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A massive amount of crustaceans and bivalves are consumed each year, leading

to millions of tons of processing side streams from the seafood industry.

Considering the current trend of (bio)circular and zero-waste food production,

crustacean and bivalve processing side streams (CBPS) seem a promising and

emerging resource for producing high-value-added products. This paper

highlights the general composition of CBPS with high commercial values,

namely, protein, lipids, carotenoids, minerals and chitins. The extraction

strategies of these fractions, including conventional chemical and

environmentally friendly methods, are also discussed. This review presents and

summarises CBPS as raw materials for developing fast time-to-market products

complying with specific EU regulations, including animal feeds, bio-pesticide/

stimulants, and cosmetic ingredients. This paper also provides insights into

challenges of applying CBPS as raw materials to generate products for

human consumption.
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1 Introduction

Among the seafood captured for human consumption, the

demand for shellfish steadily increased in the past decades (FAO,

2022). In the European Union (EU), shellfish, such as crab, shrimp,

and mussels, are usually processed into muscle-based food

products. Many processing side streams are generated during this

type of production, accounting for up to 75% of the whole mass

(Hamed et al., 2016). Considering the current goals for (bio)circular

and zero-waste food production, there are strong reasons to valorise

shellfish by-products into high-value-added products through

biorefining. To support such developments, the EU has already

issued regulations such as the Waste Framework Directive (EU,

2008; EU, 2018a), which lists measures to protect the environment

and human health. These measures include reducing waste

generation, improving waste management, and promoting the

transition to a circular (bio)economy. More recently, the EU

Bioeconomy Strategy (EU, 2018b) also emphasised the

importance of circularity and sustainability, e.g., in food

production (Stegmann et al., 2020).

Crustacean and bivalve processing side streams (CBPS) are

important resources to upcycle because of their high content of

valuable compounds with promising market potential (Özogul

et al., 2019). Therefore, the exploration of the application

potentials of CBPS has attracted great attention in the past 20

years, and there have been several review articles on the valorisation

of CBPS (Harnedy and FitzGerald, 2012; Mao et al., 2017; Mathew

et al., 2020; Mechri et al., 2020; Santos et al., 2020). However, these

studies seldom assess whether the described potential applications

can be commercialised or industrialised from a regulatory

perspective. Therefore, the current review focuses on the general

composition and extraction of key fractions from CBPS and on the

discussion of the EU regulations that may have an impact on its

valorisation. Also, some available fast time-to-market CBPS-derived

products that require only 3 to 5 years from lab-scale discoveries to

a place on the market are summarised.
2 General composition of marine
crustacean and bivalve side streams
and extraction methods for key
fractions

2.1 Protein

CBPS are rich in proteins, although the exact content varies

depending on the processing method and the origin. For instance,

the protein content in some shrimp processing side streams (e.g.,

Penaeus semisulcatus head waste, Crangon crangon processing

discards, and Penaeus vannamei by-products) reaches 40 - 65% of

its dry weight (dw) (Synowiecki and Al-Khateeb, 2000; Mizani and

Aminlari, 2007; Vazquez et al., 2017), while crab and mussel

processing side streams (i.e., from Cancer irroratus and

Paralithodes camtschaticus) contain approximately 20% (Mukhin

and Novikov, 2001; Beaulieu et al., 2013) and 10% protein (dw)
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(Abdulkarim et al., 2013), respectively. The proteins in the actual

crustacean shell may account for 16% of its fresh mass (Zhang et al.,

2018). These proteins are tightly bound with chitin and are

extensively calcified (Chen et al., 2008). In contrast, in bivalve

shells with a low level of chitin, the proteins account only for 3 - 5%

(dw) (Keith et al., 1993) and are embedded within their calcified

layers (Marie et al., 2011). Therefore, a deproteinisation process is

required to release proteins from the shells if targeting up the

concentration of non-protein compounds such as chitin. This

process can be conducted via chemical treatment or biological

methods. Traditionally, strong alkali, such as NaOH, at different

concentrations (from 0.125 to 5.0 M), at varying temperatures (up

to 160°C) and treatment duration (from a few minutes up to a few

days) is used to eliminate proteins from crustacean shells (Younes

and Rinaudo, 2015). However, using such harsh treatments, the

protein-rich fraction is rendered useless and abandoned (Shirai

et al., 2001). Although denatured proteins could be of use in various

feed applications (No et al., 1989) or hydrolysed into free amino

acids, such investigation did not receive widespread attention.

Alternatively, different added-value fractions could be better

collected via a cascading principle in which different molecules

are extracted step by step, starting with the most sensitive ones.

