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ABSTRACT
Semiempirical quantum chemistry has recently seen a renaissance with applications in high-throughput virtual screening and machine learn-
ing. The simplest semiempirical model still in widespread use in chemistry is Hückel’s π-electron molecular orbital theory. In this work, we
implemented a Hückel program using differentiable programming with the JAX framework based on limited modifications of a pre-existing
NumPy version. The auto-differentiable Hückel code enabled efficient gradient-based optimization of model parameters tuned for excitation
energies and molecular polarizabilities, respectively, based on as few as 100 data points from density functional theory simulations. In par-
ticular, the facile computation of the polarizability, a second-order derivative, via auto-differentiation shows the potential of differentiable
programming to bypass the need for numeric differentiation or derivation of analytical expressions. Finally, we employ gradient-based opti-
mization of atom identity for inverse design of organic electronic materials with targeted orbital energy gaps and polarizabilities. Optimized
structures are obtained after as little as 15 iterations using standard gradient-based optimization algorithms.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0137103

I. INTRODUCTION

Mathematical models that are both predictive and provide
insight are a cornerstone of the physical sciences. However, accu-
rate models for complicated processes often have no analytical
solution and require large computational resources to solve numer-
ically. At the same time, they also tend to be hard to interpret, as
highlighted by Mulliken’s famous quote “the more accurate the cal-

culations became, the more the concepts tended to vanish into thin
air.”1 Approximate models with problem-specific parameters are,
therefore, used in practice, but finding optimal values for these para-
meters can be non-trivial. Parameter optimization normally requires
considerable amounts of reference data and is done either manu-
ally or with algorithms that do not take advantage of first or higher
order derivatives as the corresponding analytical expressions are
often unavailable.
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In chemistry, the Schrödinger equation is an archetype of such
a mathematical model that describes the interactions between nuclei
and electrons in both atoms and molecules. However, (near) exact
solutions are too computationally expensive for most molecules of
interest. Quantum chemistry is an entire research field dedicated
to finding computationally efficient solutions to the Schrödinger
equation by introducing prudent approximations or reformula-
tions.2 One approach that was extremely successful in the early days
of quantum chemistry is the use of so-called semiempirical (SE)
approximations.3 The central idea is the use of problem-specific
parameters to simplify the mathematical form of the Schrödinger
equation. One of the earliest SE models was Hückel’s method to
treat the π-electrons in organic molecules.4–7 Traditionally, the para-
meters in the Hückel method were derived manually by human
scientists with the aim to reproduce properties for well-known ref-
erence molecules,8,9 or they were derived from more accurate calcu-
lations.10 Over the years, the Hückel method has been used for ped-
agogical purposes and for obtaining physical insight into problems
in organic chemistry11 and photochemistry and photophysics.12,13

However, it can also be used as a fast method for the prediction
of molecular properties14 and for inverse design of molecules with
desired target properties.15,16

The recent upsurge in machine learning (ML), and specifically
deep neural networks, created a need for robust and efficient algo-
rithms to co-optimize a very large number of model parameters
for various architectures. This problem is now solved by auto-
matic differentiation (AD), a technique to evaluate the derivatives
of mathematical expressions via the chain rule.17 Importantly, AD
removes the need to determine analytic expressions for derivatives
and makes complicated mathematical models amenable to gradient-
based optimization, allowing them to be applied in the same way
as general supervised machine learning models. Regular machine
learning approaches like deep neural networks are meant to be very
general mathematical models with a large number of parameters.
Through learning, they can adapt to essentially any problem pro-
vided sufficient training data are available. In contrast, physics-based
mathematical models have expressions that are specific to a certain
type of problem to be solved and feature a much smaller num-
ber of parameters. Implementing physical models, such as quan-
tum chemistry, within AD frameworks enables the use of default
learning algorithms for parameter optimization with a potentially
much smaller training data requirement. Along these lines, there are
auto-differentiable versions of Hartree–Fock,18,19 density functional
theory (DFT),19–23 excited state mean-field theory,24 and other appli-
cations in physical sciences.21,25–35 Over all, AD has been used to
accelerate the calculation of gradient physical methods and to blend
with ML algorithms. AD has also been fundamental for construct-
ing more accurate semiempirical methods when combined with ML
algorithms.36–40

In this work, we developed an auto-differentiable implemen-
tation of the Hückel method by minimal adaptation of an initially
developed NumPy41 version into the JAX42 AD framework. We
use this model to demonstrate the ease and efficiency of parameter
fitting based on computational reference datasets for both excita-
tion energies and molecular polarizabilities, a property calculated
via a second-order derivative. Additionally, we demonstrate that
our AD model allows for gradient-based inverse design by regard-
ing the atomic composition of a molecular system as an adjustable

parameter to find molecules with targeted properties.16 The corre-
sponding code is made publicly available, allowing it to be applied
to a large variety of chemical problems. As the Hückel calcula-
tions are extremely fast, our workflow allows for facile development
of property-specific models that can be readily used in molecular
generative models that require on the order of 105–106 property
evaluations.

