CHALMERS

UNIVERSITY OF TECHNOLOGY

Utilization of convolutional neural networks for HI source finding: Team
FORSKA-Sweden approach to SKA Data Challenge 2

Downloaded from: https://research.chalmers.se, 2024-03-13 07:47 UTC

Citation for the original published paper (version of record):

Haékansson, H., Sjoberg, A., Toribio Perez, M. et al (2023). Utilization of convolutional neural
networks for HI source finding: Team FORSKA-Sweden approach

to SKA Data Challenge 2. Astronomy and Astrophysics, 671.
http://dx.doi.org/10.1051/0004-6361/202245139

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

A&A 671, A39 (2023)
https://doi.org/10.1051/0004-6361/202245139
© The Authors 2023

tronomy
Astrophysics

Utilization of convolutional neural networks for H1 source finding

Team FORSKA-Sweden approach to SKA Data Challenge 2

Henrik Hakansson!, Anders deberg', Maria Carmen Toribio?®, Magnus Onnheim'®, Michael Olberg2 ,
Emil Gustavsson', Michael Lindqvist2 , Mats Jirstrand!®, and John Conway2

! Fraunhofer-Chalmers Centre & Fraunhofer Center for Machine Learning, 412 88, Gothenburg, Sweden
e-mail: henrik.hakansson@fcc.chalmers.se

2 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala,
Sweden
e-mail: toribio@chalmers.se

Received 5 October 2022 / Accepted 17 January 2023

ABSTRACT

Context. The future deployment of the Square Kilometer Array (SKA) will lead to a massive influx of astronomical data and the
automatic detection and characterization of sources will therefore prove crucial in utilizing its full potential.

Aims. We examine how existing astronomical knowledge and tools can be utilized in a machine learning-based pipeline to find 3D
spectral line sources.

Methods. We present a source-finding pipeline designed to detect 21-cm emission from galaxies that provides the second-best sub-
mission of SKA Science Data Challenge 2. The first pipeline step was galaxy segmentation, which consisted of a convolutional neural
network (CNN) that took an H1 cube as input and output a binary mask to separate galaxy and background voxels. The CNN was
trained to output a target mask algorithmically constructed from the underlying source catalog of the simulation. For each source in
the catalog, its listed properties were used to mask the voxels in its neighborhood that capture plausible signal distributions of the
galaxy. To make the training more efficient, regions containing galaxies were oversampled compared to the background regions. In the
subsequent source characterization step, the final source catalog was generated by the merging and dilation modules of the existing
source-finding software SOFIA, and some complementary calculations, with the CNN-generated mask as input. To cope with the large
size of H1 cubes while also allowing for deployment on various computational resources, the pipeline was implemented with flexible
and configurable memory usage.

Results. We show that once the segmentation CNN has been trained, the performance can be fine-tuned by adjusting the parameters
involved in producing the catalog from the mask. Using different sets of parameter values offers a trade-off between completeness and

reliability.

Key words. methods: data analysis — methods: statistical — radio lines: galaxies

1. Introduction

Designing robust strategies to find sources and build catalogs
is key for the success of modern large astronomical surveys.
Attempts to automatize the identification and characterization
of astronomical sources are as old as the astronomical catalogs
themselves and have evolved to our day by taking advantage
of both technological progress and human intervention (e.g.,
from the works of the Harvard Computers, Nelson 2008, to
the successful series of citizen science projects of Galaxy Zoo,
Masters & Galaxy Zoo Team 2020). With the advent of massive
data and the possibilities of automation, machine learning tech-
niques are a tool with great potential in making astronomical
discoveries.

Among the facilities that will become a reality in the next
years in the field of astronomy, the future Square Kilometer
Array (SKA) will catalyze a revolution in this area of research
by tracing the 21-cm line emission of the neutral hydrogen (H1)
atom back to the early Universe, thus enabling the study of the
formation of its first galaxies (e.g., see chapter The Hydrogen
Universe in Braun et al. 2015). This scientific revolution will
come accompanied by many developments to face the challenge

of processing the largest astronomical data sets to be produced
in human history so far. That includes the need to automatize the
search and characterization of the signal from massive quantities
of galaxies in the observations delivered by SKA.

The field is quickly developing to address these future chal-
lenges and in this context, the SKA Observatory has initiated
a series of “data challenges” to encourage the scientific com-
munity to specifically prepare for SKA. After a first challenge
in 2018 aimed at detecting sources in a simulation of the radio
continuum to be observed by SKA (Bonaldi et al. 2021), SKA
Data Challenge 2 (SDC2) consisted of expanding the exercise
to detect HI line sources in large 3D data cubes emulating the
ones to be produced by the telescope in the near future (Hartley
et al., in preparation). In this paper, we present and analyze the
pipeline developed by our team FORSKA-Sweden, which scored
the second-best submission in SDC2.

Historically, since the discovery of the 21-cm H1 line in
1944 (van de Hulst 1945) and the construction of the first radio
telescopes, the field of extragalactic H1 science has had a long
tradition of carrying out large surveys with telescopes around
the globe (see e.g., Giovanelli & Haynes 2015, for a review),
developing source detection and characterization techniques for

A309, page 1 of 13

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202245139
https://orcid.org/0000-0001-8063-2881
https://orcid.org/0000-0002-5067-704X
https://orcid.org/0000-0002-9388-8939
https://orcid.org/0000-0002-3669-0715
https://orcid.org/0000-0002-6612-8037
mailto:henrik.hakansson@fcc.chalmers.se
mailto:toribio@chalmers.se
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org

A&A 671, A39 (2023)

2D spectra and 3D data cubes, and finding the best proxies to
study the physical properties of galaxies from the observational
data. Some recent examples of algorithms for source detection
that have paved the way to our work include, for instance, Serra
et al. (2015); Whiting (2012); Westmeier et al. (2021); Whiting
& Humphreys (2012). Former approaches have mainly relied
on classical signal processing strategies to find extragalactic
HT sources, and incorporating machine learning techniques is a
natural step forward in the automation process.

Deep learning with convolutional neural networks (CNN)
has been utilized extensively as an artificial intelligence tech-
nique within image recognition. Alongside impressive empirical
results when applying CNNss in different application fields, their
success can also be attributed to their specific adaptability to
complex tasks with relatively little domain knowledge needed
(LeCun et al. 2015). In addition, CNNs have been applied
in radio astronomy (e.g., Lukic et al. 2018; Gonzalez et al.
2018), including as algorithms presented to the first SKA Data
Challenge aimed at detecting continuum sources (e.g., Lukic
et al. 2019). Given the type of data generally involved in spectral
line observations with radio interferometers that are primarily
identifying coherent signal in 3D data cubes and the nature of
the challenge with access to an ideal catalog of sources, we
built our pipeline around supervised binary segmentation using
CNNs. Binary segmentation is the general problem of separating
an object of interest, in our case a galaxy, from the background
in an image or similar (Thoma 2016; Liu et al. 2018). Recently,
CNNs have become a popular approach for such problems when
applied in other areas, such as medical imaging (Minaee et al.
2021). We used a general-purpose segmentation CNN, called
u-net (Ronneberger et al. 2015), to generate a binary mask
resembling the galaxy shape suggested by the true source cata-
log. To estimate the source characteristics, we took advantage of
existing public code in SOFIA (Serra et al. 2015) for robust H1
parameter estimation from the CNN-generated mask.

Our CNN-based solution and algorithms of the other com-
peting teams in the challenge altogether set a good basis for
source detection and characterization algorithms for SKA sur-
veys in the future. In this paper, we give a thorough description
and motivation of our pipeline, together with an analysis on how
the pipeline can be tweaked to give a range in terms of perfor-
mance. All code related to this project is publicly available at
GitHub'. The SKA Data Challenge 2 general analysis and results
for all teams will be presented un an upcomping work (Hartley
et al., in prep.).

This paper is organized as follows: our methods for imple-
menting the pipeline are presented in Sect. 2, an analysis of
the performance is given in Sect. 3, followed by a discussion
in Sect. 4 and our conclusions in Sect. 5.

2. Methods

The challenge data set consisted of a simulated H I data cube, its
companion continuum data cube, and the catalog of sources that
had been fed into the simulated H1 data cube. The ultimate goal
was to recover the latter catalog from the SKA data cubes. Given
the challenge score definition, and the low chances of alignment
of continuum sources with H 1 sources in the challenge cube, we
did not search for absorption features and, therefore, we did not
make use of the continuum data cube in our pipeline.