Biotechnological methods, especially enzymatic hydrolysis and the

so-called pH-shift process, have been studied to recover peptides

and proteins, respectively, from CBPS. By adding commercial

proteases under specific conditions, proteins from CBPS can be

hydrolysed in an eco-friendly manner, and 64 - 96% of the proteins

can be recovered in the form of a hydrolysate (Mao et al., 2017; Zou

et al., 2021). Using the pH-shift process, i.e., acid and alkaline

protein solubilisation followed by removal of non-soluble matter as

shells and isoelectric precipitation of the purified proteins, lead to a

recovery of 31 and 48% protein, respectively, from whole crushed

blue mussels (Mytilus edulis) that were sorted away when packing

mussels in nets (Vareltzis and Undeland, 2012). Using shrimp

shells, a protein recovery of up to 25% was recently reported

when applying alkal ine pH shift processing with the

incorporation of ultrasonication (Pezeshk et al., 2022). However,

to the best of our knowledge, none of these two techniques is

commercialised to valorise CBPS.
2.2 Lipids

CBPS can have a relatively high content of lipids rich in

polyunsaturated fatty acids (PUFAs). The exact level depends on

the species and the parts of the animal ending up in the side stream

fraction. For example, the lipid content of snow crab (Chionoecetes

opilio) side streams, consisting of cephalothorax shells, digestive

systems, including hepatopancreas, and physiological liquid

(hemolymph), was 14.8% (dw), and its fatty acid (FA) profile

showed approximately 50% of monounsaturated fatty acids

(MUFAs), followed by 20% of PUFAs (Beaulieu et al., 2009).

As summarised by Sánchez-Camargo et al. (2011), the lipid

content of different shrimp processing side streams, which consists

of heads and shells, varies from 0.76 - 7.14% (dw) depending on,

e.g., the amount of tissue left. As reported from Pacific white shrimp
frontiersin.org
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side streams (exoskeleton and cephalothorax in roughly 1:1, w/w),

PUFA content in the lipid fraction reached up to 37.5% of the total

FA (Gulzar and Benjakul, 2018). In the lipid fraction of red-spotted

shrimp by-products, even a higher PUFA content was reported;

61.36% of total FA, with the long-chained (LC) n-3 PUFAs

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),

contributing to 24% of total FA (Sánchez-Camargo et al., 2011).

Therefore, these shrimp processing side streams can be regarded as

a new source for LC n-3 PUFA extraction.

Compositional features of mussel processing side streams were

recently reviewed by Naik and Hayes (2019). They categorised the

potential side streams into seeds, mussels with broken shells,

mussels with barnacles/fouled, and byssus threads. However, a

fifth category can be the shell residue from steamed/peeled

mussels, consisting of shells and adductor muscle. Uzcátegui et al.

(2021) characterised lipids in the soluble and filtered fractions of

industrial “mussel waste”, including the shells, and found 0.2 versus

0.4% (fw) lipids, respectively, with 25 and 15% PUFAs, respectively.

Interestingly, unusual, but also very unstable furan FA’s with anti-

inflammatory properties have been found in the lipid fraction of

New Zeeland green-lipped mussels (Wakimoto et al., 2011), also

calling for further exploration of mussel processing side streams.

Conventionally, the extraction method of lipids relies on

employing organic solvents such as acetone, ethanol, ethyl acetate,

isopropanol, hexane, and methyl ethyl ketone. Although some of

these solvents are permitted in food industries (Takeungwongtrakul

et al., 2015), the low extraction yield, high solvent consumption, and

long processing time are the significant disadvantages of this

method (Gulzar et al., 2020). To overcome these drawbacks,

solvent extraction can be combined with physical techniques such

as ultrasonic-assisted extraction (UAE) or replaced by supercritical

fluid extraction (SFE). These newer approaches have been

introduced to efficiently extract lipids from CBPS. For example,

Gulzar and Benjakul (2019) applied n-hexane and isopropanol (1:1,

v/v) plus UAE to extract lipids from pre-heated cephalothorax of

Pacific white shrimp. UAE increased the extraction yield from

10.87% to 14.09% based on fw. Although a significant yield

increase was obtained by UAE, oxidation and hydrolysis of the

extracted lipids may occur during the process, e.g., as a result of

temperature raises (Zhang et al., 2017b). Applying SFE for

extraction of LC n-3 PUFA-rich lipids from CBPS can, in this

respect, be more favourable, especially for pharmaceutical and

nutraceutical industries, because of the heat-labile nature of the

PUFAs. A recent review from Ahmadkelayeh and Hawboldt (2020)

summarised that supercritical CO2 to recover lipids from CBPS

gave a comparable yield to traditional solvent extraction methods

without negative environmental and economic disadvantages.
2.3 Carotenoids

Carotenoids are another group of valuable compounds enriched

in CBPS. The carotenoid content varies from 40 to 114 mg/g fw,

depending on the species (Pattanaik et al., 2020). In crustacean

shells, astaxanthin accounts for up to 75 - 95% of total carotenoids

(Shahidi et al., 1998). Today, more than 95% of the astaxanthin used
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in the industry is supplied by synthetic routes (Panis and Carreon,

2016), but consumers have an increasing demand for natural food

additives or ingredients. This fact together with the high cost of

producing synthetic astaxanthin, have stimulated industries to find

new astaxanthin sources with good potential for commercialisation.

