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Optimal Subsampling Designs
Under Measurement Constraints

HENRIK IMBERG

Department of Mathematical Sciences
Chalmers University of Technology

Abstract

We consider the problem of optimal subsample selection in an experiment
setting where observing, or utilising, the full dataset for statistical analysis is
practically unfeasible. This may be due to, e.g., computational, economic, or
even ethical cost-constraints. As a result, statistical analyses must be restricted
to a subset of data. Choosing this subset in a manner that captures as much
information as possible is essential.

In this thesis we present a theory and framework for optimal design in general
subsampling problems. The methodology is applicable to a wide range of
settings and inference problems, including regression modelling, parametric
density estimation, and finite population inference. We discuss the use of
auxiliary information and sequential optimal design for the implementation of
optimal subsampling methods in practice and study the asymptotic properties
of the resulting estimators.

The proposed methods are illustrated and evaluated on three problem areas: on
subsample selection for optimal prediction in active machine learning (Paper I),
optimal control sampling in analysis of safety critical events in naturalistic driv-
ing studies (Paper II), and optimal subsampling in a scenario generation context
for virtual safety assessment of an advanced driver assistance system (Paper III).
In Paper IV we present a unified theory that encompasses and generalises the
methods of Paper I–III and introduce a class of expected-distance-minimising
designs with good theoretical and practical properties.

In Paper I–III we demonstrate a sample size reduction of 10–50% with the
proposed methods compared to simple random sampling and traditional im-
portance sampling methods, for the same level of performance. We propose a
novel class of invariant linear optimality criteria, which in Paper IV are shown
to reach 90–99% D-efficiency with 90–95% lower computational demand.

Keywords: active sampling, inverse probability weighting, M-estimation, opti-
mal design, unequal probability sampling.
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1 Introduction

We consider the problem of optimal subsample selection in an experiment
setting where observing, or utilising, the full dataset for statistical analysis is
practically unfeasible. This may be due to, e.g., computational, economic, or
even ethical cost-constraints. As a result, statistical analyses must be restricted
to a subset of data. This problem may be encountered in a wide range of
settings and applications, including medical research, bioinformatics, official
statistics, machine learning, big data, and traffic safety research. Some specific
examples and applications considered in this thesis are described in Chapter 1.1.
The general problem is formulated in Chapter 1.2 and the contributions of this
thesis summarised in Chapter 1.3.

1.1 Examples and applications

A first example considered in this thesis is the problem of optimal subsample
selection for a machine learning and prediction modelling task (Paper I). A
common problem in machine learning is the lack of training data available for
developing a prediction algorithm. In many cases the inputs to the model are
easier to observe than the outcomes, or ’labels’. For instance, electronic sensors
and devices make it possible to collect large amounts of data at high speed and
low cost. At the same time, some features of the data — often the response
variable in the intended prediction model — may require human input in
terms of manual annotation, experimentation, or expert judgement. Hence,
unlabelled data are abundant whereas labelled data are scarce. Active learning
offers a solution to this problem by exploiting information from the observed
inputs for selecting which instances to label (MacKay, 1992; Cohn, 1996). This
is done in an iterative fashion, alternating between data collection and model
fitting, by repeatedly retrieving the labels of new instances. By oversampling
the instances that are the most informative with regards to prediction, the

1



2 1. Introduction

learner may perform better with less data (Lewis and Gale, 1994; Settles, 2012).
We study the asymptotic generalisation error of an active learner and derive
optimal sampling schemes to minimise the prediction error on unlabelled
data. We also use active leaning as a tool to derive optimal subsampling
methods assisted by machine learning predictions on yet unseen data, e.g.,
for estimating a finite population characteristic. Active learning methods are
considered further in Chapter 2 and 4.

In Paper II we develop an optimal auxiliary-variable-assisted subsampling
method for two-phase sampling studies, with application to naturalistic driving
studies. A naturalistic driving study is a study of driving under naturalistic
conditions, i.e., without any interventions (Winkelbauer et al., 2010). Data
are collected for all driving sessions in a large fleet of vehicles equipped with
advanced instrumentation to record vehicle manoeuvres, driver behaviour,
and external conditions (van Schagen and Sagberg, 2012). These data are
used to describe the characteristics of normal driving, the occurrence of safety
critical events (e.g., near crashes and incidents), and to study risk factors
for such safety critical events (Dingus et al., 2016). Some of these analyses
rely on manual annotation of video sequences, e.g., to extract information
on driver behaviour. Since such annotations are extremely time-consuming
and expensive, this is usually affordable only for a fraction of the driving
sessions in the database. However, a substantial amount of information is
already available through automatic recordings of vehicle manoeuvres etc. We
demonstrate how such auxiliary information may be utilised to optimise the
selection of which instances to annotate with regards to some characteristic of
interest, e.g., the detection of potential associations between driving behaviour
and a consecutive safety critical event. Optimal auxiliary-variable-assisted
subsampling methods are discussed in Chapter 3.

A third application of the methods developed in this thesis is the use of optimal
subsampling to reduce computation time in large computer experiments. As an
example, in Paper III we consider a method for virtual safety assessment of an
advanced driver assistance system. Vehicle safety systems are constantly being
developed to improve traffic safety and avoid or mitigate crashes. However,
when developing both advanced driver assistance systems and autonomous
driving systems, there is a need to assess the impact on safety of the systems
before they are on the market. One way to do that is by running virtual simula-
tions and comparing the outcome of simulations both with and without the
use of a specific system (Anderson et al., 2013; Seyedi et al., 2021). A drawback
with the virtual testing framework is the high computational load. Running all
simulations of interest is often too high-dimensional (many simulation parame-
ters varied) to be feasible in practice (Mullins et al., 2018; Sun et al., 2022). Also,
even if complete enumeration were feasible, it may not be efficient. A good
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estimate may be possible to obtain with much lower computational demand. In
this thesis we show how machine learning and sequential optimal design can
be utilised to reduce computational load in large-scale computer experiments.
These methods will be discussed further in Chapter 4.

As a final example, consider the problem of statistical inference for big data.
Massive datasets have become increasingly common in nearly every discipline
of science, including health-care (Chen et al., 2017), social science (Righi, 2019),
and finance (Óskarsdóttir et al., 2019), to mention a few. The sheer volume
of data poses a major challenge for computational and statistical methods for
data analysis. A popular approach to handle this issue is by downsizing the
dataset through subsampling (Ma et al., 2015; Wang et al., 2018). In Paper IV
we develop a general theory of optimal subsampling to ensure that statistical
analysis based on a subset of data results in a minimal loss of information. Our
contributions are described in Chapter 3 and 4.

1.2 Problem formulation

We consider the problem of estimating a finite population parameter or charac-
teristic on the following form:

i) a (vector) total ty =
∑

i∈D yi or function of totals τ = h(ty), or

ii) a parameter θ0, defined as the unique solution to an estimation equation∑
i∈D

ψi(θ) = 0, ψi(θ) = ∇θ�(θ;vi).

Here vi is a data vector associated with an element i in some index set D of
size N , and �(θ;vi) a loss-function describing the loss associated with the
parameter value θ given data vi. This covers a broad range of inference
problems and estimation methods in statistics, maximum likelihood estimation,
generalised linear models (Nelder and Wedderburn, 1972; McCullagh and
Nelder, 1989), quasi-likelihood methods (Wedderburn, 1974), and certain types
of M-estimation (Stefanski and Boos, 2002).

We assume that inference using the full-data {vi}i∈D is unfeasible, e.g., due
to practical, computational or economic constraints. Hence, we resort to an
approximate solution based on a subset S of size n � N . We consider the
case when the subset S is selected by a random mechanism, using unequal
probability sampling (Särndal et al., 2003). Thus, each member of the initial
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dataset is assigned a strictly positive and possibly unique sampling probability.
Using inverse probability weighting, unbiased inference may be assured under
very mild assumptions. The inferential process is illustrated in Figure 1.1.

Population P

Initial sample D

Subsample S

Inference for D

(Random sample)

Unequal probability sampling

Inverse probability weighting

Auxiliary variables {zi}i∈D are observed on D.

Complete data {(xi,yi)}i∈S are observed on S .

Figure 1.1. Flowchart of the experimental and inferential process in data subsampling
applications. In the first step, a sample {(xi,yi, zi)}i∈D is generated and the variables
{zi}i∈D are observed. The study variables of interest, (xi,yi), are observed on the
subset S, selected using information from the auxiliary variables zi. Estimation is
conducted using inverse probability weighting. This ensures that unbiased inference
for D is obtained. Generalisation to an underlying population P may sometimes also be
appropriate. The role of the variables xi,yi, zi will be made clear in Chapter 2 and 3.

Methods for subdata selection using deterministic procedures have also been
proposed, see, e.g., Wynn (1982), Pronzato (2006), Drovandi et al. (2017),
Wang et al. (2019), and Deldossi and Tommasi (2022). One major advan-
tage of randomisation-based methods, however, is robustness against model-
misspecification. Indeed, the inferential process outlined in Figure 1.1 ensures
that unbiased inferences for the characteristics of the initial dataset are ob-
tained under minimal assumptions (Binder, 1983; Pfeffermann, 1993). On the
other hand, the increase in variance may be substantial (see, e.g., Korn and
Graubard, 1995; Landsman and Graubard, 2013). Hence, the development of
optimal subsampling methods is essential to ensure both unbiasedness and
high efficiency.

Subsampling problems have been studied for a long time within the field
of statistics. Some early and important contributions include the work of
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Neyman (1938), Hansen and Hurwitz (1943), and Horvitz and Thompson
(1952). Stimulated by modern technological developments, the question of
optimal subsampling has attained renewed attention during the past few years.
Examples include leverage sampling and approximate numerical linear algebra
methods for big data regression (Ma et al., 2015, 2020), optimal subsampling
algorithms for binary and multinomial logistic regression (Wang et al., 2018;
Yao and Wang, 2019), generalised linear models (Ai et al., 2021b; Zhang et al.,
2021; Yu et al., 2022), quantile regression (Ai et al., 2021a; Wang and Ma, 2021),
and active learning (Bach, 2007; Kossen et al., 2022; Zhan et al., 2022). However,
most of these publications have a highly algorithmic perspective, focusing on
a restricted class of models and optimality criteria. Moreover, many of the
proposed methods use optimality criteria (e.g., A-optimality) with well-known
deficiencies, such as lack of invariance to the measurement-scale of the data
and parameterisation of the model. A unified theory of optimal subsampling
design is still lacking.

1.3 Contributions

In this thesis we present a theory and framework for optimal design in general
subsampling problems. The methodology is applicable to a wide range of
problems and settings, including regression modelling, parametric density
estimation, and finite population inference. We derive optimality conditions
for a broad class of optimality criteria, including A-, D-, E-, and L-optimality.
Algorithms to find optimal sampling schemes for both Poisson sampling and
multinomial sampling designs are presented. We also study optimal design
from an expected-distance-minimising perspective. This naturally leads us to
a novel class of linear optimality criteria with good theoretical and practical
properties, including computational tractability and invariance under non-
singular affine transformations of the data and under a re-parameterisation of
the model. We discuss the use of auxiliary information and sequential optimal
design for the implementation of optimal subsampling methods in practice
and study the asymptotic properties of the resulting estimators. The presented
methodology and algorithms are illustrated on problems in machine learning
and applications in the traffic safety domain.

