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Abstract—Optical interconnects (OIs) based on vertical-cavity
surface-emitting lasers (VCSELs) are the main workhorse within
data centers, supercomputers, and even vehicles, providing
low-cost, high-rate connectivity. VCSELs must operate under
extremely harsh and time-varying conditions, thus requiring
adaptive and flexible designs of the communication chain. Such
designs can be built based on mathematical models (model-based
design) or learned from data (machine learning (ML) based
design). Various ML techniques have recently come to the fore-
front, replacing individual components in the transmitters and
receivers with deep neural networks. Beyond such component-
wise learning, end-to-end (E2E) autoencoder approaches can
reach the ultimate performance through co-optimizing entire
parameterized transmitters and receivers. This tutorial paper
aims to provide an overview of ML for VCSEL-based OIs,
with a focus on E2E approaches, dealing specifically with the
unique challenges facing VCSELs, such as the wide temperature
variations and complex models.

Index Terms—Machine learning, optical communications,
VCSEL-based optical interconnects, end-to-end learning.

I. INTRODUCTION

Since the 1980’s fiber optics has been deployed at a mas-
sive scale in communication networks, from high-capacity
transoceanic links and metropolitan networks to broadband
fiber-to-the-home connections [1]. Fiber optical communi-
cation forms the backbone of the network that carries the
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Fig. 1: A wide variety of applications rely on VCSELs and operate in
extremely harsh environments.

global Internet traffic. Because of the long reach of these
optical links (from several to thousands of km’s), single-mode
fiber (SMF) is exclusively used as the transmission medium.
Wavelengths are typically in the O-band (around 1310 nm, the
zero-dispersion wavelength) for short distances or in the C-
band (around 1550 nm, the minimum attenuation wavelength)
for long-haul communications. With the emergence of the
Internet, data centers were established to store, process, and
distribute data between service providers and users. Cloud
services currently provide a myriad of information technology
resources distributed over the global network. According to
the Cisco Visual Networking Index (VNI) for 2017-2022,
in the year 2017, 1.5 ZB of Internet Protocol (IP) traffic
was transmitted over the Internet, with projections of 4.8
ZB traffic for the year 2022 [2]. However, the amount of
data center traffic is even higher and amounted to 20 ZB in
2021, with more than 70% (15 ZB) staying within the data
center [3]. To sustain this traffic, a high-capacity network is
needed to interconnect compute, storage, and switch units.
Therefore, optical interconnects (OIs) have, to a large extent,
replaced copper-based interconnects in datacenter and high-
performance computing environments.

A. The Rise of VCSEL-based OIs

Within the data center, different optical technologies are
used at different levels of the network to provide the capacity
needed at a minimum of cost and power consumption [4]. At
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the higher levels, with distances of 100-300 m and above, de-
pending on the symbol rate, SMF is used together with O-band
externally modulated lasers or silicon photonics transceivers.
At the lower level, with a reach of 30-300 m and below,
again depending on the symbol rate, multimode fiber (MMF)
is used together with 850 nm vertical-cavity surface-emitting
lasers (VCSELs). At this level, cost and power efficiency
are of utmost importance because of the large number of
interconnects. The VCSEL is the most cost and power-efficient
light source [5]. It can be directly modulated at high speed
and enables the smallest footprint transceivers [6]. Over the
last decade, the modulation bandwidth of 850 nm VCSELs has
increased from 20 to over 30 GHz [7], especially through de-
signs based on photon-photon resonance in coherent arrays [8],
[9]. Similarly, a bandwidth density increase is also possible
by using multicore fiber (MCF) coupled to on-chip VCSEL
arrays [10]. Such a bandwidth increase has enabled VCSEL-
based short-reach OIs with lane rates of 56 Gbps (e.g., 400GbE
SR8, InfiniBand HDR), using Pulse-Amplitude Modulation 4-
level (PAM4) modulation at 28 Gbaud [11]. Lane rates of 112
Gbps (e.g., 800GbE SR8, InfiniBand NDR), again using PAM4
(56 Gbaud), will follow, enabled by commercially available
VCSELs with bandwidth approaching 30 GHz [12], [13]. Such
interconnects, with superior power and cost efficiency and
operating at 850 nm, use multimode VCSELs, MMF, and
large-size photodetectors for tolerance to misalignment, which
significantly reduces cost as it allows for passive alignment
during transceiver assembly. Further developments of VCSELs
may enable lane rates of 224 Gbps (e.g., InfiniBand XDR
at 112 Gbaud PAM4) and aggregate transceiver capacities
beyond 1 Tbps. Recently, VI Systems demonstrated a single
lane 200 Gbps high speed data transmission experiment with
their fiber coupled test 850 nm VCSEL module over a distance
of up to 100 meter [14]. Furthermore, to increase data rates to
224 Gbps, the use of a discrete multitone (DMT) transceiver
is proposed [15]. VCSEL revenues for datacom are expected
to exceed 2 BUSD in 2027 [16]. In comparison, the optical
datacom transceiver market is expected to grow from 5.9
BUSD in 2021 to 16.8 BUSD in 2027 [17].

Optical transceivers are pluggable, which means they are
attached to the front panel of, e.g., a server or switch.
With increasing compute and switch capacity, and therefore
increasing interconnect bandwidth, the electrical interconnects
transporting data from the integrated circuits (ICs) on the cir-
cuit boards to the optical transceivers on the front panel cannot
provide the bandwidth or the low loss transmission needed
and the optical transceiver port count and density becomes
excessive. Therefore, the transceivers must migrate into the
units close to the compute or switch ICs. This is referred to
as co-packaged optics [18] and may require the transceivers to
operate at significantly higher temperatures. This represents a
much harsher environment, which creates challenges for high
data-rate operations. Similar needs for and requirements on
VCSEL-based transceivers, in terms of, e.g., capacity, power
consumption, and temperature, are found in high-performance
computing systems (supercomputers) [19]. In fact, there is
a data center-supercomputer convergence as (big) data is in-
creasingly processed in data centers using artificial intelligence

(AI) and deep learning tools [20]. This requires low intercon-
nect latency, in addition to high interconnect capacity, high
interconnect density, and low power consumption. Finally,
short-reach OIs are considered for other types of networks
to enable higher interconnect capacity. For example auto-
motive optical networking which may develop into the next
large-volume application for datacom VCSELs. Automotive
networking represents another harsh environment application,
with an operating temperature from -40 to +125°C. VCSELs
for this application are under development [21], [22] and
VCSEL-based networking standards are developed in the IEEE
P802.3cz Multi-Gigabit Optical Automotive Ethernet Task
Force for lane rates up to 50 Gbps [23]. Optical networking
in radars and other military/defense systems is yet another
harsh environment application for which rugged, high-capacity
VCSEL-based transceivers are developed [24].

B. VCSEL-based OIs: from Model-based to ML-based

These considerations of cost, energy efficiency, and tem-
perature variations have several implications in terms of
communication capacity. A model of the end-to-end (E2E)
channel must be available for a communication system to
operate close to its theoretical capacity. Modeling individual
components is already very challenging, let alone modeling
the E2E channel. Secondly, even if a model is available,
it would be overly complex, involving the concatenation of
many nonlinear, frequency-selective, and noisy sub-models,
which in turn precludes the possibility of designing an optimal
transmitter and the corresponding optimal receiver. Finally,
the severe temperature swings demand both transmitter and
receiver adaptivity to select the best modulation format, code
rate, and waveform parameters to maximize data throughput
from the lowest to the highest temperature.

