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Latent antibiotic resistance genes are 
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Erik Kristiansson1,2* 

Abstract 

Background Bacterial communities in humans, animals, and the external environment maintain a large collection of 
antibiotic resistance genes (ARGs). However, few of these ARGs are well‑characterized and thus established in exist‑
ing resistance gene databases. In contrast, the remaining latent ARGs are typically unknown and overlooked in most 
sequencing‑based studies. Our view of the resistome and its diversity is therefore incomplete, which hampers our 
ability to assess risk for promotion and spread of yet undiscovered resistance determinants.

Results A reference database consisting of both established and latent ARGs (ARGs not present in current resistance 
gene repositories) was created. By analyzing more than 10,000 metagenomic samples, we showed that latent ARGs 
were more abundant and diverse than established ARGs in all studied environments, including the human‑ and ani‑
mal‑associated microbiomes. The pan‑resistomes, i.e., all ARGs present in an environment, were heavily dominated by 
latent ARGs. In comparison, the core‑resistome, i.e., ARGs that were commonly encountered, comprised both latent 
and established ARGs. We identified several latent ARGs shared between environments and/or present in human 
pathogens. Context analysis of these genes showed that they were located on mobile genetic elements, including 
conjugative elements. We, furthermore, identified that wastewater microbiomes had a surprisingly large pan‑ and 
core‑resistome, which makes it a potentially high‑risk environment for the mobilization and promotion of latent ARGs.

Conclusions Our results show that latent ARGs are ubiquitously present in all environments and constitute a diverse 
reservoir from which new resistance determinants can be recruited to pathogens. Several latent ARGs already had 
high mobile potential and were present in human pathogens, suggesting that they may constitute emerging threats 
to human health. We conclude that the full resistome—including both latent and established ARGs—needs to be 
considered to properly assess the risks associated with antibiotic selection pressures.
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Background
The increasing number of infections by antibiotic-resist-
ant bacteria is a growing problem with almost 5 million 
associated yearly deaths worldwide [1]. Bacteria become 
resistant to antibiotics through changes in their DNA, 
often by acquiring antibiotic resistance genes (ARGs) 
through the process of horizontal gene transfer [2]. Many 
ARGs are located on mobile genetic elements (MGEs), 
such as transposons and conjugative elements (e.g., plas-
mids), which enable them to spread efficiently between 
cells, including from non-pathogenic and commen-
sal bacterial species to pathogens [3]. Several thousand 
ARGs have been described to date, encoding resistance 
mechanisms to almost all clinically used antibiotics. This 
number is constantly increasing due to the influx and dis-
covery of novel, often more efficient, resistance determi-
nants [4–6]. The source of most ARGs, however, remains 
unknown which hampers the implementation of proper 
management strategies to stop this gene flow [7, 8].

Bacterial communities in humans, animals, and the 
external environment maintain large collections of ARGs 
[9–11]. Only a small number of these ARGs—typically 
those that have been encountered in clinical pathogens—
are established, well-characterized, and thus available in 
existing resistance gene databases (denoted “established 
ARGs” in this study). The remaining latently present 
ARGs (denoted “latent ARGs”) are, in contrast, less, if at 
all, studied. Recently, computational methods have been 
used to systematically explore the latent ARGs present in 
bacterial genomes to describe their evolutionary relation-
ship to the established ARGs. For example, the prediction 
of novel ARGs from bacterial sequence data expanded 
the number of known macrolide ARGs more than tenfold 
[12]. A plethora of latent ARGs has been described in 
other clinically relevant classes of ARGs, including genes 
conferring resistance to β-lactams, tetracyclines, and qui-
nolones [13–18]. A wide range of latent ARGs has also 
been identified by functional metagenomics, and several 
studies describe a surprisingly diverse resistome in many 
bacterial communities, including the human microbiome 
[19–21]. However, little is known about how latent ARGs 
are distributed within and between environments.

Metagenomics, defined as the high-throughput 
sequencing of microbial samples, is commonly used 
to study bacterial communities, including the pres-
ence of resistance genes. Today’s rich literature provides 
detailed ARG abundance profiles in various environ-
ments, including human- and animal-associated micro-
biomes and a wide range of external environments such 
as marine and freshwater, soil, and wastewater [22–24]. 
However, existing studies have focused on ARGs avail-
able in reference databases such as ResFinder [25], CARD 
[26] or ARGs-OAP [27]. Even though these databases 

are comprehensive, they contain almost exclusively well-
established genes already encountered in pathogens. 
Consequently, existing studies have greatly underesti-
mated the abundance and diversity of ARGs in bacterial 
communities [28]. Clearly, data on the total resistome—
including both latent and established ARGs—is neces-
sary to understand how bacterial communities react and 
adapt to selection pressures from the anthropogenic use 
of antibiotics. Further insights into the abundance and 
diversity of latent ARGs are also essential to properly 
identify risk environments where resistance genes are 
most likely to be mobilized and, eventually, transferred 
into pathogens.