Owing to their lipophilic nature, carotenoids are extracted by

non-polar solvents such as acetone, chloroform, hexane,

isopropanol, methylene chloride and diethyl ether (Saini and

Keum, 2018). However, the recovery of carotenoids from CBPS

by solvent extraction has been limited to analytical purposes during

the past 30 years. The recovery yield may reach up to 70 µg/g dw

using extraction with organic solvents but varies with methodology

and specific source of raw material (Saini and Keum, 2018).

Another conventional extraction method frequently studied is

using edible vegetable oils as solvent. However, this method

requires higher temperatures (60 - 90°C) which may influence the

stability of astaxanthin (Rao et al., 2007). Moreover, the astaxanthin

extracts are hard to concentrate when edible oils are used, leading to

a relatively low recovery yield: 0.9 mg astaxanthin/g raw material

versus 19.8 mg astaxanthin/g raw material acetone extraction

(Dong et al., 2014). In order to reduce the environmental impacts

and the consumption of organic solvents and energy,

biotechnological methods such as enzymatic hydrolysis and

microbial fermentation are studied to facilitate astaxanthin

extraction from CBPS (Ahmadkelayeh and Hawboldt, 2020). In

addition, astaxanthin can be recovered by SFE techniques, and by

combining regular solvent extraction with UAE, the amounts of

solvents used can be decreased. Details of the extraction procedures

mentioned above and the recovery yield of astaxanthin from various

CBPS have been thoroughly reviewed by Prameela et al. (2017).
2.4 Minerals

The mineral fraction of CBPS is well documented as a

component of the characteristic shell nano-fibril structure. The

nano-fibril consists of tightly wound strands of protein, organic

polymer matrix - in this case, chitin - and mineral rods. The mineral

component allows the thin shells to have enhanced rigidity, high

relative tensile strength, and high resistance to shearing stress (El

Knidri et al., 2018). The majority of the crustacean shell mineral is

CaCO3 as calcite, amorphous CaCO3, and Ca3(PO4)2 as

hydroxyapatite (Aklog et al., 2016).

Similarly, most of the minerals in bivalves are CaCO3 as calcite

and aragonite crystal forms. The average mineral content of a fw

basis is approximately 60% for brown crab, 50% for northern

shrimp, and 50% for blue mussels (Beaulieu et al., 2009;

Abdulkarim et al., 2013; Zhao et al., 2019). In the industry,

CaCO3 from the organic matrix of CBPS is extracted by chemical

demineralisation procedure by washing CBPS with HCl (0.275 - 2

M) at various temperatures (0 - 100°C) within 24 h (Percot et al.,

2003). When washed with acid, calcium ions and CO2 are liberated

(Younes and Rinaudo, 2015). The calcium, phosphate, and

carbonate ions remain in the solution, whereas the insoluble

chitin does not. Thus, using filtration, the minerals are separated

from the chitin. The endpoint of the demineralisation reaction is
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deemed by the cessation of CO2 being released from the solution.

Although chemical demineralisation is still the standard procedure

to extract calcium salts from CBPS, it has some evitable

disadvantages, such as high energy consumption and wastewater

disposal problems. To solve these problems, new attempts using

biological methods such as lactic acid fermentation have been

studied to demineralise CBPS (Zou et al., 2021). However, this

biological treatment is still conducted on a lab scale, not

industrialised or commercialised.
2.5 Chitin and its derivatives

Chitin is a natural polysaccharide which is the second most

abundant biopolymer after cellulose. This biopolymer is composed

of b-1,4-N-acetyl glucosamine chains, which occur in the cell wall of

some fungi, insect cuticles, and crustacean shells (Younes and

Rinaudo, 2015). In industry, crustacean shells are the primary

commercial sources of chitin due to their abundance. In general,

the chitin content of crustacean shells is 17.8 - 75% (dw of

exoskeletons) and differs by species (Hamed et al., 2016).

However, the chitin fraction in the crustacean shells is tightly

bonded to calcium salts and proteins, making it insoluble in

conventional solvents (Kurita, 2006). Due to its insoluble nature,

chitin cannot be recovered by traditional solvent extraction

methods. Instead, eliminating proteins and calcium salts from the

shells is required, making the processes complicated and laborious.

Commercially, NaOH is used to eliminate the proteins

(deproteinisation, as mentioned in section 2.1) and HCl to

eliminate calcium salts (demineralisation, as mentioned in section

2.4), thereby allowing up-concentration of chitin. However, these

processes are costly due to high energy consumption, and the

discharged wastewater needs to be neutralised and detoxified

before disposal.

Moreover, harsh chemical treatments may influence the final

quality of chitin (Percot et al., 2003; Kjartansson et al., 2006). In

order to tackle the mentioned problems, the development of more

eco-friendly extraction methods has attracted great attention. For

instance, applying biological methods such as enzymatic hydrolysis

or microbial fermentation to extract chitin from CBPS was

intensively studied and comparatively reviewed by Zou et al.