Model-based communication systems are built on the com-
bination of two principles—functional decomposition and in-
terface specification—in order to tame the complexity and
thus cost and energy consumption. The functional decom-
position (see Fig. 2-(a)) involves both the separation into
layers (e.g., physical layer and access control layer) as
well as the separation within a layer. In the physical layer,
functional decomposition involves separating source coding,
channel coding, modulation, pilot embedding and waveform
selection at the transmitter and their inverse operations fil-
tering, synchronization and channel estimation, equalization,
demodulation, and decoding at the receiver. Complementary
to the functional decomposition is the interface specification,
which determines the input and output of each function,
thereby connecting it coherently with other functional blocks.
The combination of functional decomposition and interface
specification has been successfully applied to various wired
and wireless communication systems, provided the channel
model is not overly complicated. Only for specific channels,
including the additive white Gaussian noise (AWGN) channel,
a truly optimal functional decomposition in terms of capacity
is possible. For most real channels, each functional block is
optimized separately, often based on a local criterion, in the
hope that good E2E performance can be achieved in terms of
rate, latency, etc.
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Fig. 2: (a) A conventional approach to VCSEL-based fiber-optical communication, in which several functions (e.g., encoding, modulation, pulse shaping) at the
transmitter (Tx) convert incoming bits to a waveform, while the receiver (Rx) applies functions (e.g., synchronization, equalization, demodulation) to recover
the data. (b) An E2E ML perspective, where transmitter and receiver are replaced by NNs (in case of the receiver also with a functional decomposition), and
where the channel may also be, in part, modeled by a NN. The entire system is learned E2E via a suitable loss function.

Machine learning (ML) provides an attractive alternative
to traditional model-based approaches to overcome the three
challenges (modeling, design, and adaptivity) [25]. In par-
ticular, deep ML, which harnesses the flexibility and mas-
sive over-parametrization to perform classification, regression,
clustering, or rewards-driven action-taking, has been shown
to outperform most man-made approaches in nearly all engi-
neering fields, including language and image processing and
games. Models of an E2E system can be inferred using the
data obtained from the communication system. From classical
models of components, neural network (NN) equivalents can
be constructed and refined using data and then plugged into
learning methods to optimize communication parameters or
algorithms. Receiver-side algorithms for equalization, synchro-
nization, data detection, and decoding can be learned either by
mimicking conventional algorithms and then further optimiz-
ing performance or using a deep neural network (DNN) from
scratch [26]–[30]. Adaptivity can be built into these learned
models and methods, for example, by providing suitable inputs
from the external environment, which describes the state of
the outside world. Such inputs can comprise the temperature
but can also be any input from which the ML model can
learn suitable embeddings and remove non-salient informa-
tion. Transmitter-side methods for encoding, modulation, pre-
distortion, and waveform synthesis are generally harder to
learn as they require a matching receiver [31].

Within the field of (deep) ML, a paradigm shift occurred
with the introduction of E2E learning, driven mainly by the
use of autoencoders (AE) and alternating optimization [32].
An AE (see Fig. 2-(b)) mimics a communication system, in
that it comprises an encoder NN (the transmitter, converting
bits to waveforms), a bottleneck (the propagation channel), and
a decoder NN (the receiver, converting the received waveform
back to bits). When differentiable channel models are available
(possibly in the form of a NN), the encoder and decoder can be
jointly optimized, by propagating gradients of the loss function
from the decoder, over the bottleneck, through the encoder.
With sufficient training and optimization of hyperparameters,
such E2E optimization has been successful in a wide variety
of applications [33]–[36], including in fiber-optical communi-
cations [37]–[42]. Nevertheless, the AE has two drawbacks: (i)
it does not rely on the principle of functional decomposition
and (ii) it requires a differentiable channel model. The former
drawback can be addressed by decomposing the encoder and
decoder into smaller NNs and constraining their interface

based on the conventional model-based designs. This provides
a means to perform E2E learning with a clearly identifiable
modulator, waveform generator, equalizer, decoder, etc. The
second drawback is addressed by either first learning a model
of the channel and/or components, so that a differentiable
NN can be used as a proxy of the real non-differentiable
channel, or by using so-called gradient free methods, such
as reinforcement learning.

In summary, while E2E learning has the potential to learn
an optimal communication transmitter and receiver without
any a priori model, it can benefit significantly by providing a
functional decomposition and from model-based knowledge.
Therefore, it is natural that OIs can benefit from using ML
techniques, especially E2E learning techniques, given the rich
body of literature providing model-based knowledge on VC-
SELs. However, given the harsh operating conditions of VC-
SELs, and the complexity of modeling VCSELs, the E2E tech-
niques applied to conventional intensity-modulation/direct-
detection (IM/DD) links cannot be directly applied to VCSEL-
based OIs. Therefore, reviewing the characteristics of VCSEL
and the challenges in ML-based VCSEL modeling becomes
imperative. Then, a comprehensive review of the existing ML-
based approaches in designing specific components of OIs is
necessary. Finally, it is crucial to explore the opportunities in
E2E learning in the context of VCSEL-based OIs.

C. Paper Contributions

There have been several reviews and surveys on ML for
optical networking [43], for recent developments of short-
reach optical communications [44], and for short-reach com-
munications [45]. Unlike [44] and [45], we do not focus on
short-reach communications but on VCSEL-based OIs, which
bring several modeling challenges not found in conventional
IM/DD systems. Unlike [46]–[48], our tutorial’s primary focus
is not on component-specific learning, such as nonlinearity
compensation or optical performance monitoring but also
extends to E2E learning using AEs. Finally, beyond being
a survey that summarizes state-of-the-art, this tutorial is also
intended for researchers in optical communication who require
some demonstration and insights to model O/E components
using ML and utilize them in the context of E2E learning.
Our contributions are as follows:

1) Introduction of VCSELs and ML-based modeling of
their dynamics: We present a substantial introduction
to VCSELs, including circuit level models, followed
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by a detailed study on challenges in modeling VCSEL
dynamics. We then present Volterra series and NN-based
methods to construct so-called surrogate models, which
can capture VCSEL characteristics with controllable fi-
delity. These models form an essential building block in
E2E AE-based designs.

2) Review of ML-based pre- and post-compensation
methods: We comprehensively review ML-based equal-
ization and digital pre-distortion/nonlinearity compen-
sation techniques. We present compensation techniques
that can work in the presence and absence of surrogate
models of the VCSEL, and show how ML-based methods
can generally match and sometimes outperform standard
model-based approaches.

3) In-depth discussion on AEs for VCSEL-based OIs:
Most importantly, we present the state-of-the-art AE-
based E2E techniques used in fiber-optic commu-
nications, especially in conventional IM/DD systems
and coherent systems. We comprehensively discuss the
methodology, the challenges, and the opportunities, like
temperature-adaptive transceivers, and gradient-free ap-
proaches, in AE-based E2E learning for VCSEL-based
OIs.

The remainder of this tutorial is organized as follows. In
Section II, we provide an introduction to VCSELs and their
dynamic. Then, in Section III, we study different surrogate
models, including circuit models, Volterra series models, and
NN-based models. In Section IV, we review pre- and post-
compensation of individual components, and show how ML-
based methods can be applied to replace standard model-based
counterparts. The concepts from these earlier sections are then
integrated into Section V, which deals with AEs. We show
how the important challenges in VCSEL-based IOs can be
addressed through E2E learning. Finally, Section VI wraps up
the tutorial with our main conclusions and opportunities for
future research in this emerging area.