The structure of the remainder of this thesis is as follows. In Chapter 2 we
provide a brief introduction to survey sampling, active learning, and optimal
design. Optimal subsampling designs are discussed in Chapter 3 and methods
for sequential optimal design in Chapter 4. A summary of the included papers
is provided in Chapter 5. We conclude with a brief discussion and some open
problems in Chapter 6.
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2 Preliminaries

We start with a brief introduction to survey sampling (Chapter 2.1 and 2.2),
optimal design (Chapter 2.3), and active learning (Chapter 2.4). In Chapter 2.1
we consider the estimation of a simple finite population characteristic, such as a
total or function of totals. More complex characteristics, such as the minimiser
of an empirical risk function or the solution to an estimating equation, are
considered in Chapter 2.2.

2.1 Finite population sampling

Consider a finite population, dataset, or index set D = {1, . . . , N} of N elements
represented by their indices i = 1, . . . , N . Associated with each element i ∈
D is a data vector (xi,yi, zi), where xi is a vector of explanatory variables,
covariates, features, or predictors, yi is a vector of outcomes or response
variables, and zi is a vector of auxiliary variables. Unless otherwise stated,
all vectors are assumed to be column vectors. In this section we focus on a
finite population characteristic defined by the variables yi. The role of the
explanatory and auxiliary variables was briefly described in Chapter 1.2 and
will be further discussed in Chapter 2.2 and 3.5, respectively.

We consider a characteristic of the elements in the dataset D on the following
form:

i) a scalar total ty =
∑

i∈D yi, or corresponding mean ty/N ,

ii) a vector total ty =
∑

i∈D yi, or corresponding mean vector ty/N , and

iii) a function of totals τ = h(ty), for a vector of totals ty ∈ R
q and differen-

tiable function h : Rq → R
p.

7



8 2. Preliminaries

Such a characteristic may be used to describe, e.g., the total energy consump-
tion, unemployment rate, or prevalence of a disease in a population. Examples
of characteristics covered by the latter class of statistics (iii) include ratios,
simple linear regression coefficients, correlation coefficients, and population
variances. More complex characteristics will be considered in Section 2.2.

2.1.1 Unequal probability sampling designs

Now assume that inference based on the full data {yi}i∈D is unfeasible, e.g.,
due to practical, economic, or computational constraints. We consider the
situation where individual elements i ∈ D are selected according to an unequal
probability sampling design, i.e., by a random mechanism where each member
i ∈ D has a strictly positive and possibly unique selection probability (Särndal
et al., 2003). Let Si be the number of times an element i ∈ D is selected
by the sampling mechanism, and μi the corresponding expected number of
selections. Sampling may be conducted either with or without replacement.
We let S = {i ∈ D : Si > 0} denote the random set of selected elements, and
n = E[

∑
i∈D Si] the expected size of the subsample.

We assume that sampling is conducted according to one of the following
sampling designs:

i) Poisson sampling with replacement (PO-WR): S1, . . . , SN are indepen-
dent with Si ∼ Poisson(μi), μi > 0.

ii) Poisson sampling without replacement (PO-WOR): S1, . . . , SN are inde-
pendent with Si ∼ Bernoulli(μi), μi ∈ (0, 1].

iii) Multinomial sampling (MULTI): (S1, . . . , SN ) ∼ Multinomial(n,μ/n),
μi ∈ (0, n), n ∈ N.

For the Poisson sampling designs we note that the independence assumption
on S1, . . . , SN implies that the sample size

∑
i∈D Si is random, with expectation

E[
∑

i∈D Si] =
∑

i∈D μi = n. In contrast, the multinomial design has a fixed
sample size. For a given size n, the Poisson and multinomial sampling designs
are uniquely determined by the mean vector μ. We say that such a design, for
a given size n, is indexed by the sampling scheme μ.

Methods also exist to select a fixed number of elements with unequal proba-
bilities and without replacement, for instance using the conditional Poisson
sampling design (Hájek, 1981; Tillé, 2006). Other examples include the Pareto
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and Sampford designs, discussed in Grafström (2010). These methods, how-
ever, tend to be computationally or analytically intractable, and will therefore
not be considered in this thesis. Additional details may be found in, e.g., Tillé
(2006), Fuller (2009) and Grafström (2010).

2.1.2 The Hansen-Hurwitz estimator

To account for unequal probabilities of selection, estimation may be performed
by sample weighting techniques. For a total ty, we consider the Hansen-
Hurwitz estimator (Hansen and Hurwitz, 1943)

t̂y =
∑
i∈S

Siwiyi, wi = 1/μi. (2.1)

When sampling is without replacement, this estimator coincides with the
Horvitz-Thompson estimator for ty (Horvitz and Thompson, 1952). Moreover,
(2.1) is an unbiased estimator of the total ty , provided that μi > 0 for all i ∈ D
(see, e.g., Särndal et al., 2003). A corresponding estimator for the mean ty/N is
given by t̂y/N or t̂y/N̂ , where N̂ =

∑
i∈S Siwi, and an estimator for a function

of totals τ = h(ty) by τ̂ = h(t̂y).

Since t̂y is linear in the random variables Si, the covariance matrix of the
estimator t̂y is on the form

Cov(t̂y) =
∑
i,j∈D

Cov(Si, Sj)

μiμj
yiy

T
i (2.2)

=

⎧⎪⎨⎪⎩
∑

i∈D wiyiy
T
i for PO-WR,∑

i∈D wiyiy
T
i − tyyT for PO-WOR,∑

i∈D wiyiy
T
i − tyt

T
y/n for MULTI,

(2.3)

where tyyT =
∑

i∈D yiy
T
i (Tillé, 2006). Corresponding results for the estimator

τ̂ = h(t̂y) of a function of totals are provided below.

Under suitable assumptions it holds that

√
n(t̂y − ty)

d→ N (0,Γ0)

as n → ∞, N → ∞ and n/N → γ ∈ (0, 1), where Γ0 is the limiting value of
nCov(t̂y) (Fuller, 2009). The convergence in distribution is under the law of
the sampling design, and we say that the Hansen-Hurwitz estimator is design-
consistent for ty (Särndal et al., 2003). By the delta method (Cramér, 1946; Sen
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and Singer, 1993) it follows that for a differentiable function h(u), the estimator
τ̂ = h(t̂y) is also approximately Gaussian in sufficiently large samples, with
mean

E[τ̂ ] = τ + o(n−1/2)

and covariance matrix

Cov(τ̂ ) = Jh(ty)Cov(t̂y)Jh(ty)
T + o(n−1).

Here o(n−1/2) and o(n−1) denote elementwise convergence to zero at rate n−1/2

and n−1, respectively. Jh(u) is the Jacobian matrix of h(u), i.e., the matrix with
rows ∇hj(u)

T.

2.1.3 Variance estimation

For variance estimation, note that the covariance matrix (2.2) itself is a (matrix-
valued) finite population total. Hence, variance estimation may be conducted
by similar sample-weighting techniques as described above. For fixed-size
designs, however, an alternative estimator due to Sen (1953) and Yates and
Grundy (1953) is often advocated. Specifically, the following unbiased covari-
ance matrix estimators are commonly employed:

Ĉov(t̂y) =

⎧⎪⎨⎪⎩
∑

i∈S Siw
2
i yiy

T
i for PO-WR,∑

i∈S Siwi(wi − 1)yiy
T
i for PO-WOR,

n
n−1

∑
i∈S Si

(
wiyi − t̂y/n

) (
wiyi − t̂y/n

)T
for MULTI.

An estimator for the covariance matrix of τ̂ = h(t̂y) is then obtained as

Ĉov(τ̂ ) = Jh(t̂y)Ĉov(t̂y)Jh(t̂y)
T.

See, e.g., Särndal et al. (2003), Tillé (2006), and Fuller (2009) for further details.

2.2 Empirical risk minimisation

Now consider a p-dimensional parameter θ0 defined by

θ0 = argmin
θ∈Ω

�0(θ), (2.4)

i.e., as the minimiser of some function �0(θ) over some parameter space Ω ⊂ R
p.

We assume further that θ0 is unique, and that �0(θ) is twice differentiable and
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can be written on the form

�0(θ) =
N∑
i=1

�i(θ), �i(θ) = �(θ;vi). (2.5)

The individual contributions �i(θ) are assumed to be functions of the parameter
θ and data vectors vi. We recognise (2.4) as an empirical risk minimisation
problem (Vapnik, 1991), and hence refer to θ0 as the (full-data) empirical risk
minimiser (ERM).

Under the above assumptions, θ0 may also be defined as the unique solution
to the estimation equation

∑
i∈D

ψi(θ) = 0, ψi(θ) = ∇�i(θ), (2.6)

with D = {1, . . . , N}. This setting covers a broad range of inference problems,
models, and estimation methods in statistics, including maximum likelihood es-
timation, generalised linear models (Nelder and Wedderburn, 1972; McCullagh
and Nelder, 1989), quasi-likelihood methods (Wedderburn, 1974), and certain
types of M-estimation (Stefanski and Boos, 2002). Some specific examples
include:

i) Inference for a finite population mean: consider a finite population of N
individuals, where each individual is associated with a non-random vec-
tor characteristic yi. The vector of finite population means N−1

∑N
i=1 yi

may be written on the form (2.4)–(2.6) with vi = yi and �(θ;vi) =
||yi − θ||22 = (yi − θ)T(yi − θ).

ii) Parametric density estimation: given independent and identically dis-
tributed data y1, . . . , yN from a probability distribution with density func-
tion fθ(y), the maximum likelihood estimate of θ may be written on the
form (2.4)–(2.6) with vi = yi and �(θ;vi) = − log fθ(yi).

iii) Regression modelling: consider a random sample {(xi, yi)}Ni=1, a vector
of regression coefficients θ, a (non-linear) model fθ(x) for the conditional
mean of Y given x, and a differentiable loss-function l : R2 → R+ such
that l(ŷ, y) = 0 if and only if ŷ = y. With vi = (xi, yi) and �(θ;vi) =
l(fθ(x), yi), the equations (2.4)–(2.6) define an estimate of the vector of
regression coefficients θ.
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2.2.1 The Hansen-Hurwitz ERM

Assume, as before, that complete data (xi,yi) can only be observed for a subset
S ⊂ D, which is selected using unequal probability sampling. We consider an
estimator for θ0 on the form

θ̂μ = argmin
θ∈Ω

�̂μ(θ), (2.7)

�̂μ(θ) =
∑
i∈S

Siwi�i(θ), wi = 1/μi,

where Si is the number of times an element i ∈ D is selected by the sampling
mechanism, μi is the corresponding expected number of selections, and S =
{i ∈ D : Si > 0} is the random set of selected elements. We recognise this
as the Hansen-Hurwitz estimator of the full-data empirical risk function (2.5).
Hence, we refer to θ̂μ as the Hansen-Hurwitz empirical risk minimiser.