This paper is structured as follows: we first present a short
introduction on automatic differentiation and the Hückel model
(Secs. II A and II B). Following that, we execute inverse design of
molecules as a fully differentiable procedure (Sec. III A) and per-
form optimization of the Hückel model parameters using modern
gradient-based methods (Sec. III B).

II. METHODS
A. Automatic differentiation

Gradients and high-order derivatives are at the core of physical
simulations. For physical models, common approaches to evaluate
derivatives of any order are closed-form solutions, symbolic differ-
entiation, and numerical differentiation, i.e., finite-differences.17,43

For any function represented as a computer program, AD17 is an
alternative way to compute gradients and higher-order derivatives.
AD makes use of the chain rule for differentiation to create a pro-
gram that computes the gradients during evaluation. There are two
main modes in AD, forward and reverse modes. For scalar functions,
reverse mode is more efficient as differentiation requires a single
evaluation of the function to fully compute the Jacobian. An exam-
ple of reverse mode differentiation is the backpropagation algorithm
that is used for training neural networks. For more details about AD,
we refer the reader to Ref. 17.

The optimization of ML models is mostly done with meth-
ods that require the gradient of the loss or error function (L) with
respect to the model parameters (θ), ∇θL(θ). All contemporary
ML libraries, e.g., Tensorflow,44 PyTorch,45 and JAX,42 are built
on top of an AD engine, which computes ∇θL(θ) for any ML
model. Given the robustness of AD libraries, differentiating physical
models43 could be done similarly to modern ML algorithms.

B. Hückel model
The Hückel model, a well-known semiempirical quantum

chemistry model,4–7 was first proposed to describe the interac-
tions of π-electrons in conjugated unsaturated hydrocarbons. In the
Hückel model, this interaction is restricted to electrons centered
at nearest-neighbor atoms. Generally, the Hückel model is consid-
ered a tight-binding type Hamiltonian [Eq. (1)], where the on-site
and hopping parameters are commonly denoted in the literature
as αℓ and βℓ,k, respectively. The matrix elements of the Hückel
Hamiltonian are given by

Hℓ,k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αℓ, ℓ = k,

βℓ,k, ℓ and k are adjacent,

0 otherwise,

(1)

where the αℓ parameters roughly represent the energy of an electron
in a p orbital of the corresponding element, and the βℓ,k parameters
describe the energy of an electron in the bond ℓ − k. Extensions of
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the Hückel Hamiltonian are possible and can, for instance, incorpo-
rate distance-dependence via βℓ,k = β0

ℓ,k g(Rℓ,k) (cf. Sec. III B). For
more details, we refer the reader to standard quantum chemistry
textbooks.46,47

Notably, any molecular property computed with the Hückel
method depends directly on the αℓ and βℓ,k parameters. Therefore,
by tuning their values, one can either construct a more accurate
Hückel model for a given molecule and property (cf. Sec. III B) or
search for atomic compositions that optimize target properties given
a preset connectivity (cf. Sec. III A). In Secs. III A and III B, we
demonstrate how AD can be used to facilitate both these types of
problems.

III. RESULTS AND DISCUSSION
A. Inverse molecular design

Inverse molecular design can be carried out via gradient-based
optimization methods, as shown in Ref. 16. The Hückel model can
be extended to search for the molecular structure with a desired
property. Both the diagonal and off-diagonal elements of the Hückel
Hamiltonian matrix can be described by a weighted average of atom
types at each site,

Hℓ,k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑M
i bi

ℓαi
ℓ, ℓ = k,

∑M
i ∑

M
j bi

ℓbj
kβij

ℓ,k, ℓ and k are adjacent,

0 otherwise,

(2)

where bi
ℓ is the weight of the atom of type i for site ℓ.

