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Abstract
We describe how a model of effective interactions between quantum fluctuations 
under certain assumptions can be constructed in a way so that the large-scale limit 
gives an effective theory that matches general relativity (GR) in vacuum regions. 
This is an investigation of a possible scenario of spacetime emergence from quan-
tum interactions directly in the spacetime, and of how effective quantum behaviour 
might provide a useful link between detailed properties of quantum interactions and 
GR. The quantum fluctuations are assumed to entangle sufficiently for a cohesive 
spacetime to form, so that their effective properties can be described relative to a 
D-dimensional reference frame. To obtain the desired features of a smooth metric 
with a vanishing Ricci tensor, the quantum fluctuations are modelled as Gaussian 
probability distributions, with a shape set relative to the interactions coming from 
the surroundings. At small scales, the propagation through the spacetime is mod-
elled by a Gaussian random walk.

Keywords  Quantum gravity · Quantum fluctuations · Hydrodynamic limit

1  Introduction

Quantum gravity remains a puzzle despite numerous attempts at gaining insight into 
what it is characterised by. The best current understanding of it comes from analyses 
using the gauge/gravity duality [1–3], which indicate that entanglement should play a 
key role in the physics. Moreover, the gauge/gravity duality belongs to a specific type 
of scenario for quantum gravity, where the spacetime in general relativity (GR) is emer-
gent from quantum physics. In general, the two key questions of spacetime emergence 
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are what the relevant processes at the quantum level are, and how the related dynamics 
gives rise to an emergent spacetime that is characterised by Einstein’s field equations.

In a search for a quantum model that at large scales captures general GR space-
times—not just those with suitable gauge duals—a key role of entanglement for space-
time emergence leads towards that the relevant physics concerns interactions between 
quantum particles, in a many-body system setup. A simple ansatz for general spacetime 
emergence then is the scenario where interactions between quantum fluctuations, pre-
sent directly in the vacuum regions of spacetime, give rise to GR (in vacuum regions) 
at large scales. This type of emergence is analogous to that of effective theories in 
many-body physics, e.g. how the effective theory of temperature emerges from the 
more detailed dynamics of the kinetic energy of molecules in an ideal gas.

We present an effective quantum model for interactions between quantum fluc-
tuations, which gives GR in vacuum regions as an effective theory in the large-scale 
limit. It represents a possible scenario for the simple ansatz for spacetime emergence 
described right above, and might provide a link between the individual interactions pre-
sent between quantum particles and the effective theory of GR. At the quantum level, 
the model is effective in that it assumes that the correlations between the quantum 
fluctuations are sufficient to give rise to an effective spacetime—so that the behaviour 
of the particles can be described relative to a D-dimensional reference frame—and in 
that it only details an effective, conjectured behaviour of the quantum fluctuations. In 
particular, it builds on the results of [4], where the same ansatz was analysed for flat 
spacetimes (characterised by a vanishing Riemann tensor), and where the interaction 
rate profiles of the quantum fluctuations were found to be required to be Gaussian func-
tions. The effective behaviour of the quantum fluctuations which is used in the effec-
tive quantum model, is a possible scenario for their statistical interactions with their 
surroundings.

The key features of the effective quantum model we analyse are the following. In 
the model, the spacetime position of each quantum fluctuation is given by a Gauss-
ian probability distribution, that is set in relation to the incoming interaction it receives 
from its surroundings. In combination with the expected momentum of the particle, 
P�
o
 , the Gaussian distribution specifies the propagation of the particle in terms of a ran-

dom walk. This is a simplified picture of (a possible scenario for) the dynamics of the 
quantum fluctuations, which turns out to be useful. Based on the model, a metric can 
be defined, and the Ricci tensor can be shown to vanish. In addition, the interactions 
can be analysed in more detail from the perspective of what is required of them for said 
effective behaviour to arise. In this sense, the model we analyse hopefully might pro-
vide a step towards understanding how spacetime can emerge from quantum interac-
tions. It might provide a useful link between the detailed interactions and the effective 
large-scale theory.
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1.1 � Motivation for the Ansatz, and the Gaussian Distributions

We focus on a specific scenario of spacetime emergence, where the effective the-
ory (GR in vacuum regions) emerges in the large-scale limit of an effective quan-
tum model. The scenario is built on the ansatz that GR spacetime has an origin in 
interactions between quantum fluctuations, which relates to the connection between 
spacetime and entanglement observed in gauge/gravity duality analyses in the sense 
that a key role of entanglement implies that quantum interactions are central to 
understanding the quantum physics. While the quantum interactions in the gauge/
gravity duality take place on the boundary, a model for general spacetimes would 
be easier to obtain from processes directly in the spacetime. A candidate process for 
that is interactions between quantum fluctuations, which are naturally present in the 
vacuum. The possibilities such a scenario presents constitutes a first motivation for 
considering the ansatz above.

In addition, the compatibility of the ansatz with spacetime physics was ana-
lysed for flat spacetimes in [4]. Spacetimes with a vanishing Riemann tensor are 
typically considered trivial, but an interesting aspect of the ansatz above is that an 
origin in interactions present in the spacetime infers an origin in how information 
is exchanged, and a sensitivity to how information flows through the spacetime. In 
that sense, the configuration of a flat spacetime would be non-trivial. In the pres-
ence of objects that restrict information exchange, e.g. a typical slit set-up for parti-
cle diffraction, the present ansatz for spacetime emergence comes with specific flat 
spacetime configurations that, while characterised by a vanishing Riemann tensor, 
are set relative to how said objects extend in the spacetime. In the slit example, the 
set-up blocking the light can be approximated as insulating with respect to informa-
tion exchange,1 but massless in terms of its negligible impact on the spacetime at the 
scales under consideration. Effectively, those objects represent boundary conditions 
to the vacuum regions.

The interesting feature of the non-trivial flat spacetime configurations that come 
out of the slit set-ups under the current ansatz, is that they have the same symmetries 
as the diffraction patterns associated with the boundary conditions. Effectively, said 
spacetime configurations could give rise to effects attributed to the wave-particle 
duality. For details on how this works, we refer to [4]. In the present text, we do 
not discuss the relevance of the configuration of the spacetime for how informa-
tion flows, and how specific metrics (relative to the boundary conditions) capture 
that. However, the feature that the ansatz could provide a mechanism for the wave-
particle duality is interesting. In models for new physics, it is desirable to find pre-
dictions that can be experimentally verified, as proof of that the models are correct. 
While there is no evidence for a scenario where said wave-particle duality effects 
arise from the flat spacetime configurations discussed above, the coinciding features 
of the ansatz and the observed physics (i.e. the wave-particle duality) nevertheless 

1  I.e. representing a system that does not transmit the interactions from the quantum fluctuations.
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lends support to the ansatz, and to the scenario of spacetime emergence that we 
analyse.

The results of [4] also include observations on what the interactions between the 
quantum fluctuations would have to be characterised by to give rise to a flat space-
time. In specific, the rate at which a quantum fluctuation interacts with its surround-
ing would have to have a Gaussian fall-off, in spacetime. The identified reasons for 
this are as follows. (i) The flat spacetime configurations are sensitive to boundary 
conditions modulo Gaussian profiles, and without an imposed scale (as in edge dif-
fraction) the fall-off of the non-trivial configuration is Gaussian. (ii) The interaction 
rate profiles would provide basis functions to the spacetime, and since the metric 
is smooth, the basis functions ought to be Gaussian. (iii) Gaussian interaction pro-
files fit with that consecutive interactions (by necessity products) add up in terms of 
length, as given by the line element and as illustrated by Pythagoras’ theorem for 
ea

2

eb
2

= ec
2

. For more details on this, we refer to [4].
In the effective quantum model, we use the result that the interaction profiles of 

the quantum fluctuations are given by Gaussians, but with a modified interpreta-
tion. Effectively, the position of a quantum particle is given by where it initiates an 
interaction. Hence the Gaussian function equally can be interpreted as detailing a 
probability distribution for the spacetime position of the quantum fluctuation. This is 
how we transition from Gaussian interaction rates to Gaussian probability distribu-
tions for the positions of the quantum fluctuations. The latter are far more useful in 
an effective quantum model.

1.2 � The Basics of How the Effective Model Works

When modelling small-scale physics of GR, there are two modes of approach: (i) to 
impose GR restrictions at small scales, and (ii) to only require that the GR proper-
ties arise at large scales. The present ansatz is of the second kind. Consequently, the 
small-scale physics (the dynamics of the interactions) in the model is not in GR, 
and not constrained by locality etc. The particles can just as well be thought of as 
existing at a single point, but it is useful to encode their probability of interacting 
with each other through positioning them relative to a reference frame; this is a con-
venient visualisation of the particle dynamics. That same positioning also makes it 
straightforward to recover GR in the large-scale limit. It is only in the large-scale 
limit that GR properties arise.

The model ansatz is that the probability distribution for the interaction initi-
ated by a particle, in a local reference frame, is given by a Gaussian, for the rea-
sons given in Sect.  1.1. At small scales, this means that the particle performs 
a random walk relative to the reference frame. These random features are not 
detectible in the large-scale limit, i.e. in the theory agreeing with GR. It is impor-
tant to keep in mind that while the small-scale theory is an ansatz for spacetime 
dynamics at small-scales, it is not GR. The model specifies both the position and 
the momentum of each particle, as detailed in Sect. 2.2, and the interactions are 
allowed to display spurious event of e.g. v > c , as visible in Eqs. (7) and (10). 
The important thing is that such events are sufficiently suppressed to allow for 
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an average behaviour consistent with GR to form at large scales, much how the 
chaotic behaviour of molecules in a fluid on average conforms to fluid dynamics, 
at large scales. The suppression in the present model is strong enough: the devia-
tions are exponentially suppressed, and the standard deviations of the distribu-
tions are of order the Planck scale, as described in Sect.  2.2. Note also that in 
models where both the position and momentum distributions are specified, it is 
required to accommodate large deviations in the same way as by �x�px ≥ ℏ∕2 by 
Heisenberg’s uncertainty principle. In our model, we simply fit the momentum 
distribution of a particle to its given position distribution, so that the momen-
tum distribution is the minimal distribution allowed by Heisenberg’s uncertainty 
principle.

