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Abstract. The NA61/SHINE is a high-energy physics experiment operating at the SPS
accelerator at CERN. The physics program of the experiment was recently extended, requiring
a significant upgrade of the detector setup. The main goal of the upgrade is to increase the
event flow rate from 80Hz to 1kHz by exchanging the read-out electronics of the NA61/SHINE
main tracking detectors (Time-Projection-Chambers - TPCs). As the amount of collected data
will increase significantly, a tool for online noise filtering is needed. The standard method is
based on the reconstruction of tracks and removal of clusters which do not belong to any particle
trajectory. However, this method takes a substantial amount of time and resources. A novel
approach based on machine learning methods is presented in this proceedings.

1. Motivation and data preparation
SPS Heavy Ion and Neutrino Experiment (SHINE) [1] is a fixed-target experiment operating
at CERN Super Proton Synchrotron (SPS). The NA61/SHINE detector is a multi-purpose
spectrometer optimized to study hadron production in various types of collisions. The main
subdetectors of the whole setup are the Time Projection Chambers (TPCs). Two Vertex-TPCs
(VTPCs), located in the magnetic field, together with two large volume Main-TPCs (MTPCs),
are the main tracking devices and are able to register a large number of particle tracks (up to
1500 in central Pb+Pb collisions). More information about the detector can be found in [1]. The
primary physics motivation of the NA61/SHINE experiment is to study the phase transition
properties between hadronic matter and quark-gluon plasma. Recently, the physics program was
extended by the open charm measurements, requiring the major upgrade of detection setup. The
main goal of the upgrade is the tenfold increase of the data taking frequency, from 80Hz up to
1kHz. This can be achieved by replacing the read-out electronics of the TPCs. Faster read-out
will result in higher data-rates and an enormous amount of data. It will no longer be possible to
store all the registered data thus a fast and efficient tool for online noise filtering is needed.
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Figure 1. The visualisation of
the reconstructed event.

The first step of TPC data reconstruction is clusterization.
It is about connecting the signals left by one particle on the
neighbouring TPC read-out pads into one cluster. Then,
clusters (single TPC points) produced by one particle are
reconstructed as TPC track. The example reconstructed
collision is presented in Fig. 1. The TPC clusters
reconstructed from noise contribute significantly to the total
amount of data – from 50% (for large systems, like Pb+Pb),
up to 70% (for small systems, like p+p) of total data
size. Thus, by removing the noisy TPC clusters, one can
reduce the size of the data. The standard method involves
reconstructing the tracks and removing clusters that do not
belong to any track. This method, however, is very time and
resource consuming. This paper discusses a new approach,
based on machine learning methods. Algorithms will learn
to classify the TPC clusters and remove the noisy ones from
the data.

Preparation of the training data sets
The first step of data preparation is the reconstruction of local tracks in order to label the TPC
clusters into two groups: good clusters (belonging to track) and noisy clusters. The labeled
cluster data can be used to train and test classification algorithms. Two different approaches
were tested:

• The first approach (the approach I) uses the reconstructed properties of the clusters (a total
charge, positions, the maximal signal in the cluster - max ADC, etc.) as the input data.

• The second approach (the approach II) uses the clusters raw data, i.e. for each cluster,
after the pad ID and the timestamp of max charge deposit are found, the signals from this
central pad at the time of the maximum deposit as well as from ±5 neighboring pads and
± 9 timestamps are included. This results in 2D maps of signals from 11 consecutive pads
at 19 timestamps.

2. Machine learning algorithms for the classification
The choice of the machine learning algorithm for the classification of signal vs. noise for TPC
clusters depends on the type of the input data: reconstructed properties of the clusters in the
approach I or 2D-Maps (raw cluster data) in the approach II. We propose and compare four
machine learning algorithms: two for the approach I and two for the approach II.

Approach I. Using the reconstructed properties of the clusters (a total charge, positions,
max ADC, etc.) two methods were tested: the decision tree (later referred to as DT) and
dense neural network (later referred to as DNN). The decision tree was implemented using
the DecisionTreeCassifier method provided by scikit-learn [2] library and the dense neural
network was built with the keras library [3]. The hyperparameters of the decision tree (criterion:
gini, max_depth: None, min_samples_leaf: 50, min_samples_split: 200) were found by the
HalvingGridSearchCV method provided by scikit-learn. The BayesianOptimization method
provided by keras-tuner [4] was used to find the architecture of the neural network, which is
presented in Tab. 1

Approach II. The second approach is based on the raw cluster data, which are represented as
a 2D pixel array, as described in Sec. 1. As such input resembles an image, it is reasonable to
use convolutional neural networks (CNN), which were originally developed for the classification
of images [5]. Two different architectures of CNNs have been implemented:
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• traditional convolutional neural network architecture (later referred to as CNN) including
two 2D convolutional layers, both consisting of 8 filters of size 3 × 3 each, and a fully
connected deep neural network on top of them (details in Tab. 1). Moreover, after each
convolutional layer, average pooling was applied, and after each dense layer (apart from the
last), a dropout of 0.3 was applied.

• novel architecture, custom developed for the task at hand (later referred to as SplitCNN).
This model [6, 7] was inspired by the committee networks [8] and by the channel-split
convolution [9]. Using physics principles allowed us to split the convolution network into
two parallel threads (details in Tab. 1). The SplitCNN implementation achieves comparably
high noise reduction and low signal loss as the residual neural network (ResNet [10]) of three
blocks of (conv 32@3x3, conv 64@3x3), but with 20 times fewer trainable parameters and
10 times faster training and prediction times.

Table 1. Chosen neural network architectures.
If not otherwise specified, ReLU activation is used.