For a meaningful description, the weights of each site must be
normalized, i.e., ∑M

i bi
ℓ = 1. M is the total number of atom types

considered in the search. As a proof of concept, we consider eight
different molecular frameworks,16 which are displayed in Fig. 1.
The x-symbol indicates the sites with variable atom types to be

optimized. We only considered carbon (C), nitrogen (N), and phos-
phorus (P), i.e., M = 3, as these atom types each contribute one
electron, assuming that the remaining valences of carbon will be
satisfied with a bond to an implicit hydrogen atom, and can be
incorporated interchangeably at all sites with two neighbors in the
π-framework (Fig. 1). Therefore, we defined the following vector of
atom type weight parameters: bℓ = [bC

ℓ , bN
ℓ , bP

ℓ]. For clarity, b jointly
describes the bℓ parameters for all search sites in a molecule, i.e.,
b = {bℓ}N . For all the results presented, the values of the αℓ and β0

ℓ,k
parameters were previously optimized with respect to the desired
property (cf. Sec. III B).

For the set of eight molecules considered (cf. Fig. 1), we
search for the type of atom b at each site that gives the lowest
HOMO–LUMO gap [Eq. (3)], denoted as εHL, and the maximum
polarizability denoted as ⟨α̃⟩ [Eq. (4)]. εHL is defined as

εHL = ϵLUMO − ϵHOMO, (3)

where ϵHOMO and ϵLUMO are the eigenvalues of the highest occu-
pied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO), respectively. The polarizability function is defined
as

⟨α̃⟩ = 1
3
(α̃xx + α̃yy + α̃zz), (4)

where the α̃ij elements are the polarizability components defined
as16,48–51

α̃ij = −
∂2E

∂Fi∂Fj
. (5)

The Fi terms are the components of the electric field, F⃗ = [Fx, Fy, Fz],
and E is the electronic energy of the system. The elements of the
polarizability tensor are usually computed using an approximate
finite-differences (FD) approach called the finite field method, which

FIG. 1. The eight molecular frameworks considered for inverse molecular design in this work.16 The x-symbol represents atomic sites whose identity is optimized.
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was introduced in quantum chemistry by Cohen and Roothaan.48

The response of the energy of the system to the electric field is trun-
cated to second order, and numerical differentiation is used to solve
for the polarizability,52

α̃ii =
2E(0) − [E(−Fi) + E(+Fi)]

F2
i

, (6)

where the electronic energy is evaluated several times, typically three
times for each diagonal element, and four times for each cross
term. Equation (6) is homologous to approximating a second-order
derivative via central differences.52 Notably, if the parameters b are
to be optimized using a gradient-based method, the Jacobians∇bεHL
and∇b⟨α̃⟩ will also be constructed using an FD approach. However,
this will increase the number of energy evaluations needed, espe-
cially for ⟨α̃⟩ as the elements of ∇b⟨α̃⟩ are third-order derivatives:
∂

∂bℓ
∂2α̃ii
∂F2

i
. Thus, for a single element of ∇b⟨α̃⟩, using FD will require

18 energy calculations, O(18 × ∥b∥), where ∥b∥ is the total number
of parameters in b. For εHL, using FD, we only require O(2 × ∥b∥),
as∇bεHL is a first-order derivative.

In contrast, using modern AD frameworks, we can efficiently
compute, with a single energy calculation (i.e., one forward pass),
the Jacobian of εHL with respect to b. For ⟨α̃⟩, the number of total
energy evaluations depends on the dimension of the external field to
construct the diagonal elements of the Hessian [Eq. (5)], which we
also computed using AD. The Jacobian of ⟨α̃⟩ with respect to b, a
third-order derivative, can be constructed from only three energy
evaluations using AD,17 a drastic reduction from the 18 required
for FD.

After implementation of the Hückel model using the JAX
ecosystem,42 we could fully differentiate both observables, εHL and
⟨α̃⟩. Importantly, using JAX allowed us to convert our existing
Python-based Hückel code very easily by replacing calls to NumPy
with almost equivalent calls to the JAX.Numpy package. For opti-
mization, we used the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm via the JaxOpt library.53 Instead of using a constrained

optimization scheme to satisfy the site-normalization restriction for
b, we used the softmax function [Eq. (7)],

bi = exp(bi)
∑M

i exp(bi)
, (7)

where b represents the unnormalized b parameters.
Given the flexibility of the JAX ecosystem, we were able to test

other gradient optimization algorithms, such as Adam54 and canon-
ical gradient-descent, but found the BFGS to be most efficient as it
required, on average, 15 or less total iterations to reach convergence
(cf. Fig. 2). The Adam and gradient-descent algorithms, with an expo-
nential learning rate decay, each needed more than 30 iterations to
minimize εHL or ⟨α̃⟩. Notably, we initialized the values for all bi para-
meters by sampling a uniform distribution, bi ∼ U(−1, 1). Instead
of using literature Hückel parameters, we used our optimized para-
meters for each target observable where 5000 training molecules
were used. More details are described in Sec. III B. As can be seen
in Figs. 3 and 4, we found that our random initialization of b allows
us to sample a wide range of molecules with a broad range of values
for both objectives, εinitial

