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Abstract—We investigate the coexistence of critical and massive
Internet of Things (IoT) services in the context of the unsourced
multiple access (UMA) framework, introduced by Polyanskiy
(2017). We consider the standard UMA setup in which all
users employ a common codebook and the receiver returns an
unordered list of codewords. To model the critical IoT service,
we assume that the users can also communicate a common alarm
message. We further assume that the number of active users in
each transmission attempt is random and unknown. We derive a
random-coding bound for the Gaussian multiple access channel
and demonstrate that orthogonal network slicing enables the two
traffic types to coexist with high energy efficiency.

I. INTRODUCTION

Massive Internet of Things (IoT) is a communication
paradigm that targets a large number of low-cost, battery-
limited, uncoordinated devices that intermittently transmit
small data volumes [1]. Such use case is referred to as massive
machine-type communications (mMTC) in the fifth-generation
(5G) wireless cellular standard. The characteristics of massive
IoT are captured by the unsourced multiple access (UMA)
model [2], where all users transmit their messages using
the same codebook, the decoder returns an unordered list
of messages, the error event is defined on a per-user basis,
and the error probability is averaged over all users. In [2],
a random-coding bound on the energy efficiency achievable
on the Gaussian multiple access channel (MAC) was derived.
Modern random access schemes [3] exhibit a large gap to this
bound. This gap has been later reduced in, e.g., [4]–[7]. An
extension to the case of random and unknown number of active
users was reported in [8], where both misdetections (MDs),i.e.,
transmitted messages that are not included in the decoded list,
and false positives (FPs), i.e., decoded messages that were not
transmitted, were considered.

Another segment of the IoT traffic covers critical IoT
services, which aim to deliver data with strict latency and
reliability guarantees [1]. Critical IoT services are mapped
to the ultra-reliable and low-latency communication (URLLC)
use case in 5G. Such use case can be analyzed using tools
from finite-blocklength information theory [9], [10].
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agreement No 101022113, and from the Swedish Research Council under
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This paper aims to investigate the coexistence of massive
and critical IoT. In [11], the authors proposed to leverage reli-
ability diversity to perform simultaneous transmission of dif-
ferent traffic types (also referred to as nonorthogonal network
slicing) followed by successive interference cancellation (SIC).
They showed that this approach leads to significant gains over
orthogonal slicing when mMTC and enhanced mobile broad-
band (eMBB) traffic are present, or when URLLC and eMBB
traffic are present. However, they noted that nonorthogonal
slicing between URLLC and mMTC may be problematic due
to the need to ensure reliability for URLLC devices in the
presence of random interference patterns caused by mMTC
transmissions. A first attempt to incorporate critical IoT traffic
into the UMA model was reported in [12]. There, on top of
standard messages, the users communicate a common alarm
message that needs to be decoded with higher reliability than
the standard messages. The authors assumed that a user drops
the standard message in favor of the alarm message when both
messages are available, and that the total number of active
users transmitting either messages is known. They showed
that, in nonorthogonal network slicing, the FP probability of
alarm messages dominates and significantly reduces the energy
efficiency when the total number of users is large.

In this paper, we study an orthogonal network slicing
scheme where orthogonal resources are allocated to standard
alarm messages. Differently from [12], we consider a random
and unknown number of active users for both traffic types.
Furthermore, both messages are transmitted if they are avail-
able. We provide a random-coding achievability bound for
orthogonal network slicing on the Gaussian MAC. We assume
that the standard traffic operates with a given additional energy
per bit, which we call a backoff, on top of the minimum
energy per bit required when the alarm traffic is not present.
We then use our bound to analyze the energy efficiency of
the alarm traffic. Through numerical results, we show that a
limited backoff is sufficient to transmit the alarm traffic with
high energy efficiency, provided that i) a large number of users
transmit the alarm message and ii) the power at which the
alarm message is transmitted is much smaller than that of
the standard message. We also show that the bottleneck of
nonorthogonal network slicing is the residual interference from
the alarm signal when decoding the standard messages.