At large scales only the average of the small-scale dynamics survive. We do 
not treat the individual interactions, but only their probability distributions and 
how those distributions evolve over the (short) particle lifetime. In specific, we 
show that the acceleration of the expected position of a particle is given by the 
geodesic equation. Since the distributions are Gaussian, their time evolution is 
well-known, and in Sect. 3.2 we use those properties to show how a gradient in 
interaction rate (relative to the reference frame) affects the average movement of 
a particle. Here, note that the model has a key difference from standard Brown-
ian motion: the standard deviation of each Gaussian distribution is set relative to 
the incoming interaction from the particle’s environment (see Sect. 2.1 for more 
details) instead of constituting a constant in a Minkowski reference frame. This 
ensures diffeomorphism invariance, and causes the particle propagation to devi-
ate from standard Brownian motion. In the model, the average step length is a 
function of the particle’s position in spacetime. The effect is most easily pictured 
in terms of pressure. If the interaction rate (from the environment) were pressure, 
the average step length would be set relative to a fix pressure, and a gradient in 
pressure would cause a bias towards lower pressure, giving a shift in the expected 
position of the particle that corresponds to acceleration. In our ansatz, gtt governs 
the interaction rate, and the model encodes a bias towards lower gtt. In Sect. 3.3 
we detail how the acceleration of the expected position of a particle is described 
by the geodesic equation. By construction, our modification of the random walk 
causes an acceleration as described in (24). If one desires to think of the random 
walk in terms of standard Brownian motion, the effect is the same as if the stand-
ard propagation were to take place on the surface the spacetime describes when 
embedded in Minkowski space; the fact that the surface is curved creates addi-
tional acceleration relative to the reference frame as the position distribution of 
the particle spreads over the surface. We explain how the bias to the random walk 
works in Sect. 3.2.

Finally, the model ansatz is that the particles, through their position distri-
butions, define basis functions for the spacetime. The average variance of the 
D-dimensional Gaussians defines the metric g�� as described in Sect.  3.1, and 
in Sect. 4 we identify the conditions for R�� = 0. Also note that since we discuss 
quantum interactions, the entire discussion effectively is about entanglement.
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1.3 � Summary of the Model: The Main Assumptions and Results

We describe how a many-body system of quantum fluctuations can be character-
ised by effective dynamics at the quantum level, which at large scales provides 
dynamics coinciding with GR. The main assumptions that go into the construc-
tion of the effective quantum model are:

•	 The key model features of the quantum fluctuations are conserved under crea-
tion/annihilation of the quantum fluctuations.

	   A necessary requirement for any model building on quantum fluctuations.
•	 The properties of the quantum fluctuations can be described relative to a 

D-dimensional reference frame. 
	   This assumption provides a straightforward way to connect effective proper-

ties at the quantum level to large-scale physics. It is equivalent to assuming that 
the interactions between the quantum fluctuations are sufficient for the particles 
to become entangled, and agree on distance and orientation enough for a cohe-
sive spacetime to form. Note that the inter-particle dynamics is internal only: 
the quantum physics described is independent of the choice of reference frame. 
Eventually, it is relevant to lift this assumption to understand the quantum inter-
actions properly, as well as what happens when the effective (GR) theory breaks 
down.

•	 A Gaussian profile for the interaction rates of the quantum fluctuations.
	   The motivation for this is described at the end of Sect. 1.1. It infers a Gaussian 

probability distribution for the position of a quantum fluctuation, which is com-
patible with Heisenberg’s uncertainty principle, and with a smooth metric.

•	 The Gaussian distribution also describes a random walk of each quantum fluc-
tuation.

	   This provides a mechanism for how the propagation of each quantum fluctua-
tion obeys the geodesic equation, and for R�� = 0. Each step of the particle prop-
agation is set by two displacements, one from the Gaussian distribution and one 
by the average momentum P�

o
 , without a preferred order of the displacements.

The main result is that, based on the ansatz that GR has an origin in interactions 
between quantum fluctuations, an effective quantum model can be constructed that 
gives a GR metric with R�� = 0 in the large-scale limit. The effective model treats 
each quantum fluctuation as a Gaussian probability distribution in spacetime, with 
its shape set relative to the interactions the particle receives from its surroundings. 
Relative to an embedding in Minkowski space, these extended objects constitute 
basis functions (of equal weight) to a surface that describes the spacetime. The 
quantum physical features are only dependent on the internal dynamics, and each 
particle performs a random walk through the small-scale rendition of the spacetime. 
The random walk in turn is constructed so that it defines R�� = 0 , and at large scales 
the particle propagation by default follows the geodesic equation, which shows as an 
artefact of how the spacetime is represented in the reference frame.

The focus of the present model is vacuum regions of spacetime. Anything out of 
the vacuum is modelled through boundary conditions. Objects passing through the 
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spacetime are assumed to interact with the quantum fluctuations, and move relative 
to the internal dynamics they define. The interactions between the quantum fluc-
tuations are treated effectively, and modelled by the Gaussian distributions and the 
random walk of the particles described above. A brief comment on electric fields, 
and on the precise interactions and properties of the quantum fluctuations as well 
as on how the spacetime dimensions actually emerge, can be found in Appendix. 
Of course, it is the precise properties of the quantum interactions that need to be 
understood for a model of quantum gravity in a scenario of emergent spacetime. 
The present model is a rough, possible set-up that might be a useful link between 
the detailed quantum physics and the classical theory. Overall, the model has several 
parallels to many-body physics.

1.4 � Comparison with Other Scenarios for Spacetime Emergence and Outline

The model we analyse concerns a scenario for spacetime emergence that is special 
in the sense that the emergence comes from effective quantum interactions, directly 
in the spacetime theory. The emergence of the large-scale theory most closely 
resembles that of effective theories in many-body physics. However, the emergence 
from quantum interactions also means that it should be possible to connect, or show 
similarities of, the model scenario to the spacetime emergence that is present in the 
gauge/gravity duality, and in approaches to spacetime emergence that use the gauge/
gravity duality, such as the observations made in [5], constructions using tensor 
networks [6, 7] and analyses of matrix models. While the present model builds on 
effective quantum processes instead of detailed interactions, as is done in the gauge/
gravity duality approaches, the effective behaviour imposed on the quantum fluctua-
tions does require specific interaction properties. It is with a more detailed picture 
of those interactions that it might be possible to identify similarities with the gauge/
gravity duality approaches. Superficial similarities are readily present, such as that 
the small-scale physics of the effective model is independent of the choice of refer-
ence frame (as long as the reference frame can capture the full internal dynamics), 
which means that a dimensional reduction of the reference frame should be possible, 
at least for special cases. If e.g. a 2D effective quantum model were to be reduced in 
that fashion, the Gaussian distributions in the removed spatial direction would trans-
late into chains of particles correlated by Gaussian probability distributions. This 
has similarities with the Sachdev–Ye–Kitaev (SYK) model [8, 9], which in a certain 
limit is dual to 2D gravity.

It is good to note that relativistic random walks is a subject on its own. For an 
overview, see e.g. [10]. As specified in Sect. 1.2, we do not treat random walks in 
GR, but to do so comes with several complications, including how to find a replace-
ment for the Gaussian distribution that does not violate locality etc., so that the 
random walk conforms with relativistic Brownian motion. For relativistic random 
walks, it is also best if the averages can be calculated in a manifestly covariant way. 
We avoid these difficulties through not imposing GR restrictions on the small-scale 
dynamics.
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We begin with a presentation of the effective quantum model in Sect. 2.1. A thor-
ough analysis of the Gaussian probability distributions is given in Sect. 2.2. Follow-
ing that, we describe how the metric arises in Sect. 3.1, and how the random walk of 
the quantum fluctuations gives a propagation described by the geodesic equation, in 
Sects. 3.2–3.3. Finally, we show how the model sets R�� = 0 in Sect. 4.1, and how 
boundary conditions to the vacuum regions give rise to different types of spacetime 
solutions, in Sect. 4.2, before we end with a summary and an outlook.

2 � The Quantum Model

Our ansatz for spacetime emergence is that quantum interactions directly in the spa-
cetime give rise to GR in a large-scale limit. Earlier analyses of flat spacetime [4] 
have shown that a candidate model, based on this ansatz, is characterised by that 
each quantum fluctuation has an interaction rate with its surroundings that follows a 
Gaussian fall-off. These Gaussian profiles then figure as basis functions of the spa-
cetime, which we get back to in Sect. 3.

In this section, we build on the earlier observations and construct an effective 
quantum model for vacuum regions, which at large scales gives GR. This effective 
model uses the assumption that the interactions between the quantum fluctuations 
are frequent enough (and under otherwise benign conditions) to give rise to a cohe-
sive spacetime, so that it makes sense to use a reference frame2 {x�} to describe 
where the quantum fluctuations are located relative to one another. In this setting, 
the quantum fluctuations figure as Gaussian probability distributions in spacetime, 
which perform random walks through the spacetime.

The effective quantum model is the centre piece of the present text. An effec-
tive model relative to {x�} provides the most straightforward way to show that the 
effective theory at large scales corresponds to GR. Of course, at the level of the 
quantum interactions, the model includes more details, but over larger scales—at a 
scale where quantum features are detectible, but single quantum interactions are not 
relevant—it is sufficient to treat the quantum fluctuations as said Gaussian distribu-
tions in spacetime, relative to some {x�}. Note that we only treat the interactions at 
said effective level, in this text. A short discussion on the associated physics at the 
level of individual quantum interactions can be found in Appendix.