I https://github.com/FraunhoferChalmersCentre/
ska-sdc-2/tree/cb3d34ebd944£3332de661cfb8£fd7d3403cf9a45

A309, page 2 of 13

Our pipeline combines different disciplines by decompos-
ing the overall problem of source catalog generation into the
machine learning task of obtaining a source mask from the H1
data cube through segmentation, followed by the astronomically
focused source characterization given such a mask. Our method
relies on supervised learning, which was possible to implement
as the true source catalog for a simulated H1 data cube was pro-
vided in the challenge. In many cases, we could take advantage
of publicly available software, such as machine learning frame-
works for segmentation and the domain-specific spectroscopic
source-finding software SOFTA. However, to overcome com-
puter memory limitations when applying our method and ensure
its portability to different computing environments, we imple-
mented an extra configuration layer that allows for its memory
usage to be adjusted.

This section is structured as follows: in Sect. 2.1, we give
a brief description of the simulated data we used, in Sect. 2.2,
we formulate the segmentation problem of mask generation and
give the machine learning-related details, in Sect. 2.3, we explain
how the source characteristics were estimated from a mask, and
in Sect. 2.4, we describe the considerations we had to take
into account in the pipeline implementation to allow for flexible
memory usage.

2.1. Data

All the development and evaluation of this work was based
on the simulated data provided in SDC2. This data set con-
sisted of a simulation of the Universe in the redshift interval
z = 0.235-0.495, as observed by SKA in the frequency range
of 950-1150 MHz. A description of the simulation was provided
by the organizers” and will be presented in an upcoming research
paper (Hartley et al., in prep.). Here, we only summarize the data
set to highlight the aspects that are relevant to presenting our
method.

The simulated data set was the output of two layers of simu-
lations. First, a putative representation of the galaxies inhabiting
the Universe at those redshifts was generated in the form of
a source catalog of galaxies with physical properties spanning
the parameter space deemed realistic according to our current
knowledge of galaxy formation and evolution. This catalog list-
ing source positions and properties will be referred to as the true
source catalog. Next, a simulation was run and produced a final
H1 data cube that mimics a 2000-h observation using SKA of
the underlying true catalog of galaxies.

The attributes included in the source catalog (summarized in
Table 1) are: source position (spatial coordinates of the galaxy
center in the sky and central frequency) and source property
characterization (integrated HI line flux, H1 major axis, HI
linewidth, disk position angle, and inclination). The HT line
width corresponds to the observed width at 20% of its peak. The
disk position angle was defined as the angle of the major axis of
the receding side of the galaxy and inclination was defined as the
angle between a normal to the galaxy disk and the line of sight.
Also, the minor axis s could be retrieved from the source catalog
from the equation:

s =8 Vcos?i+ a?sin’i, (D
2 A full description of the data and the challenge was provided
in the file SCIENCE DATA CHALLENGE 2: DATA DESCRIPTION,
published under the SDC2 website https://sdc2.astronomers.
skatelescope.org/sdc2-challenge/descriptiononFebruaryl,

2021.

https://github.com/FraunhoferChalmersCentre/ska-sdc-2/tree/cb3d34ebd944f3332de661cfb8fd7d3403cf9a45
https://github.com/FraunhoferChalmersCentre/ska-sdc-2/tree/cb3d34ebd944f3332de661cfb8fd7d3403cf9a45
https://drive.google.com/file/d/1RsvkaYKW6oU-h25RTVJ2Okpk3vlYwBxx/view
https://sdc2.astronomers.skatelescope.org/sdc2-challenge/description
https://sdc2.astronomers.skatelescope.org/sdc2-challenge/description

H. Hékansson et al.: Utilization of convolutional neural networks for H1 source finding

Target mask generated from
development cube source

pecf

azamy

Evaluation
region (40 Evaluation mask generated
GB) from from evaluation region source

challenge cube catalog

catalog
4

Training segmentation model
using development cube and
target mask

80 % training data

20 % validation data

y

Development
cube (40 GB)

generate

- -

Employ pipeline
Use trained segmentation model in pipeline to

> b

and Evaluation by comparing

and
with true mask and true
source catalog

Fig. 1. Flowchart for data usage. Generating a mask from a true source catalog refers to the procedure presented in Sect. 2.2.2 and training step
is described in Sect. 2.2.3. Pipeline employment covers both steps of galaxy segmentation (Sect. 2.2) and source characterization (Sect. 2.3). The

evaluation refers to the analysis performed in Sect. 3.

Table 1. Source attributes in the catalog.

Attribute Units Description

(a,0) (°N, °W) Sky coordinates of source centroid
Ve Hz Central frequency

W kms™! Line width

S arcsec Major axis diameter at Mg, pc™!
F JyHz Integrated source line flux

0 ° Position angle of disk

i ° Disk inclination

as suggested by an ellipsoidal shape of the galaxy with the ratio &
between the thickness and S'. For all simulated sources, @ = 0.2
was used.

There were two simulated H1 cubes: the development cube
of 40GB and the challenge cube of 850 GB. The first was
provided to participants to develop their techniques, and thus
when the challenge was still running, the true source catalog
of the development cube was accessible for participants while
the source catalog of the challenge cube was hidden. However,
after the challenge was finished, also the source catalog of the
challenge cube has been released to the public. As illustrated by
the flowchart in Fig. 1, we used 80% of the development cube
for training a segmentation model and the remaining 20% for
validation, which is described in Sect. 2.2. After training the seg-
mentation model, we used it in the pipeline and evaluated the
performance, as described in Sect. 3, for a 40 GB sub-region of
the challenge cube.

2.2. Step I: Galaxy segmentation

The purpose of the machine learning-oriented galaxy segmen-
tation step was to detect galaxies and provide a mask to use for

source characterization. On a high level, the mask output from
this step can be viewed as a translation layer between machine
learning and astronomy. From this perspective, we reasoned that
the mask should be a representation of detected galaxies easing
the source characterization. Our approach to obtaining such a
mask was to inform training in the segmentation step. By mak-
ing astronomical assumptions and based on the source properties
given in the catalog, we constructed the target mask to be learned
by the segmentation u-net. With access to the true source cata-
log, we could formulate the mask generation from the H 1 cube as
supervised binary segmentation. Training a segmentation model
in a supervised manner involves a target mask with the same
shape as the input data, which the model is trained to output. In
Sect. 2.2.1, we describe the segmentation CNN, in Sect. 2.2.2 we
motivate the shape of the target mask, and in Sect. 2.2.3 we give
all the details on how training was performed.

2.2.1. Segmentation model

Our segmentation model was a 3D u-net, which is a type of
CNN specifically designed for segmentation. It was originally
intended for two-dimensional (2D) biomedical segmentation
(Ronneberger et al. 2015), but later also adapted to three-
dimensional (3D) volumetric segmentation (Cigek et al. 2016).
The u-net architecture consists of two parts: the encoder and the
decoder. In the encoder, convolutional layers are alternated with
down-sampling layers, producing a hierarchy where low levels
capture rough features occupying large space. For each of the
resolution levels produced by the encoder, except the last, the
decoder concatenates its output with the output from the ear-
lier decoder level but upsampled. To produce the decoder-level
output, further convolutional layers are applied to the concate-
nated tensor. The output of the final decoder layer is an image
with the same shape as the input image. One benefit of the u-
net architecture is that it is a fully convolutional neural network

A309, page 3 of 13

A&A 671, A39 (2023)

Cube size
; 32x32x32

Output

Fig. 2. Overview of the used u-net segmentation model for an exam-
ple input cube of size 32 x 32 x 32. The encoder is formed by all grey
vertical arrows pointing downwards on the plot, while the decoder con-
sists of the remaining arrows on the right of the plot. The dashed lines
separate the different resolutions, meaning that down- or upsampling
actions are used to go between these. Black rectangles with numbers
indicate the number of filters of the different stages. Gray arrows repre-
sent one or multiple ResNet blocks, each with one downsampling layer.
Orange arrows represent upsampling layers, green represents copy and
merger actions, and blue arrows represent a sequence of two decoder
blocks.

and therefore the input can be of almost any size. For exam-
ple, in a setting with no memory restriction, we could propagate
the whole cube through the model once, without the need for
cropping into subcubes.