Notation: We denote system parameters by sans-serif let-
ters, e.g., K, scalar random variables by upper case letters,
e.g., X , and their realizations by lower case letters, e.g., x.
Vectors are denoted likewise with boldface letters, e.g., a
random vector X and its realization x. We denote the n× n
identity matrix by In, and the all-zero vector by 0. The
Euclidean norm is denoted by ∥·∥. We use P(A) to denote
the set of all subsets of A; [m : n] ≜ {m,m + 1, . . . , n};
[n] ≜ [1 : n]; 1{·} is the indicator function. We denote the
Gamma function by Γ(x) ≜

∫∞
0
zx−1e−zdz, and the upper

incomplete Gamma functions by Γ(x, y) ≜
∫∞
y
zx−1e−zdz.

The complement of an event A is denoted by Ā. We denote the
Binomial distribution with parameters (n, p) by Bino(n, p).

II. SYSTEM MODEL

We consider a MAC in which K users are given access
opportunity over a frame of n uses of a stationary memoryless
additive white Gaussian noise (AWGN) channel. Let Sk ∈ Rn

be the signal transmitted by user k, which may be 0 if the
user is inactive. This signal is subject to the power constraint
∥Sk∥2/n ≤ P, ∀k ∈ [K]. The corresponding received signal
is given by Y =

∑K
k=1 Sk +Z, where Z ∼ N (0, In) is the

AWGN, which is independent of {Sk}Kk=1.
1) Message Generation: We let Ma denote the set of alarm

messages and Ms the set of standard messages; both sets are
common to all users. Let Ma ≜ |Ma| and Ms ≜ |Ms|. We
assume that Ms is much larger than Ma. In a frame, if an
alarm event has occurred, let W0 be the corresponding alarm
message, drawn uniformly from Ma. Each user transmits this
message with probability ρd. On top of that, with probability
ρs, user k, k ∈ [K], generates a standard message Wk

uniformly over Ms and independently of the other users. To
summarize, each user either transmits an alarm message, a
standard message, or both messages, or is inactive. Fig. 1
illustrates the message generation rule. For convenience, we
denote by we the “null message”, mapped to the all-zero
codeword (no transmission).

Remark 1: ρd is the product of the probability that a user
detects the alarm event and the probability that, upon detect-
ing the alarm event, the user decides to transmit the alarm
message. The former probability represents the sensitivity of
the devices, while the latter probability is a design choice.

Remark 2: The alarm message needs to be decoded with
much higher reliability than the standard messages since
reporting the alarm event is crucial for the system operation.

We assume that the number of users transmitting an alarm
message and/or a standard message is unknown to the receiver.

2) Random-Access Code: Similar to [2], for the standard
traffic, all users employ the same codebook and the receiver
decodes up to a permutation of messages. Furthermore, as
in [8], to address a random and unknown number of active
users, we need to account for both MD and FP of the standard
messages, referred to as SMD and SFP, respectively. We also
need to consider MD and FP of the alarm message, referred
to as AMD and AFP, respectively. We define the probabilities
of these events and the random-access code in the following.

Alarm event (W0)
occurred?
Standard message
selected?
Alarm
message
selected?

Yes No

ρs
Yes

1− ρs
No

W0k =W0

Wk ∈Ms

W0k =we

Wk ∈Ms

ρd
Yes

1− ρd
No

W0k =W0

Wk =we

W0k =we

Wk =we

ρd
Yes

1− ρd
No

W0k =we

Wk ∈Ms

W0k =we

Wk =we

ρs
Yes

1− ρs
No

Fig. 1. A tree representation of the message generation of user k. The user
generates an alarm message W0k and a standard message Wk indicated by
the leaves.