(2021). Some new attempts, such as applying non-equilibrium

plasmas, have also attracted great interest since they can

efficiently modify various heat-liable polymers without affecting

their properties (Delaux et al., 2016). Borić et al. (2018) reported

using plasma generation by the dielectric barrier discharge to

extract chitin from crustacean waste biomass. They concluded

that this method could efficiently remove the proteins fast

without influencing the chitin biopolymer. Also, this method did

not require any solvents, and therefore no (solid and liquid) waste

was formed. Later, they combined this method with lactic acid

demineralisation, eliminating 90% of the proteins and completely

removing the calcium salts from shrimp shells (Borić et al., 2020).

Thus, advantages of this method are that it is scalable, efficient,

sustainable and relatively cheap since the operation cost is mainly

limited to electricity consumption. Also, no waste is generated
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during the process, which makes it even more appealing for the

recovery of chitin and other valuable fractions such as proteins

and CaCO3.

Chitosan is a deacetylated polymer composed of more than 50%

of b-(1!4)-D-glucosamine units in the chain. Chitosan can be

considered a soluble chitin version, explaining the particular

interest in this molecule. Again, crustacean shells are considered

the primary source for chitosan conversion from chitin.

Commercially, demineralised and deproteinised crustaceans’

shells are treated with NaOH at high temperatures, allowing the

hydrolysis of the acetyl groups. This treatment transforms the N-

acetyl-D-glucosamine units into D-glucosamine units with free –

NH2 groups. Like the chemical extraction of chitin from CBPS, the

high energy and a large amount of concentrated alkali solution

consumption do not conform to the “green chemistry” and circular

economy trend. Therefore, biological alternatives such as using

deacetylases to convert chitin to chitosan have been explored

experimentally (Zhang et al., 2017a). Hybrid methods that can

decrease the chitin crystallinity were also studied to increase the

conversion rate and yield, including steam-explosion and SFE

technology-aided enzymatic hydrolysis (Villa-Lerma et al., 2016).

Although these methods are not commercial ised yet,

producing chitosan and interesting oligomers through this

controllable enzymatic deacetylation process is an attractive and

promising alternative.
3 Fast time-to-market products
derived from CBPS and their EU
regulations

As mentioned above, the potential applications of different

fractions recovered from CBPS are well documented and

discussed in several review articles. For instance, in a recent

review study, Nirmal et al. (2020) concluded that the fractions

extracted from shrimp waste (cephalothorax, shells, and processing/

cooking water), namely, chitin/chitosan, carotenoids, protein

hydrolysate, and PUFAs, may possess antioxidant, antimicrobial,

antihypertensive, anti-inflammatory, and/or antiproliferative

activities. Therefore, the authors believe these compounds could

be used industrially as additives or functional food/feed ingredients,

complying with the wish for a clean label. Another recent review

from Santos et al. (2020) focused on chitin and chitosan extracted

from seafood processing side streams, which could be used in the

pharmaceutical, cosmetic, food, biomedical, chemical, and textile

industries. However, it is essential to meet governmental regulations

to bring these bioactive products to the market. In the EU, the by-

product legislation [Regulation (EC) No. 1069/2009] (EU, 2009b)

must be considered for an industrial application of CBPS unless

they are handled in an entire food grade manner just as the main

product, e.g., the peeled shrimp or mussel.

The by-product legislation legally classifies food by-products (in

this review named as side streams) into different categories, as

shown in Table 1. In general, many CBPS are classified as “Category

3 by-products” since some organic materials, such as the non-
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extractable meat tissues and hepatopancreas are still attached. These

side streams could be contaminated and spoiled due to improper

handling and storage, making them unsuitable for human

consumption. Therefore, by-products with organic material

handled in this manner could be used only under conditions

determined by the competent authority, preventing public and

animal health risks. In the following sections, the possibilities of

using CBPS as raw material to produce fast time-to-market

products and their relevant EU regulations are discussed, focusing

on feed, agricultural/horticultural applications, and cosmetics. The

possibility of valorising CBPS for human consumption, such as

pharmaceutical applications, is not the focus of this review and will

not be discussed further.
3.1 (Aquatic) feed and pet food

Aquaculture of carnivorous species depends on PUFAs from

fishmeal and fish oil, but these often come from limited fisheries or

fish slaughter by-products. Limited fisheries are fisheries where the

resource withdrawal cannot be extended to meet the increased

demand (Hamilton et al., 2020). Therefore, the continued growth of

aquaculture will depend on developing more sustainable feeds with

alternative ingredients or feeds of a low-trophic level. As mentioned

in section 2, CBPS shows relatively high protein, astaxanthin, and

lipid content with high levels of PUFAs (EPA and DHA). Previous

studies have explored crustaceans and amphipods as alternatives in

experimental diets for farmed fish (Moren et al., 2006; Opstad et al.,

2006; Suontama et al., 2007), obtaining promising results. Especially

for shrimp and salmonids, natural skin pigmentation maintenance

is of great economic importance and is directly associated with

acceptance or rejection by consumers (Prameela et al., 2017; Lim

et al., 2018). Commercial products SeaPro® Shrimp Meal and

SeaPro® Crab Meal from Bio-Oregon Protein, Inc. (OR, USA) are

produced from the processing side streams of Northern shrimp

(Pandalus jordani) and Dungeness crab (Metacarcinus magister).