2.1 � The Effective Quantum Model

Consider the following set-up. A quantum fluctuation, i.e. a particle that temporar-
ily is present in the vacuum, interacts with other quantum fluctuations that in some 
sense belong to its environment. The particle itself is characterised by that it can 
interact with the other particles, in a series of events that belong to a certain number 
of time-like dimensions (where events are logged in sequence) and by that it can 
receive incoming interactions relative to a unit sphere Sd−1. This latter condition is 

2  We use the shorthand notation {x�} for a set of spacetime coordinates.
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equivalent to that the particle carries physical properties that depend on the Sd−1 , 
such as spin 1/2 particles do for d = 3 through the orientation of their spin. Upon 
receiving incoming interaction, the particle effectively creates the perception of a 
unit Sd−1 relative to its surroundings: based on the spatial angle of the incoming 
interaction (relative to its d-dimensional physical properties) and the frequency 
of the incoming interaction (as a function of spatial angle) it effectively creates a 
Sd−1 perception of the surroundings, where the interaction rate is constant over the 
sphere. This sets a local definition of spatial length and orientation. Moreover, the 
rate of incoming interaction (number of events logged) also serve as a measure of 
the time that has passed.3 Based on these two constructions of space and time, the 
particle then initiates an interaction with its surroundings, with a probability distri-
bution given by a Gaussian profile around a unit SD−1 , which in the rest frame of the 
particle coincides with the Sd−1 constructed by the particle, and in addition encodes 
a Gaussian probability distribution around exactly where the interaction takes place 
in the time-like event log. After the interaction has been initiated, the process starts 
over again.

The above describes a process for how a quantum particle can construct a spa-
cetime-like perception of its ‘surroundings’ based on the incoming interactions it 
receives from other particles. Now, there are certainly conditions that need to be met 
for a set of particles to give rise to a cohesive structure where this ‘spacetime-like 
picture’ extends between several particles to the point that a large-scale entity char-
acterised by spacetime properties is formed. We discuss a few of those conditions in 
Appendix. However, it is clear that under sufficiently beneficial conditions, the spa-
cetime quality of the individual particles can be linked to form a spacetime at large 
scales. Under the assumption that this is the case, the interaction process described 
above can be described relative to a reference frame {x�}.

Relative to the {x�} , the quantum fluctuation interacts at a point in spacetime, x�
o
. 

It then receives incoming interaction from particles nearby. The SD−1 it constructs 
corresponds to a local definition of time and spatial length in the spacetime, which is 
equivalent to the presence of a reference frame where the line element ds is given by

Here, x�o+ denotes the next, expected interaction point after x�
o
 (the input the quan-

tum fluctuation receives after x�
o
 decides its perception of spacetime at x�o+ ). We use 

c = 1 , and time is given relative to the frequency of the particle; the time between 
two initiated interactions is one unit of time. The line element itself reflects both a 
difference between the spacetime directions (time-like vs space-like) and how infor-
mation (i.e. interaction) is sent out from, and received by, the particle: with a vanish-
ing line element that requires propagation in time and space to go hand in hand.

Finally, relative to the {x�} , the next interaction point (in spacetime) of the parti-
cle is given by a displacement set by the momentum P�

o
 of the particle ( x�

o
→ x

�

o+ ) in 
combination with a displacement set by a Gaussian probability distribution around 

(1)ds2
||||x�=x�o+

= ���dx
�dx� .

3  In principle, there can be several logs of this kind, corresponding to multiple time-like directions.
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x
�

o+ , in the reference frame of (1). There is no preferred order to the two displace-
ments, and the Gaussian distribution fills two functions. It describes the spacetime 
propagation of the particle in terms of a random walk (on top of the movement 
required by the momentum), and in doing so it also gives a probability distribution 
for where the particle is located in spacetime (at the next step).

Effectively, for a model that does not concern itself with the individual interactions 
of the quantum particles, each quantum fluctuations can be treated as a Gaussian prob-
ability distribution in spacetime, which propagates through the spacetime in a random 
walk set by the interactions it shares with the quantum fluctuations in its environment. 
This provides an effective description of some of the quantum physics of the spacetime, 
given the current ansatz for spacetime emergence.

In the above, we introduced a momentum P�
o
 for the quantum fluctuation, in addition 

to its spacetime position. In the rest frame of the particle, characterised by (1), the only 
non-zero components of P�

o
 are the temporal ones, which give rise to a displacement of 

one unit (for each time-like direction the particle propagates in) between each interac-
tion. With a change of reference frame, P�

o
 can be altered to include spatial displace-

ments as well. However, note that at the quantum level the only physical processes are 
given relative to the SD−1 s of the quantum particles—not relative to the reference frame.

In the effective quantum model, both the position in spacetime and the momentum 
of a quantum fluctuation are given by probability distributions; the uncertainty in spa-
cetime position by necessity infers an uncertainty in momentum, which will be fur-
ther discussed in Sect. 2.2. The particle interactions will also come with a transfer of 
momentum between particles, while the total momentum (given by the P�

o
 s) remains 

conserved. With respect to this, the interactions will figure as typical collisions between 
particles, resulting in the same type of equilibration of momentum among particles in a 
spacetime volume element as is characteristic of other many-body systems.

The set-up presented above specifies the effective quantum model of this text. The 
key feature of the model is the Gaussian probability distribution for the position of a 
quantum particle, which denotes the probability for where in spacetime the particle ini-
tiates an interaction with its surroundings. After each interaction, the particle receives 
incoming interaction and builds a new probability distribution, for its next step, based 
on that information. The next step is then set by the P�

o
 of the particle, in combination 

with a random draw from the probability distribution.
Note that in addition to the description above, the effective model includes an 

assumption of a suitable underlying creation and annihilation process of the quan-
tum fluctuations in the vacuum, so that the properties of the quantum fluctuations are 
retained over time. Having described the set-up of the effective model, we will now 
discuss the Gaussian probability distributions further in Sect. 2.2, and the properties of 
the random walk in Sect. 3.2.
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2.2 � The Gaussian Probability Distributions of the Quantum Fluctuations

The effective quantum model includes a Gaussian probability distribution for the spa-
cetime position of a quantum fluctuation, relative to the reference frame characterised 
by (1). For simplicity, we here denote that reference frame by {x̃𝜇}. A specification of 
the Gaussian distribution in question requires the scale of the fall-off to be specified. In4 

a value for the standard deviation ( � ) of the probability distribution relative to the 
unit length in {x̃𝜇} (set by the ��� ) needs to be identified. In the below, we make a 
choice of �−1 =

√
2� in the length scale ( lq ) of {x̃𝜇}. This gives a nice overall coef-

ficient, but also specifies the possibility for the particle to not take a step forward in 
time at the next point of interaction as a 2.5 � event. A unit step back in time would 
be a 5 � event. Another suitable choice would be � = lp∕

√
2 (where lp is the Planck 

length) which constitutes the minimal uncertainty required by Heisenberg’s uncer-
tainty principle, in a setting where both the uncertainty in spacetime position and 
momentum are simultaneously minimised (with �x�px = ℏ∕2 ). We will get back to 
requirements by Heisenberg’s uncertainty principle below. A � in (2) of order the 
Planck length would also fit with that the quantum nature of the spacetime should 
become relevant at the Planck scale, which in the present quantum model means that 
individual Gaussian distributions should start to be discernible at that scale. This 
exposure of the Gaussians, really of the basis functions of the spacetime, must take 
place in time as well as in space, which means that the unit length in time,5 i.e. the 
average time between interactions, must be of order the Planck length also. It is also 
relevant to note that a quantum fluctuation cannot be present in the spacetime for 
very long, during which time it must interact with its environment several times for 
a cohesive spacetime to be sustained. Consequently, it is reasonable to have

For example, a possible scenario is � = lq∕
√
2� = lp∕

√
2. That said, the � of the 

Gaussian probability distribution is not decisively fixed. In the below, we proceed 
with making our illustrations using �−1 =

√
2� in {x̃𝜇}. It would be straightforward 

to introduce a different � in those calculations. Importantly, an alteration of the � 
does not change any of the observations made outside this section, Sect. 2.2. It is a 
scale in the overlap (correlation) between different quantum fluctuations and thus 
relates to how frequently they interact (equivalently, how close they are), which in 

(2)(𝜎
√
2𝜋)−De

−
�𝜂𝜇𝜈 �𝜉𝜇𝜉𝜈

2𝜎2 , 𝜉𝜇 = x̃𝜇 − x̃𝜇
o
,

(3)� ∼ lq ∼ lp.

4  It is good to note a few things about (2). First, we refer to the � that the quantum fluctuation is charac-
terised by at interaction with other particles in the spacetime. In an experiment, the � for the spacetime 
position of a particle can be narrowed down at the price of an increased uncertainty in the momentum of 
said particle (and vice versa) but that constitutes a different kind of process. Second, the x̃𝜇

o
 in (2) is the 

x
�

o+ of (1).
5  Note that with c = 1 , we have lp = tp etc.
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turn connects back to properties of the individual interactions and requirements for a 
cohesive spacetime to form.

With �−1 =
√
2� in {x̃𝜇} , we get that the probability distribution for the space-

time position of an individual quantum fluctuation is given by

with the total probability

This setup in relation to the SD−1 frame of the particle is however just a special case 
of how the probability distribution appears in a general reference frame {x�}. For the 
physics to be captured correctly, the particle interactions described by (1) must be 
left invariant under the coordinate transformation, i.e.

Here, we have introduced ��� to denote the local definition of spacetime that is given 
by a quantum fluctuation, relative to {x�}. In general, a coordinate transformation 
obeying (6) deforms the probability distribution. If the resulting ��� is a constant, 
the probability distribution remains a Gaussian distribution with

in a co-moving reference frame, and with � = det(���). The total probability is given 
by

In addition to the effective Gaussian probability distribution, this interpretation of 
the local interactions of a particle also provides a way to single out the effective fre-
quency at which the particle interacts with its environment, i.e. on average relative 
to a chosen reference frame {x�}. In D = (1 + d) dimensions this is given by

in a co-moving reference frame.

(4)e−𝜋|𝜂𝜇𝜈 |𝜉
𝜇𝜉𝜈 , 𝜉𝜇 = x̃𝜇 − x̃𝜇

o
,

(5)1 = ∫ d𝜉De−𝜋|𝜂𝜇𝜈 |𝜉
𝜇𝜉𝜈 .