HL and ⟨α̃⟩initial.
Because of the statistical description of the molecules by the b

parameters, the optimal parameters (b∗) found by optimization are
not one-hot55 vectors that correspond to only one atom type per site
in the molecule but rather a linear combination of multiple atom
types. We define the observable value for this unphysical molecule as
yvirtual and that for the real molecule as yfeasible (i.e., the most probable
atom is picked for each site to define the real molecule). An exam-
ple of this is displayed for framework 3 in Fig. 5, where we show
the change in b throughout the optimization for both objectives (εHL
and ⟨α̃⟩). As we can observe, the change in εHL from the initial ran-
dom molecule to the optimal one is close to 1 eV. The optimizations
in Fig. 5 were done using Adam only to properly illustrate the change
in b as the change between iterations is smoother and more readily
discernible. Importantly, this shows that the generative model can
shift the distribution of properties toward the target property with

FIG. 2. Average learning curve for εHL (left panel) and ⟨α̃⟩ (right panel) for 250 random initial molecules based on the eight different molecular frameworks. We use the
BFGS algorithm to optimize both observables. More details about the random initialization are provided in the text.

J. Chem. Phys. 158, 104801 (2023); doi: 10.1063/5.0137103 158, 104801-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Histograms of the optimized HOMO–LUMO gap [Eq. (3)] for 250 random initial molecules (εinitial
HL ). The inset panels compare the similarity between εHL computed

with the value of b at the end of the optimization protocol (εvirtual
HL ) and the values of εHL selecting the most probable atoms given b∗ (εfeasible

HL ). Curves represent the derived
histograms using kernel density estimation, εfeasible

HL (solid), εvirtual
HL (dashed), and εinitial

HL (dotted-dashed). All molecules were optimized using the BFGS algorithm. Molecular
frameworks are displayed in Fig. 1.
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FIG. 4. Histograms of the optimized ⟨α̃⟩ [Eq. (4)] for 250 random initial molecules (⟨α̃ ⟩initial
). The inset panels compare the similarity between ⟨α̃⟩ computed with the

value of b at the end of the optimization protocol (⟨α̃ ⟩virtual
) and the values of ⟨α̃⟩ selecting the most probable atoms given b∗ (⟨α̃ ⟩feasible

). Curves represent the derived
histograms using kernel density estimation, ⟨α̃ ⟩feasible (solid), ⟨α̃ ⟩virtual (dashed), and ⟨α̃ ⟩initial (dotted-dashed). All molecules were optimized using the BFGS algorithm.
Molecular frameworks are displayed in Fig. 1.
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FIG. 5. Change in the parameters b for εHL (left panel) and ⟨α̃⟩ (right panel) during
the optimization of a single random initial virtual molecule based on framework 3.
For the initial, one intermediate and the final b, we plot the values of b for molecular
framework 3. For both panels, the filled markers represent the values of εHL and
⟨α̃⟩ computed with b at each iteration (virtual), and the empty markers represent
the observable values computed only with the most probable atoms given b at
each iteration (feasible). For each search site, we only considered three different
atom types, namely, C, N, and P; bℓ = [bC

ℓ, bN
ℓ, bP

ℓ]. The optimization of εHL and
⟨α̃⟩ with respect to b was carried out with Adam using a learning rate of 0.2. More
details are provided in the main text.

little dependence on the random initialization of b (Figs. 3 and 4).
We also observe that, for the majority of the optimized molecules,
yvirtual and yfeasible are linearly correlated, indicating that the opti-
mization converged essentially to feasible molecules. The property
distributions of yvirtual and yfeasible are reasonably close, even in the
few cases when the correlations are poor.