II. INTRODUCTION TO VCSELS

In this section, we introduce the history of VCSELs, the
basic structure of a VCSEL, and provide an introduction to
its fundamental operating characteristics. We end the section
with a discussion on the importance of modeling VCSELs.

A. VCSELs: History and Main Properties

Demonstrated in 1979 [49], the VCSEL has since become
an attractive choice for applications, ranging from OIs [50],
to sensing and high-power applications (VCSEL arrays) [51].
A simplified cross-section of a typical VCSEL is shown in
Fig. 3. It contains an active region composed of quantum wells
(QWs), and a separate confinement heterostructure (SCH)
sandwiched between a top and a bottom distributed Bragg
reflector (DBR) made of epitaxial (e.g., AlGaAs) or dielectric
materials (e.g., SiO2/TiO2 [52]). As the active region is thin
(below 100 nm) and thus gain is limited, many pairs (on the
order of 20-30) of DBR layers with width ∼ λ/4 are required
to create sufficiently high reflectivities (>99%) [53] to achieve

Oxide layer

Active region

Undoped substrate

p-DBR

n-DBR

p-contact ring

n-contact

Contact pad

Silicon nitride

Contact pad

Fig. 3: Simplified VCSEL cross-section.

lasing. Commonly the upper and lower DBRs are p- and n-
doped and contacted via metal pads to enable electrical pump-
ing of the active region. Transverse confinement of current
and optical modes can be achieved using various methods.
For datacom applications, oxidizing a high Al-content AlGaAs
layer to provide a current isolating annulus [54], called oxide
aperture or oxide layer, is commonly used. This also provides
an index step that guides the light inside the VCSEL.

The VCSEL differs from the edge-emitting laser (EEL)
in many aspects. First and foremost, the geometry of the
laser is different. The VCSEL has its cavity in the vertical
direction, perpendicular to the substrate, and parallel to the
current direction through the active area. In contrast, the EEL’s
cavity is formed parallel to the substrate by cleaving. Contrary
to EELs, VCSELs have the distinct advantage of on-wafer
testing during fabrication, lowering costs and maximizing
device fabrication throughput. The circular geometry of the
VCSEL provides yet another advantage over EELs, enabling
an output beam that allows for easier fiber coupling. However,
the VCSEL has a small volume and relatively high resistance
and suffers from performance-lowering thermal effects.

The static and dynamic responses are of primary importance
in studying the performance of a VCSEL and in the modeling
of VCSELs. The dynamic response is further classified majorly
into two essential subcategories: small-signal and large-signal
response.

B. Static Figures of Merit

Static performance measurement is performed by sweeping
the bias current Ib of the VCSEL and then measuring the
voltage applied to the VCSEL and the optical output power
Popt. Some static figures of merit (FoM) for a VCSEL for
a fixed operating temperature can be seen in Fig. 4, where a
current-power-voltage (IPV)-measurement is shown.

• Threshold current: Threshold current is the current at
which optical gain balances optical loss and the VCSEL
”turns on”.

• Slope efficiency: It is measured in Watts per Ampere and
relates the output power increase to the input current
increase above the threshold. A low threshold current
is associated with low resonator loss. However, low-loss
resonators out-couple little light, so output power and
slope efficiency are low. Therefore, threshold current and
slope efficiency are natural trade-offs.

• Roll-over: As expected for laser diodes, the light-current
curve has a constant slope above the threshold but shows
a roll-over for higher currents due to internal heating. The
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Fig. 4: Measured IPV of a VCSEL with marked figures of merit: threshold
current, roll-over current, slope efficiency and differential resistance.

roll-over current signifies the current at which maximum
optical output power is reached, after which thermal
effects cause more heat to be generated and causes a drop
in the output power.

• Differential resistance: It is the slope of the current-
voltage curve and is measured in Ohms. It is non-linear
and hence changes with the current. Low differential
resistance is essential for lower heat generation.

Note that all the previously described operating character-
istics will vary as a function of temperature, which is an
important parameter to be included in the application design.

C. Dynamic Figures of Merit - Small-signal response

The capacity of VCSEL-based OIs is directly related to the
VCSEL dynamics. Data is encoded on the light emitted by the
VCSEL by modulating the intensity through the input current.
The VCSEL must be fast enough to react to changes in the
current at the data-rate considered. This necessitates studying
the dynamic response of the VCSEL, which can be described
by a set of rate equations, which take into account the process
behind and interactions between injected free carriers and
photons in the cavity [55]. The rate equations directly relate the
active region’s excess carrier density and the cavity’s photon
density with the current through the VCSEL. In other words,
the rate equations relate the current with the output optical
power Popt. Perturbing the rate equations around a bias current
Ib using a first-order Taylor expansion and measuring the
differential output power yields us the intrinsic small-signal
modulation response, whose two-pole transfer function is [55]

Hint(f) = ηd
hc

λ0q
· f2

r

f2
r − f2 + jγ

f

2π

, (1)

where ηd is the differential quantum efficiency, h the Planck
constant, c the speed of light, λ0 the lasing wavelength in
vacuum, q the elementary charge, fr the resonance frequency
and γ the damping factor. The resonance frequency fr can be
approximated as [55]

fr ≈ 1

2π

√
υgg0S

τp (1 + εS)
, (2)

where υg is the group velocity, g0 the nominal differential
gain dG0/dN (G0 represents the unsaturated gain such that
the material gain becomes G = G0/(1 + εS)), S the photon
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Fig. 5: Simulated intrinsic VCSEL response with parasitic effects neglected,
for four representative bias currents Ib1 < Ib2 < Ib3 < Ib4. The black
dashed line indicates the 3 dB bandwidth.

density in the cavity, τp the photon lifetime and ε the gain
compression factor.

Summarizing equations (1) and (2), a high differential gain,
high photon density, and a short photon lifetime are all ben-
eficial for increasing the VCSEL resonance frequency, which
is desired, as this increases the modulation bandwidth of the
VCSELs. VCSEL damping is also relevant for the modulation
response – severely under and overdamped VCSELs can
constitute a problem for datacom applications. Underdamped
VCSELs result in large over- and undershoot and ringing
effects when modulated with data. Overdamped VCSELs,
on the other hand, have too slow rise and fall times to be
efficiently modulated. A flat (critically damped) or close-to-
flat VCSEL response is the best for datacom applications.

The small-signal modulation response is measured by S21

S21 = 20 log10

∣∣Hint(f)
∣∣∣∣Hint(0)
∣∣ , (3)

and is plotted in Fig. 5 for increasing bias current, showing
the movement of fr and that the VCSEL reaches a critically
damped (flat) response at some current.

D. Dynamic Figures of Merit - Large-signal response

The small-signal characteristics are insufficient to predict
the entire performance of the VCSEL, as they do not capture
the non-linear behavior of the device. A large-signal simulation
is usually performed by back-to-back link simulation. For a
modulation scheme of choice, a current source is typically
used to bias the VCSEL, and a random bit sequence is used
to supply a modulation voltage or current. They are combined
to provide the drive current I at the input of the VCSEL.
The optical output power Popt is measured employing a
photodetector. Eye diagrams are crucial to assess the large-
signal FoMs of the VCSELs such as rise and fall time,
overshoots, deterministic jitter, and noise-margin.