(6)𝜂𝜇𝜈dx̃
𝜈dx̃𝜈 = �𝜇𝜈dx

𝜇dx𝜈 .

(7)
P(x𝜌) =

√
�𝗀�e−𝜋𝗀𝜇𝜈𝜉𝜇𝜉𝜈

����𝜉u→i𝜉u
, 𝜉𝜇 = x

𝜇 − x
𝜇
o
, 𝜇 = (u, i) ∶ 𝜂

uu
< 0,

𝗀
u𝜇

u≠𝜇
= 0,

(8)1 = ∫ d�D
√
�𝗀�

�
e−�𝗀���

���
�����u→i�u

�
.

(9)ft =
√
��tt� = ∫ d�d

√
���e−��ij�i�j , �ti = 0,
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2.2.1 � Momentum Distributions

A consequence of that the particle’s position relative to a reference frame {x�} 
follows the probability P(x�) in (7) is that the momentum of the particle is set by 
Heisenberg’s uncertainty principle to obey a probability distribution of

relative to the same co-moving reference frame {x�}, where P�
o
 is the average 

momentum of the particle, relative to the reference frame. The reason for this is 
as follows. Given a particle position distribution as in (7), the particle’s momen-
tum distribution is the minimal distribution allowed by Heisenberg’s uncertainty 
principle (no extra uncertainty added) in the presence of said position distribution. 
The minimality condition sets the shape of the momentum distribution to also be a 
Gaussian, and for a general Gaussian distribution, Heisenberg’s uncertainty princi-
ple constrains a particle with its position given by the P(x�) in (7) to be character-
ised by a P(P�) given by

Here, the uncertainty in momentum is minimised by ��� = �−1
��
∕ℏ2. This defines 

what the particle is limited by at the quantum level, and hence it also defines what 
the particle is characterised by the at the quantum level, where the only uncertainty 
present is due to the quantum properties of the particle.

That Heisenberg’s uncertainty principle6

corresponds to (12) can be seen as follows. The multi-dimensional Gaussian func-
tions used here constitute an extension of the normalised, single variable Gaussian 
function

so the entries of a diagonal ���� corresponds to (2�2
x�
)−1 , and Heisenberg’s uncer-

tainty principle equivalently is

(10)
P(P�) = (�ℏ)−D

√
�𝗀−1�e−𝗀−1�� ����∕(�ℏ2)

�����u→i�u
, �� = P� − P�

o
,

𝗀−1
��

= 𝗀�������� ,

(11)�−D
√
�𝗁�e−𝗁������∕�

�����u→i�u
, 𝗁u�

u≠�
= 0,

(12)��� , ��� ∶ tr(����
�����) ≤ Dℏ−2, �� ≤ ℏ−2D.

(13)�x�px ≥ ℏ∕2, �t�E ≥ ℏ∕2

(14)
1

�x

√
2�

e
−

(x−�)2

2�2x ,

(15)(2�x��P� )−2 ≤ ℏ−2, ∀� = �.

6  Note that the �t here refers to the standard deviation for where an interaction takes place in time.
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Moreover, the (��� , ���) are diagonal in the same reference frames. This is most 
straightforward in the reference frame {x̃𝜇}, where ��� = ��� and ��� is diagonal, 
with ������ = ������ ≤ ℏ−2 for � = � = � = �. Any other reference frame is just 
a transformation of that local, co-moving frame. If we treat ��� and ��� as matri-
ces, Heisenberg’s uncertainty principle concerns the eigenvalues of those matrices, 
and since the matrices are simultaneously diagonalisable, it then follows that (12) is 
equivalent to (15).

In total, the P(x�) and P(P�) of (7) and (10) provide a setting consistent with 
the conjecture in [11], on how quantum uncertainties for the spacetime position and 
momentum of a particle might be modelled. Note that the ��� allowed by different 
reference frames through (6) includes a free scale in each �x� which is irrelevant 
to the physics, since changes encompassed by (6) purely refer to how the physics 
appears in relation to the reference frame set by {x�}. The physically relevant prop-
erties at the quantum level are internal: relative within the spacetime, and insensitive 
to the choice of {x�}.

3 � How the Quantum Model Gives a Metric and the Geodesic 
Equation

Given the probability distributions that the quantum fluctuations are characterised 
by in a reference frame {x�} , it is straightforward to identify that they can be used 
as basis functions for the spacetime. We discuss this below, before we describe how 
the random walk of the quantum fluctuations defines their propagation through spa-
cetime, and how that propagation turns out to be specified by the geodesic equation.

3.1 � The Metric

Equation (1) explicitly shows how each quantum fluctuation defines a local concept 
of spacetime. In interactions between particles, it is the Gaussian probability dis-
tributions in spacetime that mediate this concept of spacetime—any particle in the 
spacetime moves relative to the average behaviour of the quantum fluctuations in 
its vicinity. This means that the probability distributions effectively play the role of 
basis functions, through

where the average is over a small spacetime volume element around x�. The spa-
cetime can also be visualised as given by the surface specified by the basis func-
tions on {x�} , same as e.g. any smooth function f(x) can be specified by Gaussian 
basis functions; only for the spacetime surface, all the basis functions have the same 
weight.

The line element is given by

(16)g��(x
�) = ⟨���⟩
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and is characterised by that it overlaps with (1) at any given point. The metric has an 
inverse, and for any point x�

o
 in spacetime a reference frame can be found where

The above shows how the GR line element, with its specific properties, can arise 
from interactions between quantum fluctuations, and an invariance of the encoded 
interactions between the particles, as observed for (6). In this setting, the diffeo-
morphisms of GR represent the different reference frames that provide equivalent 
descriptions of the internal dynamics - the dynamics that is present in-between the 
quantum fluctuations. At the quantum level, the only physical processes are relative; 
set in relation to the behaviour of the particles present in the spacetime. The refer-
ence frame itself is irrelevant, as long as it captures the correct internal processes, 
i.e. (1). In fact, the gauge/gravity duality is in line with that this insensitivity to the 
chosen reference frame even extends to models where the number of dimensions 
in {x�} has been reduced; as long as the internal physics is captured, any reference 
frame can be used. In the present text, we however restrict the discussion to full 
D-dimensional reference frames. Here, we also have that the movement of a space-
time volume element relative to the reference frame {x�} is set by the momentum 
of a spacetime volume element, ⟨P�

o
⟩ , where the average is over a small spacetime 

volume element (same as for the metric).
From (16) it is also clear that the metric is not well-defined at very small scales, 

which indeed is an integral feature of the present ansatz for spacetime emergence. 
When the scale under consideration approaches the scale of the probability distribu-
tions, quantum effects will appear in different forms. A first sign of this will be that 
individual distributions (and their statistical deviations) have more of an impact on 
the ds2. This in turn initiates a transitional phase to the scale of the actual individ-
ual distributions, where the spacetime concept is not well-defined, and the physics 
instead is governed by interactions between the quantum fluctuations. As argued in 
Sect. 2.2, there are reasons to expect the standard deviations of the Gaussian distri-
butions to be of order the Planck scale.

Note that the discussion above concerns regions of spacetime where only quan-
tum fluctuations are present.7 In the present text, this is the only type of spacetime 
region that we consider. Anything out of the vacuum is modelled through a bound-
ary condition, as described in Sect. 4. It is however clear from the set-up that indi-
vidual particles (e.g. photons) that travel through the spacetime will interact with 
the quantum fluctuations; this is how particles passing through will experience and 
be subject to the configuration of the spacetime. At interaction with the quantum 
fluctuations, those passing particles will also have an impact on the behaviour of the 
quantum fluctuations, and the metric will change because of it.

(17)ds2 = g��dx
�dx�

(18)ds2 = ���dx
�dx� +O(�), �2 = ���(x

� − x�
o
)(x� − x�

o
).

7  This is not quite the same as vacuum regions of spacetime, which are defined by R�� = 0.
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3.2 � The Random Walk of the Quantum Fluctuations

At each new, initiated interaction, the propagation of a quantum fluctuation in space-
time is described by a Gaussian random walk. The step length is set by the P�

o
 of the 

particle, and the Gaussian probability distribution in (4). However, relative to a gen-
eral reference frame {x�} the random walk is biased, e.g. since the � of the Gaussian 
is set relative to the incoming interaction, from the environment. On average, the 
random walk of a quantum fluctuation is specified by the metric, g�� .

In the below, we take a close look at what the random walk of the quantum fluctu-
ations is characterised by, before connecting the behaviour to the geodesic equation. 
Note that a key feature of the random walks of the quantum fluctuations is that they 
are Gaussian random walks relative to the internal dynamics, which defines what 
is physical at the quantum level. In setting the spacetime propagation of a quantum 
fluctuation relative to the internal dynamics, we can use the general properties that 
Gaussian random walks are characterised by.

3.2.1 � Gaussian Random Walks

Some of the standard concepts of Gaussian random walks have already been described 
in Sect. 2.1. In the quantum model, each step is given by the sum of a mean contri-
bution (∝ P�

o
) and a random contribution generated by the Gaussian distribution in 

(4), which is set relative to the local rest frame of the particle (the SD−1 frame of the 
particle).

The standard example of a Gaussian random walk in one dimension is that each step 
is generated by the probability distribution

where � is the mean step length and �x is the standard deviation. After n steps have 
been generated in this manner, a particle that initially was located at x = 0 will have 
a position given by

This illustrates how the probability distribution for the position of the particle is 
given by a Gaussian distribution that spreads out during the propagation of the par-
ticle, when each step is given by a Gaussian distribution. In the below, we will use 
both of these properties: that the probability distribution for the random walk effec-
tively specifies both the individual steps in the random walk, and the result after a 
series of steps.

(19)
1

�x

√
2�

e
−

(x−�)2

2�2x .

(20)P(x) =
1

�
√
2�

e
−

(x−n�)2

2�2 , �2 = n�2
x
.