In this study, we aimed to provide a more complete 
view of the resistome. A large and diverse reference data-
base of both latent and established ARGs was created by 
combining the ResFinder repository with computation-
ally predicted resistance genes from half a million bacte-
rial genomes. Analysis of more than 10, 000 metagenomic 
samples showed that latent ARGs were ubiquitously pre-
sent in high abundance and diversity in all studied envi-
ronments. The pan-resistomes, i.e., the set of all ARGs 
present in an environment, were heavily dominated by 
latent ARGs, while the core-resistomes, i.e., the genes 
that were commonly encountered in an environment, 
consisted of both established and latent ARGs. Several 
of the latent core-resistome ARGs were shared between 
the environments and were present in human pathogens. 
Analysis of the genomic context showed that a major-
ity of these genes were associated with MGEs, including 
mechanisms for conjugation, suggesting that they may 
be emerging resistance determinants in pathogens. We 
conclude that both latent and established ARGs need to 
be considered to adequately describe the resistome and 
the effect of antibiotic selection pressures on bacterial 
communities.

Methods
Analysis of metagenomes
Metagenomes were retrieved from the MGnify database 
(2020-10-14) [29]. To ensure comparability, only data 
from the Illumina platforms were included. Also, samples 
were excluded if the study had less than five sequenc-
ing runs in total or if unique links to forward or reverse 
raw fastq files in the European Nucleotide Archive Por-
tal API (ENA) [30] were missing. This resulted in 22,272 
metagenomic samples where their raw fastq files, which 
were retrieved from the ENA repository, consisted of 
6.3× 1011 reads encompassing 7.3× 1013 nucleotides 
(50TB of compressed data). BBDuk from BBMap version 
38.87 [31] was used for quality control, with trim qual-
ity 20, minimum length 60, and left and right trimming 
of the raw files. Sequencing runs with at least 5 million 
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reads remaining after the quality control were considered 
for analysis, adding up to 10,375 metagenomic samples 
(Additional file 1: Table S1).

Computational prediction of ARGs
A total of 427,495 bacterial genomes consisting of 
47,582,748 sequences (NCBI GenBank database, 2019-
10-22) [32] were analyzed using fARGene (v0.1, default 
parameters). We used fARGene in this study since it has 
been shown to have a high performance and its predic-
tions have been experimentally verified on several occa-
sions [12, 13, 15, 16, 33, 34]. fARGene was executed using 
17 hidden Markov model gene profiles for ARGs confer-
ring resistance to five major classes of antibiotics: for β
-lactams, we defined gene classes A, B1/B2, B3, and D 
[13, 33]; for aminoglycosides, gene classes aac(2′) , aac(3), 
aac(6′) , aph(2′′) , aph(3′) , and aph(6); for macrolides, 
gene classes erm and mph [12]; for quinolones, gene class 
qnr [16]; and for tetracyclines, gene classes efflux pumps, 
inactivating enzymes (monooxygenases), and ribosomal 
protection genes (RPGs) [15] (downloaded from https:// 
github. com/ fanny hb/ farge ne). All matches satisfying the 
previously reported model-specific significance thresh-
olds for full-length genes were considered to be putative 
ARGs and stored for further analysis [12, 13, 16, 33, 35].

Creation of the ARG reference database
A reference database of antibiotic resistance genes was 
created consisting of two collections of genes. The first 
collection comprised 2466 resistance gene sequences 
present in the ResFinder repository [25] (accessed 2019-
10-01) that were correctly classified by at least one of the 
fARGene models. ResFinder was used since it consists 
of well-established mobile ARGs. The second collection 
consisted of 74,904 unique sequences of putative resist-
ance genes from the fARGene analysis. As open reading 
frames of insertion sequence transposases could overlap 
with ARGs, we used BLASTx 2.2.31 [36] with default 
parameters to align the resistance gene sequences to 7057 
transposases from the ISFinder database (accessed 2022-
02-08) [37, 38]. Gene sequences with at least 80% identity 
level and at least 20 amino acid overlap to any trans-
posase were removed from the data set (120 sequences 
removed).