It has been shown by Binder (1983) that under suitable regularity conditions
the distribution of the estimator (2.7) with respect to the sampling mechanism
is approximately Gaussian with mean

E[θ̂μ] = θ0 + o(n−1/2),

and covariance matrix

Cov(θ̂μ − θ0) = Γ(μ;θ0) + o(n−1),

Γ(μ;θ0) = H(θ0)
−1V(μ;θ0)H(θ0)

−1.

Here H(θ0) =
∂2�0(θ)

∂θ∂θT

∣∣
θ=θ0

is the Hessian of the full-data empirical risk function
(2.5) at θ = θ0,

V(μ;θ0) = Cov
(
∇�̂μ(θ)

∣∣
θ=θ0

)
=

∑
i,j∈D

Cov(Si, Sj)

μiμj
ψi(θ0)ψj(θ0)

T

the covariance matrix of the gradient ∇�̂μ(θ) with respect to the sampling
mechanism, evaluated at θ = θ0, and ψi(θ) = ∇�i(θ). For further details we
refer to Binder (1983) and Fuller (2009).

It follows from (2.2)–(2.3) and (2.6) that the matrix V(μ;θ0) can be simplified
by

V(μ;θ0) =

{∑
i∈D wiψi(θ0)ψi(θ0)

T for PO-WR and MULTI,∑
i∈D(wi − 1)ψi(θ0)ψi(θ0)

T for PO-WOR.
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2.2.2 Variance estimation

Variance estimation may be conducted by using the plug-in estimator

Γ̂(μ; θ̂μ) = Ĥ(θ̂μ)
−1V̂(μ; θ̂μ)Ĥ(θ̂μ)

−1,

where

Ĥ(θ̂μ) =
∑
i∈S

Siwi
∂2�i(θ)

∂θ∂θT

∣∣∣∣
θ=θ̂μ

is an estimator for the full data Hessian H(θ0), and

V̂(μ; θ̂μ) =

{∑
i∈S Siw

2
iψi(θ̂μ)ψi(θ̂μ)

T for PO-WR and MULTI,∑
i∈S Siwi(wi − 1)ψi(θ̂μ)ψi(θ̂μ)

T for PO-WOR,

is an estimator for V(μ;θ0). A formal justification may be found in Binder
(1983).

2.2.3 Design-based inference and super-population inference

The main view on inference adopted in this thesis is a design-based perspective
where the study variables are considered as fixed but unknown constants.
Conditioned on the initial dataset {(xi,yi)}i∈D, all randomness involved in
the subsampling experiment is due to the sample selection mechanism. The
statistical properties of the resulting estimator are consequently formulated
under the law of the design, which is under immediate control of the investiga-
tor. An important consequence is that, using the sample weighting techniques
described above, the validity of the inference made from a probability sam-
ple S about the characteristics of the full data {(xi,yi)}i∈D, is free of model
assumptions. Hence, a design-consistent estimator is obtained even under the
realistic assumption of model-misspecification, i.e., when the assumed model
does not hold true in the underlying population (Skinner, 1989; Pfeffermann,
1993). This is an important robustness property of design-based estimation.
Model-based methods, on the other hand, produce more efficient estimators
when the assumptions of the model are fulfilled, but are more sensitive to
model-misspecification (Cramér, 1946; Korn and Graubard, 1995; Shimodaira,
2000). In this thesis we pursue a design-based approach to ensure unbiasedness
and develop optimal subsampling methods to increase efficiency.

In many applications the scope of inference goes beyond that of the initial
dataset D, and one may wish to generalise the findings to an underlying
population P (Figure 1.1, Chapter 1). In the survey sampling literature, this
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is commonly referred to as super-population inference (Hartley and Sielken,
1975). Indeed, we may often view our estimator θ̂μ as an estimator for an
underlying super-population parameter θ∗, defined as the limiting value of
θ0 as the size N of the initial sample D tends to infinity, and with the data
{(xi,yi)}Ni=1 being generated according to its limiting empirical distribution.
Rubin-Bleuer and Kratina (2005) have established asymptotic normality and
consistency of θ̂μ as an estimator for the super-population parameter θ∗ under
suitable conditions. By the law of total covariance, the covariance matrix of θ̂μ
around θ∗ is on the form

Cov(θ̂μ − θ∗) = Cov(θ0 − θ∗) + E [Γ(μ;θ0)] + o(n−1).

The first term denotes the covariance matrix of the full-data parameter θ0

around the super-population parameter θ∗. The second term is the expectation
of the covariance matrix of θ̂μ around θ0. For further details we refer to Rubin-
Bleuer and Kratina (2005) and Fuller (2009).

2.3 Optimal design

The overall aim of this thesis is to develop optimal subsampling methods.
To do so we need a theory of optimal design. Therefore, consider a class of
experiments Ξ and corresponding consistent estimators θ̂ξ, ξ ∈ Ξ for an un-
known parameter θ∗, with unequal covariance matrices Γξ. In a subsampling
application, the experiment is determined by the choice of sampling design
and sampling scheme. Ideally, we would like to find an experiment ξ∗ ∈ Ξ such
that Γξ − Γξ∗ is positive semi-definite for all ξ ∈ Ξ. Such universal optimality,
however, is not possible to achieve in general. Hence, instead we consider a
function Φ : Sp×p

+ → R on the set of real, symmetric, positive semi-definite
p×p matrices, for which a minimiser ξ∗ ∈ Ξ is sought. For Φ to be a meaningful
measure of optimality we require the function to be monotone for Loewner’s
ordering, i.e., that

Φ(U) ≥ Φ(V) for all U,V ∈ Sp×p
+ such that U ≥ V, (2.8)

with U ≥ V meaning that U−V is positive semi-definite (Pukelsheim, 1993).

2.3.1 Criteria of optimality

Some popular optimality criteria are defined and summarised in Table 2.1.
These include the D-optimality criterion (minimise the determinant of the
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covariance matrix), E-optimality criterion (minimise the largest eigenvalue
of the covariance matrix) and L-optimality criterion (minimise the average
variance of a collection of linear combinations LTθ̂ξ). Two important special
cases of the L-optimality criterion are the A-optimality criterion (minimise the
average variance) and c-optimality criterion (minimise the variance of a linear
combination cTθ̂ξ), obtained with L = Ip×p and L = c, respectively, where
Ip×p is the p × p identity matrix and c a non-zero p × 1 vector (Silvey, 1980;
Atkinson and Donev, 1992).

Table 2.1. Definition of the A-, c-, D-, E-, L-, and V-optimality criteria. Φ is a real-valued
function on the set of real symmetric positive semi-definite p× p matrices, Γ the p× p

covariance matrix of an estimator θ̂ = (θ̂1, . . . , θ̂p), λmax(Γ) the largest eigenvalue of Γ,
c a non-zero p× 1 vector, and L a non-zero p×m matrix with columns a1, . . . ,am. X
is the set of possible values for the predictors x and ϕ : X → R

p a feature expansion of
the data.

Optimality criterion Description Objective function Φ(Γ)

A-optimality
Minimise average variance,
minimise trace of covariance matrix,
minimise sum of eigenvalues.

∑p
i=1 Var(θ̂i) = tr(Γ)

c-optimality Minimise variance of a linear combina-
tion or contrast cTθ̂. Var(cTθ̂) = cTΓc

D-optimality
Minimise generalised variance,
minimise determinant,
minimise product of eigenvalues.

det(Γ)1/p or log det(Γ)

E-optimality
Minimise maximal eigenvalue,
minimise variance along the direction
of largest uncertainty.

λmax(Γ)

L-optimality
Minimise average variance of a collec-
tion of linear combinations or contrasts
LTθ̂.

∑m
i=1 Var(a

T
i θ̂) = tr(ΓLLT)

V-optimality
Minimise average prediction variance
with respect to measure ν(x) on X , as-
suming a linear model ŷ = ϕ(x)Tθ̂.

∫
X Var(ϕ(x)Tθ̂)dν(x) =

tr
(
Γ
∫
X ϕ(x)ϕ(x)Tdν(x)

)

The A-, D- and E- optimality criteria have a simple geometric interpretation
as follows. Consider the random set C(θ̂ξ) := {θ ∈ R

p : (θ − θ̂ξ)
TΓ−1

ξ (θ −
θ̂ξ) ≤ χ2

p,α}, where χ2
p,α is the α-quantile of a χ2-distribution with p degrees

of freedom. For an (approximately) normally distributed estimator θ̂ξ, this
defines an (approximate) 100 × (1 − α)% ellipsoidal confidence set for θ∗

in R
p. D-optimality minimises the volume of this confidence ellipsoid over

the class of experiments Ξ. E-optimality minimises the length of its longest
axis, and A-optimality the length of the diagonal of the minimal bounding
box (parallelotope) around the confidence ellipsoid (Figure 2.1) (Pronzato and
Pázman, 2013).
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Figure 2.1. Confidence ellipse for a parameter θ∗ ∈ R
2. The ellipse is centred at the

estimated value of θ∗. The D-optimality criterion minimises the area (volume) of the
confidence ellipsoid, which is proportional to the square root of the product of the
eigenvalues of Γξ, over all experiments ξ ∈ Ξ. The E-optimality criterion minimises its
longest axis, i.e., the largest eigenvalue of Γξ . The A-optimality criterion minimises the
length of the diagonal of the minimal bounding box around the confidence ellipsoid,
which is equivalent to minimising the sum of the eigenvalues of Γξ . Illustration adopted
from Geuten et al. (2007).

Another popular optimality criterion is the V-optimality criterion, which min-
imises the average prediction variance with respect to some measure ν(x) on
the design space X (Welch, 1984). As it turns out, this is a linear optimality
criterion and hence is covered by the L-optimality criterion for a matrix L
such that LLT =

∫
X ϕ(x)ϕ(x)Tdν(x) (Table 2.1) (Atkinson and Donev, 1992).

A natural choice for the measure ν(x) in data subsampling problems is the
empirical measure on {xi}i∈D.

A property that is often desirable of an optimal design, is invariance under a
non-singular affine transformation of the data and under a re-parameterisation
of the model. That is, the optimal design and the statistical properties of the
resulting estimator should not depend on the choice of parameterisation, nor on
the scaling or coding of the data prior to modelling. The most common example
of a transformation- and parameterisation-invariant optimality criterion is the
D-optimality criterion. In contrast, the A- and E-optimality criteria are sensitive
to changes in the parameterisation or data, and hence lack such invariance
properties (Atkinson and Donev, 1992). An L-optimal design may or may
not be transformation- and parameterisation-invariant, depending on whether
or not the coefficient matrix L of the L-optimality criterion is adapted to the
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parameterisation of the problem and scaling of the data. Some invariant L-
optimal designs are discussed in Chapter 3.4.

2.3.2 Linear optimality criteria

Linear optimality criteria play a central role in this thesis. For instance, in
Paper I we consider an optimal sampling scheme to minimise the mean squared
prediction error and asymptotic generalisation error of an unbiased active
learning algorithm. The result is obtained by establishing equivalence to the
L-optimality criterion. In Paper II we consider various linear optimality criteria
when studying risk factors for an adverse event in a case-control setting. The
c-optimality criterion is used in Paper III to derive an optimal subsampling
method for estimating a finite population characteristic.