VCSELs in datacom use IM/DD schemes exclusively. Typ-
ically, non-return-to-zero (NRZ) on-off keying (OOK) is used.
However, at higher data-rates, a transition to PAM4 has
occurred. So far, 8-level PAM (PAM8) has not been used
in commercial datacom links. Instead, the data-rate and the
number of lanes in OOK and PAM4 transmission have been
increased to deal with higher bandwidth demand. Also, all
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parameters related to the modulation response must be con-
sidered and balanced for datacom VCSELs, with optimization
for either OOK or PAM4, as the optimal VCSEL parameters
are different for different modulation formats and baud rates
[56]–[58].

E. The Need for Modeling

VCSEL modeling is an essential part of optimizing OIs
because the VCSEL is one of the key bandwidth-limiting
elements in such links. While optical and O/E elements such
as the fiber and photodetector can be modeled with low to
moderate complexity with reasonable accuracy, higher-speed
VCSELs require a more complex description due to their
inherent nonlinearity. It is not a simple nonlinearity in which
the instantaneous output is dependent on the instantaneous
input, but also on the past samples, due to the differential
equations that govern the operations of VCSELs. Furthermore,
high-speed VCSELs in datacom require optimization of dif-
ferent parameters than, e.g., VCSELs for sensing. Since the
intrinsic bandwidth of VCSELs is high, minimizing limitations
imposed by thermal and parasitic effects is vital especially in
co-packaged optics.1

In short, it is imperative to develop models that can accu-
rately capture for various temperatures, (i)the static response,
(ii) the small-signal response or the modulation response, and
(iii) the large-signal response evaluated by means of the eye
diagram. In the following section, we discuss in detail the
several VCSEL-modeling approaches available.

III. SURROGATE MODELS FOR VCSELS

We begin this section by reviewing the classic circuit models
and providing one such circuit-model example. We then mo-
tivate the necessity of developing suitable models for use in
an E2E-learning setup. In this context, we introduce Volterra-
series-based models and NN models. We finally provide some
discussions on the opportunities in ML-based modeling.

A. Circuit Models

The main large-signal VCSEL modeling efforts have fo-
cused on VCSEL circuit-level models, popularized in the 90s
by P.V. Mena [60] This approach enables efficient and fast
co-simulation with driving electronics and can use a physi-
cal rate equation-based description of the VCSEL combined
with essential input impedance circuit elements. Circuit-level
VCSEL models, such as [60]–[69], are often hybrid models
that employ rate equations, and therefore fall in-between a
purely physical and empirical description. While physical
models might provide critical feedback to device designers,
it is harder to fit simulations to measurements and extract
physical parameters. On the other hand, empirical models are

1From a structural perspective, there are two characteristics that delineate
a high-speed VCSEL. A high-speed VCSEL typically employs short active
regions designed with strained InGaAs QWs inside an AlGaAs SCH to
increase the differential gain [59]. Thermal management is mainly done by
modulation doping and interface grading of the DBRs, where heat is mainly
generated through resistive Joule heating and free carrier absorption (FCA).

UT

Igen CT

Rth

Uamb

UA

Icap Iesc Ist,ACA Isp,A

US

Ist,S Itm ~ PoptIabsIsp CS Ibm

RLC input
impedance circuit

(device specific layout)

U
I

USCH

ISCH
UB

Iinj Iesc IleakCB Isp,B Icap

Input impedance

Output

Input

SCH carriers

QW carriers Photons in resonator

Thermal effects

Fig. 6: A circuit-level large-signal equivalent model for datacom VCSELs,
with five interdependent sub-circuits each governing a group of physical
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ambient temperatures.

easier to fit and can reproduce the behavior better. However,
they provide less insight into the physics of the device.

The essential parts of any circuit-level VCSEL model in-
clude an input impedance sub-circuit, tracking of the carriers
in the QWs and photons in the resonator, and thermal effects.

An example of a circuit model can be seen in Fig. 6, where
five interdependent sub-circuits are shown, and each keeps
track of a group of physical phenomena: the input impedance,
the carriers in the QWs, the carriers in the SCH, the photons
in the resonator and thermal effects:

1) The input impedance is typically modeled by including
the VCSEL pad, mesa, and active area. Impedance mod-
eling of the active layer typically includes either only
RC-elements [61], [62], [64] or RC-elements together
with voltage sources [60], [65], [66], [69], often in
combination with diodes. At the input of this circuit, the
current I and the voltage U represent the VCSEL drive
current (biased around Ib) and VCSEL voltage drop,
respectively.

2) The carrier tracking can be separated into two sub-
circuits, one for the more essential QW-bound carriers,
which dictates the stimulated and spontaneous emission
rates, and the other for the SCH continuum state carrier
tracking.

3) The photons created in the resonator through stimulated
and spontaneous emission must be accurately tracked, as
the rates of mirror loss and free carrier absorption depend
on the photon density. This also dictates the output power
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Fig. 8: Coefficients of the Volterra kernels.

through the VCSEL surface. At the output of this circuit,
the current Itm provides the optical output power from
the VCSEL, Popt such that Popt ∝ Itm.

4) Thermal effects are usually modeled using a thermal
impedance description, with an offset for the ambient
temperature and a thermal time constant to predict the
dynamic thermal behavior.

5) Apart from the sub-circuits mentioned above, noise
should be included in VCSEL models. Since phase noise
is of no interest in IM/DD links, only intensity noise
should be included, either through an amplified sponta-
neous emission approximation or on a per-process basis.

Such circuits can reproduce VCSEL static behavior, e.g.,
optical output power vs. input current shown in Fig. 7, and
also the dynamic behavior in the small-signal domains (the
modulation response) and the large-signal domains (the output
power eye-diagrams) accurately. However, the circuit-level
implementations suffer from two drawbacks: convergence of
simulations and the requirement of complex full-link simu-
lations. In other words, since they are restricted to use with
circuit simulators, the entire link must be modeled in a circuit
simulator. Furthermore, circuit-level models are more critical
to IC design but are not amenable to E2E learning using AEs.
Also, the differential equations governing the VCSEL may
also not be directly amenable to gradient back-propagation and
depend on the specifics of the employed differential equations
solver [70]. Therefore, incorporating the rate equations in
the E2E optimization of AEs is challenging. It is necessary
to develop ”ML-friendly” models that capture the operating
characteristics of VCSELs.

B. Volterra Series

A tool that enables the modeling of the nonlinear behavior
of the VCSELs and can easily fit into an E2E AE is the
Volterra series. A discrete system with input x(n) and output
y(n) for n ∈ Z can be expanded into a P -th order Volterra
series as

y(n) = h0 +

P∑
p=1

b∑
τ1=a

· · ·
b∑

τp=a

hp(τ1, ..., τp)

P∏
j=1

x(n− τj), (4)

where h0 is a constant, hp(τ1, ..., τp) are the p-th order
discrete-time Volterra kernels and τ1, . . . τp are time indices.
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(d) TDNN model.
Fig. 9: 56 Gbps PAM4 eye diagram of the drive current (a), rate equation (b),
Volterra series (c) and TDNN (d) VCSEL models.

When limited to second order, (4) reduces to

y(n) = h0 +

b∑
τ1=a

h1(τ1)x(n− τ1)+

b∑
τ1=a

b∑
τ2=a

h2(τ1, τ2)x(n− τ1)x(n− τ2).

(5)

The second-order Volterra series, as given by (5), has three
components in the sum: the DC offset component, the convo-
lution of the input signal with the first-order kernel, which is an
impulse response, and finally a two-dimensional convolution
term with a two-dimensional kernel, which describes the
scaling of a product of time-delayed versions of the input
signal.