To reduce redundancy, all gene sequences were clus-
tered at a nucleotide cut-off of 90% using VSEARCH 
version 2.7.0 [39]. The resulting 23,367 centroids were 
used as representative sequences for each cluster and 
are hereafter referred to as ARGs. Next, BLASTp ver-
sion 2.2.31 [36] with default parameters was used to align 
all ARGs to all ResFinder sequences. The ARGs with an 
identity level of at least 90% and with a match overlap of 
at least 70% to any sequence in ResFinder were labeled 

as “established ARGs.” This cut-off is commonly used for 
assigning reads to resistance genes and, thus, established 
ARGs will primarily consist of genes typically analyzed 
in shotgun metagenomic studies [40]. The ARGs with an 
identity level below 90% or with a match overlap shorter 
than 20% were labeled as “latent” ARGs. The ARGs 
not fulfilling any of these criteria were removed (three 
sequences removed). In total, we labeled 588 ARGs as 
established and 22,504 ARGs as latent.

Quantification of ARGs
Latent and established ARGs were quantified by aligning 
metagenomic forward reads to the reference databases 
using DIAMOND blastx version 2.0.4 [41]. A strict iden-
tity threshold of 95% was employed, with a read cover-
age of at least 20% and a minimum match length of 20 
amino acids. For reads that matched multiple ARGs, the 
match with firstly the highest identity, secondly the long-
est alignment, or thirdly the lowest e-value was consid-
ered. When there was a tie in identity, match length, and 
e-value, one of the ARGs was randomly selected. To avoid 
double-counting, only the forward read in each read pair 
was used.

The relative abundance Cij for gene class i in metagen-
ome j was transformed and normalized according to 
Cij = 1000

rij
Tj

 , where rij is the number of reads match-
ing any ARG from class i in the metagenomic sample j 
and Tj is the total number of metagenomic reads in sam-
ple j. The α-diversity was calculated as richness, i.e., the 
number of unique ARGs identified within a sample. 
When calculating the α-diversity, all samples were rare-
fied to 5,000,000 reads. The abundance and diversity were 
calculated for each environment and each class of ARGs, 
both in total and separately for latent and established 
ARGs. The principal component analysis (PCA) was 
done using log-transformed relative abundances.

Estimation of the pan‑ and core‑resistome
The pan- and core-resistomes were calculated for each 
environment by randomly taking 1000 subsamples of 
size 100 metagenomic samples from the rarefied metage-
nomes. For each subsample, we stored (1) the unique 
number of ARGs present in any sample ( α-diversity) for 
the pan-resistome calculations and (2) the ARGs present 
in at least 50% of the samples (commonly encountered 
gene set) for the core-resistome calculation. The size of 
the pan-resistome for each environment was calculated 
as the average α-diversity over the 1000 subsamples, and 
the core-resistome as the number of ARGs present in at 
least 900 of the commonly encountered gene sets. For the 
environments having less than 100 samples (lentic water, 
rhizosphere, and respiratory system), all samples were 
used to compute the pan- and core-resistomes.

https://github.com/fannyhb/fargene
https://github.com/fannyhb/fargene
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Genetic context analysis
The genetic context analysis was done in the host 
genomes of the latent genes in the core-resistomes. 
The analysis included 1429 unique resistance gene 
sequences corresponding to 136 ARGs. For each 
ARG, the closest known homolog was identified using 
BLASTx v2.10.1 [36] to align the gene sequences 
against the CARD database [26]. Here, CARD was 
used since it is more comprehensive than ResFinder 
and includes, in contrast to ResFinder, some genes that 
are not clinically relevant and/or mobile. Then, genetic 
regions of up to 10,000 base pairs upstream and down-
stream of the gene sequences were retrieved using 
GEnView v0.1.1 [42] and screened for the presence of 
genes associated with MGEs and integrons. The genetic 
regions were translated in all six reading frames using 
EMBOSS Transeq v6.5.7.0 [43] and searched with 124 
HMMs from MacSyfinder Conjscan v2.0 represent-
ing genes involved in conjugation [44], using HMMER 
v3.1b2 [45]. Insertion sequences (ISs) and other mobile 
ARGs were identified by applying BLASTx v2.10.1 [36]. 
For IS elements, a reference database based on ISFinder 
[37, 38] was used to find the best among overlapping 
hits, with the alignment criteria that hits should dis-
play > 50% coverage and > 90% amino acid identity to 
a known IS transposase, as well as being located within 
1,000 base pairs of the latent resistance gene (upstream 
or downstream). For co-localized mobile ARGs, Res-
Finder v4.0 was used as a reference database [25], with 
the alignment criterion that hits should display an 
amino acid identity > 90% to a known ARG. Finally, the 
genetic regions were searched for integrons using Inte-
gron Finder v1.5.1 [46]. After the screening, the genetic 
contexts were manually investigated and curated.