We used a model architecture provided by the Segmentation
Models package (Yakubovskiy 2020) but modified it to handle
3D data, which is depicted in Fig. 2. Between each downsam-
pling of the encoder, there was a sequence of multiple ResNet
blocks, as described by He et al. (2016), but with batch normal-
ization (Ioffe & Szegedy 2015) layers before each activation.
Downsampling was performed into five different resolutions,
lower than the original input, by striding a filter with a stride of 2.
The upsampling in the decoder was done by linear interpolation.
The convolution layers on each level of the decoder consisted of
a double repetition of the sequence: convolution layer, batch nor-
malization layer, and ReLU (Glorot et al. 2011) activation. The
exception was for the last decoder layer, where a Sigmoid acti-
vation was used, meaning that all output values were between 0
and 1, as required for our target mask. As in the adaptation of
u-net for volumetric data, we used 3D convolutions with every
filter shaped as 3 x 3 x 3 voxels.

2.2.2. Target mask

To train our segmentation model, a target mask had to be
constructed. This target mask should represent the shape sug-
gested by the attributes provided in the true source catalog,
that is, the attributes of line width, major axis, position angle,
and inclination. Ignoring the voxel resolution of the mask, a
mask constructed with this approach could perfectly reproduce
the shape-related attributes of the source characterization pro-
cedures. Hence, our hope was that masks obtained from a
segmentation CNN trained with these targets would attain a sim-
ilar structure so that no handling of noise and blur needs to be
involved in the source characterization. Analogous to deep learn-
ing applied for denoising problems (Tian et al. 2020), training
should proceed easier if the mask resembles the galaxy regions
in the H1 cube. Therefore, we based the construction of the
target mask on computing bounds on the line-of-sight velocity

A309, page 4 of 13

from basic astronomic assumptions applied to the shape-related
attributes. However, the presence of blur introduces discrepan-
cies between the shape as suggested by the source catalog and
its appearance in the H1 cube. To mitigate this and achieve
more resemblance between the target mask and the data, we
added extra padding to the target mask constructed from the
astronomical assumptions.

For reference, all notation of source attributes introduced in
this section is summarized in Table 1. Essentially, to compute
the mask we assumed a simplistic model of a galaxy shaped as
a circular disk with an infinitesimal thickness, where the orbital
speed is a function of the radius. Consequently, the maximum
orbital speed is upper bounded by 5 ;’ffl"(i) . Influenced by observed
velocity profiles, for example, in De Blok et al. (2008), we also
assumed a lower bound on the orbital speed so that the orbital
period for any inner ring is at most the period at the disk’s
boundary. Furthermore, we assumed the largest orbital speed at
the disk’s boundary. When generating a mask based on these
assumptions, we defined the ellipse shape by using the major
axis, §, inclination, i, and position angle, 6, from the true source
catalog together with the minor axis, s, calculated according to
Eq. (1). For each pixel x, y, relative to the center and with a major
axis aligned in the x-axis, inside the ellipse, the mask occupation
was given by the inequalities:

ve +g(x,y) <v(x,y) <vc+ %wzo if —
e+ Tum < v (ny) Suc+glry) if

where vc is the central velocity corresponding to the central
frequency v, in Table 1 and

X W2
Va2 + (y/ cos (i))?) 2

A precise derivation of Egs. (2a) and (2b) is given in
Appendix A. A detailed description about the added padding to
the mask that compensates for blur in the data can be found in
Appendix B. Although this mask construction is obviously lim-
ited and potentially inaccurate, we assessed by visual inspection
(exemplified in Fig. 3) that the resulting masks overlap with the
most apparent features of the galaxies.

3

g(x,y) =

2.2.3. Training the segmentation CNN

Training the segmentation CNN was performed by minimizing a
loss function of the CNN output and the target mask. Due to the
nature of the data, we had to cope with a large data size and a
severe class imbalance in the segmentation problem. To address
these issues, we sample small sub-cubes from the development
H cube, allowing for an adjustment of both the size of the train-
ing data and the balance between the galaxy and background
voxels.

It has been noted that the loss function used when train-
ing may play a significant role in the performance, but what
is an appropriate choice may depend on the nature of the
problem (Jadon 2020). As in the case of many other segmen-
tation applications, the galaxy segmentation problem is highly
imbalanced, so that the number of background voxels is remark-
ably larger than the number of galaxy voxels. Two common
examples of segmentation loss functions are cross-entropy and
soft Dice (Milletari et al. 2016), where the latter has often
been preferred in more recent works with imbalanced classes

H. Hékansson et al.: Utilization of convolutional neural networks for H1 source finding

H: data Target mask

Major
N N
.0 .0
29 N
> >
3 ’\‘ 3 '\’
5 g
S S
[N w9
Y Y
o) Q)
\V N\ \V
Offset (deg)
Minor
N N
.0 .0
N N
> >
3 '\’ 3 '\’
5 g
SN 5N
w0 O
Y Y

“ O o
¥ & &

Offset (deg) Offset (deg)

Moment 0 Moment 0

DEC (deg)

RA (deg)

RA (deg)

Fig. 3. Comparison between data from the HI cube (upper row) and
the corresponding target mask (lower row) for a strong source in the
development cube. The left column plot shows the intersection along the
major axis and the middle column plot shows the minor axis. Gray pixels
in the target occur due to rounding when computing slicing the cubic
data. The right column plots show an equivalent to Moment 1 plots, that
is, all voxel values summed over the frequency range corresponding to
the vertical axis in left-hand side plots.

(Bertels et al. 2019). However, it has also been noted that soft
Dice makes training more unstable compared to cross-entropy
(Nordstrom et al. 2020). When training the segmentation CNN,
we used a linear combination of cross-entropy and soft Dice,
which has been suggested as an attempt to alleviate such train-
ing instability (Taghanaki et al. 2019; Isensee et al. 2018). Hence,
for N voxels predicted by the CNN, each of these denoted i;, i €

{1,..., N}, with corresponding target value y;, the loss function
used was:
N N ~
1 Dicy Vi
1@, =]+) viloghi+ (1 —y)log(l - Qi)) + [1 - f)
N ;‘ S D+ i
)

To minimize this loss, we used the Adam optimizer (Kingma
& Ba 2014), and repeatedly saved the models that achieved
the smallest validation loss. The progress of the training and
validation loss is viewed in Fig. C.1

In order to enable training on machines with different mem-
ory constraints and independent of the input H1 cube size, we
sampled sub-regions from the development cube, illustrated by
the blue arrows in Fig. 4. For each source in the true source
catalog, a galaxy container cube, that covered the correspond-
ing mask and a padding of 32 voxels were generated. Also,
background training cubes, of size 32 x 32 x 32, were sampled
randomly from other regions with no galaxies present. Due to
memory constraints, we set the number of background training
cubes to four times the number of galaxy training cubes. By
modifying this number, the data size could be adjusted to fit the
machine on which the training was performed. The training data
set consisted of the galaxy sub-cubes and background training
cubes, together with their corresponding masks.

When creating batches used for training the segmentation
CNN, we sampled background and galaxy training cubes, as
illustrated by the orange arrows in Fig. 4. Background train-
ing cubes were randomly selected from the set of stored cubes,
while galaxy training cubes were sampled from the galaxy con-
tainer cubes. This semi-random sampling enabled tuning the
ratio between galaxy and background in the training by simply
adjusting the number of training cubes of each type.

We used a total batch size of 128 subcubes and evaluated the
loss in Eq. (4) over the whole batch, thatis, N = 128 -32-32-32.
The training cubes, together with the corresponding target cube,
were rotated and mirrored randomly in the direction of the two
spatial dimensions for data augmentation. The only allowed rota-
tions were 90°, 180°, and 270°, to avoid the need for rescaling
and cropping. Since noise levels varied over frequency in the
HT cube, input data were normalized using parameters specific
to each frequency band. To avoid outliers, voxel values below
the 0.1th percentile and above the 99.9th percentile of each band
were clipped. The clipped values were then re-scaled to 0 mean
and unit variance, calculated for each frequency band. The gen-
erated data set was split for training and validation using the
x-axis of the development cube as a divide: cubes whose x-axis
upper boundary was below 80% of the side length were used for
training, while the remaining 20% were used for validation, as
visualized in Fig. 1.