One of the main reasons for considering linear optimality criteria is due to its an-
alytical and computational tractability for optimal design in data subsampling
problems. The L-optimality criterion corresponds to a convex optimisation
problem for which a simple closed-form solution exists (see Chapter 3.2). Con-
sequently, in Paper IV we demonstrate a reduction in computation time by
more than 90% for finding an optimal sampling scheme for the L-optimality
criterion compared to non-linear criteria. The L-optimality criterion also plays
a central role in the machinery for finding optimal sampling schemes for more
complex, non-linear optimality criteria (see Chapter 3.3).

A crucial issue with the L-optimality criterion is the choice of coefficient matrix
L, i.e., the linear combinations for which an optimal design is sought. In Paper I–
III we discuss different options depending on the aim of the study. In Paper IV
we introduce a novel class of linear optimality criteria derived by minimising
the expected distance of our estimator from the target characteristic, with
respect to some suitable statistical distance function. For instance, we consider
the Kullback-Leibler divergence, empirical risk distance, and Mahalanobis
distance. The resulting optimal designs are shown to have good invariance
properties, low computational complexities, and high D-efficiencies. This class
of optimality criteria will be considered further in Chapter 3.4.

2.3.3 Sequential optimal design

Beyond simple linear models, the covariance matrices Γξ and the correspond-
ing optimal design ξ∗ generally depend on the true value of the parameter θ,
which in practice is unknown (Pronzato, 2006). Sequential optimal design of-
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fers a solution to this problem by iteratively adding new design points, at each
step using the information available for choosing an experiment for the next
step (Box and Hunter, 1965; Ford and Silvey, 1980). An example of a sequential
optimal design method in a machine learning context is active learning, which
is discussed next. We will return to sequential optimal design methods for data
subsampling in Chapter 4.

2.4 Active learning

Now consider the problem of predicting an outcome Y given some input x.
The outcome may either be categorical, as in classification problems, or nu-
meric, as in regression problems. Assume further that we are given a large
collection {xi}Ni=1 of such inputs, but that the corresponding outcomes {yi}Ni=1

can be observed only for a smaller subset S of size n � N . This is the prob-
lem setting in active learning, a branch of machine learning dealing with the
optimal subdata selection problem in a prediction modelling context. Active
learning algorithms differ from traditional ’passive’ learning methods in that
the machine learning algorithm itself chooses the data from which it learns.
This is done by exploring and exploiting structures in the data to enhance
learning, and enables machine learning models to perform better with less
training (Settles, 2012).

The active learning process is illustrated in Figure 2.2 and 2.3. The algorithm
starts with small initial sample, usually a simple random sample, and iteratively
queries the labels yi of yet unlabelled instances. This is typically done by
asking a human annotator or expert for feedback regarding the value of yi.
As more labelled data becomes available, the model is re-trained and new
instances are selected to maximise the predictive ability of the model. Some
popular querying strategies include uncertainty sampling (Lewis and Catlett,
1994), hypothesis reduction techniques (Haussler, 1989), and variance reduction
techniques (MacKay, 1992; Cohn, 1996; Schein and Ungar, 2007). The first class
of methods proceeds by querying the label of the instances that the prediction
algorithm currently is most uncertain of. Hypothesis reduction techniques,
on the other hand, aim to reduce the version space as much as possible, i.e.,
the set of hypotheses or prediction rules that are compatible with observed
data. Variance reduction techniques utilise methods from optimal design to
minimise the prediction variance.

A potential drawback of active learning methods is the sensitivity to model
misspecification. Active learning causes a change in the distribution of the
features x in the labelled training dataset compared to the distribution of the
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Initial sample

Retrieve label(s)

Train model

Evaluate performance

Select new instance(s)

Output predictions

Terminate or continue?

Figure 2.2. Flowchart of the active learning process. The algorithm starts with a small
initial sample and iteratively retrieves new training data, whereafter the model is
updated accordingly. The algorithm is terminated when a fixed number of instances
have been selected, or some stopping criterion on the performance of the model reached.

unlabelled data. This is commonly referred to as covariate shift (Shimodaira,
2000; Quinonero-Candela et al., 2008). For a discriminative model, i.e., a model
for the conditional distribution of the outcome Y given covariates x, covariate
shift can be safely ignored when the model is correctly specified. Indeed,
when the model is conditioned on the features causing the covariate shift, the
selection mechanism is ignorable (Rubin, 1976; Pfeffermann and Sverchkov,
1999; Zadrozny, 2004). For a misspecified model, however, this is not longer
the case and a covariate shift may result in inconsistent estimates and poor
predictions (Shimodaira, 2000). Various solutions to this problem have been
proposed, including weighting the loss function (Shimodaira, 2000; Sugiyama,
2006; Sugiyama and Nakajima, 2009), robust experiment design under model-
misspecification (Tommasi, 2012; Meng et al., 2021; Sirpitzi et al., 2023), and
design-based unbiased active learning methods (Bach, 2007; Beygelzimer et al.,
2009; Chu et al., 2011; Ganti and Gray, 2012).

Active learning is considered further in two of the papers included in this
thesis. In Paper I we consider the active learning problem from a finite popula-
tion sampling perspective. We derive optimal sampling schemes to minimise
the mean squared prediction error and asymptotic generalisation error of an
unbiased active learning algorithm. In Paper III we explore the possibilities of
using active learning also in applications where prediction is not of primary
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Figure 2.3. Illustration of the active learning process for a binary classification problem.
The algorithm starts with a small initial (simple random) sample of labelled data points.
New training examples are selected and labelled iteratively, and the prediction model is
updated accordingly. Grey dots correspond to unlabelled data. Green circles and orange
triangles are labelled observations from the two classes of observations. The colours
of the background show the regions where the algorithm predicts a "green circle" or
"orange triangle". Recently labelled instances are highlighted with a bold red border.

interest. We use active learning as a tool to guide the design of an optimal
subsampling method, e.g., to estimate a finite population characteristic. We
will return to unbiased active learning methods in Chapter 4.2 and 4.3.



3 Optimal subsampling designs

In this Chapter we derive optimal sampling schemes for a general class of
estimators, sampling designs, and optimality criteria. Some common notation
and general assumptions are introduced in Chapter 3.1. We then start in
Chapter 3.2 with linear optimality criteria. More general optimality criteria are
considered in Chapter 3.3, and a novel class of expected-distance-minimising
optimality criteria introduced in Chapter 3.4. A practical approach to optimal
subsampling design by minimising the anticipated covariance matrix under
an assisting auxiliary model is discussed in Chapter 3.5. For details on the
methods presented in this chapter, we refer to Paper IV. Additional examples,
illustrations and applications may be found in Paper I–III.

3.1 Notation and assumptions

First we introduce some notation to put the methods and estimators presented
in Chapter 2.1 and 2.2 in a common framework. We consider a p-dimensional
finite population characteristic η0 for which inference is to be made. For
instance, η0 may be a vector of finite population totals or function of totals,
as in Chapter 2.1, or the solution to an estimating equation, as in Chapter 2.2.
Also consider an estimator η̂μ with the following properties:

E[η̂μ] = η0 + o(n−1/2), (3.1)

Cov(η̂μ − η0) = Γ(μ) + o(n−1), (3.2)

Γ(μ) = A+
∑
i∈D

1

μi
Buiu

T
iB

T, (3.3)

where n =
∑

i∈D μi. As always, o(·) is interpreted elementwise. Under suit-
able conditions this covers the following classes of estimators introduced in
Chapter 2.1 and 2.2:

21
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i) the estimator t̂y for a vector of finite population totals η0 = ty, with
ui = yi and B = Ip×p,

ii) the estimator τ̂ = h(t̂y) for a function of totals η0 = h(ty), with ui = yi

and B = Jh(ty), and

iii) the estimator θ̂μ for a parameter vector η0 = θ0 defined as the solution
to an estimating equation (2.6), with ui = ψi(θ0) and B = H(θ0)

−1,
assuming that H(θ0) is of full rank.

The matrix A in (3.3) depends on the characteristic of interest and choice of
sampling design. For instance, A is the p × p zero matrix when sampling is
conducted according to a PO-WR design. If, on the other hand, sampling is
conducted according to a PO-WOR design, then A = −∑

i∈D Buiu
T
iB

T (cf.
(2.2) and (2.3)). We may also incorporate the first-stage variance Cov(η0 − η∗)
in the matrix A if super-population inference for an underlying parameter η∗

is intended (see Chapter 2.2.3).

We note that the approximate covariance matrix Γ(μ) of the estimator η̂μ, as
given in (3.3), generally depends on unknown full-data characteristics. We
will proceed in Chapter 3.2–3.4 as if Γ(μ) were known, keeping in mind that
the resulting theoretically optimal designs can generally not be found in prac-
tice. We refer to Chapter 4 for a discussion on the implementation of optimal
subsampling methods in practice.

3.2 Linear optimality criteria

Consider an estimator η̂μ with approximate covariance matrix Γ(μ) given by
(3.3), and a family of sampling designs (e.g., PO-WR, PO-WOR or MULTI) of
expected size n. We say that a sampling scheme μ∗ is L-optimal for η̂μ with
respect to a p×m matrix L if

μ∗ = argmin
μ

tr(Γ(μ)LLT).

The minimisation is over the domain of feasible values for the sampling scheme
μ. Some special cases include the A-, c- and V-optimality criteria introduced in
Chapter 2.3. Other examples of linear optimality criteria will be discussed in
Chapter 3.4.

By (3.3) and the cyclic property of the trace, minimising the objective function of
the L-optimality criterion is equivalent to the convex constrained optimisation
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problem

min
μ

∑
i∈D

μ−1
i ci, ci = ||LTBui||22, (3.4)

subject to
∑
i∈D

μi = n and μi > 0 for PO-WR and MULTI,
μi ∈ (0, 1] for PO-WOR. (3.5)

The optimal solution for a PO-WR, PO-WOR or MULTI design of (expected)
size n is given in Algorithm 3.1. The result is obtained by the Lagrange multi-
plier method for PO-WR and MULTI designs, and by the Karush-Kuhn-Tucker
conditions for PO-WOR (Boyd and Vandenberghe, 2004). Global optimality
follows by convexity. See Figure 3.1 for an illustration.

Algorithm 3.1. L-optimal sampling schemes.
INPUT: Index set D, (expected) sample size n, non-zero p×m matrix L, matrix
B and vectors {ui}i∈D defined according to (3.3), and family of sampling
designs (PO-WR, PO-WOR or MULTI).

1: Let ci = ||LTBui||22 for all i ∈ D.
2: if any ci = 0 then
3: STOP. Feasible solution does not exist.
4: else
5: Let μ∗

i = n
√
ci∑

j∈D
√
cj

for all i ∈ D.
6: if PO-WOR then
7: while any μ∗

i > 1 do
8: Let E = {i ∈ D : μ∗

i ≥ 1} and nE = |E|.