Definition 1 (Random-access code): Consider the Gaussian
MAC with both standard and alarm traffic described above.
An (Ma,Ms, n, ϵamd, ϵafp, ϵsmd, ϵsfp) random-access code for
this channel, where Ma and Ms are respectively the sizes of
the alarm and standard message sets, n is the framelength, and
ϵamd, ϵafp, ϵsmd, ϵsfp ∈ (0, 1), consists of:

• A random variable U defined on a set U that is revealed to
both the users and the receiver before the transmission.
This random variable acts as common randomness and
allows for the use of randomized coding strategies.

• An encoding function f : U × (Ma ∪ {we}) × (Ms ∪
{we}) → Rn that produces the transmitted codeword
Sk = f(U,W0k,Wk) for user k, for a given alarm
message W0k and standard message Wk.

• A decoding function g : U × Rn → (Ma ∪ {we}) ×
(P(Ms) ∪ {we}) that provides an estimate Ŵ0 of the
common alarm message W0 and an estimate Ŵ =
{Ŵ1, . . . , Ŵ|Ŵ|} of the list of transmitted standard mes-

sages. That is, (Ŵ0, Ŵ) = g(U,Y ).
Let W̃ = {W̃1, . . . , W̃|W̃|} be the set of distinct elements of
W = {Wk : Wk ̸= we, k ∈ [K]}. We assume that the decoding
function satisfies the following constraints on the AMD, AFP,
SMD, and SFP probabilities, respectively:

Pamd ≜ P
[
Ŵ0 ̸=W0

∣∣A] ≤ ϵamd, (1)

Pafp ≜ P
[
Ŵ0 ̸= we

∣∣Ā] ≤ ϵafp, (2)

Psmd|B ≜ E|W̃ |

[
1

|W̃|

|W̃ |∑
i=1

P
[
W̃i /∈ Ŵ

∣∣B] ]
≤ ϵsmd, (3)

Psfp|B ≜ E|Ŵ|

[
1

|Ŵ|

Ŵ∑
i=1

P
[
Ŵi /∈ W̃

∣∣B] ]
≤ ϵsfp. (4)

Here, we used the convention that 0/0 = 0 to circumvent
the cases |W̃| = 0 or |Ŵ| = 0. Furthermore, A denotes the
event that an alarm has occurred, and (3) and (4) hold for both
B = A and B = Ā.

III. HETEROGENEOUS ORTHOGONAL MULTIPLE ACCESS

We propose an orthogonal slicing strategy referred to as het-
erogeneous orthogonal multiple access (H-OMA). Each frame
is split into two blocks containing respectively na channel uses
dedicated to the alarm traffic, and ns = n − na channel uses
dedicated to the standard traffic. We next describe the signal
model in each block.



A. Signal Model

1) Alarm Block: If an alarm event has occurred, the com-
mon alarm message W0 is sent in the alarm block by every
user that detects the alarm and decides to transmit. The
received signal is Ya = KaX0 + Za, where Ka ≥ 0 is
the number of users transmitting the common alarm codeword
X0 ∈ Rna , and Za ∼ N (0, Ina) is the AWGN. If no alarm
event occurs, Ka = 0; otherwise, Ka ∼ Bino(K, ρd). We
impose the power constraint ∥X0∥2 /na ≤ Pa. This model
is equivalent to a single-user AWGN channel with random
signal-to-noise ratio (SNR) K2

aPa. The average energy per bit
of alarm traffic is upper-bounded by (Eb/N0)a≜

naPaρdK
2 log2 Ma

.
2) Standard Block: The standard block resembles the UMA

channel with random and unknown number of active users
considered in [8]. The number of active users in this block is
Ks ∼ Bino(K, ρs). We assume without loss of generality that
the first Ks users transmit. The received signal is then given
by Ys =

∑Ks

k=1 Xk + Zs, where Xk ∈ Rns is the standard
codeword transmitted by user k, and Zs ∼ N (0, Ins) is the
AWGN. We impose a power constraint ∥Xk∥2 /ns ≤ Ps, k ∈
[Ks]. The average energy per bit of standard traffic is upper-
bounded by (Eb/N0)s ≜

nsPs

2 log2 Ms
.