To achieve the same class balance between galaxy and back-
ground in the training batch as in the whole original development
cube, the fraction of galaxy training cubes would have needed
to be about 5-6%. When training with such a small fraction of
galaxy training cubes, we noted that it took a very long time for
the segmentation CNN to learn the shapes of galaxy segments.
To cut the training times, we increased the fraction of galaxy
subcubes in each batch to 50%. Obviously, this introduces a bias
of excess galaxy voxels into the training set with respect to the
target mask of the whole development cube. However, this bias
can be handled by adjusting the mask threshold and the SOFIA
parameters (as described in Sect. 2.3).

2.3. Step II: Source characterization

With a trained segmentation CNN, the mask was retrieved by
propagating an input HT cube into the model and binarizing the
output with a threshold value. From here, we could utilize many
of the modules in SOFTA 1.3.2 (Serra et al. 2015) to both extract
contiguous segments and compute the corresponding attributes.

A309, page 5 of 13

A&A 671, A39 (2023)

4 - C background training cubes

Dataset generation

Development cube

C galaxy container cubes with masks

iﬂlﬁ?lg
‘)

. f
C

y__/
@SSP0
< Training and validation
a([o [
oo/al -
28 galaxy trainin

with target masks

Fig. 4. Flowchart of the sampling procedure for training and validation data. The left part, with blue arrows, illustrates sampled data set stored in
memory: C galaxy container cubes and 4 C background training cubes. The right part, with orange arrows, illustrates sampling performed during
training, resulting in p - 128 galaxy training cubes and (1 — p) - 128 background training cubes.

First, the binary mask was passed as input to the merging mod-
ule, which efficiently merges disconnected segments regarded as
being close enough and rejects segments being too small. From
the output list of this module estimates of the source centroid
sky coordinates (a°, ¢°), the central frequency, Veengra, and the
line width, wyy, were provided.

For the remaining attributes, we found that for faint sources
the routines implemented in SOFIA were not suitable for the
masks given by the segmentation CNN. Therefore, we imple-
mented these computations ourselves. To compute the major and
minor axis, the obtained 3D mask was projected onto the x, y-
plane to get a structure similar to the galaxy ellipse. The sizes of
the axes were then determined by taking the two principal com-
ponents from the set of 2D positions of the projected mask. From
the estimation of the two axes, the inclination was calculated by
the relationship between the axes ratio in Eq. (1). Similarly, the
position angle, 6, was computed by principal component anal-
ysis, but performed on the 3D mask instead. Since the position
angle, 6, was defined as the angle of the major axis of the reced-
ing side of the galaxy, the angle of the first principal component,
projected onto the x, y-plane, was used. In order to distinguish
which end of the major axis corresponds to the receding side,
the sign of this principal component over the frequency axis
was used.

To compute the line flux integral, F, we utilized the dilation
module in SOFTA, which increments the mask size until a max-
imum integrated flux is reached. From such a dilated mask, the
line flux integral, F, was computed by summing up voxel values
corresponding to all voxels marked in the dilated mask.

By thresholding the CNN output, and as provided by SOFIA,
there were additional parameters to set in this step: the mask
threshold, minimum line flux integral, maximum line flux inte-
gral, minimum radius for separated sources to be merged, min-
imum and maximum size in each direction of the cube, and the
minimum number of voxels of the source, and maximum mask
dilation. All of these had an impact on the generated source
catalog. In the case of SDC2, the goal was to obtain the max-
imum score according to a pre-defined scoring function. We
employed an algorithm for hyperparameter optimization, Tree
of Parzen Estimator (TPE; Bergstra et al. 2011), with the same
objective as the scoring function in the challenge, to find appro-
priate parameter values. In the general use case of our source

A309, page 6 of 13

detection pipeline, this scoring function may not be an appropri-
ate metric and is instead up to the user to define. In this paper,
we do not consider a single objective function to be optimized,
however, we analyze in Sect. 3 how the parameter values affected
the pipeline performance.

2.4. Memory management for pipeline deployment

We developed and used the pipeline on two different types of
machines: one at the Swiss National Supercomputing Centre
(CSCS) Lugano, Switzerland, equipped with 64GB RAM and
an NVIDIA Tesla P100 16GB, and one at Fraunhofer-Chalmers
Centre equipped with 64 GB RAM and an NVIDIA GeForce
GTX 1070 with 8GB GPU memory. To cope with these vary-
ing hardware constraints, we designed a method to apply the
pipeline on an H1 cube of any size, regardless of the memory
constraints. To achieve this, the input H1 cube was partitioned
into sub-cubes, where each of the cubes was consecutively pro-
cessed by the pipeline to produce one catalog for each sub-cube.
The free memory needed for the pipeline scaled linearly to the
size of the input cube and for that reason, the shapes of these sub-
cubes were chosen to match hardware limitations. A final catalog
for the full cube was finally produced by merging the catalogs.

To account for the risk of splitting a single source into two
different sub-cubes, each sub-cube was expanded with padding.
If a source was found with a center located in the padding region,
it was rejected to be included in that sub-cube catalog. To still
cover as much as possible of the whole cube, sub-cubes were
arranged with overlap so that padding regions of one sub-cube
were always included in the core region of another sub-cube.
In our implementation, overlap regions were computed multiple
times, so larger padding increased the execution time.

Similarly, we were flexible in choosing the input shape
also for the segmentation CNN. Due to the convolutions and
downsamplings in the model, the output voxel values of the
segmentation CNN are determined by its neighborhood — the
receptive field (Luo et al. 2016). Considering the receptive field
centered at a voxel close to the boundary of an input cube, much
of this region is missed in the input and therefore the output
value of this voxel may be affected. To mitigate such potential
damage, we added padding also to the CNN input cubes, but still
arranged them so the effective output regions cover the full cube

H. Hékansson et al.: Utilization of convolutional neural networks for H1 source finding

Cube boundary RA

* Galaxy
segmentation

propagation

Fig. 5. Illustration of the arrangement of subsets of the full cube when
applying the pipeline, projected into the two spatial dimensions. In the
pipeline, this arrangement was also applied in the frequency dimension.
Green lines denote the cube boundary, black and grey the regions pro-
cessed in one batch of the galaxy segmentation step, and orange for one
batch of the source characterization step. Dashed lines denotes padding
in each of the steps.

but padding on the very edge of the cube. Since regions inside
the padding inevitably will be processed multiple times, larger
padding will increase the computational cost. We did not inves-
tigate the actual receptive field for the trained CNN, but used the
radius of the potential receptive field of the center voxel in the
training cube, which was 16.

We had to consider two memory bottlenecks of the pipeline:
processing the cube with the segmentation CNN constrained
by the GPU memory and the SOFIA modules constrained by
RAM. The execution time of the SOFTA modules scaled approx-
imately linearly with the cube input size, but memory efficiency
increased with the larger cube. With the padding fixed, deter-
mined by a minimum galaxy size to always be included, the
most efficient arrangement strategy is to maximize the size of
the mask passed to the SOFTA modules. Therefore, we let this
define the size of the sub-cube and split it further into smaller
cubes which were propagated through the segmentation CNN.
The full arrangement, including the different padding regions, is
visualized in Fig. 5.

3. Analysis and results

In SDC2, the source-finding performance was measured by a
scoring function computed from a cross-match between pre-
dicted and true source catalogs. For each entry in the predicted
source catalog, the source’s score was set to —1 if the entry
failed to be matched with a true source. If there was a match,
the score was given by a value between O and 1, determined
by the accuracy of the attribute estimates (see list of attributes
in Table 1). The final score was computed by summing the
source scores for all entries of the predicted source catalog.
For comparison of our pipeline with other methods based on
that metric, we recommend reviewing the results of the SDC2,
as analyzed by (Hartley et al., in prep.). With the pre-defined
penalty of —1 and de facto achievable estimation accuracy, this
way of performance metric may implicitly favor a particular set-
ting for reliability and completeness. In this section, we aim
to analyze the performance of our pipeline in a much broader
sense, by removing specific performance scoring on the individ-
ual attributes and focusing instead on exploring the parameter
space of completeness and reliability. By adopting this approach,
we can then explore the impact of performance on the estimated

source attributes quantitatively and provide guidance for future
applications in production.