9: Let μ∗
i =

{
1 if i ∈ E ,
(n− nE)

√
ci∑

j∈D\E
√
cj

if i ∈ D \ E .
10: end while
11: end if
12: RETURN optimal sampling scheme μ∗ = (μ∗

1, . . . , μ
∗
N ).

13: end if

3.3 Non-linear optimality criteria

Now consider a general optimality criterion with corresponding objective
function Φ : Sp×p

+ → R on the set of real, symmetric, positive semi-definite
p× p matrices. By an optimal sampling scheme μ∗, we mean the following:

Definition 3.1 (Φ-optimality). Consider a function Φ : Sp×p
+ → R that is monotone

for Loewner’s ordering, i.e., such that (2.8) holds. Also, consider a family of unequal
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Figure 3.1. Illustration of the convex constrained optimisation problem (3.4)–(3.5). For a
PO-WR or MULTI design, the constrained minimum (black star) lies where the (N − 1)-
dimensional hyperplane

∑
i∈D μi = n tangents the level set of the function

∑
i μ

−1
i ci.

If, for PO-WOR, this solution does not lie within the hypercube (0, 1]N (shaded region),
the sampling probabilities are set to min{μi, 1} and the regained probability mass
reallocated among the instances with μi < 1. The procedure is repeated until a feasible
solution is obtained (red star) (Algorithm 3.1).

probability sampling designs (e.g, PO-WR, PO-WOR, or MULTI) of (expected) size n,
indexed by the sampling scheme μ, and let Mn denote the corresponding domain of μ.
We say that a sampling scheme μ∗ is Φ-optimal for η̂μ if

μ∗ = argmin
μ∈Mn

Φ(Γ(μ)), (3.6)

where Γ(μ) is the approximate covariance matrix of η̂μ, as given in (3.3).

Finding a Φ-optimal sampling scheme reduces to a non-linear, possibly non-
convex, restricted optimisation problem over an (N − 1)-dimensional hyper-
plane in R

N . A key observation to obtain Φ-optimality is to note the following:
if Φ(Γ(μ)) is twice differentiable at some point μ∗, and the Hessian is positive-
semi-definite, then the objective function behaves locally like the L-optimality
criterion in a neighbourhood of μ∗. Indeed, we have for the PO-WR, PO-WOR
and MULTI designs that

∂Φ(Γ(μ))

∂μi
= −μ−2

i

∣∣∣∣L(μ)TBui

∣∣∣∣2
2
,

provided that the derivative exists. Here L(μ) is a real matrix such that
L(μ)L(μ)T = φ(Γ(μ)), and φ(U) = ∂Φ(U)

∂U is the p × p matrix derivative of
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Φ with respect to its matrix argument. Examples of objective functions and
their corresponding matrix derivatives for some common optimality criteria
include:

i) The D-optimality objective function Φ(Γ(μ)) = log det(Γ(μ)), which is
differentiable with respect to μ and φ(Γ(μ)) = Γ(μ)−1, provided that
Γ(μ) is of full rank.

ii) The E-optimality objective function Φ(Γ(μ)) = λmax(Γ(μ)), which is
differentiable with respect to μ and φ(Γ(μ)) = vμv

T
μ, provided that

λmax(Γ(μ)) has multiplicity 1. Here vμ is the eigenvector pertaining to
the maximal eigenvalue of Γ(μ)

iii) The L-optimality objective function Φ(Γ(μ)) = tr(Γ(μ)LLT), which is
differentiable with respect to μ, and φ(Γ(μ)) = LLT. In particular, this
holds for A-optimality with L = Ip×p and c-optimality with L = c.

See Wand (2002), Petersen and Pedersen (2012) and Magnus and Neudecker
(2019) for details on matrix calculus and matrix differentiation. Optimality
conditions for a general Φ-optimality criterion may now be derived by the
Lagrange multiplier method and Karush-Kuhn-Tucker conditions, in analogy
with the results for L-optimality (Proposition 3.1).

Proposition 3.1 (Φ-optimality conditions). Consider the family of PO-WR, PO-
WOR or MULTI designs of (expected) size n. Also consider a function Φ : Sp×p

+ → R

such that Φ is monotone for Loewner’s ordering. Let Γ(μ), B and {ui}i∈D be defined
according to (3.3), and assume that Φ(Γ(μ)) is differentiable with respect to μ in a
neighbourhood of some point μ∗. Let φ(U) = ∂Φ(U)

∂U , and L(μ∗) be a real matrix
such that L(μ∗)L(μ∗)T = φ(Γ(μ∗)). Finally, let

ci =
∣∣∣∣L(μ∗)TBui

∣∣∣∣2
2
.

Then the following holds:

a) μ∗ is a stationary point of Φ(Γ(μ)) for a PO-WR or MULTI design of size n if

μ∗
i = n

√
ci∑

j∈D
√
cj

for all i ∈ D.
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b) μ∗ is a stationary point of Φ(Γ(μ)) for a PO-WOR design of size n if

μ∗
i ≤ 1 for all i ∈ D,

μ∗
i = (n− nE)

√
ci∑

j∈D\E
√
cj

for all i ∈ D \ E ,
√
ci ≥ √

cj/μ
∗
j for all i ∈ E and j ∈ D \ E ,

where E = {i ∈ D : μ∗
i = 1} and nE = |E|.

Consequently, if μ∗ satisfies the optimality conditions according to a) or b), and
Φ(Γ(μ)) is convex in μ, then μ∗ is the global minimiser of Φ(Γ(μ)).

Based on the above results and observations, in Algorithm 3.2 we present a
fixed-point iteration method to find optimal sampling schemes for non-linear
optimality criteria. The algorithm takes an initial sampling scheme as input,
and solves a series of convex optimisation problems by a local approximation
of the objective function as linear optimality criterion. The algorithm is termi-
nated for convergence when the relative improvement of the objective function
between two consecutive iterations is less than some pre-specified tolerance
level ε (e.g., ε = 10−3). The algorithm may also be terminated for divergence
if the value of the objective function increases between the iterations. For L-
optimality, the method is exact and terminates within a single iteration. Beyond
L-optimality, the algorithm need not converge, and even if it does, it need not
converge to a global optimum unless the problem is convex. Both the D- and
L-optimality criteria are convex in μ, which implies that global optimality can
be deduced.

3.4 Expected-distance-minimising designs

Recall the overall aim of data subsampling as introduced in Chapter 1; to find
an approximate solution to an original intractable problem of estimating a
finite population characteristic or full-data parameter η0. A natural target of
optimal design in this context is to minimise the expected distance E[d(η̂μ)] of
the estimator η̂μ from the full-data parameter η0, for some suitable statistical
distance function d : Ω → R+ on the set Ω of possible values for the estimator
η̂μ.

We require a statistical distance function d(η) that is greater than or equal to
zero for all η, with equality only for η = η0. For analytical and computational
tractability we also require the distance function to be twice differentiable, and
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Algorithm 3.2. Fixed point iteration.
INPUT: Index set D, (expected) sample size n, optimality criterion Φ, matrix B
and vectors {ui}i∈D defined according to (3.3), initial sampling scheme μ(0),
family of sampling designs (PO-WR, PO-WOR or MULTI), maximal number of
iterations T , tolerance parameter ε > 0.

1: for t = 1, . . . , T do
2: Let Lt be a matrix such that LtL

T
t = φ(Γ(μ(t−1))).

3: Let ci = ||LTtBui||22 for all i ∈ D.
4: if any ci = 0 then
5: STOP. Unfeasible solution encountered during iteration.
6: else
7: Find L-optimal sampling scheme μ(t) with respect to L = Lt according

to Algorithm 3.1.
8: if value of objective function increased then
9: STOP. Algorithm diverged.

10: else if relative improvement of the objective function < ε then
11: Algorithm converged. RETURN μ∗ = μ(t).
12: end if
13: end if
14: end for

denote by Hd(η) =
∂2d(η)
∂η∂ηT

the Hessian matrix of d(η). By a second order Taylor
expansion around η0, we have that

d(η̂μ) = d(η0) +∇d(η)T
∣∣
η=η0

(η̂μ − η0)

+
1

2
(η̂μ − η0)

THd(η0)(η̂μ − η0) + op(||(η̂μ − η0)||22),

where, by definition of d(η), the first two terms are zero. Under mild assump-
tions, including (3.1) and (3.2), it follows that

E[d(η̂μ)] =
1

2
tr (Γ(μ)Hd(η0)) + o(n−1).

Hence, we define a class of expected-distance-minimising optimality criteria as
follows:

Definition 3.2 (d-optimality). Consider a function d : Ω → R+ such that d(η) = 0
if and only if η = η0. Assume that d(η) is twice differentiable in a neighbourhood
of η0, and that Hd(η0) is non-zero. Also, consider a family of unequal probability
sampling designs (e.g, PO-WR, PO-WOR, or MULTI) of (expected) size n, indexed
by the sampling scheme μ, and denote by Mn the corresponding domain of μ. We say
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that a sampling scheme μ∗ is d-optimal if

μ∗ = argmin
μ∈Mn

tr (Γ(μ)Hd(η0)) .

We denote this optimality criterion as d-optimality for distance, which should
not be confused with the D-optimality criterion introduced in Chapter 2.3. We
note that d-optimality is equivalent to L-optimality with respect to a matrix L
such that LLT = Hd(η0). Indeed, any (differentiable) Φ-optimality criterion
may be viewed as a d-optimality criterion, and vice versa. For instance, A-
optimality is equivalent to d-optimality when d(η) = ||η − η0||22, the squared
Euclidean distance. Beyond linear optimality criteria, the induced distance
function may be implicit and depend on the Φ-optimal sampling scheme
μ∗. For instance, E-optimality is equivalent to d-optimality when d(η) =
||vTμ∗(η−η0)||22, where vμ∗ is an eigenvector pertaining to the largest eigenvalue
of Γ(μ∗) and μ∗ the corresponding E-optimal sampling scheme. In this case
the distance function for the d-optimality criterion can only be evaluated if the
E-optimal sampling scheme is known.

To illustrate the use of the d-optimality criterion, consider the following statis-
tical distance functions that arise naturally in data subsampling applications
and are commonly encountered in statistics:

i) Kullback-Leibler divergence: Consider a random vector Y with proba-
bility density function fη(y) and cumulative distribution function Fη(y).
Let Y denote the domain of Y . The Kullback-Leibler divergence of
fη from fη0

is defined as KL
(
fη0

||fη
)
=

∫
Y log

fη0
(y)

fη(y)
dFη0

(y). To allow
for covariates, we define the Kullback-Leibler distance of η from η0 as
dKL(η) =

∑
i∈D

∫
Y log

fη0
(y|xi)

fη(y|xi)
dFη0

(y|xi).

ii) Empirical risk distance: Assume that η0 is defined as the minimiser of
an empirical risk �0(η) as in (2.4). A natural measure for the distance of a
parameter value η from η0 is through the difference in the attained value
of the empirical risk. We define the empirical risk distance of η from η0

as dER(η) = �0(η)− �0(η0).

iii) Mahalanobis distance: Consider a probability distribution on R
p with

mean vector γ and covariance matrix Σ. The Mahalanobis distance of

a point η ∈ R
p from the mean γ is then given by

√
(η − γ)TΣ−1(η − γ).