In accordance with Definition 1, the output of the overall
encoding function is the concatenation of an alarm codeword
and a standard codeword. To satisfy the overall power con-
straint, we set (Pa,Ps) such that naPa + nsPs ≤ nP. We note
that, for fixed Pa and Ps, orthogonality implies that the MD
and FP in the standard traffic are independent of the alarm
event, i.e., Psmd|Ā = Psmd|A and Psfp|Ā = Psfp|A.

B. Random-Coding Bound

In the following, for a given frame split (na, ns) and power
allocation (Pa,Ps), we derive a random-coding bound on the
AMD, AFP, SMD, and SFP probabilities in (1)–(4).

1) Alarm Block: For the encoder, we fix P′
a ≤ Pa

and draw Ma alarm codewords c1, . . . , cMa
independently

from N (0,P′
aIna). To convey an alarm message W0, the

active users transmit cW0 provided that ∥cW0∥2 ≤ naPa.
Otherwise, they transmit the all-zero codeword, i.e., X0 =
cW0

1
{
∥cW0

∥2 ≤ naPa

}
. Given a realization ya of the re-

ceived signal, the decoder proceeds in two steps. First, it
estimates the number of active users Ka as

K ′
a = argmax

k∈{0}∪[ka,ℓ:ka,u]

ma(ya, k) (5)

where ma(ya, k) is a suitably chosen metric, and ka,ℓ ≥ 1
and ka,u ≤ K are lower and upper estimation limits chosen
based on the distribution of Ka, i.e., based on ρd. If K ′

a = 0,
the decoder returns the null message we. Otherwise, given
K ′

a = k′a > 0, the decoder uses k′a to establish an interval for
minimum-distance decoding of the alarm message as

(Ŵ0, K̂a) = argmin
w∈Ma, k∈{0}∪[k′

a:k
′
a]

∥ya − kcw∥2 (6)

where k′a ≜ max{ka,ℓ, k′a − ra}, k′a ≜ min{ka,u, k′a + ra}.
Here, ra is a chosen nonnegative integer, which we call the

alarm-message decoding radius. Finally, the decoder returns
Ŵ0 if K̂a > 0, or returns we if K̂a = 0.

Remark 3: The first step (5) results in an AFP if Ka = 0 but
K ′

a > 0. To avoid this AFP, we include k = 0 in the refined
estimation of Ka in the second step (6).

An error analysis of this random-coding scheme leads to
the following bounds on the AMD and AFP probabilities.

Theorem 1 (Random-coding bound for the alarm block): Fix
Ma, ra, na ∈ [n], ka,ℓ ∈ [0 : K], ka,u ∈ [ka,ℓ + 1 : K], Pa,
and P′

a < Pa. The AMD and AFP probabilities achieved by
the random-coding scheme just described are upper-bounded
by ϵamd and ϵafp, respectively, where

ϵamd =

ka,u∑
ka=ka,ℓ

PKa
(ka)

ka,u∑
k′
a=ka,ℓ

ζ(ka, k
′
a)γamd(ka, k

′
a) + p̂,

(7)

ϵafp =

ka,u∑
k̂a=max{ka,ℓ,1}

min

{
1,

min{ka,u,k̂a+ra}∑
k′
a=max{ka,ℓ,k̂a−ra,1}

ζ(0, k′a)

}
· γafp(k̂a), (8)

with PKa
(ka) =

(
K
ka

)
ρka

d (1− ρd)
K−ka and

p̂ ≜
Γ
(
na
2 ,

naPa

2P′
a

)
Γ(na/2)

+ 1−
ka,u∑

k=ka,ℓ

PKa
(k), (9)

γamd(ka, k
′
a) ≜


1, if k′a ∈

{
[0 : max{ka−ra, ka,ℓ}]
∪ [ka + ra : ka,u]