These products have already been used as ingredients in animal feed

and pet food to balance nutrient profiles. It is worthy of mentioning

that this company is vertically integrated within a seafood company,

i.e. targeting food for human consumption (Pacific Seafood, OR,

USA). This integration secures a stable supply chain of the raw

materials and implements the FDA Food Safety Modernization Act

(FSMA)/HACCP systems throughout the entire process to ensure

the quality of the products. However, this type of integrated

company does not yet exist in the EU, as far as we know.

At present, converting food by-products into animal feed and

pet food is considered the most feasible and sustainable practice

(Salemdeeb et al., 2017). In the EU, Regulation (EU) No. 2017/1017
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(EU, 2017a) lists what raw materials can be used to produce animal

feed and pet food. According to this regulation, CBPS are

categorised as by-products from aquatic animals, crustacean

meals, and mollusc meals. In general, any CBPS fulfil the

requirements of “health rules as regards animal by-products and

derived products not intended for human consumption”

[Regulation (EC) No. 1069/2009 (EU, 2009b) and Regulation

(EU) No. 142/2011 (EU, 2011)] and does not possess any risk of

certain transmissible spongiform encephalopathies according to

Regulation (EC) No. 999/2001 (EU, 2001). Thus, they can be used

to produce aquatic feed and pet foods. It also deserves to be

mentioned that Regulation (EU) No. 2017/1017 (EU, 2017a) only

includes hydrolysed krill protein concentrate in the list; that said,

other sources of protein hydrolysates such as crab and shrimp (and

their by-products) cannot be used as raw material to produce

animal feed and pet food yet. However, in section 13.2.8, the

regulation mentions that glucosamine produced by the hydrolysis

of crustaceans and other arthropod exoskeletons is legal to be used

as feed material, making CBPS have broader application prospects.

If a nutraceutical (generated from food waste) is intended for

animal nutrition, it must comply with Regulation (EC) No. 1831/

2003 (EU, 2003) and (EU) No. 68/2013 (EU, 2013), and if it has

pharmacological effects, Regulation (EU) 2019/6 (EU, 2019b) must

be followed (Tedesco and Cagnardi, 2019).
3.2 Agricultural/horticultural products:
Biofertilisers, biostimulants, and crop
protection agents

In modern agriculture, the search for eco-friendly and

sustainable alternatives to promote plant growth and protect

plants from diseases and pests, enhancing crop productivity with

lower environmental impact, is a priority. Chitin and its derivatives

have shown promising safe alternatives to hazardous synthetic

chemical pesticides/fungicides and fertilisers with negligible risk

to human health and the environment (Shamshina et al., 2019).

Chitin is used in agriculture as a component for biofertilisers’

preparation and is considered an organic nitrogen fertiliser.

Nitrogen fertilisers are typically used to promote leaf growth (Liu

et al., 2014). The fertiliser effect of chitin or chitosan is due to the

decomposition and convergence by chitinolytic microorganisms

present in the soil into nitrogen forms useful for direct uptake by

plants, like ammonia and nitrates (Manucharova et al., 2006; De

Tender et al., 2019; Vandecasteele et al., 2021). Examples of

commercial biofertilisers produced from CBPS are listed in

Table 2. However, none of these commercial products are

produced or available in the EU.
TABLE 1 Different categories of by-products with their risk levels, definitions, and legal applications according to EU regulation 1069/2009.

Category Risk level Definition Application

1 High By-products are for disposal only. Incineration or as fuels in an approved combustion plant

2 High By-products are not intended for animal consumption. Landfill and safe technical uses

3 Low By-products are not intended for human consumption. Organic fertilisers, pet food, animal feeds, and cosmetic ingredients
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In addition to fertiliser effects, chitin and its derivatives are also

used to improve crop protection against plant pathogens and

abiotic stress conditions. Crop protection is often an indirect

activity mediated by beneficial symbiotic microorganisms,

including plant growth-promoting rhizobacteria and fungi (De

Tender, 2021; Maksimov et al., 2011). The presence of chitin

enhances the proliferation of these microorganisms and facilitates

plant-microorganism interactions. Plant growth-promoting

rhizobacteria and fungi have been reported to improve plant

growth by directly stimulating the plant or suppressing pathogens

(Vandecasteele et al., 2021). In the presence of chitin, many of these

microorganisms overproduce chitinolytic enzymes acting as natural

fungicides/pesticides (Melent’ev et al., 2006). These findings suggest

that biocontrol bacteria and fungi may be applied in combination

with chitin or chitin-containing materials, like crustacean waste, or

carrier materials supplemented with chitin-containing substances

to protect plants. Chitin and its derivatives have been intensively

studied as potential biopesticides in the past 20 years (Wang et al.,

1999; Wang et al., 2002a; Wang et al., 2002b; Wang et al., 2005;

Inderbitzin et al., 2018; Andreo-Jimenez et al., 2021). Recently, a

Belgian company, Fytofend, successfully launched a product named

Fytosave®, an elicitor of natural plant defence mechanisms. It is a

soluble concentrate that contains 12.5 g/L COS-OGA (Chito-

oligosaccharides-Oligogalacturonans). It provides good protection

against powdery mildew on various crops and works against plant-

parasitic nematodes (Singh et al., 2019). Another Belgian company,

Xpert4growth, brings a new chitosan product to the market, which

is authorised as a natural product. A German company, DeltaChem,

produces the chitosan product DeltaStim® from shrimp shells,

which can be used as a biostimulant to enhance plant vigour and

increase yield. It can also be applied as a biopesticide against plant
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pathogens of the genus Phytophthora, Fusarium, and as an

anthelmintic against plant-parasitic nematodes. Examples of

commercial biostimulants and biopesticides produced from CBPS

are listed in Table 2.