In contrast to the SDC2 scoring, where the performance was
calculated by only comparing the entries in the predicted source
catalog and the true source catalog, we utilized the masks for
a cross-matching purpose for the analysis in this section. Since
these two ways of measuring the performance are fundamentally
different, the results from the challenge are not comparable with
the ones presented here. With access to the mask as predicted
by the pipeline and true masks generated from the true source
catalog using the procedure described in Sect. 2.2.2, we could
use the intersection over union (IoU) metric (Minaee et al. 2021)
to declare if a predicted source should be matched with a true
source. This is a common performance metric for segmentation
in computer vision and is defined as:

AN Bl

ToU(A, B) = A5

®

for two sets A and B, which in our case were the voxels of a
predicted and true mask. After employing the pipeline on the
40GB evaluation region from the challenge cube, visualized in
Fig. 1, IoU was computed between each predicted source mask
and all overlapping true masks. If the largest IToU among all those
overlapping true masks for a predicted source was above 0.35,
it was matched with the corresponding true source. Otherwise,
when the predicted source could not be matched with any true
source, it was regarded as a false positive.

For a predicted source catalog of P sources where M sources
were matched, we defined reliability R as the number of matches
divided by the number of detections:

R=—. 6
- (©)
We note that the matching procedure could, in principle, allow
for matching multiple predicted sources with the same true
source. Therefore, the completeness, C, was defined as the num-
ber of matches divided by the number of true catalog sources:

c==)

where D is the number of true sources matched with at least one
predicted source and T is the length of the true source catalog.
Our matching criterion turns out to be rather strict, meaning that
the mask must recover a fairly large part of the galaxy. Therefore,
the values of both reliability and completeness are lower than
the corresponding values obtained with the SDC2 scoring.

As pointed out in Sect. 2.3, the parameter values of step II
affected much of the characteristics of the predicted catalog.
Therefore, employing the pipeline using a segmentation CNN
trained on the development cube, the reliability and the com-
pleteness could be tweaked by the parameter values. In order
to analyze the performance for different applications we used
a fixed segmentation CNN, but sampled sets of parameter val-
ues in the space given by Table 2 to generate a variety of masks
and catalogs. To perform such a sampling, we used the black box
optimization algorithm TPE (Bergstra et al. 2011) to maximize
the objective function:
aR+(1-a)C, ac<]0,1], ®)
where a new value of @ was randomly selected before each sam-
pling. By varying « in this way, TPE was driven to sample

A309, page 7 of 13

,» 0.06 -
4]
c
g
2 0.04
Q.
£
(e}
)
0.02 1
Reliability
Line width
L (4
= @
£ 0.150 1
o ° o
: o °¢
B 0.125 - ®
3 ® ao
s
2 01001 @ o @©
s
0.075 A
T T
0.6 0.8
Reliability

Median relative error

Median absolute error (deg)

A&A 671, A39 (2023)

Major axis Line flux integral
° 017591 @
0.5 .. 5 .
b ® 0.150 1
0.4 A Z
=
() -
() ® ¢ ; 0.125
034 © “}’ 8) 3 50
L £ 0.100 1
3 100
024{%® . . . w
0.6 0.8 0.6 0.8 150 =
Reliability Reliability o
Position angle Inclination 200 4
o0
® “a5 20.0 -
s 250
307 S 175
L4 SR 300
3
90 - _g 15.0
2
(¢}
® 12,5
Ko
e
10 2 100
T T T T
0.6 0.8 0.6 0.8
Reliability Reliability

Fig. 6. Performance of the sampled sets of parameter values for step 1. Each dot represent a single set of parameter values, as listed in Table 2, and
its color is set by the best ranking (see text). The best forming set of parameter values, that have a small best ranking value, are colored green, while
the worst with a large best ranking are colored in blue. The upper left plot shows completeness C as defined in Eq. (7) and reliability, R, as defined
in Eq. (6), on the vertical and horizontal axis, respectively. In each of the other five plots, the attribute errors are plotted on the vertical axis, with
reliability, R, on the horizontal axis. For major axis, line flux integral and line width, the value on the vertical axis is the median relative error. For
the position angle and inclination, the value on the vertical axis is the median absolute error. For a predicted value of §j and a true value of y, the
relative error is given by | — y|/y, while the absolute error is given by |j — y|.

Table 2. Parameters of the source characterization step and their
respective range used for sampling parameter values.

Value

Parameter Type Min Max
Mask threshold Float 0 1
Min. line flux integral Float 0 50
Min. merge radius Integer 1 5
Max. merge radius Integer 1 100
Min. spatial size Integer 1 5
Max. spatial size Integer 5 30
Min freq. size Integer 1 50
Max freq. size Integer 50 400
Min. number of voxels Integer 1 300
Max spatial mask dilation Integer 1 5
Max freq. mask dilation Integer 1 20

Notes. The results were based on the mask, as obtained with a value
of the mask threshold parameter, together with the predicted catalog
created from that mask and the values of the remaining parameters of
this table.

parameter values preferred in different settings of importance for
completeness C and reliability R, respectively.

Although the sampling procedure was designed to give
parameter values preferable in different settings, many of the
obtained parameter values were not desired in any setting at
all. Therefore, after the set of parameter values were obtained

A309, page 8 of 13

through the sampling procedure, a “best ranking” metric was
calculated to indicate which sets of parameter values that were
preferred over other for any a. The calculation was performed
by iteratively generating a sequence of the sets of parameter val-
ues sorted according to Eq. (8) for all o € [0, 1], which gave
a unique sequence. Then, for each set of parameter values, the
best ranking was determined as the lowest index it got among
all the different sequences, corresponding to the different values
of a. Hence, a small number of this metric means that the set
of parameter values may be preferable in some setting, while
a large number means it was not. The “best ranking” metric
together with completeness, C, reliability, R, and source attribute
estimation errors are visualized in Fig. 6.

Among the set of parameter values with low best ranking,
there is a clear trade-off regarding the completeness and reli-
ability. While the most reliable set of parameter values have
reliability close to 1 and completeness around 0.02, the com-
pleteness is increased up to 0.07 at the cost of decreasing
reliability down to 0.85. For each of the source attributes, there
is an almost linear association between the reliability and the
estimation error, so that they are negatively correlated. The
dispersion in the reliability-error association is characterized
differently for each attribute, where the position angle and the
inclination are more distinct compared to the other. Most clearly
for the line width, but also for the line flux integral, the spread
of the estimation error is larger among the high-reliability sets of
parameter values compared to the low-reliability sets. There are
also outliers in the associations, but they are dominated by sets
of parameter values that do not perform well for any value of a.

H. Hékansson et al.: Utilization of convolutional neural networks for H1 source finding

300 - 1.0
250_ _08
§ 0.6 %
g 150 1 =
3 —0.4§
100 A
0.2
50 0
0 ———rT ————T 0.0
10 100

Line flux integral (Jy Hz)

C —

0.75 0.80 0.85 0.90
Reliability

Fig. 7. Completeness in bins of integrated line flux of the sets of param-
eter with best ranking 1 in Fig. 6. Completeness for each line and level
of integrated flux is shown on the right vertical axis, while the overall
reliability of the set is given by the line color. The histogram in gray
shows the distribution of all sources in the test set, with counts on the
left vertical axis. We note that the scale on the horizontal axis is loga-
rithmic.

As shown in Fig. 6, completeness values of the sampled sets
of parameter values do not go beyond 8% when measured against
the full true catalog. This is expected as the flux distribution of
sources, as bulk sources in the true catalog are weak (see Hartley
et al., in prep.). To characterize the method it is important how-
ever to analyze the completeness with respect to the integrated
line flux, which is shown in Fig. 7. From that perspective we see
that completeness is, in general, higher for sources with a larger
integrated line flux among all sets of parameter vales. However,
high-completeness sets do not only detect more faint sources
than high-reliability sets, but also more sources at the end tail
of sources with the largest integrated line fluxes.