We define the squared Mahalanobis distance of η from η0 with respect
to a real, symmetric, positive definite dispersion matrix Σ as dΣ(η) =
(η − η0)

TΣ−1(η − η0).
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An illustration is provided in Figure 3.2. We define dER-, dKL- and dΣ-optimality
accordingly, i.e., as d-optimality with the distance function taken as indicated
by the subscript. Four natural choices of the dispersion matrix Σ for the
Mahalanobis distance are:

iii.a) Σ = Γ(μ), the approximate covariance matrix of η̂μ,

iii.b) Σ = I(η0)
−1, where I(η0) is defined for parametric model as the ex-

pected value of the Hessian of the full-data empirical risk, i.e., the ex-
pected Fisher information matrix,

iii.c) Σ = H(η0)
−1, where H(η0) is defined for an empirical risk minimiser

η0 as the Hessian of the full-data empirical risk, i.e., the observed Fisher
information matrix, and

iii.d) Σ = B(UTU)B, where U is the matrix with rows uTi , i = 1, . . . , N , and
B,ui are defined according to (3.3).

We note that dΣ-optimality with Σ = Γ(μ) corresponds to D-optimality, Σ =
I(η0)

−1 to dKL-optimality, and Σ = H(η0)
−1 to dER-optimality. The last choice

of dispersion matrix, Σ = B(UTU)B, arises from M-estimation theory as the
empirical covariance matrix of the estimator η0, seen as an estimator of an
underlying super-population parameter η∗ (see, e.g., Stefanski and Boos, 2002).
Apart from dΣ-optimality with Σ = Γ(μ), all above-mentioned optimality
criteria are examples of linear optimality criteria. Hence, an optimal sampling
scheme may be found using the methods described in Chapter 3.2.

In addition to their appealing geometric and statistical interpretation, the
expected-distance-minimising optimality criteria introduced above have two
desirable properties: computational tractability and parameterisation invari-
ance. Indeed, belonging to the class of linear optimality criteria, the dER-, dKL-
and dΣ-optimality criteria have simple solutions for the optimal sampling
schemes according to Algorithm 3.1. Moreover, these optimality criteria are
invariant under a change of parameterisation η �→ g(η), for a one-to-one differ-
entiable transformation g : Ω → Ω. With a few exceptions and pathological
examples, the same also holds for non-singular affine transformations of the
data. See Paper IV for further details.

3.5 Auxiliary-variable-assisted designs

Thus far, we have assumed the approximate covariance matrix (3.3) to be
known. In practice, this matrix depends on unknown full-data characteristics.
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A: Kullback-Leibler distance.
The solid blue line shows the density
of a parametric model fη(y) evaluated
at the full-data parameter η0. The
dashed black lines show the densities
for two other values of the parame-
ter η. The Kullback-Leibler distance
from η0 to η is given by dKL(η) =∫
Y log

fη0(y)

fη(y)
fη0

(y)dy.

B: Empirical risk distance.
The solid black line shows the full-data
empirical risk �0(η) as a function of the
parameter η. The empirical risk dis-
tance from the minimiser η0 to η is de-
fined as the difference in the attained
full-data empirical risk, i.e., dER(η) =
�0(η)− �0(η0). This is illustrated in the
figure by the dashed red lines.

C: Mahalanobis distance.
The grey lines show the level curves
of the Mahalanobis distance function
dΣ(η) =

√
(η − η0)

TΣ−1(η − η0) from
the full-data parameter η0 to η with re-
spect to a positive definite dispersion
matrix Σ.

Figure 3.2. Visualisation of the Kullback-Leibler distance (A), empirical risk distance (B),
and Mahalanobis distance functions (C). In each panel, the black dots/dashed curves
(parameter values η) are equally distant from the blue star/blue solid curve (full-data
parameter η0) in Kullback-Leibler-, empirical risk-, or Mahalanobis-sense, respectively.
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For instance, when studying a finite population characteristic τ = h(ty), the
approximate covariance matrix Γ(μ) depends on the study variables yi. For a
non-linear function h(ty) it further depends on the value of the total ty. For
inference regarding the full-data empirical risk minimiser (2.4), the approxi-
mate covariance matrix (3.3) may depend on the covariates xi, responses yi,
and full-data parameter θ0. However, if such information were available at
the design stage, subsampling would not be needed in the first place. In this
section we show how optimal subsampling schemes can be found in practice
by utilisation of auxiliary information about the members of D that is available
prior to subsampling.

In addition to the data {(xi,yi)}i∈D, we assume the existence of a collection
of auxiliary variables {zi}i∈D, which are a priori available for all members
i ∈ D (Figure 1.1, Chapter 1). Depending on context, the auxiliary variables
may include some of the variables in xi and/or some of the variables in yi.
In Paper I, for instance, we consider an active learning problem were the
predictors xi are assumed to be known for all instances in a large pool of
potential training examples, whereas the outcomes yi are affordable to observe
only for a subset. Hence, we have xi = zi in this case. In Paper II we consider
a naturalistic driving study to analyse risk factors for a safety critical event in a
case-control setting. In this setting the outcome is known and hence included
in the auxiliary variables. In addition, the auxiliary variables include proxies
for the explanatory variables, derived from automatic recordings of the vehicle
kinematics. In Paper III we consider a large computer experiment where the
outcomes are computationally expensive to observe. In this case the auxiliary
variables are the inputs to the experiment, which are under immediate control
of the investigator. By utilising such auxiliary information, we may obtain
an approximate solution to the optimisation problem (3.6), under an assisting
auxiliary model for the unknown values of the study variables of interest.

We introduce a collection of random variables {(Xi,Yi)}i∈D to describe our
uncertainty in the unknown values of the data {(xi,yi)}i∈D. For any variable
also included in zi, we may associate a degenerate (deterministic) distribution
with the corresponding component of (Xi,Yi) conditioned on zi. We also
assume that we have a preliminary estimate η̃0 of the full-data parameter
η0, and an auxiliary model f(x,y|z) for the conditional distribution of the
random variables (Xi,Yi) given auxiliary variables zi. Such information may
be available from domain knowledge, previous studies, a pilot sample, or a
combination of those. In Chapter 4 we will discuss how such information can
be acquired gradually during the subsampling process. Following Isaki and
Fuller (1982), we define the anticipated covariance matrix of an estimator η̂μ as
follows:

Definition 3.3 (Anticipated covariance). Consider a data triplet {(Xi,Y i, zi)}i∈D,
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where (Xi,Yi) is a random vector and zi are known for all i ∈ D. Also consider
a preliminary estimate η̃0 of the full-data parameter η0, and a model f(x,y|z) for
the conditional distribution of (Xi,Yi) given auxiliary variables zi. The anticipated
covariance matrix of η̂μ is defined as

Γ̃(μ; η̃0) = E(x,y)∼f(x,y|z)[Γ(μ)]
∣∣
η0=η̃0

.

All results in Chapter 3.2–3.4 may now be restated for Φ-optimality with re-
spect to the anticipated covariance matrix Γ̃(μ; η̃0) instead of the approximate
covariance matrix Γ(μ). Under weak assumptions on the model f(x,y|z) that
allow us to replace the order of integration and differentiation, all that changes
is that the coefficients ci in Algorithm 3.2 are replaced by their corresponding
expectations

c̃i := E(x,y)∼f(x,y|z) [Ci|zi] , Ci =
∣∣∣∣LTtBui

∣∣∣∣2
2
, (3.7)

which, if Γ(μ) depends on the full-data parameter η0, is evaluated at a prelim-
inary parameter estimate η̃0. Here Ci is a function of the random variables
{(Xi,Yi)}i∈D, and Lt a matrix such that LtL

T
t = φ(Γ̃(μ(t−1); η̃0)).



4 Sequential optimal design

To implement the auxiliary-variable-assisted optimal subsampling methods
of Chapter 3.5, we need a preliminary estimate of the characteristic of interest
and an auxiliary model for the unknowns. In Section 4.1 we show how this can
be accomplished by sequential optimal design, were the information needed
to evaluate the expectation in (3.7) is acquired gradually during the sampling
process. Two implementations of the sequential optimal design method for
unbiased active learning and active sampling for finite population inference
are discussed in Chapter 4.2 and 4.3, respectively. A martingale central limit
theorem, establishing consistency and asymptotic normality of the resulting
active sampling estimator, is presented in Chapter 4.4.

4.1 A sequential subsampling algorithm

Assume that subsampling is conducted in K interdependent stages as follows.
Let {Sk}Kk=1 be a sequence of dependent random vectors Sk = (Sk1, . . . , SkN )
on the N -dimensional non-negative integer lattice. The variable Ski describes
the number of times an instance i ∈ D is selected by the sampling mechanism in
stage k. Denote by μki = E[Ski|S1, . . .Sk−1] the corresponding mean number
of selections, conditioned on the preceding sampling stages. Since this is now
a random variable, we require μki > 0 with probability 1 for all k, i. Let
nk < N be the (expected) size of the subsample selected at stage k, so that∑

i∈D μki = nk, and let mk =
∑k

j=1 nj be the cumulative sample size after
k sampling stages. An estimator for a function of totals τ = h(ty) after k
sampling stages may be defined as

τ̂ (k) = h(t̂
(k)

y ) (4.1)

33
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with

t̂
(k)

y = m−1
k

k∑
j=1

nj t̂y,j , t̂y,j =
∑
i∈D

Sjiwjiyi, wji = 1/μji.

Here t̂y,j is an unbiased Hansen-Hurwitz estimator of the total ty from the

sample obtained at stage j, and t̂
(k)

y a pooled estimator calculated from the first
k subsamples. Similarly, an estimator for the full-data empirical risk minimiser
θ0, defined by (2.4)–(2.6), may be obtained as

θ̂
(k)

μ = argmin
θ∈Ω

�̂(k)μ (θ), (4.2)

�̂(k)μ (θ) = m−1
k

k∑
j=1

nj �̂μ,j(θ), �̂μ,j(θ) =
∑
i∈D

Sjiwji�i(θ), wji = 1/μji.

Now consider a characteristic η0 = h(ty) or η0 = θ0, and let η̂(k)
μ be a cor-

responding estimator on the form (4.1) or (4.2). Assume, in analogy with
(3.1)–(3.3), that

E[η̂(k)
μ ] = η0 + o(m

−1/2
k ),

Cov(η̂(k)
μ − η0) = Γk(μ1:k) + op(m

−1
k ),

Γk(μ1:k) = m−2
k

k∑
j=1

n2
j

(
Aj +

∑
i∈D

μ−1
ji Buiu

T
iB

T

)
,

where μ1:k = (μ1, . . . ,μk) and μj = (μj1, . . . , μjN ), j = 1, . . . , k. In other
words, we assume that η̂(K)

μ is design-consistent for η0, and that mKΓK(μ1:K)
converges elementwise in probability to the asymptotic covariance matrix
of

√
mK(η̂(K)

μ − η0) as the total sample size mK tends to infinity. A formal
justification is provided in Chapter 4.4 and in the appendix of Paper III.

