroscopic scale, the onset of diffusion broadening equilibrium results in a change
in the adsorption regime in the proximity of the plume. To complete the picture and take into
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FIG. 6. Evolution of the average concentration along the surface of the adsorbers 〉c∗〉Sξ
. We observe a

diffusion-dominated adsorption ∝ √
t at a high fraction of adsorbers ξ (left panels, with Da = 1.3 on the top

and Da = 2.6 on the bottom) and an advection-dominated adsorption for low fractions (right panels). The
macroscopic characteristic diffusive and advective times are used to scale the x axis, while the dashed lines
represent the solutions provided in Eqs. (11) and (12). An additional simulation performed for ξ = 0.003125
(gray squares) confirms the linear trend for advection-dominated configurations. The transition between the
two adsorption functions is well predicted by Eq. (13), which sets the critical fraction for the transition at
ξ ≈ 0.02.

account the adsorption occurring along the whole available surface provided by the adsorbers,
i.e., Sξ = ξnpπd2, one should also consider the bulk transport mechanism induced by advection,
which is quantified via the plume stretching or advective rate γ . If such a rate is slower than
the characteristic plume diffusive rate, the macroscopic adsorption is diffusion dominated, and the
transport and mixing of species are governed by characteristic diffusive rates. In such a situation, we
may intuitively think that the rate of adsorption is roughly proportional to the time taken by diffusion
to bring molecules to the adsorbing sites. The macroscopic characteristic diffusive timescale is
�2

0/Dm, where �0 is the characteristic size of the macroscopic volume, and the average amount of
mass brought to the global adsorbing surface should scale as

〈c∗〉Sξ
∝

√
Dm

�2
0

t, (11)

where 〈·〉Sξ
indicates the averaging operator over the available adsorbing surface Sξ . On the other

hand, when the advective rate is faster than plume diffusive mixing, we may write an advection-
dominated law for the macroscopic adsorption. In this situation, the bulk transport of the plume
with characteristic time �0/(γ ∗U ) governs the transport of molecules to the adsorbing sites, and we
infer

〈c∗〉Sξ
∝ γ ∗U

�0
t . (12)
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Because the plume diffusive mixing is determined by the slowest diffusive rate, we may expect
Eq. (11) to hold when γ < 1/tη, whereas Eq. (11) is valid for γ > 1/tη. Rearranging such a
condition with Eqs. (4) and (9), we obtain a transition from diffusion- to advection-dominated
adsorption for

�∗
ξ � 4/(γ ∗Pe). (13)

In Fig. 6 we report the numerical computation of 〈c∗〉Sξ
, which shows that Eq. (13) predicts well

the change from diffusion- to advection-dominated adsorption. One can interpret such a transition
imagining that, for �∗

ξ � 4/(γ ∗Pe), concentration plumes reach the next adsorbers at a distance
�ξ before delivering enough molecules via diffusion to establish a reaction-limited regime in the
vicinity of the previous adsorber. Under this condition, it is the number of adsorbers reached by the
plume, which scales ∝ t , that determines the global adsorption.

From a practical point of view, it is interesting to calculate the number of adsorbers that yields the
transition for the typical fluid-dynamic conditions characterizing saturated porous subsurfaces, such
as soils, i.e., Pe = O(1), provided that the typical surface kinetics of the adsorbers is Da = O(1).
Such a calculation, via Eq. (13), leads us to determine the number of particle adsorbers as roughly
5/cm3, with higher fractions leading diffusion-dominated adsorption and lower fractions leading
to a more rapid, advection-dominated adsorption kinetics. By equating Eqs. (11) and (12), we also
conclude that a higher effective adsorption for the low-fraction configuration is experienced at a
characteristic time t > Pe−2td , where td is the characteristic pore-scale diffusion time td = d2/Dm.

IV. CONCLUSIONS

Via pore-scale lattice Boltzmann simulations, we have investigated the transport and adsorption
of a scalar through a chemically heterogeneous, partially adsorbing, porous medium. We have
generated a packed bed microstructure of monodisperse spherical particles, of which a randomly
chosen fraction ξ is capable of adsorption. Such adsorbers are placed randomly at an average
distance �ξ . We have looked at the dynamics of a solute continuously injected into the medium
and adsorbed on the fluid-solid surfaces of such adsorbing particles, focusing on the quantification
of the deformation of the transported plumes of solute and limiting the analysis to fluid-dynamic
conditions characterizing the transport of contaminants into subsurfaces, i.e., at Pe = O(1), and
mimicking the adsorption process in a typical carbonaceous particle such as biochar, i.e., setting the
ratio between adsorbing and diffusive rates to Da = O(1).

We have measured the dynamical shape of a scalar element, the solute isoscalar sheet 


corresponding to c∗ = 1/2, that is, half the inlet concentration value. We have followed such a
dynamic process with the intent of performing a quantitative measurement of the deformation that
scalar elements, such as a pocket of a contaminant molecule, are subjected to when injected into
chemically heterogeneous porous subsurfaces. We have found that concentration plumes, embedded
within 
, experience an adsorption-induced stretching process linearly dependent on time whose
rate is inversely proportional to the average distance between adsorbers, i.e., γ ∝ 1/�ξ .

Following the evolution of the concentration gradients at the plume scale, we identified two
regimes: (i) a diffusion-dominated regime at early times, where the scalar elements are subjected
to diffusion broadening, and (ii) an adsorption-dominated regime, where an equilibrium width σ ∝
�ξ is determined. In particular, we found that the onset of the second regime corresponds to the
characteristic diffusive time tη ∝ �2

ξ which dissipates concentration differences in the proximity of
the adsorbers.