Network Name Architecture description

DNN Dense 256 - Dense 128 - Dense 1(Sigmoid)

CNN Conv 8@3x3 - AvPool - Conv 8@3x3 - AvPool -
Dense 64 - DropOut(0.3) - Dense 32 - Dense 16 - Dense 1(Sigmoid)

SplitCNN Split: - [Conv 5@3x1 + Conv 5@1x3] -
[Conv 5@3x1 + Conv 5@1x3] - :Concatenate - Flatten - Dense 2(Softmax)

All the models were trained twice, using two balanced data sets of 20 000 samples each from
the two reactions: Ar+Sc at 30 GeV/c and Pb+Pb at 150 GeV/c. In these reactions, the
multiplicities of produced clusters are the order of 104 and 105 per event, respectively. The
testing of each trained model was performed on three various data sets for the reactions: Ar+Sc at
30 GeV/c, Pb+Pb at 150 GeV/c and Be+Be at 30 GeV/c. The lowest multiplicity characterizes
the latter. All three reactions were collected during different data-taking campaigns in 2015,
2018, and 2013, respectively. Each test data set consisted of about 80 000 samples. The purpose
of testing on data from various reactions was to check whether models can generalize.

3. Results
The results for all used models, when trained and tested on the same reaction, are presented
in Tab. 2. Several conclusions can be drawn here. First of all, the results are very similar
regardless the method within the same reaction. There are better results for Ar+Sc reaction,
which is characterized by lower multiplicity. The training and testing on different reactions
resulted, in general, in lower accuracy of about 3% (not shown in the table). For the Be+Be
reaction, the accuracy varied from 90% for SplitCNN method, through 92% for CNN up to 96%
for DNN and DT, regardless the training set. The results suggest to perform training for each
reaction separately. If, however, adjusting (retraining) the model for some reasons would not
be possible, a model trained earlier on a reaction with high multiplicity can be used with good
enough accuracy to reduce noise in reactions of significantly lower multiplicity.
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Table 2. The table shows the quality of predictions of the four machine learning models. Each
model was trained on a subset of the collected data and tested on the remaining data for the
same collision system. Top row - for Ar+Sc at 30 GeV/c; bottom row - Pb+Pb at 150 GeV/c.

Dataset Method Accuracy[%] Recall[%] Precision[%] f1 score[%]

Ar+Sc DT 92 87 85 86
DNN 92 87 84 86
CNN 90 92 87 90
SplitCNN 89 95 89 92

Pb+Pb DT 84 79 79 79
DNN 83 81 77 79
CNN 81 79 79 79
SplitCNN 82 87 80 84

An important aspect related to noise reduction is to have the rate of false negative
samples (actual signal estimated as noise) as low as possible, which means the precision
as high as possible. In the present study, the number of false negatives normalized
to the number of actual positives reached up to a dozen percent for all methods.
However, we can decrease the lost signal by modifying the threshold of the decision.
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Figure 2. False-negative reduction
and increase of the stored event
size (true positive plus false positive:
identified signal plus passed noise) as
effect of varying the decision threshold.

The machine learning methods generally return the
predictions as probabilities for positive and negative
classes. Furthermore, assigning a sample to a definite
class is made based on a set decision threshold (initial
value 0.5). The decision threshold can be tuned to reject
only clusters with a very high probability of noise and
save the rest. It is, however, essential to check that the
noise reduction remains sufficiently high. Fig. 2 presents
the number of false negatives normalized to the actual
number of positives as a function of the percentage of
all remaining clusters (true positives plus false positives)
in one event (Ar+Sc) for different decision thresholds,
as predicted with the DT method. The labels on the
curve represent the threshold of the decision for the
positive class: if the probability is below it, clusters
will be predicted as negative (noise). It is seen that
using the default threshold, 14% of good clusters are
lost, but almost all the noisy clusters are rejected (in
Ar+Sc reaction, the actual ratio of signal to noise is
30% to 70%). Decreasing the threshold, the number of
false negatives drops, but the number of passed noise
increases. Therefore, the event size (all saved clusters)
increases. With the threshold of 0.05, the event size
reduction is still considerable (55%) while the percentage of lost good clusters is less than 2%.
The threshold tuning can be used with all of the presented machine learning methods.

Finally, we are also interested in the computing time performance for the used classification
methods. One has to distinguish the training time from the prediction time. The prediction
time tpred is the relevant indicator for the applicability of the method as a part of the online
noise reduction system (trigger) during the data acquisition (DAQ) in the experiment. In order to
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answer precisely, which of the methods presented here is most suited to produce the fast decision,
we still have to finish testing all the models on the actual NA61/SHINE DAQ machines. The
results of these tests will be reported elsewhere. Current estimates indicate that all described
methods have tpred < 0.02 ms/cluster per corresponding CPU, i.e. below 2 s/event for Pb+Pb.
The periodic retraining of the model parameters takes more computing resources but can be
done very effectively on a GPU-based cluster.

4. Summary
The NA61/SHINE experiment needs an online noise filtering tool for future data taking, and
machine learning is a very efficient and robust solution for TPC clusters classification. Two
approaches were tested — using reconstructed and raw cluster information, and both gave very
good results. The algorithms are currently being implemented in the data acquisition software
as online tools, and the most efficient one will be used during future data-taking campaigns.
Under the method’s efficiency, we understand several factors: (a) the expected quality of
prediction (noise reduction, event compression, signal loss), which can be evaluated statistically
by accuracy, precision, and recall. (b) computation times needed for training and prediction. (c)
generalizability, which directs how often the algorithm has to be retrained, whether the distilled
decision governing patterns are general or varied from TPC to TPC and from collision system to
collision system. We answered some of these questions in the present study, but further detailed
investigations are in order.
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