}
,∑

k̂a∈{0}∪[k′
a:k

′
a]
q(k̂a), otherwise,

(10)

q(k̂a) ≜ min
s>0

P

[
na∑
i=1

ıs(k̂a, X
′
i;Y

′
i ) ≤ ln

Ma−1

V

]
,

(11)

γafp(k̂a) ≜ min
s>0

E

[
1

Γ(na/2)

· Γ
(
na
2
,
na
2 ln(1+2k̂2aP

′
as)− ln Ma

V

2s(1− (1 + 2k̂2aP
′
as)

−1)

)]
, (12)

ζ(ka, k
′
a) ≜ min

k∈{0}∪[ka,ℓ:ka,u]

k ̸=k′
a

P[ma(Y
′
a , k

′
a)>ma(Y

′
a , k)] ,

(13)

In (11) and (12), V is uniformly distributed over [0, 1]. In (11),
[X ′

1 . . . X
′
na ]

T ∼ N (0,P′
aIna). Given X ′

i = x′i, we have
that Y ′

i ∼ N (kax
′
i, 1), and ıs(k̂a, X

′
i;Y

′
i ) is the generalized

information density given by ıs(k̂a, x; y) ≜ −s(y − kax)
2 +

sy2

1+2sk̂2
aP

′ +
1
2 ln

(
1+2sk̂2aP

′). Finally, in (13), Y ′
a ∼ N (0, (1+

k2aP
′
a)Ina).

Proof 1: The proof relies on the random-coding union bound
with parameter s [13]. It is omitted due to the space limit and
will be provided in an extended version of this paper.

Remark 4: The quantity ζ(ka, k
′
a) is an upper bound on

the probability that given Ka = ka, the estimation step (5)



returns k′a. Closed-form expressions of ζ(ka, k′a) for the max-
imum likelihood estimation and energy-based estimation of
Ka can be deduced from [8, Th. 2].

2) Standard Block: We consider the random-coding scheme
proposed in [8, Sec. III-A]. Specifically, for the encoder, we fix
P′
s < Ps and generate the Ms standard codewords c1, . . . , cMs

independently from the distribution N (0,P′
sIns). To convey a

standard message Wk, the corresponding active user transmits
Xk = cWk

1
{
∥cWk

∥2 ≤ nsPs

}
. Given the channel output ys,

the decoder first estimates the number of active users as

K ′
s = argmax

k∈[ks,ℓ:ks,u]

ms(ys, k) , (14)

where ms(ys, k) is a suitably chosen metric, and ks,ℓ and ks,u
are limits on K ′

s, chosen based on the distribution of Ks, i.e.,
based on ρs. Then, given K ′

s = k′s, the decoder chooses the
best list size within an interval around k′s as

Ŵ = argmin
W′⊂[Ms] : |W′|∈[k′

s:k
′
s]

∥∥ys −
∑

i∈W′ ci
∥∥2, (15)

where k′s ≜ max{ks,ℓ, k′s − rs}, k′s ≜ min{ks,u, ks + rs},
and rs is a chosen nonnegative integer, which we call the
standard-message decoding radius. Bounds on the SMD and
SFP probabilities achieved by this random-coding scheme
follow from [8, Th. 1].

Theorem 2 (Random-coding bound for the standard block):
Fix Ms, rs, ns ∈ [n], ks,ℓ ∈ [0 : K], ks,u ∈ [ks,ℓ + 1 : K], Ps,
and P′

s < Ps. The SMD and SFP probabilities achieved by
the random-coding scheme just described are upper-bounded
by ϵsmd and ϵsfp, obtained by adapting ϵMD and ϵFA given
in [8, Th. 1] to the real-valued case.

3) Overall Random-Coding Bound: By combining Theo-
rem 1 and Theorem 2, we obtain the following random-coding
bound for H-OMA.