Figure 6 displays the molecules with the lowest εHL and max-
imum ⟨α̃⟩ from the ensemble of different optimizations. First, we
notice that there is a higher amount of phosphorus atoms in the
molecules when ⟨α̃⟩ was the target property. This is not unexpected
as molecular polarizabilities, while not simply a sum of the atomic
polarizabilities, are strongly influenced by the atomic polarizabilities
of the constituent atoms.56,57 As phosphorus is a third-row element

in the same group with nitrogen and atomic polarizability increases
significantly when increasing the row number, its atomic polar-
izability, both in free atoms58 and in molecules,59 is significantly
larger than both nitrogen and carbon. Therefore, incorporating a
large number of phosphorus atoms is expected to be a viable strat-
egy to maximize the molecular polarizability in all of the molecular
frameworks considered. For the molecules with the lowest εHL,
we see extensive incorporation of both nitrogen and phosphorus
atoms. This can be understood in terms of the effect of heteroatom
substitution on εHL within the HMO framework.60 For alternant
compounds, such as 1–8, εHL is unaffected by changing αℓ. The
main effect comes from changing βℓ,k and is expected to be largest
for bonds that feature a bonding interaction in the HOMO and
an anti-bonding interaction in the LUMO. A lowered βℓ,k leads to
decreased bonding interactions in the HOMO and consequently a
higher HOMO energy. For the LUMO, decreasing the anti-bonding
interactions by a lowered βℓ,k leads to a lowering of the energy.
The net effect by raising the HOMO and lowering the LUMO is
a decrease in the εHL gap. We can, therefore, expect optimization
to favor atom pairs with a low βℓ,k for bonds that feature a bond-
ing interaction in the HOMO and an anti-bonding interaction in
the LUMO. Inspection of the molecular orbitals of the optimized
frameworks (cf. Fig. S1) indeed reveals that these bonds are domi-
nantly between two N atoms, which feature the by far lowest βℓ,k at
0.159 (the next lowest is for P–P at 0.539). Control optimization with
the original parameter set by van Catledge10 instead gives molecules
with P–P at those bonds (cf. Fig. S2), consistent with the fact that
βP,P = 0.63 is the lowest for this parameter set.

For this proof of principle work, we picked two distinct molecu-
lar target properties. However, based on the framework employed, a
significant number of alternative properties could also be predicted
and, thus, used for inverse design via gradient-based optimization.
Additionally, any combined objective that is derived from mul-
tiple target properties can equally be optimized for via the same
types of algorithms out of the box. This is particularly interesting
for properties where Hückel models are known to provide reason-
able prediction accuracies, such as HOMO–LUMO gaps. The use
of gradient-based optimization algorithms enables fast convergence
toward the closest local optimum solution reducing the number
of evaluations and leading to significantly increased computation
time. This is particularly important as one of the main bottlenecks
in current approaches to inverse molecular design is the num-
ber of property evaluations needed to find an optimal structure.61

Going beyond single-objective optimization, one possible extension
of our presented approach is targeting multiple objectives via gen-
uine gradient-based multi-objective optimization, for example, both
εHL and ⟨α̃⟩. The standard approach to perform multi-objective opti-
mization is via property concatenation into a single function to use
standard single-objective algorithms, where algorithms like Bayesian
optimization are used.62–66 However, gradient-based multi-objective
optimization algorithms67 have been developed and they, together
with automatic differentiation, could be employed for both para-
meter optimization and inverse molecular design in order to explore
the corresponding Pareto fronts in a systematic manner. For more
details about multi-objective optimization and the Pareto front, we
refer the reader to Refs. 62, 66, and 68.

From a conceptual point of view, representing chemical struc-
ture subspaces in a parameterized form can greatly facilitate inverse
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FIG. 6. The molecular structures with the lowest HOMO–LUMO gap and maximum polarizability for each of the eight molecules considered (Fig. 1).

design16 as it allows the use of well-established approaches for para-
meter optimization to be used for the design of molecules. This
is particularly effective when used in combination with AD due
to its numerical stability and computational efficiency compared
to alternative means to compute gradients. To put this in context,
Xiao et al. estimated the speed-up of optimization over brute force
enumeration to be ∼102 for ten variable atoms and ∼103 for 12 vari-
able atoms.16 Consequently, this also makes the molecular size that
can still be feasibly treated in such an approach larger and thus,
essentially, expands the chemical subspace the generative model
can explore. However, one of the main downsides of the approach
implemented in this work is the reliance on fixed molecular frame-
works, which is common for alchemical formulations69 strongly
limiting the structural space considered in the optimization. Simple
extensions would be (i) the combination of methods to change the
molecular framework without relying on gradients with the method
presented here to modify the atom identities within the respective
framework or (ii) differentiable supermatrix structure where atom

vacancies are allowed.70 Ideally, future extensions should aim to find
prudent ways allowing for framework modifications based on gra-
dients as this potentially can lead to a dramatic reduction in the
number of structure optimization steps and, thus, the number of
property evaluations necessary. The extended Hückel model is also
compatible with the proposed methodology, even with ML learned
parameters,38 by considering a description of the overlap integrals
between different atom types, similar to Eq. (2).