As it is shown in Figs. 6 and 7, the value of reliability does
vary among the explored sets of parameters and its trade-off has
an impact on the completeness of the predicted catalogs. Given
this set of variously reliable sets, we can now reverse the question
and investigate the maximum reliability that any given source in
the true catalog can achieve through our pipeline. The maximum
reliability of a particular source should correspond to the diffi-
culty to distinguish it from false detection, which can be viewed
as a proxy for the source’s detectability using our pipeline. In
Fig. 8, we see that there is some degree of association between
the maximum reliability and the line flux integral. For the very
brightest sources, above 70Jy Hz, the max reliability is almost
the same for all of these source. Below that integrated flux level,
there is some degree of linear association between line flux inte-
gral and the maximum reliability. The variance of this linear
association is larger when the line flux integral is smaller, mean-
ing that the prediction performance may decrease. A remark here
is that the large number of undetected sources cannot be included
in the scatter plot. Hence, the predictability of the maximal reli-
ability may be less precise than the scatter plot alone would
suggest.

B Detected sources (989, 8.8%)
All sources (11234)

500 A

Count

® “lCsedies o ° -

oo ol o

Max reliability
o
~
=
1
1

0.60 4 e -

0.55 7 ° see o 1

os04 |

Q Q Q Q Q
N S i) S

Line flux integral (Jy Hz) % not detected

Fig. 8. Maximum catalog reliability among true sources detected by
at least one predicted source catalog. Each dot represents a detected
true source, located horizontally by its line flux integral and vertically
by the maximum reliability. The blue background in the scatter plot
shows the range between the 10th and the 90th percentile in maxi-
mum reliability of ten equally sized sets of detected sources, grouped
by the line flux integral. The top histogram compares the integrated
line flux distributions of all sources in the true source catalog with all
detected sources. The right-hand side plot shows the cumulative fraction
of detected sources, starting from the sources with highest max reliabil-

ity.

4. Discussion and future work

The results in Sect. 3, together with the results achieved in SDC2
(Hartely et al., in preparation), may suggest that our pipeline is
useful when there exists a pre-defined source catalog on a por-
tion of the data that can be utilized for supervised learning. Still,
we see a number of challenges that should be addressed before
setting our pipeline, or its descendants, into production. Most
importantly, we argue that there is a need for a convenient perfor-
mance metric aimed for unifying multiple purposes of a pipeline
and that transfer between simulated and real data must be fur-
ther studied. We believe many of the issues that we discuss in
this section are not only specific to our pipeline, but could be
addressed as needs emerge as machine learning approaches are
being incorporated into the field of source finding.

4.1. Modifying pipeline components

Since the segmentation u-net used in our pipeline is aimed for
a general purpose (e.g., medical imaging, see Sect. 2.2.1), there
might be adaptations to the domain that could improve the per-
formance. A reasonable example of how the model could be
tweaked in this case is the size and shape of the filters in the
convolution layers. Unlike the case of HT line data, in typical

A39, page 9 of 13

A&A 671, A39 (2023)

image applications of u-net, the axes have the same characteris-
tics in every direction and a cubic shape is reasonable. Since the
line width of a galaxy, measured in number of voxels in the data
cube, is typically way larger than its disk diameter, a filter with a
shape longer in the frequency dimension may be beneficial. Such
a filter was implemented by the SDC2 winning team MINERVA
(Hartley et al., in prep.).

Other potential improvements might be related to the con-
struction of the segmentation target (Sect. 2.2.2), which was
based on simplistic assumptions of the velocity profile that do
not always hold. Most notably, the assumption that the largest
orbital speed is obtained at the disk’s boundary is often violated.
A simple adjustment to be applied to mitigate such a problem
could be to allow for a bound of orbital speed also at this position
— but to what extent is up for future work.

Another issue not taken into account by our target mask
is the disk simplification, deviating from the ellipsoid assump-
tion in the simulation. This is a simplification even compared
to the simulation, where the shapes of the galaxies are modeled
as ellipsoids. Considering ellipsoids instead of disks would not
affect the upper bound in Eq. (2a), and the lower bound of the
lower row, while the lower bound would be decreased.

4.2. Unifying performance metrics across applications

In Sect. 3, we used IoU of 0.35 between predicted masks and
the ones constructed as in Sect. 2.2.2 to cross-match predicted
and true sources. In Fig. 6, we can see that increased reliability
from such a matching procedure gives in general better attribute
estimates. This may indicate that a better overlap with our masks
gives better source catalogs. However, this matching procedure
is not sufficient for a universal comparison between any source
finder. In fact, this cross-matching procedure, relying upon the
same kind of masks as used in training and the chosen IoU
threshold, is most likely only applicable in this work specifically.
For the field in general, a convenient matching procedure should
not involve masks at all since the essential problem is to generate
the catalog, which can be solved with varying kinds of inter-
mediate steps and not only binary masks. The matching used in
SDC2 (Hartley et al., in prep.), based on only the properties of
Table 1, could be an attractive procedure since it only requires a
generated and a true source catalog.

In the related computer vision problems of object detec-
tion and instance segmentation, much of the machine learning
progress in recent years can be attributed to the frequent bench-
marking of different algorithms on a few but well-used data sets
such as Pascal VOC (Everingham et al. 2009) and MS COCO
(Lin et al. 2014). However, another important aspect that has
allowed for the rapid development of the field is also the usage
of general-purpose metrics, that take a range of applications into
account. Even with a convenient matching procedure, there is
still a tradeoff between reliability and completeness, as shown
in Fig. 6, that is not reflected in the official SDC2 scoring
mentioned above.

An intuitive way of achieving such general-purpose metric
would be to give a score that is proportional to the difficulty
in detecting the source, making strong sources more costly to
miss. However, as shown in Figs. 7 and 8, predicting the detec-
tion difficulty for sources individually with our pipeline may be
problematic. A common setup in the aforementioned machine
learning benchmarks (but not in accordance with the one in
SDC2) is that the algorithm must not only give the detected
objects, but also a confidence score for each of them. Based on an

A309, page 10 of 13

algorithm that is able to accurately estimate confidence, the cata-
log can be filtered depending on reliability requirements. Hence,
a single generated catalog can be utilized for multiple purposes,
despite the presence of a tradeoff. The confidence score is uti-
lized in performance metrics such as the average precision metric
(Padilla et al. 2020), which is computed by the reliability multi-
plied by the completeness averaged for every possible confidence
score-filtered catalog.

Estimating the confidence of each predicted source has been
studied earlier in the field, for instance, by Serra et al. (2012).
This algorithm was not employed in our pipeline, although it is
implemented as a module in SOFTIA. However, our results indi-
cate that also the sets of step II parameter values might be used
for such a purpose: by knowing the expected reliability of a set
of parameter values, the reliability should be reflected by the
maximum parameter set reliability similar to Fig. 8. By cross-
matching different predicted catalogs produced by different sets
of parameter values, the reliability of a single source may corre-
spond to the highest expected reliability of the predicted catalogs
in which it was included.

4.3. Apply pipeline to real data

An key limitation of this work is that we have only considered
simulated data and we have not tried the pipeline on any real
observation. The main worry when applying machine learning
for a real problem when training has been performed on simu-
lated data is that any bias in a simulation may be transferred and
ultimately could degrade performance. For example, the simu-
lated data may only cover a limited set of potential outcomes,
meaning our pipeline was neither developed nor evaluated for
features that were not included in the simulation. For the case of
the SKA SDC?2 data, there was a very low number of absorp-
tion feature occurrences in the data cubes. Therefore, we did not
prioritize any special treatment of those sources when develop-
ing the pipeline since the few occurrences in the evaluation data
probably had only a minor effect on the results. Moreover, the
spiral galaxies simulated and ingested in the challenge data cube
consisted of low-resolution versions of real HI observations of
a small number of nearby galaxies. The pipeline has therefore
not been trained to find signals that deviate from those spiral
galaxies.

An interesting aspect to note is that the most data-hungry
task, namely, training the segmentation CNN, is performed on
data that is clearly biased with respect to the distribution of
galaxies and background. Still, the source characterization is
tunable to produce the reliability-completeness tradeoff. This
suggests that at least some steps could possible be performed on
somewhat biased simulated data, followed by tuning parameters
in step II based on a smaller amount of real data.

5. Conclusions

We have developed a machine learning-driven pipeline for find-
ing HT line sources that demonstrates reliable performance in
predicting source catalogs from the simulated data in SDC2
(Hartley et al., in prep.). By only assuming simplistic proper-
ties of the spiral galaxies listed in the true source catalog, we
generated a target mask that was suitable for training a segmen-
tation CNN. In the final pipeline, the trained segmentation CNN
produces a mask from a HI data cube, from which the existing
SOFIA software is used to efficiently create the predicted cata-
log. Hence, we hereby show that modern machine learning tools

H. Hékansson et al.: Utilization of convolutional neural networks for H1 source finding

can successfully be combined with astronomical guidance and
established software routines.