Theorem 3 (Random-coding bound for H-OMA): Fix ra, rs,
na ∈ [0 : n], ka,ℓ ∈ [0 : K], ka,u ∈ [ka,ℓ+1 : K], ks,ℓ ∈ [0 : K],
ks,u ∈ [ks,ℓ + 1 : K], (Pa,Ps) such that naPa + nsPs ≤ nP,
P′
a < Pa, and P′

s < Ps. For the considered Gaussian
MAC with both standard and alarm traffic, there exists an
(Ma,Ms, n, ϵamd, ϵafp, ϵsmd, ϵsfp) random-access code where
ϵamd and ϵafp are given in Theorem 1, and ϵsmd and ϵsfp are
given in Theorem 2.

Remark 5: Our bounding techniques can be used to gen-
eralize the analysis of the performance of the heterogeneous
nonorthogonal multiple access (H-NOMA) scheme proposed
in [12] to the case of unknown number of active users. In H-
NOMA, both standard and alarm codewords are transmitted in
the whole frame. They are generated as in H-OMA, but with
na = ns = n. The receiver first decodes the alarm message
and estimates the number of alarm users similarly to the alarm
block in H-OMA by treating the standard codewords as noise.
Thus, bounds on Pamd and Pafp for H-NOMA can be obtained
by adapting the bounds in (7) and (8) to the effective noise
variance 1 +KsP

′
s and by averaging over the distribution of

Ks. Next, exploiting reliability diversity, the receiver removes
the decoded alarm codeword from the received signal and

proceeds to decode the standard messages. If there is no alarm,
the received signal is similar to that in the standard block in H-
OMA. By assuming that the standard messages can be decoded
only if an AFP has not occurred, one can bound Psmd|Ā and
Psfp|Ā in a similar manner as for H-OMA, upon accounting
for the AFP probability. If there is an alarm, the residual
interference plus noise after SIC is Z + KacW0 − K̂acŴ0

.
Thus, Psmd|A and Psfp|A can be bounded by adapting the
bounds for H-OMA to the effective noise variance, which is
1+(Ka−K̂a)

2P′
a if W0 = Ŵ0 and 1+(K2

a+K̂
2
a )P

′
a otherwise.

IV. NUMERICAL EXPERIMENTS

We consider n = 30000 and (Ms,Ma) = (2100, 23). We set
K ∈ [1000 : 30000] and ρs = 0.01, so that E[Ks] ∈ [10 : 300],
similar to the setting in [2], [8]. We consider the mild target
reliability max{Psmd, Psfp} ≤ 10−1 for the standard traffic,
and the stringent target reliability max{Pamd, Pafp} ≤ 10−5

for the alarm traffic. Let (Eb/N0)
∗
s be the minimum required

energy per bit for the standard traffic if the alarm traffic is not
present, i.e., if ns = n. We address the following question: Let
the standard traffic operate at (Eb/N0)

∗
s + δ (dB) for a fixed

backoff δ > 0. What is the minimum required (Eb/N0)a? To
this end, we first find (Eb/N0)

∗
s in a similar manner as in [8].

We then find the minimum blocklength ns,min required to sat-
isfy max{ϵsmd, ϵsfp} ≤ 10−1 at (Eb/N0)

∗
s+δ dB. The number

of available channel uses for the alarm traffic is thus na,max =
n−ns,min. Finally, we minimize the required (Eb/N0)a using
a golden-section search over na ∈ [na,max], where for each
value of na, the required (Eb/N0)a is minimized over ρd
and Pa. In the following, we set δ = 0.1 dB, for which
na,max ∈ {7584, 964, 526} for K ∈ {10000, 20000, 30000},
respectively, and report the minimum (Eb/N0)a.