B. Parameter optimization
Another important task that might sometimes be underappre-

ciated in computational chemistry is model parameter optimization.
Here, we leverage the flexibility of AD and optimize all free para-
meters of the Hückel model in the same way as it is done for
modern ML algorithms. Originally, the Hückel model is solely
based on electronic interactions between nearest-neighbor atoms,
which is typically also referred to as the tight-binding approximation

FIG. 7. Optimized αℓ parameters for different Hückel models: (a) β0
ℓ,k , (b) βlr

ℓ,k [Eq. (9)], and (c) βexp
ℓ,k [Eq. (8)]. All parameters reported were averaged over ten different

training datasets and different numbers of training molecules. Colored symbols and bars represent the mean and standard deviation of the optimized parameters averaged
over ten different datasets. The reference parameters (■-symbol) were taken from Ref. 10 and used as the initial parameters for all optimizations. We refer the reader to
the main text for the optimization details.
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[cf. βℓ,k parameters in Eq. (1)]. Beyond the standard Hückel model,
one can introduce atomic distance-dependence of the corresponding
interactions via βℓ,k = β0

ℓ,kg(Rℓ,k). For example, based on previous
work by Longuett-Higgins and Salem,71 βℓ,k has an exponential
dependence on Rℓ,k,

βexp
ℓ,k = −β0

ℓ,k exp
−

ΔRℓ,k
yℓ,k . (8)

A second functional form, which is based on the work of Su,
Schrieffer, and Heeger72,73 on conducting polymers, uses a linear
distance-dependence of the interactions,

βlr
ℓ,k = −β0

ℓ,k(1 − y−1
ℓ,kΔRℓ,k). (9)

For both expressions [see Eqs. (8) and (9)], ΔRℓ,k is the differ-
ence with respect to the reference bond length distance R0

ℓ,k, and yℓ,k

is a length scale parameter. By including R0
ℓ,k and yℓ,k in the set of

parameters for the Hückel model, the complete set of parameters
becomes θ = [αℓ, β0

ℓ,k, yℓ,k, R0
ℓ,k].

For this work, all initial αℓ and β0
ℓ,k parameters were taken

from the work of van Catledge,10 and the initial R0
ℓ,k parameters

were approximated from tables of standard bond lengths.74 The
length scale parameters (yℓ,k) were initially set to 0.3 Å, which
corresponds to the value that has been used for C–C in the
literature.75,76

We used a subset of the GDB-13 dataset77 that only consists
of molecules with π-systems for fitting our model parameters (see
the supplementary material for details on how the dataset was gen-
erated). Note that some molecules in the dataset could have n–π∗
transitions as their lowest excited state. We used a pool of 60 000
molecules, randomly sampled 100, 1000, and 5000 molecules from
this set, and used 1000 additional molecules as the validation set

FIG. 8. Optimized β0
ℓ,k parameters for different Hückel models: (a) β0

ℓ,k , (b) βlr
ℓ,k [Eq. (9)], and (c) βexp

ℓ,k [Eq. (8)]. All parameters reported were averaged over ten different
training datasets and different numbers of training molecules. Colored symbols and bars represent the mean and standard deviation of the optimized parameters averaged
over ten different datasets. The reference parameters (■-symbol) were taken from Ref. 10 and used as the initial parameters for all optimizations. We refer the reader to
the main text for the optimization details.

FIG. 9. Optimized yℓ,k parameters for different Hückel models: (a) βlr
ℓ,k [Eq. (9)] and (b) βexp

ℓ,k [Eq. (8)]. All parameters reported were averaged over ten different training
datasets and different numbers of training molecules. Colored symbols and bars represent the mean and standard deviation of the optimized parameters averaged over ten
different datasets. The reference parameters (■-symbol) were set to 0.3 Å and used as the initial parameters for all optimizations. We refer the reader to the main text for
the optimization details.
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FIG. 10. Optimized R0
ℓ,k parameters for different Hückel models: (a) βlr

ℓ,k [Eq. (9)] and (b) βexp
ℓ,k [Eq. (8)]. All parameters reported were averaged over ten different training

datasets and different numbers of training molecules. Colored symbols and bars represent the mean and standard deviation of the optimized parameters averaged over ten
different datasets. The reference parameters (■-symbol) were taken from Ref. 74 and used as the initial parameters for all optimizations. We refer the reader to the main
text for the optimization details.