To reduce the consumers’ risk of exposure to pesticide residues

in foods, the application of biopesticides in crop protection attracts

great attention in modern agriculture. Biopesticides are usually

inherently less toxic than conventional pesticides and generally

affect only the target pest and closely related organisms (Czaja et al.,

2015). In the EU, biopesticides are regulated under the plant

protection Regulation (EC) No. 1107/2009 (EU, 2009c). This

regulation is also carried out in conjunction with two other EU

Regulations and Directives: 1) Regulation (EC) No. 396/2005 (EU,

2005), which focuses on the regulation of the maximum residue

levels (MRLs) in food; 2) Directive 2009/128/EC (EU, 2009a) which

promotes the application of Integrated Pest Management (IPM)

and the use/development of alternatives to chemical pesticides.

Although there is no regulatory category specified for

biopesticides generated from CBPS, they should follow the

general pesticide categories: “basic substances” or “low-risk

substances” according to Regulation (EU) No. 2017/1432

(EU, 2017b).

Organic farming using natural preparations is highly promoted

to reduce nitrogen-containing fertilisers used in agriculture and

horticulture [Directive 91/676/EEC (EU, 1991)]. As an alternative

to chemical ones, biofertilisers and biostimulants can improve

plants’ general health, vitality, and growth and not pose many

environmental and ecological risks (Pylak et al., 2019). According to

Regulation (EU) No. 2019/1009 (EU, 2019c), a biostimulant is

defined as a product stimulating plant nutrition processes

independently of the product’s nutrient content with the sole aim
TABLE 2 Examples of commercial biofertilisers, biostimulants and biopesticides produced from crustaceans processing side streams.

Product/brand name Material Functions Country of
Origin

Commercial biofertilizer

Down to Earth® 4-3-0 By-product of the West Coast crab United States

Neptune’s Harvest® organic 5-
3-0

Crab and lobster shell United States

High Tide™ Shellfish extract Chitosan from shellfish United States

FishTown® 6-8-0 and 4-2-0 Shrimp and crab shell United States

Cost of Maine® 1-2-0 Red crab shell United States

Sigma-Marine® 2-3-0 Crab shell United States

Hibong® Chitosan from shrimp shell China

Commercial biostimulants

Fytosave®
Chito-oligosaccharides-
Oligogalacturonans

Against powdery mildew-type diseases and plant parasitic
nematodes

Belgium

Xpert4growht® ChitosanHC Chitosan Hydrochloride Stimulant of the defence system of plants Belgium

DeltaStim® Chitosan Enhance plant vigour and increase yield Germany

Biolog Heppe® Chitosan
Promote plant growth, increase rhizosphere fungal and bacterial

biomass
Germany
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of improving nutrient use efficiency, tolerance to abiotic stress,

quality traits, and availability of confined nutrients in the soil or the

plant rhizosphere. This new regulation lists specific types of bio-

products which can be used in organic farming and specifies that a

plant biostimulant “shall have the effects that are claimed on the

label for the plants specified thereon”. Moreover, the European

Biostimulants Industry Council (EBIC) has proposed some general

guiding principles to follow, promoting and facilitating the

launching of biostimulants in the EU market (Ricci et al., 2019).

Generally, from the regulation aspects, products valorised from

CBPS, which are used as biopesticides, organic fertilisers, and

biostimulants, do not face insurmountable legislation barriers.

Moreover, evaluating low-risk bioactive ingredients takes 120

days, which is far shorter than 12 months for conventional active

ingredients. Also, low-risk active ingredients are approved for 15

years instead of 10 years. However, the high registration cost can

prohibit the commercialisation of new products, and products used

as plant protection without authorisation are considered illegal. In

order to tackle this problem, European legislation (Belgium as an

example) provided a more straightforward procedure (FPS Public

Health, Food Chain Safety and Environment, 2015), whereby basic

substances such as marine sourced chitosan can be placed on a

positive list.
3.3 Cosmetics

In cosmetics, chitosan and its derivatives have been used to

manufacture skin, hair, and oral care products (Dutta et al., 2004;

Morganti et al., 2011; Massironi et al., 2020). In recent years, chitin

and chitosan applications in eco-friendly processes have been

highlighted, along with chitosan’s advantages in the production of

cosmetics (Casadidio et al., 2019). Specifically, marine-sourced

chitosan is compatible with many cosmetic ingredients such as

starch, fats, glucose, waxes, saccharose, polyols, oils, and acids,

making it ideal for cosmetic formulations (Morin-Crini et al., 2019).