Example. We present an example of applying a second-order
Volterra series to a VCSEL model, with the input drive current
I represented by the input x(n) and the optical output power
Popt represented by the output y(n). A simple rate equation
numerical model was first implemented to obtain the white
Gaussian training data source of 6 mA standard deviation at
8 mA bias current. The Volterra kernels were then estimated
using the Lee–Schetzen’s correlation method [71]. Identified
first-order kernels are shown in Fig. 8a, and the second-order
kernels are shown in Fig. 8b. To compare the Volterra series
with the baseline rate equation model, 56 Gbps PAM-4 data
was set as a stimulus to both models. The eye diagram of
the model stimulus signal is shown in Fig. 9a 2, the rate
equation model output is illustrated in Fig 9b, and the Volterra
model output is illustrated in Fig. 9c. The normalized root-
mean-square error (NRMSE) between the Volterra and the rate
equation models was 2%. The coefficient of determination3

was 0.9959. The Volterra series is inherently differentiable,

2The driver at the transmitter was modeled as a 4th order Bessel filter with
cutoff frequency of 60% of the baudrate (56 Gbps) with no pre-emphasis or
noise. The pseudorandom binary sequence (PRBS) sequence used is the short
stress pattern random quaternary (SSPRQ) sequence.

3The coefficient of determination is a number between 0 and 1 that measures
how well a statistical model predicts an outcome.
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Fig. 10: A block diagram of a TDNN with one hidden layer.

accurately models the large-signal response, and, therefore,
can be used as a surrogate model for the VCSELs in AE-based
E2E learning.

C. Neural Network (NN) based VCSEL models

Just as the nonlinear transfer function was modeled using
the Volterra series, it can be modeled using a NN. NNs are
information processing systems comprising an input layer,
one or more hidden layers—where intermediate processing or
computation is done—and an output layer containing multiple
nodes. The nodes in two adjacent layers are interconnected
with an assigned variable weight. The activation function,
which models the nonlinearity, defines the output of a node
given an input. The forward-propagation process provides the
inference given input, and the backpropagation updates the
weights of the nodes until the chosen loss function, which
compares the target and predicted output values, is minimized.

Since the VCSEL drive current and the optical output power
are time functions, an appropriate NN structure is the time
domain neural network (TDNN), traditionally used in speech
recognition [72]. TDNNs are a subset of convolutional neural
networks (CNNs) working on one-dimensional input. The
most basic TDNN to model a VCSEL has an input layer with
some delays to hold the input waveform samples, a single
hidden layer, and an output layer, as shown in Fig. 10.

Example. In our case, to model the VCSELs, the input layer
has 22 delays, and the hidden layer has 22 elements and uses a
hyperbolic tangent sigmoid activation function. The network
is trained using the same type of signal which was used to
identify the Volterra kernels, i.e., white Gaussian noise applied
to the rate equation model. The NN parameters are updated
during the backpropagation using a variation of stochastic
gradient descent, and the loss function is the mean-square
error (MSE). The large-signal output to the 56 Gbps PAM-
4 input drive current is shown in Fig. 9d. The resultant eye
diagram is very close to the Volterra series and the rate
equation model. The coefficient of determination was 0.9991,
and the NRMSE was 1%, which is better than the Volterra
series.

D. Opportunities in ML-based modeling of VCSELs

Both the Volterra and the TDNN models are differentiable
and can be used as VCSEL surrogates to train an AE. They
directly relate the optical output power to the input drive

current. They can potentially capture the large-signal response
of the VCSELs with a high degree of precision. However,
there is no guarantee that such a NN would capture all
the characteristics of VCSEL, especially the bias current vs.
optical output power (Fig. 7) or the small-signal response
(Fig. 5) including the thermal effects, across all operating
temperatures, with limited training samples.4 A NN model that
captures the small-signal response can be applied to varying
operating data-rates without retraining them at each required
data-rate. Furthermore, capturing the thermal effects, such as
the roll-over, would help optimize the PAM-4 levels accurately
in an E2E learning setup. Therefore, a surrogate NN model
that captures the VCSEL dynamics in its entirety calls for the
exploitation of other learning techniques.

Recently, physics-informed neural networks (PINNs) were
proposed in [73], which augment NN training by incorporating
physical laws in the form of differential equations governing
an underlying data set. PINNs have been used and explored
in several fiber-optics applications [74], [75]. Such computa-
tionally efficient surrogate models infer solutions to general
nonlinear partial differential equations utilizing the multiple
layers of neural units and employing a loss function satisfy-
ing the differential equations to be solved. Since differential
equations govern the operations of VCSELs, a PINN-inspired
surrogate model can be explored.

Furthermore, there are several types of noise to consider,
some more and some less important, dependent entirely on
laser type and applications. For datacom applications, the
limiting noise is primarily relatively intensity noise (RIN),
which is impactful for multi-level modulation formats. While
measuring RIN, other sources of noise like the shot noise
and thermal noise have to be accounted for. However, even
a large-signal VCSEL equivalent circuit model with compre-
hensive per-process noise implementations that works for a
broad range of temperatures is a very recent development
[76]. There are other types of noises like the polarization
splitting noise, photon-photon resonance noise, etc., whose
effects have not been sufficiently captured by means of a
large-signal equivalent model, from which training samples
can be derived. Therefore, capturing the complex dynamics
and various sources of noise using ML models is an interesting
future study.

IV. COMPONENT-SPECIFIC LEARNING AND
COMPENSATION

A generic fiber-optic communication link is affected by
nonlinearities due to the physical properties of the fiber,
including the Kerr effect. However, in a VCSEL-based link,
the fiber’s nonlinear distortion is negligible when compared to
that of the intrinsic non-linearity of the VCSEL itself.. Fig. 11
shows a general schematic of a VCSEL-driven OI system,
highlighting the parts of the transmission link where digital-
to-analog/analog-to-digital, electro-optical/opto-electrical con-
versions, and optical fiber propagation are performed. To
truly achieve robust 100 Gbps links, the judicious use of

4An increase in training samples may also lead to over-fitting and incorrect
results.
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Fig. 11: A model block diagram of a VCSEL-based OI system. Here
DAC represents digital-to-analog converter, ADC represents analog-to-digital
converter, PD represents photodetector and TIA represents trans-impedance
amplifier.

equalization techniques to compensate for the nonlinear ef-
fects of the VCSELs becomes imperative. Equalization—either
post-equalization at the receiver or pre-equalization at the
transmitter—is vital for compensating the impairments caused
by the limited bandwidth of O/E components such as VCSELs.
In this section, we will first review the use of NNs as a
post-equalizer and then as a pre-equalizer or pre-distortion
compensator.

A. Post Equalization

A variety of different digital signal processing (DSP) based
equalizers are commonly employed to reduce/cancel inter-
symbol interference (ISI) in VCSEL-based OIs, including
feed-forward equalizer (FFE) [77], decision feedback equal-
izer (DFE), maximum likelihood sequence estimator (MLSE)
[78], [79], and Volterra series-based equalization (VSE) [80].
However, many nonlinearities in a practical system can only be
approximately captured by such models and are challenging to
equalize by conventional model-based DSP methods. There-
fore, ML-based DSP algorithms have been gaining popularity,
such as support vector machine nonlinear equalizer [81], [82]
or deep belief network-hidden Markov model-based equalizers
[83].