FIG. 11. εHL predicted with the Hückel models and with the DFT level for 40k molecules not considered during training. The atom–atom interaction of the Hückel model
is described by a distance-independent parameter, β0

ℓ,k . Results computed with a Hückel with parameters taken from the literature (a), and parameters optimized with
N = 100 (b) and N = 5000 (c) data points. We refer the reader to the main text for the optimization details.
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to monitor the optimization procedure. To optimize θ, we used the
mean squared error as a loss function,

L(θ) = 1
2

N

∑
i
(ε̂ HL(Mi) − εHL(θ;Mi))2, (10)

where Mi is a single molecule of the training set, and ε̂HL is the ver-
tical excitation energy between the ground state and the first excited
singlet state computed at the TDA-SCS-ωPBEPP86/def2-SVP level
of theory.78,79 At the Hückel level of theory, this excitation energy
simply corresponds to the HOMO–LUMO gap (εHL) due to the dis-
regard for electron correlation. To compare the prediction of εHL
with the DFT reference values properly, we linearly transformed the
results of the Hückel model using two additional parameters, w0 and
w1 (as in the below equation),

εHL(θ;Mi) = w1 × εHL(αℓ, β0
ℓ,k, yℓ,k, R0

ℓ,k;Mi) +w0, (11)

where θ jointly represents all parameters of the model, i.e.,
θ = [αℓ, β0

ℓ,k, yℓ,k, R0
ℓ,k,w0,w1].

For the optimization of all free parameters, we used the AdamW
optimization algorithm,54 as implemented in the Optax library,80

with a learning rate of 0.02 and a weight decay of 10−4. Notably,
we considered various training scenarios that included different
values for the weight decay and the regularization of different sets of
the Hückel parameters. However, we found no impact on the accu-
racy of the model. The initial model parameters were gathered from
Refs. 10 and 74.

We optimized the parameters of three different Hückel models,
(i) the original one where βℓ,k is distance-independent (βℓ,k = β0

ℓ,k)
and both (ii) the exponential [Eq. (8)] and (iii) the linear [Eq. (9)]
distance-dependence functional forms. We want to emphasize that
any other analytic form for βℓ,k could be considered and AD makes
any of these expressions fully differentiable. Following the conven-
tion in the literature, we scaled the parameters β0

ℓ,k and αℓ with
respect to the carbon atom parameters according to αℓ = αℓ − αC
and β0

ℓ,k = β0
ℓ,k/β0

C,C. Notably, at least for our results in this work, we
found that including a regularization term in the loss function did
not impact the accuracy of the model. Finally, we found 20 epochs

FIG. 12. εHL predicted with the Hückel models and with the DFT level for 40k molecules not considered during training. The atom–atom interaction of the Hückel model is
described by a distance-dependent parameter, βlr

ℓ,k [Eq. (9)]. Results computed with a Hückel with parameters taken from the literature (a), and parameters optimized with
N = 100 (b) and N = 5000 (c) data points. We refer the reader to the main text for the optimization details.
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to be enough to minimize the loss function when the parameters are
initialized with values from Refs. 10 and 74.

In Figs. 7–10, we display the optimized values of the parameters
for the three different Hückel models considered. From the opti-
mized parameters, we observe that αO (i.e., the 2p orbital energy
parameter for oxygen), for all three models, is the one that differs
the most from the literature.10,74 While there are no good reference
data for yℓ,k to compare to, we observe, nevertheless, that the C–C
parameter value changes considerably from the initial value of 0.3.
For the β0

ℓ,k parameters, only the values for N–C resemble the litera-
ture values. Furthermore, the optimal values of R0

ℓ,k change the least
from the values in Ref. 74.