We have unveiled how the effects of advection-sustained plume stretching and diffusion broad-
ening cooperate to determine the macroscopic adsorption behavior. In particular, we found that
a transition between diffusion- to advection-dominated adsorption, with respective rates ∝ √

t
and ∝ t , is observed by decreasing the fraction of adsorbers, and we quantified this transition
at �∗

ξ � 4/(γ ∗ Pe), roughly equivalent to five adsorbing particles per cubic centimeter under the
investigated fluid-dynamic conditions. This transition should have interesting applications within a
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design perspective devoted to the optimization of the contaminant retention capabilities of porous
subsurfaces.

We finally note that the observed transition should hold as long as the Péclet number is low
to moderate, the medium is weakly heterogeneous from a geometrical point of view, and the
characteristic adsorption kinetics is comparable to the pore-scale transport, which is Da = O(1).
These observations open up room for further studies along these research directions, possibly with
higher Péclet and Damkhöler numbers.
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APPENDIX: LATTICE-BOLTZMANN ADSORPTION SCHEME

We use the lattice-Boltzmann method (LBM) to solve the transport and adsorption equations de-
fined in Eqs. (1) and (2). The LBM is an alternative way to solve Navier-Stokes equations that
exhibits sizable computational benefits when dealing with complex geometries such as porous
media [24]. The LBM solves the local momentum transport equation by projecting the discretized
Boltzmann equation along the discrete lattice directions r. It reads

fr (x + cr, t + 1) − fr (x, t ) = −τ−1
ν

[
fr (x, t ) − f eq

r (x, t )
] + Fr, (A1)

where fr (x, t ) is the distribution function at position x = (x, y, z) and time t along the rth direction,
cr is the discrete velocity vector along the rth direction, and τν is the relaxation time (proportional to
fluid viscosity). With f eq

r we indicate the equilibrium distribution function along the rth direction:

f eq
r (x, t ) = wrρ

(
1 + cr ju j (x, t )

c2
s

+ [cr ju j (x, t )]2

c4
s

− u2
j (x, t )

2c2
s

)
, (A2)

where cs is the speed of sound and wr is the weight parameter of the three-dimensional, 19-speed
lattice structure (D3Q19) along the r-th direction. The solution of the fluid field is deduced in each
computational cell by integrating the hydrodynamic moments of the distribution functions. We can
thus calculate the steady-state velocity vector uj (x) and density ρ(x) as

ρ(x) =
∑

r

fr (x), (A3)

ρ(x)u j (x) =
∑

r

cr j fr (x) + 1

2

(
�P

L

)
j

. (A4)

In the case of low Mach numbers, the density can be considered constant, and the solution of the
momentum transport equation, provided by Eq. (A1), can be considered exact with second-order
accuracy [24,26].

The first step to solve Eq. (2) consists of computing the steady-state solution for an incompress-
ible fluid flowing through a given porous matrix, that is, to calculate uj (x), via Eq. (A1). We apply
a pressure gradient �P/L that forces the fluid through the porous microstructure, modeling it via an
equivalent body force Fr inserted in Eq. (A1) as

Fr (x, t ) =
(

1 − 1

2τν

)
wr

(
cr j − u j (x, t )

c2
s

+ cr ju j (x, t )

c4
s

cr j

) (
�P

L

)
r

. (A5)

Along the streamwise direction z, the porous domain is extended to straighten the flow after it exits
the porous medium and avoid nonphysical effects at the z border of the samples. No-slip, free-slip,
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FIG. 7. The validation tests are set on a rectangular domain of length Lx = 40 and height Ly = 20 compu-
tational nodes. Two parallel plates are placed at y = 0 and y = L. At the initial time, the concentration field
is c∗(x = 0) = 1 at the inlet and c∗(x > 0) = 0 elsewhere. The lower boundary adsorbs the diffusing scalar c∗

according to the scheme provided in Eq. (A7) and the continuum equation (1) for (a) Da = 1 and (b) Da = 10.

and periodic boundary conditions are imposed at the fluid-solid interface, at the x and y transverse
boundaries, and along the streamwise direction z, respectively.

As a second step, we solve a second LBM transport equation which provides the solution of the
scalar concentration field c(x, t ) transported by the underlying flow u j (x) (see also [25]). The solute
is injected at the inlet face of the samples with a step input change in concentration cin. From the first
hydrodynamic moment of this second lattice population, which we label gr , the local concentration
is then extracted:

c(x, t ) =
∑

r

gr (x, t ). (A6)

We impose the Neumann boundary condition at the adsorbing particle surfaces for the scalar
lattice Boltzmann quantity gr in order to solve Eq. (1). The distribution function at a fluid node
xa in the proximity of an adsorbing surface placed at (xa − cr ) is corrected along the wall-normal
direction r as

gr (xa, t + 1) = −A1 + A2

A1 + A2
gr (xa, t ) + 2wrA3

A1 + A2
, (A7)

where, to recover the adsorption equation (1), the parameters are set as A1 = k, A2 = 1/3, and
A3 = 0 [27]. We validate the algorithm by solving the transport of a scalar quantity c∗ between
two parallel plates, of which the bottom one adsorbs the solute at a rate k. In the upper boundary,
zero-flux conditions are instead imposed. We considered two cases with dimensionless adsorption
rates given by Da = kd2/Dm = 1 and 10. In Fig. 7 we report the results, which show the excellent
agreement between the numerical data and the analytical solution reported in Zhang et al. [28].
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