We may now proceed with optimal subsampling in an iterative fashion accord-
ing to Algorithm 4.1. In each iteration, we select a random sample and retrieve
the corresponding data (xi,yi). As more data is observed, we update our esti-
mate of the target characteristic η0 according to (4.1) or (4.2). We also update
our auxiliary model f(x,y|z) for the unknown study variables given the auxil-
iary variables zi. With this information at hand, we may derive a Φ-optimal
sampling scheme μ∗

k for the next sampling stage. This is done by minimising
the Φ-optimality criterion with respect to the expectation of Γk(μ1:k) under the
current model fk−1(x,y|z) and evaluated under the current estimate η̂(k−1)

μ .

Two specific examples of the sequential subsampling method for unbiased
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active learning and active sampling for finite population inference are described
in Chapter 4.2 and 4.3, respectively.

Algorithm 4.1. Sequential optimal subsampling designs.
INPUT: Index set D, optimality criterion Φ, family of sampling designs
(PO-WR, PO-WOR or MULTI), number of sampling stages K, batch sizes
{nk}Kk=1.

1: for k = 1, . . . ,K do
2: Calculate Φ-optimal sampling scheme.
3: Select a random subsample of size nk.
4: Retrieve data (xi,yi) for the selected instances.
5: Estimate the target parameter η0.
6: Update the auxiliary model f(x,y|z).
7: Evaluate performance/precision.
8: STOP if sufficient precision in reached. ELSE continue.
9: end for

4.2 Unbiased active learning

Consider, as in Chapter 2.4, the problem of training a prediction model fθ(yi|xi)
for some outcome yi given observed inputs xi. The predictors xi are assumed
to be known for all elements i in a large pool D of potential training examples,
whereas the outcomes yi are affordable to observe only for a subset of size
n � N . An active learning algorithm utilise information about the known
predictors to select which of the outcomes to observe for optimal performance.

A drawback of traditional active learning methods is the sensitivity to model
misspecification; see the discussion in Chapter 2.2.3 and 2.4. Unbiased active
learning offers a promising solution to this problem (Bach, 2007; Chu et al., 2011;
Ganti and Gray, 2012; Farquhar et al., 2021). Using unequal probability sam-
pling and inverse probability weighting, an unbiased estimator of the full-data
empirical risk is obtained. Consequently, consistent estimators and predictions
may be derived. This holds true even under the realistic assumption of model
misspecification (cf. Skinner, 1989; Pfeffermann, 1993). Hence, unbiased active
learning allows for oversampling of the most informative instances without
compromising unbiasedness.

An unbiased active learning method is presented in Algorithm 4.2. The algo-
rithm sequentially samples new training examples from the pool of available
instances. In each step, nk instances are selected at random according to a
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probability sampling design, and the corresponding labels yi are retrieved. The
prediction model is then updated according to (4.2) for some loss function
�(θ;x, y). We assume in Algorithm 4.2 that sampling is conducted according to
a multinomial sampling design, but note that other sampling designs may also
be considered. The algorithm continues until a pre-specified maximal number
of iterations is reached, or some target on the predictive performance of the
model is satisfied.

Algorithm 4.2. Unbiased active learning.

INPUT: Sampling frame D, number of iterations K, batch sizes {nk}Kk=1.
INITIALISATION: Let m0 = 0, L0 = ∅.

1: for k = 1, . . . , K do
2: Calculate sampling scheme μk.
3: Draw vector sk = (sk1, . . . , skN ) ∼ Multinomial(nk,μk/nk).
4: Retrieve the value(s) of yi for the selected instance(s).
5: Let Lk = Lk−1 ∪ {i ∈ D : ski > 0} and mk = mk−1 + nk.
6: Update the sampling weights

wki =
1

mk

(
mk−1wk−1,i + nk

ski
μki

)
, i ∈ D.

7: Update the parameter

θ̂
(k)

μ = argmin
θ

∑
i∈Lk

wki�(θ;xi, yi).

8: STOP if performance target is reached. ELSE continue.
9: end for

For a generalised linear model (Nelder and Wedderburn, 1972; McCullagh and
Nelder, 1989), the optimal sampling scheme for a multinomial sampling design
is in Paper I shown to be

μki = nk

√
hii(θ0)∑

j∈D
√

hjj(θ0)
, (4.3)

where hii(θ0) = VarYi∼fθ0(y|xi)
(Yi)x

T
iH(θ0)

−1xi is the statistical leverage score
pertaining to instance i (Hoaglin and Welsch, 1978; Pregibon, 1981). Note that
we have introduced a random variable Yi to capture our uncertainty in the
unknown value of the outcome yi. The sampling scheme (4.3) is optimal in the
sense of minimising the anticipated generalisation error of the estimator with
respect to the full-data empirical risk. In practice the optimal parameter θ0 is
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unknown and the leverage score hii(θ0) evaluated at the current estimate θ̂
(k)

μ .
A similar result was also obtained by Zhang et al. (2021).

It was noted in a simultaneous publication by Ma et al. (2020) on optimal
subsampling for linear regression, that the variance of the residual around the
fitted value in a (generalised) linear model should be shrunk by a factor 1−
hii(θ0). This is due to the influence the data point exerts on its own prediction
(cf. Hoaglin and Welsch, 1978; Pregibon, 1981). With this modification, the
corresponding optimal sampling scheme becomes

μki = nk

√
hii(1− hii)∑

j∈D
√
hjj(1− hjj)

, (4.4)

where, as a above hii = hii(θ0) may depend on the optimal parameter θ0.
The difference between (4.3) and (4.4) is of limited practical importance when
effective number of parameters is small in relation to the full data size N .
Indeed, it holds that

∑
i hii = p, where p is the dimension of the parameter

vector (Hoaglin and Welsch, 1978), and consequently that hii = O(p/N) and
hii(1− hii) ≈ hii for essentially all instances i ∈ D when p � N .

4.3 Active sampling

In this section we describe an active sampling method for finite population in-
ference with optimal subsamples. The method is summarised in Algorithm 4.3.
We consider a scalar finite population characteristic τ = h(ty), for some differ-
entiable function h and vector total ty . The algorithm proceeds in K iterations
k = 1, . . . ,K and chooses, in each iteration, nk new instances at random from
D. We assume here that sampling is conducted according to a multinomial
design, although other sampling designs may also be considered. Once a new
batch of instances has been selected we observe the corresponding data yi and
update our estimate of the characteristic of interest. The process continues until
a pre-specified maximal number of iterations K is reached, or the target charac-
teristic is estimated with sufficient precision. Methods for variance estimation,
needed to assess the precision of the estimator, are described in Paper III.

A key component of the active sampling algorithm is the inclusion of an
auxiliary model f(yi|zi) for the distribution of the unobserved data yi given
auxiliary variables zi. At this stage, any prediction model or machine learning
algorithm can be used. By gathering data in a sequential manner, we may
iteratively update our predictions on yet unseen data. Doing so, we are able
to learn from past observations how to sample in an optimal way in future
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iterations. The better the model is in predicting the values of the unobserved
data, the greater the potential benefit of optimal subsampling.

Under the multinomial sampling design, the optimal sampling scheme for
estimating a scalar finite population characteristic τ = h(ty) is in Paper III
shown to be on the form

μki = nk

√
ci∑

j∈D
√
cj
. (4.5)

Here ci is a function of the gradient ∇h(u)|u=ty , prediction ŷi, and residual
covariance matrix Σi. Explicit expressions of the optimal coefficients ci are
presented in Table 4.1 for some common characteristics, including the finite
population total, mean, and ratio. The sampling schemes in Table 4.1 are
optimal in the sense of minimising the anticipated variance of the estimator for
h(ty) under the auxiliary model f(y|z). Similar procedures may be employed
to derive a active sampling methods for vector-valued characteristics and
general optimality criteria.

Algorithm 4.3. Active sampling.
INPUT: Sampling frame D, precision target δ, maximal number of iterations K,
batch sizes {nk}Kk=1.

INITIALISATION: Let m0 = 0, t̂
(0)

y = 0.
1: for k = 1, . . . , K do
2: If k > 1: Train prediction model f(yi|zi) on the labelled dataset.
3: Calculate sampling scheme μk (see Table 4.1).
4: Draw vector sk = (sk1, . . . , skN ) ∼ Multinomial(nk,μk/nk).
5: Retrieve data yi for the selected instance(s) i ∈ Lk := {i ∈ D : ski > 0}.
6: Let mk = mk−1 + nk,

t̂
(k)

y = m−1
k

(
mk−1t̂

(k−1)

y + nk

∑
i∈Lk

μ−1
ki skiyi

)
, τ̂ (k) = h(t̂

(k)

y ).

7: if V̂ar(τ̂ (k)) < δ then
8: STOP. Sufficient precision is reached.
9: end if

10: end for



4.4. A martingale central limit theorem 39

Table 4.1. Coefficients ci for the optimal sampling scheme (4.5) to estimate a finite pop-
ulation characteristic τ = h(ty). Hats represent estimates or predicted values. σx,i, σy,i
are residual variances, ρxy,i the residual correlation, and Σi the residual covariance
matrix of a random vector Y i with density f(yi|zi). In the active sampling framework,
all estimates and predictions are updated iteratively according to Algorithm 4.3.

Target characteristic ci

Total ty ŷ2i + σ2
y,i

Mean ty/N (Horvitz-Thompson estimator t̂y/N ) ŷ2i + σ2
y,i

Mean ty/N (Hájek estimator t̂y/N̂ ) (ŷi − t̂y/N̂)2 + σ2
y,i

Ratio ryx = ty/tx (ŷi − r̂yxx̂i)
2 + σ2

y,i + r̂2yxσ
2
x,i − 2r̂yxρxy,iσx,iσy,i

General h(ty) (∇h(u)Tŷi)
2
∣∣
u=t̂y

+∇h(u)TΣi∇h(u)
∣∣
u=t̂y

4.4 A martingale central limit theorem

In this section we establish the asymptotic properties of the active sampling es-
timator for a finite population total. A generalisation to multivariate estimators
and to characteristics defined as smooth functions of totals may be found in
the appendix of Paper III. For a sequence of random variables {X,Xn, n ≥ 1},

we let Xn
d→ X and Xn

p→ X denote convergence of Xn to X in distribution
and in probability, respectively.