1 3

Foundations of Physics           (2023) 53:36 	 Page 17 of 32     36 

3.2.2 � The Biased Random Walk

As described in Sect. 2, the quantum fluctuations are represented relative to a D-dimen-
sional reference frame {x�} , under the assumption that the interactions are sufficient to 
correlate the quantum fluctuations. The only requirement on the {x�} is that it captures 
the internal, relative dynamics of the quantum fluctuations, and leaves that internal 
dynamics unaltered; ds2 must be unchanged, as in (6) and (17). As a consequence, the 
position, density and interaction frequency of the quantum fluctuations relative to {x�} 
depends on the choice of {x�}.

For example, the average interaction rate at a point x� in spacetime is

where t is a time-like variable, and we recall that g��(x�) is an average of the ��� 
in a spacetime volume element around x�. This function of gtt as the square of a 
frequency directly comes from that gttdt2 is a (scale-invariant) contribution to ds2. 
Depending on the choice of {x�} , ft can vary both from a change in the density of 
quantum fluctuations relative to {x�} , and due to that the individual interaction rates 
of the quantum fluctuations change with x�.

(21)ft ∶ gtt(x
�) = −f 2

t
(x�)

Fig. 1   In each graph we see a surface f(x) with a Gaussian distribution on it (coloration). To the left, 
the surface has �2

x
f (x) = 0 and follows the equation f (x) = x. The distribution is centred around x = 0.5 

and has standard deviation � = 1∕3. To the right, the surface follows the equation f (x) = x2 + 0.5 , and 
the distribution has � = 1∕2. Below each surface is an illustration of the distribution as seen from the 
x-axis (for clarity, these are not normalised). To the left, the Gaussian distribution on the surface is a 
Gaussian distribution also relative to the x-axis, but to the right the distribution is distorted. It is clearly 
visible that the Gaussian distribution on the bent curve translates into a non-Gaussian function relative to 
the x-axis. In the graph to the right, the mean value of x is no longer 0.5. Instead, ⟨x⟩ < 0.5. In addition, 
with an increase in � over time ( 𝜕t𝜎 > 0 ), the graph to the right is characterised by 𝜕t⟨x⟩ < 0 , so that ⟨x⟩ 
moves to lower values. In the same scenario, the graph to the left has ⟨x⟩ = 0.5 , �t⟨x⟩ = 0. What we want 
to illustrate with this picture is that a particle that moves on the surface according to a Gaussian random 
walk will have a position ⟨x(t)⟩ that depends on the shape of the surface. In this 1d example, �2

x
f ≠ 0 

causes a shift in ⟨x(t)⟩. In general, it is ��g�� ≠ 0 that causes this type of effect. For example, the moving 
particle can be a quantum fluctuation that starts out at x = 0.5 with a Gaussian probability distribution 
for its position that is characterised by a �x at a scale small enough for �xf  to be well approximated by a 
constant. Relative to {x�} , the particle will be subject to an interaction rate ft = �xf  from its environment. 
After n steps in a Gaussian random walk with variance �2

x
 , the variance of the position distribution will 

be �2 = n�2

x
 , and in that sense the ⟨x⟩ will evolve in time. Note that the evolution of ⟨x⟩ only takes place 

relative to {x�}. The centre point of the distribution as seen from the surface f(x) remains constant (at 
x = 0.5 in the graphs) (Color figure online)
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A key feature of the Gaussian random walk of a quantum fluctuation is that the 
properties of the random walk are set relative to the SD−1 of the effective quantum 
model, at each step. This means that when the interaction rate ft of the quantum 
fluctuations varies relative to the reference frame, ft = ft(x

�) , the random walk as 
seen from the reference frame will be biased, even when the particle is not subject to 
external forces (e.g. an electric field).

What happens when the random walk is described relative to a reference frame 
{x�} is that each single quantum fluctuation will appear to move through a medium 
with varying interaction density (and length scales), and since its step length (and 
direction) is set relative to a particle-specific unit of incoming interaction (not rela-
tive to {x�} ), the step length and direction will be distorted relative to {x�}. The 
density can be pictured in terms of the Gaussian probability distributions. In their 
role as basis functions, the distributions are centred at a point x�

o
 in spacetime, and 

extend away from it. The distributions overlap, and provide an effective ‘density’ of 
interactions. From the perspective of {x�} , the effective function is given by g��(x�).

For a detailed illustration of the biased random walk, it is useful to consider a sce-
nario with a series of random steps, where the interaction frequency only depends 
on one spatial dimension, ft = ft(x). We also disregard contributions from P�

o
 , equiv-

alently the � in (19). The setup is depicted in Fig. 1. The random walk can effec-
tively be viewed as taking place on a surface, f(x), with the interaction rate given by 
ft = �xf (x). When ft is a constant ( �xft = 0 ) standard Brownian motion applies. The 
interaction frequency (and hence the step length of the random walk) relative to x 
can be altered through a rescaling of x without any physical effect. However, when 
�xft ≠ 0 the mean value of the position of the quantum fluctuation relative to x,8

will shift with time—in this example, time is present in terms of the number of 
random steps the quantum fluctuation has taken. When the Gaussian spreads on a 
surface with �xft ≠ 0 , the expected position of the particle (in the reference frame) 
changes.

The propagation of the expected position of a quantum fluctuation that is driven 
by the random walk is present at each step of the random walk, and it is valid for all 
of the spacetime directions. Even time propagation can be depicted as in Fig. 1, with 
the probability distribution in time obtained in the same way as in Sect. 2.2. x�

q
 sim-

ply denotes the expected point in spacetime, modulo the translation(s) set by P�
o
 , at 

which a quantum fluctuation initiates an interaction with its surroundings. An altera-
tion of the x�

q
 at a random step means that the quantum fluctuation accelerates rela-

tive to {x�}. This movement has one of two origins; either it is induced by the choice 
of reference frame, or due to non-trivial physics. The analogy in GR is apparent: the 
acceleration must be in one-to-one correspondence with the geodesic equation.

(22)xq = ⟨x⟩Pq
= ∫ dx xPq(x),

8  Here, the probability distribution Pq is initially given by the 1d, coordinate transformed version of (4). 
As the random walk progresses, the ��� transitions into g�� . The variance also scales with (1 + n) after n 
steps.
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3.3 � The Geodesic Equation

Given a metric, as identified in (16), the geodesic equation

can be derived through standard procedures (equivalence principle, parallel trans-
port etc.). Below, we detail how the random walks of the quantum fluctuations give 
rise to an acceleration of the expected position of each particle that is captured by 
the geodesic equation, and we give a detailed calculation for the acceleration caused 
by Pt

o
≠ 0 , equivalently dt ≠ 0. This illustrates the principles involved for dx� ≠ 0 

very well—the identifications follow from the same procedures—so the contribu-
tion from dt ≠ 0 is sufficient to illustrate how the geodesic equation arises from the 
perspective of the random walks of the particles in the spacetime. As always, the 
acceleration contributions add up to give the total acceleration.

To begin with, note that the momentum and spacetime position of any particle 
present in the spacetime, be it a quantum fluctuation or an ‘external’ particle, are 
described by probability distributions due to Heisenberg’s uncertainty principle 
(as illustrated for quantum fluctuations in Sect. 2.2). At the quantum level, the step 
length and direction of each regular displacement dx� of the particle (set by P�

o
 ) var-

ies a bit. Classical notions do not deal with these quantum level probability distribu-
tions. Instead, the effective classical notions of position, momentum and displace-
ments dx� refer to averages: the expectation values set by the quantum probability 
distributions. The spacetime probability distribution of a particle makes its propaga-
tion sensitive to ��g�� ≠ 0 , which causes shifts in the expected position of the par-
ticle. In general, it is g�� that encode the spacetime scales, and take the role of scale 
that the interaction rate ft ∶ f 2

t
= −gtt played in the example in Fig. 1; the principles 

identified are the same. While we focus on the propagation of the quantum fluc-
tuations in the present text, the concepts apply more generally, to particles moving 
through the spacetime.

We have already illustrated what happens with the expectation value of the posi-
tion of a quantum fluctuation under time evolution in Sect. 3.2 and in Fig. 1. It is the 
same process that from a random walk perspective gives rise to the geodesic equa-
tion. In general, one can picture the spacetime as a surface relative to a Minkowski 
reference frame {x�} (but in a higher dimension). On that surface, the particles move 
in a Gaussian random walk, and when the surface bends relative to {x�} , the parti-
cles get accelerated, relative to {x�}. In a general reference frame, a change in x�

q
 due 

to a gradient in the interaction frequency and notion of length relative to {x�} , i.e. 
��g�� ≠ 0 , will change the dx� for the particle, giving d2x�∕ds2 ≠ 0. For an analysis 
of d2x�∕ds2 , it is sufficient to restrict to the effect ��g�� ≠ 0 has on the end point, 
at a random step. The acceleration caused by the random walk in this way can be 
shown to correspond to the geodesic equation. Below, we detail how dt ≠ 0 contrib-
utes to the acceleration.

In general, note that in the present model the movement of any particle in space-
time is decided purely relative to the internal dynamics of the spacetime, i.e. relative 

(23)d2x�

ds2
+ Γ�

��

dx�

ds

dx�

ds
= 0
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to the surrounding quantum fluctuations and their interaction profiles; the local per-
ception of spacetime is set relative to the SD−1 frames of the quantum fluctuations. 
The reference frame employed does not affect the local dynamics, only the depiction 
of it. At the quantum level, the physical entities are effectively defined relative to the 
internal dynamics, not relative to the choice of reference frame. It is at the classical 
level that effects relative to the reference frame, such as gravitational acceleration of 
massive, classical objects, become relevant.

3.4 � Illustration: Acceleration Induced by dt

We will now detail how the random walk of a particle infers an acceleration of its 
expected position that is described by the geodesic equation, for the special case 
where only dt ≠ 0. For this illustration, we restrict the spacetime to D = (1 + d) 
dimensions.

To begin with, note that the acceleration d2x�∕ds2 induced by dt ≠ 0 is caused 
by two separate processes: (i) the Gaussian random walk of the particle, and (ii) the 
movement of rest frame of the particle relative to the reference frame.