An example of where crustacean-sourced chitosan is manufactured

as a cosmetic ingredient in a commercial setting is Chitinor AS

(https://chitinor.com), part of the Seagarden group Norway, which

prepares various ingredients based on chitosan. This company uses

varying molecular weight chitosan for applications in hair care,

personal hygiene, and skin care. The use of chitin and chitosan

derivatives in oral care and skincare products, including the

antibacterial properties for oral healthcare and antioxidant effect

in skincare, have been explored, and researchers have identified
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products can control (Aranaz et al., 2018). In addition, chitosan

nanoparticle formulations have shown promise when loaded with

fluoride as novel dental delivery systems to enhance oral hygiene

(Nguyen et al., 2017).

The full potential of using CBPS in the cosmetic industry is yet

to be explored. However, there are examples of routes to enhance

the value added for the industry through innovation, such as

cosmetic products developed by a Spanish company: Grup

Barcelonesa, who applies glucosamine extracted from lobster,

shrimp and crab shells. This company claims that the function of

glucosamine in the cosmetic product is to provide moisture and

elasticity to the skin resulting in an anti-ageing effect (Grup

Barcelonesa, 2019). The cosmetic industry is a definite growth

area for using CBPS as a multifunctional ingredient in the

circular economy. A list of commercial cosmetic ingredients and

products that contain chitosan is summarised in Table 3.

The EU Commission defines a cosmetic product as “any

substance or mixture intended to be placed in contact with the

external parts of the human body (epidermis, hair system, nails, lips,

and external genital organs) or with the teeth and the mucous

membranes of the oral cavity with a view exclusively or mainly to

cleaning them, perfuming them, changing their appearance,

protecting them, keeping them in good condition or correcting body

odours.” In Europe, cosmetic products and their ingredients for the

EU market are regulated under Cosmetic Product Regulation:

Regulation (EC) No 1223/2009 (EU, 2009d). The European

Commission also has a cosmetic ingredients database, CosIng,

which maintains information on cosmetic substances and

ingredients. More recently, in 2019, a glossary of common

ingredient names for labelling cosmetic products placed on the

market was put into action according to the EU Commission

Decision 2019/701 (EU, 2019a).

The CosIng database currently lists eight products under a

chitin search, including chitin and its derivatives (EU, 2022). It does

not state the source of chitin but rather its function as an abrasive

and bulking agent. Chitosan’s functions are described as film-

forming and hair fixing on the CosIng database (EU, 2022). Fifty

types of cosmetic ingredients are listed for chitosan and its

derivatives which has grown from 44 products in 2018 (Aranaz

et al., 2018). These ingredients have various applications for

cosmetic products, including antimicrobial, antioxidant, hair and

skin conditioning, surfactant, chelating, film-forming, skin

protection and emulsifying, emollient, antistatic, binding, viscosity

controlling. The increase in products would suggest that the
TABLE 3 Examples of manufacturing industries of crustacean-sourced chitosan products.

Product name Functions/Claims Country of Origin

Hydamer™ Varying molecular weight chitosan for applications in HCMF, DCMF, and skin care CMFP* Norway

System4® R Leave-in spray contains chitosan to smooth hair Finland

Chitodent® Toothpaste contains chitosan with antibacterial properties Germany

Products contain N- Acetyl- D-Glucosamine Provide moisture to the skin, improve elasticity, and anti-ageing Spain/United States**
*HCMF, hair care managing factor; DCMF, deodorising care managing factor; CMFP, chitosan moisturising factor products; **the production of ingredient N- Acetyl- D-Glucosamine is
Sandream Specialties (NJ, USA).
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development and use of chitosan derivatives is a growth area for the

cosmetics industry. Regulation (EC) No. 1223/2009 (EU, 2009d)

also indicates that cosmetic products shall not contain prohibited

substances listed in Annex II. Prohibited substances include

cadmium species that could be present in chitosan derived from

crustaceans. However, there are no regulations on using chitosan-

derived cosmetic products concerning allergic reactions.

A summary of EU regulations/legislations related to feed,

agricultural/horticultural applications, and cosmetics is shown

in Table 4.
4 Challenges of valorising CBPS for
human consumption

As discussed in the previous sections, the fast time-to-market

products derived from CBPS are currently limited to animal feeds,

bio-pesticide/stimulants, and cosmetic ingredients since CBPS

usually are not handled in a food-grade manner but rather as by-

products or even waste. Once CBPS are downgraded to by-products

or waste, they can no longer be upgraded to food (ingredients).

Therefore, to valorise CBPS for human consumption, food handling

procedures must be in place throughout the entire value chain from

catch to product, with Good Manufacturing Practice (GMP), Good

Hygienic Practice (GHP) and Hazard Analysis and Critical Control

Point (HACCP) principles applied. Additionally, the side streams

must be considered safe to use as food with respect to

microbiological and chemical criteria (including toxin levels and

heavy metals) (de Boer and Bast, 2018). Due to the regulations

mentioned in the previous sectors, the valorisation of CBPS to

products intended for human consumption with quick market

potential is currently challenging since processing and storage

facilities are often non-fit for food handling and lack appropriate

equipment. Extra labour cost is also a hurdle. In addition to
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derived from CBPS is not well developed; therefore, the knowledge

about how to develop marketable products is insufficient. In

addition, the tools for marketing and communication are

underdeveloped (Olsen et al., 2014; Altintzoglou et al., 2021;

Whitaker et al., 2021).