The use of NNs for equalization has also gained popularity
in recent times. The most popular NN structure is the fully
connected neural network (FCNN). FCNNs are employed in
many works as an equalizer and have been shown to provide
excellent nonlinear equalization performance [27], [84]–[86].
In [27], the equalization performance of an FCNN is observed
to be nearly equal to that of a 21-tap FFE. In [84], a FCNN-
based equalizer is shown to outperform the 3rd-order VSE
with significantly less mathematical complexity. Furthermore,
[85] demonstrates that only tens of multiplications are needed
for the studied NN-based equalizers to achieve bit error rate
(BER) performances below the hard-decision (FEC) threshold.
In [86], it is demonstrated that an unsupervised learning
scheme for FCNN equalizers in IM/DD system can achieve
the same performance as the model trained by the traditional
supervised learning method.

Besides FCNNs, CNNs [87], recurrent neural networks
(RNNs) [85], [88]–[91], and long short-term memory (LSTM)
NNs [92] are also used to improve the equalization perfor-
mance at the cost of computational complexity and training
epochs. However, it is possible to use transfer learning to
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Fig. 12: BER vs SNR for several equalizers are shown. A nonlinear NN
equalizer provides BER performance when compared to the case of absence
of any equalization.
use the knowledge gained from NNs trained for equalization
with FCNN and train an RNN with a reduced number of
epochs [91]. However, the practical deployment of real-time
NN-based channel equalizers requires that their computational
complexity is, at least, comparable or desirably lower than that
of existing conventional DSP solutions. In order to decrease
the complexity and the corresponding hardware requirements,
iterative pruning and quantization techniques have been inves-
tigated in [28], [93].

Example. (NN-based equalizers) We demonstrate the BER
performance of a post-equalizer NN that uses FCNN with the
time series signal fed as a 1-D input array similar to that in
[84]. The input array comprises samples of past symbols to
account for the system’s inter-symbol interference (ISI). The
hidden layer has 4 neurons with ReLU activation function.
The output layer has 4 neurons corresponding to 4 levels of
the assumed PAM constellation. The labels of the symbols are
one-hot vectors, and the loss function is the cross-entropy 5.
Fig. 12 shows the bit error rate (BER) performance of the
2-layer NN-based equalizer for a PAM-4 modulated 2-symbol
long (oversampled by 10) input time series fed through the
rate equation numerical model of VCSEL. The NN equalizer
provides nearly a 4 dB sensitivity gain over the case with no
equalization for a BER of 10−6 and a 1 dB sensitivity gain
over a linear FFE also implemented employing a NN with
linear activation function.

To demonstrate pruning the equalizer, after initial training,
we used the Tensorflow API called Tensorflow Model Opti-
mization that eliminates the smallest weights at the end of
every training step following a polynomial decay schedule
[94]. At the end of 500 such training steps, we achieved a
final weight sparsity of 60%. This translates to a drop in the
number of multiplications to nearly 20 when compared to 100
for the unpruned network. Also, from Fig. 12, we can observe
that such a pruned NN equalizer performs nearly as well as
a non-pruned NN equalizer.

B. Nonlinearity Pre-compensation
Digital equalization is also commonly used at the transmitter

side, referred to as digital pre-compensation. The main idea is

5We note that a criteria like block error rate cannot be used here, since
they do not allow gradient backpropagation.
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Fig. 13: Block diagram of the ILA. Note that in the post-distorter training
phase, the pre-distorter is not in use (i.e., x̃(n) = x(n)). The post-distorter is
learned by minimizing the MSE between its output x̂(n) and the transmitted
waveform x(n). The learned post-distorter is then used as the pre-distorter.

to pre-distort the transmitted waveforms in the digital domain
prior to transmission to improve the E2E performance or to
reduce the receiver complexity [95], [96]. To date, many digital
pre-compensation efforts have focused on transmitter hardware
impairments compensation, known as digital pre-distortion
(DPD).6 Conventionally, linear static [97] or dynamic [98],
[99] finite impulse response (FIR) filters have been widely
applied to compensate for the bandwidth restrictions. Nonlin-
ear schemes such as those using the arcsin function combined
with clipping can effectively reduce the performance loss orig-
inating from the Mach-Zehnder modulator nonlinearity and
digital-to-analog converter quantization noise [100]. However,
linear DPD combined with the inverse modulator response
cannot entirely mitigate the transmitter distortions and more
robust approaches are needed to cope with imperfections of
current high-rate optical communication systems [101].

Over the last decade, more complex algorithms using the
Volterra series (or its variants such as memory polynomials)
have been studied extensively [102]–[104], showing promising
performance at the expense of significantly increased com-
plexity. As an alternative, DPD based on NNs has attracted
much interest in recent years, showing that NN-based DPD
can achieve better/similar performance as those using Volterra
series, but with reduced complexity using LSTM [105] and
TDNN [106].

The goal of DPD, denoted by fDPD(·), is to pre-distort the
transmitted waveform x(n) such that the difference (i.e., the
mean squared error (MSE)) between x(n) and the transmitter
output y(n) is minimized, which we write as

f̂DPD = argmin
fDPD

1

N

N∑
n=1

|y(n)− x(n)|2, (6)

where y(n) = fθ(fDPD(x
(n))), fθ(·) is the combined transfer

function of the transmitter components, and x(n) = [x(n −
L), . . . , x(n), . . . x(n+L)]⊤ is the 2L+1-long vector of input
signals that contribute to y(n). Note that N is the number
of samples over which the empirical MSE is calculated. In
practice, optimizing the parameters of fDPD(·) is challenging
because a differentiable form of fθ(·), which includes the
transfer function of VCSEL, is typically unknown. Here, dif-
ferentiable surrogate models of VCSELs based on Volterra or

6We note that digital pre-compensation can also be used for fiber nonlin-
earity compensation (e.g., see [96]). For a VCSEL-based system, the fiber
nonlinearity is negligible due to the low VCSEL output power and short
communication reach. Therefore, we leave out the discussion about digital
pre-compensation for fiber nonlinearity mitigation.

NNs developed in Sec. III find direct application. Alternatively,
methods for gradient-free transmitter learning (see Sec. V-D)
can be used for the DPD optimization. The resulting approach,
known as the direct learning architecture (DLA), uses various
NN architectures such as FCNN [107], [108], LSTM [105]
and CNN [109]. However, DLA has the disadvantage that the
performance of the learned DPD is highly dependent on the
accuracy of the surrogate model.

A different approach, namely the indirect learning archi-
tecture (ILA), estimates the DPD parameters in an indirect
fashion by first learning the inverse response of the transmitter,
which we refer to as the post-distorter f−1

θ (·). The post-
distorter is then used as the pre-distorter. An example of
the above mentioned DPD employing the ILA is depicted in
Fig. 13, where the post-distorter is first learned by minimizing
the MSE between the transmitter input x(n) and the post-
distorter output x̂(n), and then the post-distorter parameters
are copied to the pre-distorter. The corresponding optimization
problem can be summarized as

f̂DPD ≜ f̂−1
θ = argmin

f−1
θ

1

N

N∑
n=1

|x̂(n)− x(n)|2, (7)

where x̂(n) = f−1
θ (y(n)), y(n) = fθ(x

(n)), and y(n) =
[y(n− L), . . . , y(n), . . . y(n+ L)]⊤.

In general, it has been shown that DPD employing DLA can
achieve better performance than that using ILA, in case a good
surrogate transmitter model is available [105], [110]. However,
it should be noted that DPDs employing ILA are more com-
monly used in practice due to their low implementation com-
plexity. Therefore, it might serve as a suitable candidate for
VSCEL-induced nonlinearity compensation. Besides learning
the equalizers, the programmable settings of other components
shown in Fig. 11, such as the TIA gain, can be learned subject
to the availability of a differentiable model.