For the spatial acceleration, d2xi∕ds2 , the first effect was described and depicted in 
and around Fig. 1. In the reference frame where g��(x�o) = ��� and the normalisations 
are simple, that contribution is

since the local acceleration of the expected position is given by �ift (which can be 
thought of as a gradient in pressure), and a higher interaction frequency towards one 
side means an acceleration in the opposite direction.

In addition, the rest frame of the particle can move with a velocity vi relative to the 
reference frame. This gives both the direct, straightforward acceleration contribution 
of �tvi , as well as a contribution of vi�tft when the interaction rate of a particle changes 
in time (�tft ≠ 0). The last contribution comes from that a decrease in interaction rate 
( 𝜕tft < 0 ) corresponds to a de-acceleration in the direction of the velocity, since the 
points at which the particle interacts will grow sparser relative to {xi} as time pro-
gresses. That provides a separate process for how ⟨xi⟩ is altered. Note that the last two 
contributions do not arise because the velocity or the interaction rate of the particle 
changes, but because those properties are altered relative to the reference frame due to 
that the reference frame is not flat. In total, 

This relation can be translated into a general equation through identifying that the 
metric encodes the relevant entities through −gtt = f 2

t
 and gti = −vi. The first of 

these identifications is the same as in (21). The second identification can be deduced 
from the simple set-up where the rest frame of the particle, {x̃𝜇} , moves relative to 

(24)−�ift
||||x�=x�o

(25a)
(
dt

ds

)−2 d2xi

ds2

||||x�=x�o , dxj=0
=
(
−�ij�jft + �tv

i + vi�tft
)||||x�=x�o

.
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the reference frame {x�} with xi = x̃i + wi(x𝜌) , where vi = �tw
i , and with 

t = t̃∕
√

1 − 𝜂ijv
i(x

𝜌
o)v

j(x
𝜌
o) and �jwi(x�

o
) = 0. In that setting, ds2 = 𝜂𝜇𝜈dx̃

𝜇dx̃𝜈 sets 
gti = −vi and leaves the other components of the metric unchanged at x�

o
. In general 

settings, the principle remains the same: the vi present in (25a) corresponds to −gti. 
Using these two identifications as well as the special choice of reference frame, the 
right hand side of (25a) can be identified to equivalently be

 Here, the third term has an index structure that captures the D = (1 + d) illustra-
tion at hand, but leaves out details necessary for general spacetimes. For the same 
reason, the index notation looks messy with respect to t, but the expression is valid 
since t just represents the temporal dimension.

From (25), the general equation can be identified to be

for a completely general metric g�� . This follows from that (25b) holds for all x�
o
 pro-

vided that the metric has been altered to g��(x�o) = ��� , modulo a velocity. Including 
extended regions, as in an expansion around x� = x�

o
 , alters the ��� components to 

g�� , and that results in the general expression.
The temporal acceleration d2t∕ds2 can be identified in a similar way. The com-

ponents of x�
q
 (expected spacetime position modulo changes by P�

o
 ) are altered by 

the same processes: the probability distribution extends over a region in {x�} , and 
��g�� ≠ 0 distorts that probability distribution relative to {x�}.

For simplicity, we follow the same line of reasoning as for the spatial acceleration 
described above, and use the same type of reference frame. There are three different 
contributions to the temporal acceleration induced by dt ≠ 0. The first two contribu-
tions are due to the change in ft in the region the particle moves into, −�tft − vi�ift. 
The first of these is the counterpart of (24) in our previous example. The second 
term comes from that with a non-zero vi , dt causes a transport that is not only in 
time, but has a spatial component as well. In comparison with the illustration in 
Fig. 1, in 2D the surface there would need to be extended to depend on both dimen-
sions, f = f (t, x) , and dt ≠ 0 would cause a transport (ti, xi) → (tf , xf ) with the line of 
propagation set by vi. Under that type of displacement, the gradient in ft that causes 
a shift in tq is given by9 −�tft − vi�ift. Finally, a change in time dilation also gives 
a change in interaction rate relative to {x�}. Since f 2

t
 includes the term −vivi (as in 

f 2
t
= f 2

t
||vi=0 − vivi ) that contribution is vi�tvi. In total, 

(25b)
[
−�ij

1

2
�j(−gtt) + �ij�t(−gtj) + �ijgtj�

tt 1

2
�t(−gtt)

]||||x�=x�o
.

(26)
d2xi

ds2

||||dxj=0
=
[
1

2
gij�jgtt − gij�tgtj −

1

2
git�tgtt

](
dt

ds

)2

= −Γi
tt

(
dt

ds

)2

,

(27a)
(
dt

ds

)−2 d2t

ds2

||||x�=x�o , dxj=0
=
(
−�tft − vi�ift + vi�tvi

)||||x�=x�o

9  Note that the contribution of (−�i + vi�t)ft in (25a) is of the same type. The acceleration contributions 
can also be inferred/interpreted from other perspectives than that of the random walk.
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 from which the general equation can be identified,

4 � Ricci‑Flat Spacetimes

The crucial property for any ansatz for spacetime emergence is that the effective 
theory, the theory that emerges at large scales, must be GR. As our ansatz is for how 
quantum fluctuations give rise to spacetime, the emergent effective theory must cap-
ture GR in vacuum regions, characterised by

A caveat is of course that there might be circumstances under which the effective 
GR theory does not (and should not) emerge, i.e. when the GR theory breaks down. 
Here, we however work under the assumption that a metric has materialised. It 
it then possible to show that the effective quantum model gives a spacetime with 
R�� = 0 , as described in Sect. 4.1 below.

Importantly, a vanishing Ricci tensor is only half of the story of how a specific 
spacetime solution arises in a vacuum region. R�� = 0 is a local concept. The over-
all characteristics of a spacetime solution are in turn set by the configuration of the 
non-vacuum features present in the spacetime. In our effective model, the presence 
of matter—and in general any feature that is not captured by quantum fluctuations 
in a region of spacetime—is modelled by boundary conditions to the vacuum region 
under consideration. These boundary conditions are of the sort used for solutions 
to the heat equation, and literally represent boundaries to the vacuum regions. We 
describe the impact of the boundary conditions on the spacetime configurations of 
the vacuum regions in Sect.  4.2. At the current level of our ansatz, the boundary 
conditions are effective only, i.e. they are characterised by how they effectively influ-
ence the adjacent vacuum regions. This is sufficient for the purposes of the present 
text, but of course, it would also be interesting to understand the related interaction 
processes in detail, at the quantum level.

4.1 � How the Effective Quantum Model Comes with a Vanishing Ricci Tensor

The condition that the Ricci tensor vanishes shows as a product of the random walk 
of the quantum fluctuations when the internal particle propagation follows the effec-
tive quantum model in Sect. 2.1. It requires an absence of separate processes for the 
particle propagation, such as are due to additional forces. The reason is as follows. 
The Gaussian random walk means that a particle with a momentum P�

o
 does not 

(27b)=
(
−
1

2
�tt�tgtt +

1

2
�ttgtj�

ji�igtt − �ttgtj�
ji�tgti

)||||x�=x�o
,

(28)
d2xt

ds2

||||dxj=0
=
[
−
1

2
gtt�tgtt +

1

2
gti�igtt − gti�tgti

](
dt

ds

)2

= −Γt
tt

(
dt

ds

)2

.

(29)R�� = 0.
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propagate solely in the direction of the corresponding velocity, v� . Any step dx� in 
the direction of P�

o
 comes with another randomly generated step. The order of the 

two steps have equal probability. This generates an effective result

where v�
f
 is the final vector, v� is the vector subject to transport, the parallel transport 

along a vector is captured by D� , and the factor 1/2 denotes the probability for each 
order of the parallel transports. This holds for all � , since the random propagation 
covers every possible additional step. Moreover, the relation holds for all v� , where 
each quantum fluctuation has an individual P�

o
 with a statistical deviation from the 

⟨P�
o
⟩ which characterises a small spacetime volume element. The random walk of the 

quantum fluctuations forces (30) to be a property of the spacetime for all the indi-
vidual P�

o
 , and for all possible random steps dx�. Since the end product of a displace-

ment of v� is symmetric with respect to the order of parallel transport, the antisym-
metric counterpart vanishes,

and since

in combination with that each spacetime volume element contains a statistical vari-
ation in v�,

Recall that the quantum fluctuations, and their random walks, generate the space-
time. Hence the spacetime is defined by R�� = 0.

In contrast, if a separate process for particle propagation is introduced, (30) no 
longer is a requirement, by that it is not by necessity enforced by the physical pro-
cesses present in the spacetime. One such scenario, discussed a bit more in Appen-
dix, is when charged quantum fluctuations are subject to a force in the presence of 
an electric field. In that case, a separate flow of particles is introduced.

Moreover, a condition for that the Riemann tensor vanishes is a special case of 
R�� = 0 , where

and it differs from the R�� = 0 condition observed above in that parallel transport of 
any vector u� , in any two directions, commutes. One of the directions for the paral-
lel transport does not need to be parallel to the vector. In that sense, the statement 
that the two displacements commute (insensitivity to order of displacement) is not 
connected to particle propagation; it is a stricter condition. It characterises certain 
vacuum regions, but its presence is contingent upon a presence of the right boundary 
conditions.

(30)(vf )� =
1

2

(
D�D� + D�D�

)
v� ,

(31)[D� ,D�]v
� = 0, ∀v� ,

(32)[D� ,D�]v
� = R��v

� if v� ≠ 0, ∀�,

(33)(4.3) ⇒ R�� = 0.

(34)[D�,D�]u
� = R�

���u
� = 0, ∀u�,
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4.2 � Boundary Conditions

The quantum fluctuations interact with each other in the same way in all spacetime 
regions with R�� = 0. Different spacetime solutions arise from what the boundaries 
of the vacuum regions are characterised by, relative to the reference frame.