Another challenge of using CBPS for human consumption is

consumer acceptance. This challenge can be mitigated by

presenting products based on side streams as innovative food.

Presenting products as innovative food could improve consumer

acceptance by enhancing the ability of consumers to evaluate the

products based on quality cues (Bhatt et al., 2018; Aschemann-

Witzel and Peschel, 2019). However, consumers may also be

concerned and resistant to environmental labels, such as

sustainable and organic food, because of low trust in the labelling

systems (Vittersø and Tangeland, 2015). Some studies showed that

involvement with seafood and concerns about the marine

environment positively affect the perception of the benefits of

eating seafood (Jacobs et al., 2015).

Utilising side streams can lead to financial benefits for

producers. However, this could lead to consumer scepticism

towards the reasoning behind changes in production systems,

even if a reduction of environmental impact is evident (Holloway

et al., 2009). Additional studies in realistic environments, such as

the consumers’ households, could support efforts towards

reducing the latter scepticism. A decrease in scepticism could

potentially increase consumer acceptance of products that include

ingredients based on production methods aimed at reducing food

waste. One example is providing consumers with skills and tools,

such as explaining why by-products can help them plan their

shopping routines and avoid food waste (Stefan et al., 2013).

Buying labelled products could also help consumers make

informed decisions and express their opinion about food

production, such as ethics (Brom, 2000). Additional information
TABLE 4 Outline of the relevant EU regulations/legislations on three applications: feed/pet food, agricultural/horticultural products, and cosmetics;
the regulatory scopes are divided into three subcategories: raw material, manufacturing, and end products/sale.

EU regulations/legislations

Raw material Manufacturing End products/sale

Feed/pet food
Regulation (EU) No. 2017/

1017
Regulation (EC) No. 1069/

2009
Regulation (EU) No. 142/2011

Regulation (EC) No. 999/
2001

Regulation (EC) No. 1831/2003 Regulation (EU) No. 68/2013

Regulation (EU) 2019/6

Agricultural/horticultural
products

Regulation (EU) No. 2019/1009*

Regulation (EC) 294 No. 396/
2005

Regulation (EC) No. 1107/
2009

Regulation (EU) No. 2017/1432 Directive 2009/128/EC

Directive 91/676/EEC

Cosmetics Regulation (EC) No 1223/2009*

EU Commission Decision 2019/
701
*Regulations cover all three mentioned scopes.
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about the benefits of using ingredients that stimulate the whole

raw material in specific product categories, such as nutrition

supplements, would increase consumer trust. The latter result is

beneficial for consumers with high involvement in food waste

reduction (Altintzoglou et al., 2021).

Although facing many challenges, there are still attempts trying

to valorise CBPS into high-value-added products for human

consumption. An EU project, BlueCC started in 2020, “takes

underutilised CBPS to develop new eco-friendly marine

ingredients and commercial products such as chitin/chitosan

using a market acceptance approach” (BlueBio COFUND, 2020).

In 2021, another project named “ReMeSS: Resource effective Multi-

extraction of Sustainable high-value compounds from Shrimp

production side-stream” started in Denmark. This project aims to

“extract valuable compounds, namely, flavour products, calcium

and collagen from shrimp processing side streams, considering the

food value chain” (DTU, 2021). However, these projects can reach

the Technology Readiness Level 7 at most, meaning there is still a

relatively long procedure until real products are available on the

market. On the other hand, these projects may build prototype

demonstrations, providing valuable information to the industries,

pol icymakers and stakeholders , which can accelerate

commercialisation in the near future.
5 Conclusion

The composition of CBPS implies that these side streams could

be valorised into value-added products instead of being landfilled or

incinerated. However, because of the strict EU regulations, the

valorisation potential of these side streams is not fully revealed, e.g.,

as long as they are not handled in a food grade manner, they still

cannot be used to develop products for human consumption.

Therefore, future actions on developing integrated facilities that

properly handle CBPS as food-grade materials and subject them to

biorefining for the production of multiple products should be

promoted. In addition, further research on developing
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appropriate marketing strategies to influence consumer

behaviours towards side stream related products should be

conducted to promote the valorisation of CBPS.
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Czaja, K., Góralczyk, K., Struciński, P., Hernik, A., Korcz, W., Minorczyk, M., et al.
(2015). Biopesticides–towards increased consumer safety in the European union. Pest
Manage. Sci. 71, 3–6. doi: 10.1002/ps.3829

de Boer, A., and Bast, A. (2018). Demanding safe foods - safety testing under the
novel food regulation, (2015/2283). Trends Food Sci. Technol. 72, 125–133. doi:
10.1016/j.tifs.2017.12.013
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