Using these optimized parameters, we predicted εHL for 40 000
additional test set molecules and compared the results with DFT ref-
erence data. The direct comparison is depicted in Figs. 11–13. By
optimizing all parameters there is a significant improvement in the
prediction of εHL using our semiempirical model. Notably, we also
found that considering a larger training dataset (N > 25 K) does not

have a significant impact in the accuracy of the Hückel model, which
suggests that either the corresponding molecules do not provide
any additional information with respect to the relevant interaction
parameters or that the model already is close to its best expected
performance and cannot be improved further. These results justify
the modern approaches where learning parameters for semiempiri-
cal methods is carried out with ML models.36–40 Another important
observation in that regard is that the analytical form of g(Rℓ,k) in
βℓ,k does not impact the accuracy of the model when optimized para-
meters are used. This suggests that none of these analytical forms of
βℓ,k sufficiently impact the underlying physics relevant for predict-
ing excitation energies in these molecules. Hence, we speculate that
non-nearest neighbor π–electron interactions or an explicit account
of σ–π interactions as in extended Hückel methods would be key for
more accurate models.

Next, we also optimized the parameters with respect to the
polarizability for the distance-independent Hückel model. Here, the
gradients needed for training are of third-order, e.g., ∂

∂αℓ

∂2α̃kk
∂F2

k
or

FIG. 13. εHL predicted with the Hückel models and with the DFT level for 40k molecules not considered during training. The atom–atom interaction of the Hückel model is
described by a distance-dependent parameter, βexp

ℓ,k [Eq. (8)]. Results computed with a Hückel model with parameters taken from the literature (a), and parameters optimized
with N = 100 (b) and N = 5000 (c) data points. We refer the reader to the main text for the optimization details.
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FIG. 14. ⟨α̃⟩ predicted with the Hückel models and with the DFT level for 40k molecules not considered during training. The atom–atom interaction of the Hückel model is
described by a distance-independent parameter, β0

ℓ,k . Results computed with a Hückel model with parameters taken from the literature (a) and (b) parameters optimized
with N = 100 data points. We refer the reader to the main text for the optimization details.

∂
∂βk,ℓ

∂2α̃kk
∂F2

k
, and can be computed more efficiently via AD, illustrat-

ing the potential of this approach. The molecular polarizabilities that
were used as reference data were computed using dftd4 (version
3.4.0)81–83 via the default methodology summing atomic polarizabil-
ities. Even though we observe a higher prediction accuracy when
the optimized parameters are used compared to the model before
parameter refinement, as depicted in Fig. 14, the accuracy of the
model still remains relatively low and does not improve anymore
when more training data are used. We suspect that this predic-
tion task is particularly challenging for the Hückel model as the
simulated polarizability only corresponds to the contribution from
π-electrons, while that of the reference data accounts for all the elec-
trons in the molecules. While we expect a significant portion of the
molecular polarizabilities to stem from the π-electrons, the contribu-
tions of the σ-electrons cannot be neglected and can dominate this
property. Nevertheless, this proof-of-concept application example
demonstrates the operational ease of conducting parameter refine-
ment of a given physics-based prediction model based on reference
data, even when derivative properties are targeted.

IV. CONCLUSIONS
In this work, we demonstrate the power of automatic dif-

ferentiation to enable the efficient use of physics-inspired models
for gradient-based optimization problems in the realm of molec-
ular chemistry via semiempirical Hückel models. In particular,
we showcase inverse molecular design via an alchemical problem
formulation using fixed molecular frameworks. This allows us to
perform structure optimization requiring only a very small num-
ber of intermediate structures to find local minima with respect to
the properties of interest utilizing gradients with respect to atom
identities at specific sites. While our approach is currently lim-
ited to a fixed molecular framework, performing optimizations over
the molecular composition space alone is far from trivial. Com-
pared to various alternative approaches, our implementation shows
a remarkably high molecular sampling efficiency due to efficient

utilization of gradient information in combination with powerful
gradient-based optimization algorithms. Additionally, we showcase
the ease of generating calibrated physics-based property prediction
models using high quality reference training data of relatively mod-
est size, again allowing for quick convergence of model parameters.
This is particularly important as most physical models that rely
on empirical parameters, such as semiempirical quantum chem-
istry models and density functional approximations, are still largely
optimized by hand, making the corresponding procedures tedious.
Compared to emerging approaches where neural networks are used
to dynamically predict semiempirical parameters on a per-molecule
basis,38 our “static” parameterization has the potential of a broader
applicability domain,84 which is crucial for inverse design. Thus,
we believe that our work will serve as an inspiration for the field
of computational chemistry in order to adopt the readily available
AD capabilities of mature ML programming frameworks allowing
us to accelerate the construction of ever more accurate physics-based
property simulation models.

SUPPLEMENTARY MATERIAL

The data that support the findings of this study are available
within the supplementary material.
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