In our results, we see that parameters of the second pipeline
step, namely, to create the catalog from the mask, can be varied
to generate substantially different catalogs. Different parame-
ter values may be favorable in different applications, in terms
of a tradeoff between completeness and reliability. This sug-
gests that the time-consuming task of training the segmentation
CNN does not have to be performed for any new type of source
finding purpose. However, to allow for such development, there
is a need for general purpose metrics that measures perfor-
mance for a range of settings of the reliability rather than a
single one.

Acknowledgements. This work was supported by a grant from the Swiss National
Supercomputing Centre (CSCS) under project ID sm47. We acknowledge support
from the Onsala Space Observatory national infrastructure for the provision-
ing of its facilities/observational support. Onsala Space Observatory receives
funding through the Swedish Research Council via grant no. 2017 — 00648. We
also acknowledge support from the Fraunhofer Cluster of Excellence Cognitive
Internet Technologies.

References

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. 2011, Advances in Neural
Information Processing Systems, 24

Bertels, J., Eelbode, T., Berman, M., et al. 2019, Lecture Notes in Computer
Science, 11765, 92

Bonaldi, A., An, T., Briiggen, M., et al. 2021, MNRAS, 500, 3821

Braun, R., Bourke, T., Green, J. A., Keane, E., & Wagg, J. 2015, in
Advancing Astrophysics with the Square Kilometre Array (AASKAI14),
174

Cigek, 0., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. 2016,
Lecture Notes in Computer Science, 9901, 424

De Blok, W. J., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2648

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. 2009,
Int. J. Comput. Vis., 88, 303

Giovanelli, R., & Haynes, M. P. 2015, A&ARv, 24, 1

Glorot, X., Bordes, A., & Bengio, Y. 2011, Proceedings of Machine Learning
Research, 15, 315

Gonzilez, R. E., Muiioz, R. P, & Hernandez, C. A. 2018, Astron. Comput., 25,
103

He, K., Zhang, X., Ren, S., & Sun, J. 2016, Deep Residual Learning for Image
Recognition

IToffe, S., & Szegedy, C. 2015, Proceedings of Machine Learning Research, 37,
448

Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., & Maier-Hein, K. H.
2018, Lecture Notes in Computer Science, 11384, 234

Jadon, S. 2020, 2020 IEEE Conference on Computational Intelligence in Bioin-
formatics and Computational Biology, CIBCB 2020

Kingma, D. P, & Ba, J. 2014, 3rd International Conference on Learning
Representations, ICLR 2015 — Conference Track Proceedings

LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature 521, 436

Lin, T. Y., Maire, M., Belongie, S., et al. 2014, Lecture Notes in Computer
Science, 8693, 740

Liu, X., Deng, Z., & Yang, Y. 2018, Artif. Intell. Rev., 52, 1089

Lukic, V., Briiggen, M., Banfield, J. K., et al. 2018, MNRAS, 476, 246

Lukic, V., Gasperin, F. d., & Briiggen, M. 2019, Galaxies, 8, 3

Luo, W., Li, Y., Urtasun, R., & Zemel, R. 2016, Adv. Neural Inform. Process.
Syst., 29

Masters, K. L., & Galaxy Zoo Team 2020, in Galactic Dynamics in the Era of
Large Surveys, 353, eds. M. Valluri, & J. A. Sellwood, 205

Milletari, F., Navab, N., & Ahmadi, S. A. 2016, Proceedings — 2016 4th
International Conference on 3D Vision, 3DV 2016, 565

Minaee, S., Boykov, Y. Y., Porikli, F., et al. 2021, IEEE Trans. Pattern Analy.
Mach. Intell., 44, 3523

Nelson, S. 2008, Nature, 455, 36

Nordstrom, M., Bao, H., Lofman, F., et al. 2020, Lecture Notes in Computer
Science, 12264, 269

Padilla, R., Netto, S. L., & Da Silva, E. A. 2020, International Conference on
Systems, Signals, and Image Processing, 2020 July, 237

Ronneberger, O., Fischer, P., & Brox, T. 2015, Lecture Notes in Computer
Science, 9351, 234

Serra, P., Jurek, R., & Fler, L. 2012, PASA, 29, 296

Serra, P., Westmeier, T., Giese, N., et al. 2015, MNRAS, 448, 1922

Taghanaki, S. A., Zheng, Y., Kevin Zhou, S., et al. 2019, Comput. Med. Imaging
Graph., 75, 24

Thoma, M. 2016, ArXiv e-prints [arXiv:1602.06541]

Tian, C., Fei, L., Zheng, W., et al. 2020, Neural Netwo., 131, 251

van de Hulst, H. C. 1945, Nederlandsch Tijdschrift voor Natuurkunde, 11, 210

Westmeier, T., Kitaeff, S., Pallot, D., et al. 2021, MNRAS, 506, 3962

Whiting, M. T. 2012, MNRAS, 421, 3242

Whiting, M., & Humphreys, B. 2012, PASA, 29, 371

Yakubovskiy, P. 2020, Segmentation Models Pytorch, https://github.com/
qubvel/segmentation_models.pytorch

A309, page 11 of 13

http://linker.aanda.org/10.1051/0004-6361/202245139/1
http://linker.aanda.org/10.1051/0004-6361/202245139/1
http://linker.aanda.org/10.1051/0004-6361/202245139/2
http://linker.aanda.org/10.1051/0004-6361/202245139/2
http://linker.aanda.org/10.1051/0004-6361/202245139/3
http://linker.aanda.org/10.1051/0004-6361/202245139/4
http://linker.aanda.org/10.1051/0004-6361/202245139/5
http://linker.aanda.org/10.1051/0004-6361/202245139/6
http://linker.aanda.org/10.1051/0004-6361/202245139/7
http://linker.aanda.org/10.1051/0004-6361/202245139/8
http://linker.aanda.org/10.1051/0004-6361/202245139/9
http://linker.aanda.org/10.1051/0004-6361/202245139/9
http://linker.aanda.org/10.1051/0004-6361/202245139/10
http://linker.aanda.org/10.1051/0004-6361/202245139/10
http://linker.aanda.org/10.1051/0004-6361/202245139/11
http://linker.aanda.org/10.1051/0004-6361/202245139/11
http://linker.aanda.org/10.1051/0004-6361/202245139/12
http://linker.aanda.org/10.1051/0004-6361/202245139/12
http://linker.aanda.org/10.1051/0004-6361/202245139/13
http://linker.aanda.org/10.1051/0004-6361/202245139/14
http://linker.aanda.org/10.1051/0004-6361/202245139/14
http://linker.aanda.org/10.1051/0004-6361/202245139/15
http://linker.aanda.org/10.1051/0004-6361/202245139/15
http://linker.aanda.org/10.1051/0004-6361/202245139/16
http://linker.aanda.org/10.1051/0004-6361/202245139/17
http://linker.aanda.org/10.1051/0004-6361/202245139/17
http://linker.aanda.org/10.1051/0004-6361/202245139/18
http://linker.aanda.org/10.1051/0004-6361/202245139/19
http://linker.aanda.org/10.1051/0004-6361/202245139/20
http://linker.aanda.org/10.1051/0004-6361/202245139/21
http://linker.aanda.org/10.1051/0004-6361/202245139/21
http://linker.aanda.org/10.1051/0004-6361/202245139/22
http://linker.aanda.org/10.1051/0004-6361/202245139/22
http://linker.aanda.org/10.1051/0004-6361/202245139/23
http://linker.aanda.org/10.1051/0004-6361/202245139/23
http://linker.aanda.org/10.1051/0004-6361/202245139/24
http://linker.aanda.org/10.1051/0004-6361/202245139/24
http://linker.aanda.org/10.1051/0004-6361/202245139/25
http://linker.aanda.org/10.1051/0004-6361/202245139/26
http://linker.aanda.org/10.1051/0004-6361/202245139/26
http://linker.aanda.org/10.1051/0004-6361/202245139/27
http://linker.aanda.org/10.1051/0004-6361/202245139/27
http://linker.aanda.org/10.1051/0004-6361/202245139/28
http://linker.aanda.org/10.1051/0004-6361/202245139/28
http://linker.aanda.org/10.1051/0004-6361/202245139/29
http://linker.aanda.org/10.1051/0004-6361/202245139/30
http://linker.aanda.org/10.1051/0004-6361/202245139/31
http://linker.aanda.org/10.1051/0004-6361/202245139/31
https://arxiv.org/abs/1602.06541
http://linker.aanda.org/10.1051/0004-6361/202245139/33
http://linker.aanda.org/10.1051/0004-6361/202245139/35
http://linker.aanda.org/10.1051/0004-6361/202245139/36
http://linker.aanda.org/10.1051/0004-6361/202245139/37
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch

A&A 671, A39 (2023)

Appendix A: Derivation of target mask

To derive the mask shape from the assumptions, we considered
a disk-shaped galaxy with diameter S and infinitesimal thick-
ness in R3, tilted with an inclination, i, around the x-axis in a
clockwise direction and with the position angle, 6, around the
z-axis in an anti-clockwise direction. In a HT cube the center
of the galaxy will be found at (xo, Yo, Vcentral), Where the central
frequency, Veentral, corresponds to the line-of-sight velocity vc.
We parameterize the positions on the disk by the distance to the
galaxy center, r € [0, 1], and the angle relative to the position
angle, u € [0, 2x). For example, points at the line u = 0 corre-
spond to those along the major axis in the receding direction. The
rotational speed of the disk at radius, r, is given by the function:

vr(r) 1 [0, 1] = R, (A1)
so that the line-of-sight velocity is

v,(r,) = ve + sin (Dvg(r) cos (u). (A2)
The source catalog tells us that

max v(r,u) = ve + %, (A.3)

and since we assume vg(r) to be the same for every direction u
due to Eq. (A.2), it follows that

max v,(r, u) = max max vc + sin ())vg(r) cos (u)
ru r u

. (A4)
= max v¢ + sin (i)vg(r) cos (0).
Putting Egs. (A.3) and (A.4) together gives
W20
= . A.
max o) = 2 G @ (&.5)

With an orbital period T'(r) for the circle with radius r, which is:

2rtr
I(r)= m,

we assume due that the orbital period for any r satisfies:

T(r) <T(1),

or equivalently

rog(1) < vg(r).

Assuming that the rotational speed at the disk’s boundary is the

maximum speed, that is, vg(1) = 251’3"(1.) , together with Eq. (A.9),
then gives us:

w w
ro—— < oR(r) < 5.
2 sin(i) 2sini

(A.6)

These inequalities include various possible line widths that fit
inside a triangular shape, as illustrated in Fig. A.1. Our hope was
that the true vg(r) should be in the set of valid functions, although
we noted that velocity profile sometimes tends to be below the
blue line in Fig. A.l. However, we concluded that this region
captures the most salient features of the profile in most cases by
visual inspection, as exemplified in Fig. 3.

A309, page 12 of 13

Wy]
25sin (1)
£
~
=
=
A=
>
O- T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
T

Fig. A.1: Velocity profiles covered by the mask (yellow shaded
area), accompanied by two examples of velocity profiles (orange
and blue lines). The two examples are a subset of all the velocity
profiles that fit inside the yellow shaded area and thereby are
represented by the mask. The horizontal axis shows the distance
to the galaxy center r and the vertical axis displays the orbital
speed vg. We note that r is a normalized value between 0 and 1,
where 0 is the galaxy center and 1 is the edge.

Expressing Eq. (A.6) as the line-of-sight velocities v, gives

ve + h(u) <
ve + rh(u) <

ve +rh(u) if
ve + h(u) if

—1 <cos(u) <0,
0 <cos(u) <1,
(A7)

vZ(ra M) S
v (r,u) <

where h(u) = cos (u)%. This describes the occupied voxels of

the mask. When constructing the mask, we defined the ellipse
shape by using the major axis, S, inclination, i, and position
angle, 6, from the source catalog. The minor axis, s, was com-
puted by Eq. (1). For each pixel x, y, relative to the center and
with a major axis along the x-axis, inside the ellipse we retrieved
boundaries in the line-of-sight velocity by using

2x
rcos (u) = 5
and
cos (u) = X

VA2 + (y/ cos (%)

Appendix B: Padding of the target mask

In this section, we give detailed formulation on how we con-
structed a modified version of Eq. (A.7) to account for padding
to the target mask. Due to blur and noise in the data, not even a
perfect galaxy model would be expected to eliminate the actual
discrepancy between the mask and the galaxy voxels. It is for
that reason that padding is included. For a padding of p € Ry,
and pixels x, y (relative to the ellipse center), we define

d= x> +y?,

and

s = 4Jd* - p2.

H. Hékansson et al.: Utilization of convolutional neural networks for H1 source finding

From this, we define the following variables:

Xp = SX — py,

Yp = Sy + px,
Xy = $X+ py,
Ys = Sy — px.

To improve readability we also define the function

X

w20

fxy) =

2+ (ylcos())y) 2

The lower bounds of the occupied line-of-sight velocities are

—% <uv(x,y) ifd<pandx<p andly <p,

—% <v(x,y) ifp<dandx<0 andlyl <p,
fGryp) <v(x,y) ifp<dandx<p andy<-p, (B.1)
fxpyp) <v.(x,y) ifp<dandx<p andp<y,

al ; P % < v(x,y) otherwise.

The upper bounds of the occupied line-of-sight velocities are

%sz(x,y) ifd<pand —p<x andlyl <p,
w70 .
> <v(x,y) ifp<dand0<ux and |y| < p,
fpyp) <v(x,y) ifp<dand —p<x andy<-p,
fGryp) <vx,y) ifp<dand —p<x andp<y,
+
TP <v(x,y) otherwise.
S 2
(B.2)

In Figs. B.2 and B.1, the added padding is visualized as an
illustration.

Major axis Minor axis
Ve + Wag T 1
o
~
&
UC o w20 l T T T l T T T
-5 0 5 -5 0 5

Offset (deg) Offset (deg)

Padding
Il 2 1 o
Fig. B.1: Tllustrations of mask occupation for an example galaxy
visualized as PV-diagrams, with positional offset from the
galaxy center on the horizontal axis and line-of-sight velocity
on the vertical axis. The cross-section along the major axis is
shown in the left plot and along the minor axis in the right plot.
The example galaxy has a major axis S = 10 and inclination
i = 45°. The color denotes the occupation for three different lev-
els of padding, including zero padding.

v, = v, — "2 km /s v, = v, — “2° km /s

Offset DEC (deg)
o
Offset DEC (deg)

Offset RA (deg)

Offset RA (deg)

v, = v, km /s v, = U, + 2 km /s

Offset DEC (deg)
o
Offset DEC (deg)

Offset RA (deg)

Offset RA (deg)

v, = U+ 2 km /s

ot
1

:g” Padding
o . | i
e i

E I o
=

O -5+

50 5
Offset RA (deg)
Fig. B.2: Other illustrations of mask occupation for the same
example galaxy as in Fig. B.1, viewed by the cross-sections of
different line-of-sight velocities. The green ellipse represents the
shape given by the major and minor axis.The color denotes the
occupation for three different levels of padding, including zero
padding.

Appendix C: Training curve

In this section we give the progress of training and validation
loss of the segmentation CNN, which can be seen in Fig. C.1, for
reproducibility purposes.

1.00
—— Training

0.95 - Validation
@ 0.90 7
S
—

0.85

i,
0.80 - WWWMW'M. ol adants

0 20000 40000 60000 80000 100000 120000
Gradient steps

Fig. C.1: Progress of training and validation loss of the segmen-
tation CNN.

A309, page 13 of 13

	Utilization of convolutional neural networks for HI source finding
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Step I: Galaxy segmentation
	2.2.1 Segmentation model
	2.2.2 Target mask
	2.2.3 Training the segmentation CNN

	2.3 Step II: Source characterization
	2.4 Memory management for pipeline deployment

	3 Analysis and results
	4 Discussion and future work
	4.1 Modifying pipeline components
	4.2 Unifying performance metrics across applications
	4.3 Apply pipeline to real data

	5 Conclusions
	Acknowledgements
	References
	Appendix A: Derivation of target mask
	Appendix B: Padding of the target mask
	Appendix C: Training curve