The simplest type of spacetime is flat spacetime, where the Riemann tensor van-
ishes. It arises when the presence of matter at the boundaries can be neglected. 
Either the boundary is infinitely far away (the vacuum spacetime region extends to 
infinity) or the impact of the matter at the boundary can be neglected at the scales 
under consideration (when the curvature only is relevant closer to the boundary 
than the region under consideration). However, a vanishing Riemann tensor does 
not mean that the spacetime configuration is trivial. As discussed in Sect.  1.1, in 
the presence of boundaries restricting information exchange, the present ansatz for 
spacetime emergence comes with non-trivial configurations of flat spacetime, set 
relative to how said boundaries extend in the spacetime [4]. In the present text, we 
do not discuss those configurations though. Instead, we focus on the key boundary 
features that give different types of solutions with R�� = 0.

Note that the boundary conditions we describe represent a simplified model for 
how the boundaries and the quantum fluctuations interact, on average and at an 
effective level. This is sufficient for the purpose of the present text which is to show 
that, and how, spacetime can emerge from interactions between quantum fluctua-
tions. However, for a full picture of the physics it would be desirable to have more 
detail on how the quantum fluctuations interact with particles (and extended objects) 
that are not part of the vacuum regions.

In the current model, anything present in the spacetime that is not a quantum 
fluctuation generated by the vacuum calls for a boundary condition. In the below, 
we use the simplest possible settings to illustrate the relevant properties. In princi-
ple, a combination of these for multiple boundaries of various relative positions and 
configurations (including the shape of a boundary) can be used to capture general 
spacetime settings. However, the actual procedure for doing so, and for determining 
the metric of the resulting spacetime, is highly non-trivial.

In setting up a set of boundary conditions to a vacuum region, and to illustrate 
the role of different types of boundary conditions, the simplest type of example is to 
start from a spacetime that is asymptotically flat. In that configuration, the vacuum 
region extends very far away and all non-vacuum features are centred in a compara-
tively small region of the spacetime, near the centre of the reference frame. In this 
setting, we illustrate the two types of boundary conditions that are key to space-
time regions with R�� = 0 : mass and relative movement of the boundaries. We also 
use D = (1 + 3d) for the explicit examples; that is sufficient for an illustration of the 
general principles involved.

4.2.1 � Massive vs not: A Neumann Boundary Condition

The simplest boundary condition to add to the initial set-up is a Sd−1 sphere that is 
static in time, at rest and located at the centre of the reference frame. In our ansatz, 
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the presence of mass in the region bounded by the sphere is reflected by that the 
boundary condition is characterised by

where dxa is a vector perpendicular to the surface given by the boundary, pointing 
into the spacetime region. This Neumann boundary condition imposes a gradient 
in the interaction frequency ft of the spacetime, which is absent in flat spacetimes, 
and causes curvature. In terms of the metric, gtt = −f 2

t
 , and the Neumann boundary 

condition rules out ��g�� = 0 as an option for any reference frame—except as an 
approximate solution, far away from the boundary. The metric therefore is not char-
acterised by ds2 = ���dx

�dx� , and the Riemann tensor is non-zero. For a flat space-
time, it is necessary that all boundary conditions are characterised by

Moreover, the condition in (35) causes an attractive force towards the surface, rel-
ative to the reference frame, since the random walks of the quantum fluctuations 
are biased towards lower interaction frequency; the geodesic equation will describe 
acceleration towards the boundary. For a simple static set-up of a sphere in 4D, we 
have a total set of boundary conditions,

in spherical coordinates, in the reference frame of an observer (infinitely) far away 
from the massive boundary condition at r = ro , with limr→∞ gtt = −1. Here, m is the 
mass of the object enclosed by the boundary, and G is the gravitational constant. 
The set-up is of course equivalent to that of a spherical massive object in GR. The 
relevant point here is what the boundary conditions are characterised by in the pre-
sent model for spacetime emergence.

Finally, note that we in this section work under the assumption that an effective 
spacetime theory has formed. The formulae above are contingent upon that, and do 
not say anything about where the effective spacetime breaks down, e.g. in the pres-
ence of a black hole.

4.2.2 � Relative Movement of Boundaries

As presented in Sect. 2, the effective quantum model includes interactions between 
quantum fluctuations that in the sense of the emergent spacetime are close to each 
other. An exchange of momentum is included among the physical processes that can 
take place at an interaction. Each quantum fluctuation is characterised by a momen-
tum probability distribution around a value P�

o
 relative to the reference frame, and 

a small spacetime region is characterised by ⟨P�
o
⟩ , where the average is over the 

spacetime region (same as for the metric). The propagation of and the exchange 
of momentum between the quantum fluctuations infer a local equilibration in the 

(35)dxtdxa𝜕aft = const > 0

(36)�aft = 0.

(37)�rgtt
||||r=ro

= −
2mG

r2
o

, lim
r→∞

�rgtt(x
�) = 0,
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momentum. On average, the quantum fluctuations move as a unit, relative to the 
reference frame.

In the presence of a boundary, the quantum fluctuations adjacent to it will interact 
with the boundary, and be in equilibrium with it in the same sense they would equil-
ibrate with adjacent quantum fluctuations. This means that the ⟨P�

o
⟩ of the spacetime 

region adjacent to a boundary will be in one-to-one correspondence with the veloc-
ity of the boundary. Away from the immediate vicinity of the boundary, the standard 
interactions between the quantum fluctuations give rise to the spacetime configura-
tion, which consequently will be characterised by R�� = 0—or by a vanishing Rie-
mann tensor, in the case of an absence of massive boundary conditions.

As a consequence of this, if two boundaries move relative to each other, the quan-
tum fluctuations adjacent to each of the boundaries will move with the boundary, 
and from the perspective of the reference frame, the spacetime will appear to be 
dragged along by at least one of the boundaries. This is how frame-dragging arises 
from the effective quantum model in Sect.  2. Frame-dragging is of course well-
known from GR, where it e.g. is present in the Kerr geometry and near rotating mas-
sive objects like planets; the relevant point here is that (and how) it arises from the 
effective quantum model in Sect. 2. From the perspective of the reference frame, the 
frame-dragging arises from that momentum is transferred from the boundary to the 
quantum fluctuations when the quantum fluctuations interact with the boundary. The 
momentum is then distributed through the spacetime when the quantum fluctuations 
interact with each other.

As apparent from the observations above, a second key characteristic of a bound-
ary condition (be it massive or not) is its velocity relative to the reference frame. 
However, the physical features arise when multiple boundaries are characterised 
by non-trivial movement relative to one another. Otherwise, the movement can be 
rendered trivial by a change of reference frame. In comparison, the Schwarzschild 
solution is different from the Kerr geometry not only because the Kerr metric is not 
spherically symmetric; a key feature is that the degree of rotation in the Kerr geom-
etry is set relative to a static, non-rotating, asymptotically flat spacetime (at r → ∞ , 
in spherical coordinates).

To set up a moving boundary condition in the quantum model at hand is non-triv-
ial, since a non-zero velocity (that is physical in the sense noted above) means that 
the boundary will be subject to forces, and can deform to a suitable shape. A gen-
eral, massive object that is spherical when it is at rest cannot be assumed to remain 
perfectly spherical once a rotation has been added. Disregarding the actual shape of 
the boundary, the general principles still hold: each boundary has both a massive 
condition and a velocity condition. If we build on our previous 4D example in (37), 
the boundary condition at r → ∞ remains the same, but instead of the sphere at the 
centre of the spacetime, there is a spatial surface S such that

where g̃𝜇𝜈 is the diagonal matrix that can be obtained from g�� . The co-rotating ref-
erence frame encodes the relative velocity of the boundary, which can vary over 

(38)(dxt)2dxa𝜕ag̃tt
||||S

= const ≤ 0, in the co-moving reference frame,
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the surface. Again, this example is just to illustrate what the boundary conditions 
effectively are characterised by in the effective quantum model at hand. The descrip-
tion is rather general, but captures known properties of GR. The key features of the 
boundary condition in (38) are that it specifies a surface S with a Neumann bound-
ary condition for a presence of mass, and with a velocity relative to the reference 
frame. This specifies the gradient for the interaction rate at the boundary, and the 
momentum ⟨P�

o
⟩ of the adjacent quantum fluctuations. Away from the boundary, the 

spacetime metric is set by the standard interactions between the quantum fluctua-
tions, and it is Ricci-flat.

5 � Summary and Outlook

We have presented an effective quantum model, built on a conjectured (but possible) 
effective behaviour of quantum fluctuations in the vacuum, which in the large-scale 
limit gives GR in vacuum regions as an effective theory. We have illustrated that 
and how GR can emerge in a way similar to how hydrodynamics arises from micro-
scopic dynamics; a scenario that should be taken into consideration. The key obser-
vations are that: (i) Gaussian distributions, whose shape in spacetime is set relative 
to the incoming interactions from the surroundings, can be used to define an internal 
dynamics which builds up a spacetime, with a metric. (ii) When the distributions 
furthermore perform a random walk through the spacetime, the step combination (a 
combination of a contribution from the particle momentum, and a randomly gener-
ated step from the Gaussian distribution) can be used to obtain R�� = 0 , at the same 
time as the expected spacetime position of the distribution is forced to obey the geo-
desic equation.

The advantage of the model is that it constitutes a simple way to get GR as an 
effective theory at large scales, from effective properties at the quantum scale. The 
interesting thing will be if the model can be used to connect detailed quantum inter-
action properties to GR. This would require a more detailed analysis of the interac-
tions at the quantum level, i.e. of what is required of them for the effective model 
properties to arise. It would also be relevant to compare those detailed interaction 
properties with the quantum interactions present in gauge theories with gravity 
duals, such as SYK.

Moreover, we have only discussed the case with R�� = 0 in detail. It would be 
relevant to extend the effective quantum model to include R�� ≠ 0 and R ≠ 0 , the 
first which is discussed a bit in Appendix. An R ≠ 0 scenario in regions only sup-
ported by the vacuum would seem to imply a change in interaction frequency of the 
quantum fluctuations. A suggestive picture is that a loss of interaction frequency 
(with the spacetime components effectively gliding apart) would correspond to an 
effective expansion of the spacetime.