1) Impact of Device Sensitivity: As noted in Remark 1, ρd
is upper-bounded by the probability that a user detects the
alarm event, denoted by ρd,max, which indicates the device
sensitivity. To study the impact of ρd,max on the alarm-traffic
energy efficiency, we vary its value and show in Fig. 2 the
corresponding minimum (Eb/N0)a as a function of K. We
observe that a low (Eb/N0)a can be achieved, especially for
high ρd,max. This indicates that in H-OMA, the alarm message
can be transmitted at a high energy efficiency, at a cost of only
a marginal backoff in the standard-traffic energy efficiency. A
higher (Eb/N0)a is required as ρd,max decreases, i.e., when
the devices become less sensitive. Furthermore, we found that
it is optimal to set ρd to its maximum value ρd,max and then
minimize Pa and na. That is, one should let every user that
detects the alarm event transmit at a low power using only few
channel uses. The reason is that, to increase the effective SNR
K2

aPa while keeping a low total energy KaPana, one should
increase Ka (via increasing ρd) and reduce Pa and na.

2) Impact of Dynamic Range: Keeping Pa as low as
possible leads to a large difference in the transmitted power
between the two blocks. For example, for the parameters used
in Fig. 2, the ratio Ps/Pa is between 30 dB and 70 dB.
This power imbalance may not be compatible with the limited
dynamic range of IoT devices. To account for this, we impose
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Fig. 3. The minimum (Eb/N0)a required to satisfy max{ϵamd, ϵafp} ≤
10−5 when (Eb/N0)s = (Eb/N0)∗s + 0.1 dB for different dynamic range
ψ. Here, Ma = 23, Ms = 2100, ρs = 0.01, and ρd,max = 0.5.

the additional constraint Ps/Pa ≤ ψ in the minimization of
(Eb/N0)a. In Fig. 3, we plot the minimum required (Eb/N0)a
for ρd,max = 0.5 and ψ ∈ {0, 10, 20, 30,∞} dB. The case
ψ = ∞ corresponds to the setting in Fig. 2. We see that a
narrower dynamic range leads to a higher required (Eb/N0)a.
If the users transmit at equal power over the two blocks, i.e.,
ψ = 0 dB, the alarm traffic requires a higher energy per bit
than the standard traffic. Furthermore, for a finite dynamic
range, the required (Eb/N0)a increases with K, which is in
contrast with the case of infinite dynamic range. For each
na, the required (Eb/N0)a is minimized by setting Pa to its
minimum value Ps/ψ and then minimizing ρd.

3) Comparison with H-NOMA: As mentioned in Remark 5,
our bounding techniques can be used to extend the random-
coding bound for H-NOMA reported in [12] to the case of
unknown number of active users. We found that the bottle-
neck for H-NOMA is to satisfy the target SMD and SFP
probabilities when there is an alarm. Specifically, although
the alarm message W0 can be reliably decoded, the number
of alarm users Ka can be estimated incorrectly with significant
probability. For example, with Ks = 100, the probability of
wrongly estimating the number of alarm users given no AMD,

computed as P
[
argmink ∥Y − kcW0

∥2 ̸= Ka

]
, is 0.276 for

ψ = 20 dB and 0.426 for ψ = 30 dB. This leads to a high
residual interference KacW0

−K̂acŴ0
when decoding the stan-

dard messages even if Ŵ0 =W0. Because of this bottleneck,
H-NOMA cannot satisfy the reliability requirements for both
traffic types with the same (Eb/N0)s backoff δ = 0.1 dB
unless ρd = 1, in which case Ka = K, or Pa is high, i.e.,
comparable to Ps, so that the estimation of Ka is reliable. In
both cases, however, the required (Eb/N0)a is high. For the
setting in Fig. 3, if one sets Pa = Ps, the required (Eb/N0)a
is around 28–30 dB. This shows that reliability diversity [11]
is hard to exploit in nonorthogonal network slicing between
massive and critical IoT.

V. CONCLUSIONS

We investigated massive and critical IoT in a setting with
both a standard UMA traffic and an alarm traffic. Considering
a random and unknown number of active users, we accounted
for both misdetections and false positives. For the Gaussian
MAC, our results show that the both traffic types can coexist
with high energy efficiency by means of orthogonal network
slicing, while nonorthogonal network slicing is inefficient.
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