V. END-TO-END LEARNING USING AUTOENCODERS

The modular approach considered so far does not guaran-
tee optimal E2E performance. To address this, the methods
presented in the earlier section can be combined with E2E
learning using AEs. In this section, after a literature survey,
we review the general principles of AE-based communication
systems and summarize the challenges of E2E learning in a
VCSEL setting: (i) the need for differentiable channel models;
(ii) the lack of adaptivity to the temperature. We show how
a surrogate model (as defined earlier in Section III) can
overcome the first challenge, while to address the second chal-
lenge, we elaborate on the temperature-adaptive transceiver to
incorporate flexibility into our learning framework so that the
transceiver can be utilized in different deployment scenarios.
Finally, we review and describe gradient-free approaches in
cases lacking a differentiable channel model.

A. Survey of Autoencoders in Fiber-Optic Communications

AE-based deep NN architecture was proposed initially in
[32] in the context of wireless links. It was then adapted
to fiber-optic systems initially in [38] for optimizing IM/DD
links. Since feed-forward NN cannot address the memory
effects, bidirectional RNN (BRNN) was adopted in [40].
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TABLE I: STATE OF THE ART ON AE-BASED E2E LEARNING FOR FIBER-OPTIC COMMUNICATIONS, USING DIFFERENT TYPES OF BN ARCHITECTURES,
EITHER AT THE TRANSMITTER OR AT THE RECEIVER, SUCH AS FULLY CONNECTED NEURAL NETWORK (CCNN), BIDIRECTIONAL RECURRENT NEURAL
NETWORK (BRNN), GENERATIVE ADVERSARIAL NETWORK (GAN). NFT STANDS FOR NONLINEAR FOURIER TRANSFORM

Paper Application NN architecture Contribution
[38] IM/DD systems FCNN Explored AE-based learning for fiber-optics
[40] IM/DD systems BRNN Addressed memory effects

[111] IM/DD systems BRNN Optimized bit-to-symbol mapping
[112] IM/DD systems FCNN Employed a GAN to obtain a model for an experimental IM/DD test-bed
[113] Coherent systems FCNN Optimized both Amplified and Unamplified links

[37], [39] Coherent systems FCNN Optimized for various noise channel models
[114], [115] Coherent systems FCNN Optimized bit-to-symbol mapping

[41] Coherent systems FCNN Used Split-step Fourier method (SSFM)
[116] Coherent systems NFT-NN Optimized nonlinear frequency division multiplexing system
[42] Coherent systems FCNN Cubature Kalman Filter based gradient-free approach

[117] Coherent systems FCNN Optimized bit labeling including a differential blind phase search
[118] Coherent systems FCNN Robust to channel condition uncertainties
[119] VCSEL-based OIs FCNN Optimized the PAM-4 levels
[120] VCSEL-based OIs FCNN Non-linear predistortion

Further improvements were made through AE-based bit-to-
symbol mapping in [111], [114], [115]. AE-based learning
has been explored in coherent optical systems under various
scenarios in papers such as [39], [41], [112]. Furthermore,
gradient-free AE-optimization was initially explored for fiber-
optic communication in [42]. Recently, AE-based optimization
of VCSEL-based OI, utilizing a surrogate NN, was explored
in [119]. AE-based E2E learning is still in its early days of
application to VCSEL-based OIs but has shown promising
potential in optimizing PAM levels [120]. A comprehensive
state-of-the-art, along with the type of NN used, the type
of applications (conventional IM/DD links, Coherent systems,
and VCSEL-based OIs), and their primary contributions have
been provided in Table I.

B. Conventional Autoencoder

In an AE, the input to the encoder is reproduced at the
output of the decoder—a principle on which communication
systems are also modeled. Therefore, the encoder and decoder
can be designed in such a way that they can replace the trans-
mitter and receiver, respectively. The topology of a generic
AE-based communication system is depicted in Fig. 14. In
the AE structure, a message s ∈ S is first encoded into an
S-dimensional one-hot vector, where the s-th element is 1
and all the other elements are 0. Here, S is the message set
and S = {1, . . . , S}. The transmitter NN can be viewed as
a function that computes a M -dimensional representation x
for every one-hot representation s. In other words, x = fθ(s),
where fθ is the function denoting the transmitter NN. Here, M
denotes the number of real/complex channel uses. The transmit
power constraint is enforced by a normalization layer.

The symbol x is sent over the channel, whose channel
law can be denoted by p

(
y|x

)
in M channel uses, and the

symbol observed at the receiver is y. The receiver NN can be
viewed as a function that computes an S-dimensional posterior
probability q. The receiver then estimates the transmitted
message ŝ = argmaxs [q]s, where [x]s returns the s-th
element of x.

To optimize the transmitter and receiver parameters, θ and
ϕ, we use the cross-entropy loss

L (θ, ϕ) = −E
{∫

log
[
fϕ (y)

]
s
p(y|fθ(s))dy

}
, (8)

where E {.} is the expectation operator over s. The op-
timization is performed iteratively, where in each training
iteration t, the transmitter maps a minibatch of Bt randomly
chosen training examples sk to symbols xk = fθ(sk) for
k = {1, . . . , Bt} and then sends them through the channel.
The receiver maps the observations yk to the probability
vectors fϕ (yk) for k = {1, . . . , Bt} . Finally, the empirical
cross-entropy loss associated with the training examples is
calculated.

After the training procedure, the BER (or any other relevant
performance metric) is measured during testing. Backpropa-
gation relies on calculating the gradient of the loss function
with respect to all the trainable parameters of the receiver
and the transmitter. Therefore, if any component has a non-
differentiable/intractable model, the encoder will be isolated
from the rest of the computational chain, and the gradient
of the loss function with respect to the encoder weights
cannot be calculated. At this juncture, the importance of the
surrogate models in the E2E structure has to be reiterated.
Hence, differentiable surrogate models, especially the NN
models, that capture the dynamics of VCSELs and accurately
reproduce the optical waveforms generated by the VCSELs
under different operating temperatures are discussed in detail
in Section III. Alternatively, some methods for gradient-free
transmitter optimization will be reviewed below in Sec. V-D.
The NN surrogate models can then be incorporated into an AE
that models an E2E fiber-optic system and trained to improve
performance.

Example (AE with surrogate model). One such surrogate
model for AE is shown in Fig. 15, in which the VCSEL
is replaced with a surrogate NN discussed in Section III-C
for training. The remaining components (PIN and fiber) are
easily modeled with differentiable functions. The AE learns to
explore new geometrically shaped constellations for different
temperatures. The BER vs. signal-to-noise ratio (SNR) results
of the AE and the equidistant-decoder (ED) are plotted in
Fig. 16. At 95° C, the sensitivity improvement is about 1.5
dB, validating the idea that equidistant PAM levels do not
attain an optimal BER. At 5° C, the sensitivity improvement
is about 0.5 dB. It is also possible to explore the equalization
techniques discussed in Section IV together with the AE to
obtain a better BER performance.
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Fig. 14: An AE-based communication system, where the transmitter and receiver are implemented by FCNNs.

Fig. 15: AE structure containing two encoder layers, the surrogate NN for
VCSEL and a single decoder layer. FC denotes fully connected layers and
ReLU denotes rectified linear units. The numbers in the parentheses represent
the number of neurons in a specific layer. Like VCSEL, the fiber and PD can
be replaced by surrogate models for backpropogation.
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Fig. 16: BER vs SNR comparison for AE and an NN-decoder that decodes
equidistant PAM levels.