Consider the setup of Chapter 4.1. Let ty =
∑

i∈D yi be the total of interest,
t̂y,k =

∑
i∈D μ−1

ki Skiyi the Hansen-Hurwitz estimator from the subsample
obtained at stage k, and t̂

(K)
y = m−1

K

∑K
k=1 nk t̂y,k the pooled estimator from the

first K subsamples. Let σ2
k = Var(t̂y,k|S1, . . . ,Sk−1), A2

K =
∑K

k=1 n
2
kσ

2
k and

b2K = Var(
∑K

k=1 nk t̂y,k). Also assume that:

(A1) Ski/μki have uniformly bounded second moments,

(A2) bK → ∞ as K → ∞,

(A3) A2
Kb−2

K

p→ 1 as K → ∞, and

(A4) there exists a collection of random variables {σ̂2
k}Kk=1 such that

E[σ̂2
k|S1, . . . ,Sk−1] = σ2

k and b−2
K Var(

∑K
k=1 n

2
kσ̂

2
k) are uniformly bounded.
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Using the martingale central limit theorem of Brown (1971), we obtain the
following result:

Proposition 4.1 (Martingale central limit theorem).
Assume that (A1)–(A3) holds. Then

t̂
(K)
y − ty
bK/mK

d→ N (0, 1) and (4.6)

b−2
K

K∑
k=1

n2
k

(
t̂y,k − t̂(K)

y

)2 p→ 1 as K → ∞. (4.7)

If (A4) also holds, then

b−2
K

K∑
k=1

n2
kσ̂

2
k

p→ 1 as K → ∞. (4.8)

The first result (4.6) establishes consistency and asymptotic normality of the ac-
tive sampling estimator t̂(K)

y of the finite population total ty . The second result
(4.7) proves the consistency of the martingale variance estimator V̂ar(t̂(K)

y ) =

m−2
K

∑K
k=1 n

2
k(t̂y,k − t̂

(K)
y )2 for the variance of t̂(K)

y . The third result (4.8) proves
the consistency of the pooled variance estimator Ṽar(t̂(K)

y ) = m−2
K

∑K
k=1 n

2
kσ̂

2
k.

Unbiased estimators σ̂2
k for the conditional variances σ2

k may be obtained using
the methods of Chapter 2.1.3.

The first assumption (A1) is fulfilled when the mean inclusion variables μki are
properly bounded away from zero. The second assumption (A2) requires the
total variance Var(

∑K
k=1 nk t̂y,k) to tend to infinity with K. This is a plausible

assumption in most realistic applications since the precision of the individ-
ual estimators t̂y,k usually are of order O(nk) and nk are bounded. The third
assumption (A3) states that the sum of conditional variances should asymp-
totically behave like the total variance. Hence, the statistical properties of
the active sampling estimator can be deduced from a single realisation of the
sequence S1,S2, . . .. The plausibility of this assumption may be ensured by
designing active sampling strategies so that each individual observation has
a limited influence on the selections in future iterations. Assumptions on the
form of (A1)–(A3) are frequent in the martingale literature (cf. Brown, 1971;
McLeish, 1974; Helland, 1982). The fourth assumption (A4) is related to the
consistency of variance estimators in survey sampling. This assumption is
generally fulfilled when Ski/μki have uniformly bounded forth moments, and
the joint expectations of the selection variables Ski at each sampling stage k are
properly bounded away from zero (cf. Fuller, 2009).



5 Summary of papers

5.1 Paper I

Introduction. We consider a statistical learning problem of fitting a model
fθ(y|x) to a subset of a random sample {(xi, yi)}Ni=1, with the aim to accurately
predict the outcomes yi given observed inputs xi. The predictors xi are known
for all members of the initial sample, but the outcomes or labels yi are affordable
to observe only for a smaller subset. The question arises: how should the
training dataset be chosen (i.e., which of the yi’s should be observed) for
optimal predictive performance?

Contributions. We consider an unbiased active learning algorithm based on
unequal probability sampling and inverse probability weighting. We conduct
an asymptotic analysis of the generalisation error and derive corresponding
optimal sampling schemes. The resulting sampling schemes depend both on
the prediction uncertainty and on the influence on model fitting through the
location of data points in the feature space. A connection to leverage sampling
is established, revealing that influential instances should be oversampled for
optimal predictive performance.

Experiments. We evaluate the empirical performance of the proposed method
for binary classification on six benchmark data sets. For reference, we also
include simple random sampling, probabilistic uncertainty sampling, and
deterministic uncertainty sampling.

Results. The unbiased active learning algorithm targeting the generalisa-
tion error overall achieves the best performance in terms of the negative log-
likelihood of the predictions. A sample size reduction of up to 23% is achieved
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compared to simple random sampling for the same level of performance. In
contrast, probabilistic uncertainty sampling performs worse than simple ran-
dom sampling with respect to essentially all performance metrics on four of
the datasets. Deterministic uncertainty sampling produces poorly calibrated
predictions with a severe bias towards the majority class in two of the examples,
and overfitted class probability estimates on the majority of the examples.
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5.2 Paper II

Introduction. Naturalistic driving studies generate tremendous amounts of
traffic data. For instance, the SHRP2 project collected more than a million hours
of driving data, including video and recordings of vehicle kinematics etc. The
great cost associated with video annotation implies that statistical analyses
based on video data must be restricted to only a limited subset of the original
database. Choosing this subset in a manner that captures as much information
as possible is essential.

Contributions. We derive optimal sampling schemes for a weighted maxi-
mum likelihood estimator with respect to the L-optimality criterion, under a
Poisson sampling design. We show how auxiliary information may be used to
implement optimal subsampling methods in practice.

Experiments. The methodology is illustrated using data collected in Sweden
as part of the large-scale European field operational test (euroFOT). We de-
scribe how automatic measurements, readily available in a naturalistic driving
database, may be utilised for selection of time segments for annotation that
are the most informative with regards to detection of potential associations
between driving behaviour and a consecutive safety critical event.

Results. Poisson sampling optimised for a specific linear combination of
parameters generally results in an increased precision of the corresponding es-
timates. A variance reduction by 21–48% with optimal subsampling compared
to simple random sampling is demonstrated when good auxiliary information
is available. On the other hand, application of the method to variables with
poor auxiliary information may result in increased variance of the estimator.
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5.3 Paper III

Introduction. We consider the problem of estimating a simple finite popu-
lation characteristic, such as a total, mean, or ratio. This classical problem
has received much attention in the survey sampling literature. However, the
possibilities offered by machine learning in this context have not yet been fully
explored.

Contributions. We develop an active sampling framework for estimating a
finite population characteristic θ = h(ty), for a differentiable function h and
vector of finite population totals ty. The active sampling algorithm iterates
between estimation and data collection with optimal subsamples, guided by
machine learning predictions on yet unseen data. Using a martingale central
limit theorem, we establish consistency and asymptotic normality of the active
sampling estimator for θ under mild assumptions. Methods for variance
estimation are proposed and consistency of the variance estimators is proven.

Experiments. The active sampling method is implemented for an application
in scenario generation for virtual safety assessment of an advanced driver as-
sistance system. The dataset consists of 44,220 observations generated through
variations of 44 reconstructed real rear-end crashes.

Results. Our theoretical results are confirmed empirically in our experiments.
The asymptotic theory and suggested variance estimators produce confidence
intervals with coverage rates that reach the nominal confidence level already
at small to moderate sample sizes. Substantial improvements over traditional
importance sampling methods are demonstrated, with sample size reductions
of 7–48% for the same level of performance in terms of the root mean squared
error of the estimator.
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5.4 Paper IV

Introduction. We consider a subsampling estimator

θ̂μ = argmin
θ

N∑
i=1

Si

μi
�i(θ)

for a characteristic θ0 defined by θ0 = argminθ
∑N

i=1 �i(θ). Here Si is the
number of times an element i is selected by the sampling mechanism, μi

the corresponding expected number of selections, and �i(θ) = �(θ;vi) a loss
function describing the loss associated with the parameter value θ given a data
vector vi.

Contributions. We present a theory of optimal design for general data sub-
sampling problems. Optimality conditions are derived for a general class of
estimators, sampling designs, and optimality criteria. A fixed-point iteration
method is suggested for finding an optimal sampling scheme under a Pois-
son or multinomial sampling design. We also study optimal design from a
distance-minimising perspective, and establish equivalence to traditional op-
timality criteria. This naturally leads us to a novel class of linear optimality
criteria with good theoretical and practical properties, including computational
tractability and invariance under non-singular affine transformations of the
data and under a re-parameterisation of the model.

Experiments. The methodology is evaluated on the dataset from Paper III for
parametric density estimation, regression modelling, and inference for a finite
population vector characteristic.

Results. A D-optimal sampling design is found within a few fixed-point iter-
ations with the suggested algorithm. The proposed invariant linear optimality
criteria achieve 92–99% D-efficiency with 90–95% lower computational demand.
In contrast, the A-optimality criterion has only 46% and 60% D-efficiency on
two of the examples.



48 5. Summary of papers



6 Discussion

Optimal subsampling methods have seen a huge increase in popularity over the
past few years for analysis of massive datasets and measurement-constrained
experiments. This thesis contributes to this development by presenting a
framework for optimal design in general subsampling problems using auxiliary
information and sequential optimal design.

Using a martingale central limit theorem, under mild assumptions we establish
consistency and asymptotic normality of the active sampling estimator of a
simple finite population characteristic. Combining martingale limit theory
(Hall and Heyde, 1980) with the asymptotics of estimating equation estimators
in survey sampling (Binder, 1983), consistency and asymptotic normality of
more complex estimators may be deduced by similar means (cf. Zhang et al.,
2021; Wang et al., 2022). We conjecture that a similar result holds also in the
case when the number of sample stages is fixed and the subsample sizes tend
to infinity. A thorough treatment of this issue is a possible topic for further
research.

A limitation of the presented methodology is the underlying assumption of
a smooth loss function and parameter vector of fixed dimension p � N . Al-
though similar subsampling methods may be employed also for non-regular
problems, e.g., in high-dimensional settings and for non-smooth loss functions,
the asymptotic properties and optimal subsampling methods have not been
established in these regimes. It would be interesting to study optimal subsam-
pling methods in high-dimensional and non-parametric settings, for instance
for kernel generalised linear models (Zhu and Hastie, 2005; Cawley et al., 2007;
Hofmann et al., 2008).

A potential drawback of the design-based inference framework adopted in
this thesis is the strong influence of the sampling weights on estimation. This
may cause unstable performance and loss of efficiency, in particular when the
subsample is optimised for one specific aim but later used for other purposes,
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as often is the case in practice. Consequently, some authors have suggested
unweighted methods for more efficient estimation (Ma et al., 2015; Wang, 2019;
Wang et al., 2022). There is also a vast amount of publications in the survey
sampling literature on smoothing, trimming and calibration of the sampling
weights to improve efficiency (see, e.g., Deville and Särndal, 1992; Kott, 2016;
Haziza and Beaumont, 2017). Another possibility to improve estimator effi-
ciency is to utilise auxiliary information in the estimation stage. Such methods
are prevalent across many sub-fields of statistics, including generalised regres-
sion estimation in survey sampling (Cassel et al., 1976; Särndal et al., 2003;
Ta et al., 2020), control variates in the Monte Carlo literature (Fishman, 1996;
Quiroz et al., 2021), and augmented inverse probability weighting estimators
in causal inference and semi-parametric inference with missing data (Robins
et al., 1994; Robins, 1999; Scharfstein et al., 1999). Although there is already an
extensive literature on these methods, their use for analysis massive datasets
and measurement-constrained experiments in the general setting considered
in this thesis has to our knowledge not been widely employed. Further studies
in this direction are encouraged.
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