For a full picture of the physics, it would also be relevant to look at the quantum 
interactions in detail, to determine what happens when the interactions between the 
quantum fluctuations cease to be stable and frequent enough to give rise to a GR 
spacetime at large scales.
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Appendix A: At the Level of the Quantum Interactions

In addition to the effective quantum model discussed in the main text, it is also rel-
evant to consider the physics at the level of the quantum interactions. This we do in 
some detail below. Although this discussion is not comprehensive, it concerns some 
key properties of the quantum interactions, when the interactions are viewed from 
the perspective of individual interactions.

Based on the effective quantum model described in Sect. 2.1, it is possible to iden-
tify some key features that the quantum interactions need to be characterised by. These 
requirements, that are necessary for the effective quantum model to manifest itself, fall 
into the categories of (i) fundamental requirements on the interactions and the quan-
tum fluctuations, and (ii) requirements for the effective theory to be a cohesive spa-
cetime. When the requirements in the first category are fulfilled, the second category 
includes scenarios that are of relevance to understand ‘spacetime’ in regions where 
the effective theory (GR) breaks down. Here, we will discuss the conditions (i–ii) a bit 
qualitatively. They represent topics that need thorough analysis in themselves, and the 
focus of the main text is to show a scenario for how quantum processes in the space-
time can give rise to GR in vacuum regions (for which the effective quantum model is 
sufficient), not to provide a full presentation of the small-scale physics.

The quantum fluctuations must be characterised by physical properties sensitive 
to Sd−1 and the time directions. With respect to the time directions, this means that 
the particle must interact with other particles, when those are available, thus creat-
ing an ‘event log’. With respect to the spatial directions, an example was given in 
Sect. 2.1: spin 1/2 particles posses the right characteristics for D = (1 + 3d) space-
times, since the spin orientation covers S2. The physical property of the spin, which 
in spacetime is given relative to an S2 , equivalently has an origin in the way the par-
ticle interacts. In the current ansatz, that interaction property provides a definition of 
spatial orientation. In addition, the interactions between the particles must in some 
sense be delayed, and/or the strength of their impact reduced, in a way compatible 
with an effective presence of spatial distance.

The presence of a reference frame {x�} requires quite a bit more of the quantum 
fluctuations. For a cohesive spacetime to form, there must be some effective mem-
ory and communication of the interaction history of a particle, upon interaction. For 
example, if particle A interacts with particle B, and after that with particle C, there 
must be an increased likelihood for interaction between particles B and C. In some 
sense, their mutual interaction with the same particle must establish them to be 
‘nearby’ each other. The shared information established at interaction must also be 
retained. For example, if an interaction has provided a relative orientation between 
the particles (relative to the Sd−1 s of the particles), that orientation can only change 
gradually, as the particles continue with interacting with other particles (moving 
away in a random walk).10 Otherwise, no cohesive sense of direction can form. 

10  This process has parallels to particles entangling at interaction, and then slowly disentangling as they 
interact with other particles. A relative orientation of the Sd−1 frames could e.g. be modelled through the 
spin orientation model analysed in [11, 12], which basically assigns an individual coordinate system to 
each particle, albeit without a concept of distance.



1 3

Foundations of Physics           (2023) 53:36 	 Page 29 of 32     36 

Furthermore, the information on the interaction history, which takes different paths 
after two particles have interacted, must intersect at a later point in the event log for 
a relative time to be established between any two particles. This likely also provides 
a feedback in the system, reinforcing the spacetime structure, and making sure that 
there is a continuous connection between any two points in spacetime. Overall, it is 
relevant to note that for a cohesive spacetime to form, the interaction frequency in 
some sense also must be high enough—so that clusters of particles can form, where 
the Sd−1 frames of the particles remain quite fixed relative to one another.

While a full account of the quantum interactions at the level of individual interac-
tions would require more detail than what is given here, an apparent consequence of 
the interaction origin ansatz is that when interactions no longer connect two points 
in spacetime, there is nothing to sustain the formation of an effective spacetime that 
can be described relative to a reference frame {x�}. In GR, this would imply that 
the effective theory would break down in regions that information (or equivalently, 
light) cannot pass through or away from. This could provide a mechanism for new 
physics near black hole event horizons, implying a phase transition away from the 
effective theory (GR, a phase characterised by an ordered spacetime) to a phase 
dominated by quantum statistical fluctuations. Other scenarios of this kind include 
the fuzzball proposal [13] and the suggestion in [14] for a quantum phase transition 
at black hole event horizons.

The Role of the Spacetime Dimensions

In this model, time is a list for the order of events. Each interaction between two 
particles represents a shared event which takes place in a series of events. This can 
be depicted in different ways, but one useful way is in terms of time, i.e. to assign an 
average interaction rate to each particle (a frequency), and to describe the event log 
in terms of time. This way of assigning time to interactions also has parallels in how 
time currently is defined using atomic clocks.

The spatial dimensions are defined through the interaction properties of the quan-
tum fluctuations. Orientation is given by the Sd−1 physical properties, provided that 
they can be sufficiently correlated between several (preferably very many) quantum 
fluctuations. Spatial distance and causality are a bit less tangible in the model. The 
spatial distance is given by c�t with �t denoting a time delay when information is 
communicated between or sent from one quantum particle to another, at the speed 
of light and at a corresponding angle in the SD−1 frame. Causality in the large-scale 
limit would impose certain restrictions on the interaction properties; we briefly men-
tion one such property in Sect. 2.2: the probability for a particle to take a step back 
in time. For more details on how the dimensions can emerge, we refer to [4].
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Appendix B: Sketched Example: Electric Field

Regions of spacetime that only contain quantum fluctuations can support more con-
figurations than those typically called vacuum regions of spacetime, i.e. regions with 
R�� = 0. The most straightforward example is when a boundary condition includes 
electric change, and an electric field extends through the spacetime. The presence of 
the field makes the configuration deviate from the vacuum configuration, through 
R�� ≠ 0 , but the only particles present remain those present in a typical vacuum 
region. Since our ansatz for spacetime emergence is built on interactions between 
quantum fluctuations, it should be able to encompass all spacetime configurations 
that are supported solely by quantum fluctuations, including the presence of electro-
magnetic fields and a non-zero cosmological constant. Moreover, it is quite straight-
forward to identify the mechanisms behind how R�� ≠ 0 works out in our model, in 
the presence of a boundary condition with electric charge.

In the effective quantum model in Sect. 2, the spacetime configuration is deter-
mined by the average behaviour of the quantum fluctuations. Provided that the quan-
tum fluctuations interact frequently enough, an effective spacetime emerges at large 
scales, and the behaviour of the quantum fluctuations can be interpreted relative to 
a reference frame. From that perspective, each of the quantum fluctuations interact 
quite locally. A reference frame can always be chosen so that the interaction rate 
with the surrounding quantum fluctuations has a Gaussian fall-off. Consequently, for 
an electric field to effectively be present, it must exist through a perturbed pattern of 
interaction between the quantum fluctuations, so that the effect of the field can be 
carried away, far from the boundary that has the electric charge, in a chain reaction.

The simple solution to what that chain reaction is, is the following. The quantum 
fluctuations include both charged and neutral particles. The charged particles close 
to the boundary with the electric charge will be affected by the charged boundary 
condition. On average, half of the charged particles will be repelled by the boundary, 
and the others will be attracted by it. Effectively, two opposite flows will be instated, 
locally and perpendicular to the boundary. The spacetime region will still be neutral, 
but two flows will be present. Further away from the boundary, the quantum fluctua-
tions will not directly interact with the boundary condition. Instead, a quantum fluc-
tuation will interact with the surrounding quantum fluctuations, and the two flows of 
charged particles will mean that the interaction frequencies of the moving particles 
will be subject to a Doppler shift relative to the quantum fluctuation. Effectively, the 
average frequency at which those particles interact with the quantum fluctuation will 
deviate from their real interaction frequency. The shift in effective interaction rate 
will mean that particles of one type of charge (positive/negative) moving towards 
the quantum fluctuation will interact more frequently with the particle, while par-
ticles of the other type (moving away) will interact less frequently with it, and the 
surroundings will appear charged to the quantum fluctuation, despite that it is not. 
Consequently, a charged quantum fluctuation will be induced to move accordingly, 
i.e. to take part in the flow, either towards or away from the boundary condition 
(depending on its type of charge). Effectively, this will create a chain reaction away 
from the boundary that propagates through the spacetime.
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Regarding R�� ≠ 0 , the two parallel flows of charged quantum fluctuations mean 
that charged quantum fluctuations are subject to a force, and a separate process for 
particle propagation is introduced. For that reason, (30) is no longer is enforced, 
and the spacetime can have R�� ≠ 0. We will not treat the form of the resultant R�� 
in detail here. R�� ∝ T�� , where T�� is the stress-energy tensor of the electric field, 
is however very plausible since the deviation from the condition in (30) is explicitly 
caused by the presence of an effective electric field, carried by the quantum fluc-
tuations. In a bit more detail, it is however possible to observe that the Ricci tensor 
must depend on the electric field effectively present at each point in spacetime x�

o
 , 

and that R�� must be independent of the type of charge (positive/negative) present at 
the boundary. This follows from that the effect on the spacetime metric is caused by 
the same process (two opposite flows of charged particles) regardless of the type of 
charge specified by the boundary. Consequently, the R�� must depend on some func-
tion of E2 , as is the case for the stress-energy tensor of an electric field. A property 
of R ≠ 0 can also be regarded as motivated from that the electric field merely intro-
duces a preferred direction of propagation in the spacetime, to the quantum fluc-
tuations. No energy is introduced/removed at points in the spacetime (away from 
the boundary), which should correspond to a special case of spacetime, i.e. con-
figurations with R ≠ 0. Moreover, the electric field present in the spacetime, Ei(x�), 
will depend on the configuration of the boundary, and be set by the requirement that 
the field is divergence free. From the perspective of the spacetime components, that 
property arises from that the quantum fluctuations only carry an image of the charge 
present at the boundary. There is no net flow across the surface of any spacetime 
region containing only quantum fluctuations. Equivalently, the only charge present 
is at the boundary, and the electric field outside the boundary must be divergence 
free.
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