C. Temperature-adaptive AE

From Fig. 16, it is clear that optimal modulation formats,
transmit waveforms, and receiver processing algorithms may
depend heavily on temperature and should be adapted ac-
cordingly. This section will review several approaches for
incorporating adaptivity into the ML models of the E2E
learning framework.

1) Explicit Temperature-dependent Learning: A straight-
forward approach for dealing with adaptivity is to train a
dedicated model for each deployment scenario, e.g., one
model per temperature. However, this becomes infeasible if

the number of scenarios is large or infinite. A commonly used
trick to circumvent the computational burden associated with
training and storing a large number of NNs is to train a family
of network parameters that are themselves parameterized. A
simple way to accomplish this is to append the external system
parameter, e.g., the temperature T , as an additional input to
the NN via concatenation with the regular input s. A more
dynamic approach is via the use of a second auxiliary NN.
More precisely, if fρ(s) denotes the original NN mapping,
one may generate the parameter vector ρ (i.e., the weights and
biases) using another NN according to ρ = fω(T ), where ω are
the new trainable parameters. Such approaches have previously
been studied in the context of providing SNR-adaptive forward
error correction schemes; see [121] for more details.

2) Robust Learning: Another approach for providing ML
models with some form of robustness to temperature variation
is to simultaneously train them on data from a variety of
different deployment scenarios. For example, the authors in
[38] propose to train their AE system on data corresponding
to a range of different fiber lengths, which then offers some
flexibility if the exact transmission distance is unknown in
advance. Applying a similar approach to VCSEL-based E2E
learning could lead to temperature-agnostic models that, once
trained, can be expected to work well over a range of different
temperatures. However, this approach effectively leads to
“compromise” solutions, which may be heavily suboptimal
given any fixed temperature.

3) Online Learning: While the above approaches are rela-
tively easy to implement, they ultimately hinge on the assump-
tion that the data used for “offline” training accurately reflect
the ”online” deployment conditions. If this is not the case, one
may argue that a better approach to adaptive E2E learning is
via in-situ training of all NNs using live, real-time training
data from the actual transmissions. On the receiver side, this
generalizes the adaptive linear equalizers commonplace in
optical receivers for dealing with time-varying impairments.
However, a real-time adaptation of nonlinear NN equalizers
would require some form of online gradient backpropagation,
which may be challenging to implement in hardware for
VCSEL-based interconnects, given the severe complexity con-
straints. Moreover, an in-situ adaptation of the transmitter NN
is even more challenging due to the absence of a differentiable
channel model required for the gradient computation. Also, to
limit the computational burden associated with NN training,
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Fig. 17: Trainable receiver architecture that consists of FIR filter and TDNN
that implements downsampling and de-mapping.

0 2 4 6 8 10 12 14 16
10−3

10−2

10−1

100

SNR [dB]

Sy
m

bo
l

er
ro

r
ra

te

Backpropagation
Differential Evolution (DE)
Theoretical

Fig. 18: Symbol error rate as a function of signal-to-noise-ratio for the receiver
architecture trained by differential evolution and backpropagation.

some recent work focuses on meta-learning [122], [123]. Here,
the main idea is to learn model initialization that can facilitate
faster retraining, which can also be exploited in combination
with decision-directed training [124].

D. Gradient-free Approaches

All of the E2E learning techniques discussed in the pre-
vious subsections used differentiable models to optimize the
AE using backpropagation. An accurate differentiable model
that captures the effects of VCSEL is indeed challenging
to develop, as seen from Section III, and leads to a model
discrepancy. This could be true for any other component in
the chain shown in Fig. 11. Furthermore, training of the
transmitter and receiver NN architectures may not be feasible
using backpropagation for the experimental or hardware im-
plementation of the system. A solution to the above-mentioned
problem is to perform training using gradient-free optimization
methods. Numerous algorithms perform gradient-free opti-
mization; however, most rely on various approximations of the
gradient [35]. In that respect, at their best, the performance will
approach the performance of the propagation. It is, therefore,
always advisable to use backpropagation for training when
possible.

Solutions based on the Cubature Kalman Filter (CKF) have
been recently demonstrated for training NN transmitter, and
receiver architectures [42]. The advantage of training NNs
using this method is that the entire channel model can be
easily embedded into the optimization. The disadvantage is
that it requires matrix inversion, which is time-consuming.
Moreover, especially at the beginning of the training process,
the matrix may be singular and thus non-invertible.

Another approach for gradient-free training of transmitter
and receiver architectures is to employ evolutionary algo-
rithms. An advantage of evolutionary algorithms is that the
rate of exploration-exploitation can be controlled, which may
be helpful to avoid getting trapped in local minima of the loss
function. One of the challenges with evolutionary algorithms
is that there are many parameters to tune. However, an
evolutionary algorithm employing differential evolution has
only two hyperparameters, which are easily tuneable. It has
been shown that differential evolution (DE) is highly effective
in performing online experimental optimization of flatness of
optical frequency combs [125].

Example (AE with differential evolution). A sample trainable
receiver NN architecture that consists of an FIR filter, a down-
sampler, and a demapper, implemented as a TDNN, and uses
DE for optimization, is shown in Fig. 17 as a proof-of-concept.
The objective of the optimization is to find a set of FIR filter
coefficients and neural-networks weights that minimize the loss
function, implemented as the cross-entropy. The channel under
consideration is AWGN. In Fig. 18, the symbol error rate
is plotted as a function of SNR for the receiver architecture
trained by the differential evolution and backpropagation. It is
observed that the receiver performance obtained by training
the receiver using differential evolution and backpropagation
overlaps with the theoretical curve. A similar gradient-free
approach can also be applied to a VCSEL-based OI system.

VI. CONCLUSIONS AND OUTLOOK

Besides the approaches mentioned above that can result in
impressive benefits in designing an OI, there are several oppor-
tunities to explore in the context of E2E learning. For example,
as an improvement over feed-forward NN, bidirectional recur-
rent neural networks (BRNN), which have been used in con-
ventional IM/DD links, can be adopted for VCSEL-based OIs.
Since BRNN can process sequential data using internal states,
they can compensate memory effects of VCSELs, and the fiber
[40]. Also, one can explore an AE that can optimize the bit
mapping jointly with the position of the constellation points
using a loss function based on the bit-wise or generalized
mutual information (GMI) [114], [115]. Since the optimization
landscape in such a case is highly non-convex, a good strategy
is to repeat the optimization with multiple starting points to
find the global optimum. Alternatively, initialization to known
Gray-labed constellations, cyclical learning rates, or the binary
switching algorithm have been shown to achieve more reliable
results compared to random initializations [115]. Furthermore,
the issue of modeling the experimental environment can be
overcome by generating the channel model including the
VCSEL’s by a generative adversarial network (GAN). Gradient
backpropagation can then be used to train the generative model
on experimental data and use it to optimize the transceiver
[112]. Also, it is possible to explore ML-based forward error
correction (FEC) codes that can compensate for decision
errors in the E2E learning framework [126]. Finally, ML-based
inverse design approaches can aid in developing novel VCSEL
designs, studying impairments, and their mitigation strategies
and is an interesting future study [127].
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J. Schröder, “Learning Optimal PAM Levels for VCSEL-based Opti-
cal Interconnects,” in Proc. European Conf. Optical Communication
(ECOC), 2022.

[120] L. Minelli, F. Forghieri, and R. Gaudino, “Nonlinear Pre-Distortion
Through a Multi-Rate End-to-end Learning Approach Over VCSEL-
MMF IM-DD Optical Links,” in Proc. European Conf. Optical Com-
munication (ECOC), 2022.
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