Results
In this study, we analyzed the abundance, diversity, and 
environmental spread of latent and established ARGs 
from 17 major resistance gene classes. An ARG reference 
database was created from the large-scale screening of 
almost 500,000 publicly available bacterial whole-genome 
assemblies using fARGene, a method that uses optimized 
gene models to identify putative resistance genes [33], 
and resistance genes reported in ResFinder, a database 
with well-characterized mobile clinically relevant ARGs 
[25]. After clustering the gene sequences, ARGs were 
classified as “established” if they showed high sequence 
similarity with any gene reported in ResFinder and 
“latent” if they were sufficiently dissimilar (see the “Meth-
ods” section for full details). The final database consisted 
of 23,092 ARGs, of which 99%, 97%, 94%, 93%, and 
96% were classified as latent aminoglycoside, β-lactam, 

macrolide, quinolone, and tetracycline resistance genes, 
respectively (Table 1).

The abundance of the ARGs was analyzed in 10,375 
metagenomic samples from 20 types of environments, 
including, human- and animal-associated, marine and 
freshwater, soil, and wastewater microbiomes (Additional 
file 1: Table S1). The samples contained a total of 1.98×1011 
reads, of which 0.06% were matched to at least one ARG, 
and 2.29×1013 base pairs. The proportion of ARGs detected 
in at least one metagenome differed substantially between 
gene classes: from ∼100% for latent and established tetra-
cyclines resistance genes, down to 55% for latent macrolide 
resistance genes (Table 1).

Latent and established ARGs showed distinct abundance 
and diversity patterns
Principal component analysis (PCA) of the relative gene 
abundances showed different patterns for latent and 
established ARGs. The abundance of the latent ARGs 
formed distinct clusters that showed separation between 
the environments (Fig. 1A). There was, however, an over-
lap between humans, mammals, and, to some extent, 
also infants and wastewater, demonstrating similarities 
in their ARG abundance profiles. In contrast, the estab-
lished ARGs had less variable clusters, especially for 
several of the external environments, reflecting their rel-
atively low abundance of ARGs (Fig. 1B). Moreover, the 
established ARGs showed, contrary to the latent ARGs, 
no overlap between the host-associated metagenomes 
and the external environments (excluding wastewater). 
The wastewater and bird digestive systems resistome 
formed diverse clusters that, for latent ARGs, partially 
overlapped.

Analysis of individual gene classes showed that most 
latent aminoglycosides and β-lactam ARGs were generally 
more abundant and diverse than the established ARGs 
(Fig. 2; p< 1× 10−12 in Additional File 1: Table S2). The 
difference in diversity was especially pronounced for β
-lactam resistance genes where latent class A β-lacta-
mases had a twofold higher diversity (difference in median 
over all samples), a trend that was consistent across sev-
eral environments (Additional File 2: Figs. S2-S3). Inter-
estingly, the macrolide and tetracycline resistance genes 
showed contrasting results, where the established ARGs 
were more abundant and diverse compared to latent 
ARGs, p= 1× 10−10 (Additional File 1: Table  S2). This 
was especially emphasized in the host-associated and 
wastewater metagenomes (Additional File 2: Figs. S2-S3). 
A similar pattern could also be seen for quinolone resist-
ance genes, for which mainly established ARGs were 
detected, primarily in infants, birds, and wastewater 
(Additional File 2: Figs. S2-S3).
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Latent ARGs are more abundant than established ARGs 
in most environments
Analysis of the gene abundances across the environ-
ments showed that latent and established ARGs were 
distributed differently (Fig. 3). Latent genes from several 

classes were widely present in the analyzed environ-
ments, including aminoglycoside resistance genes aac(3), 
aac(6′) , aph(3′) , class A and B3 β-lactamases, and tetra-
cycline ribosomal protection genes (RPGs). For estab-
lished genes, this was only true for class A β-lactamases. 

Table 1 Analyzed and detected antibiotic resistance genes with their relative abundance and α‑diversity

The latent (L) and established (E) ARGs are listed per type of antibiotic and gene class, with the number of ARGs in the reference database and the proportion of the 
ARGs detected in at least one metagenomic sample. The relative abundance and α‑diversity correspond to the median of the log‑scale abundance and α‑diversity 
over all metagenomes. The detected percentage of ARGs corresponds to the number of genes that had a match in any of the metagenomic fragments analyzed 
divided by the total number of genes

Number of Detected Abundance α‑diversity
ARGs % of ARGs (median) (median)

Aminoglycosides
aac(2′) L 594 58% 0 0

E 6 83% 0 0

aac(3) L 2121 65% 0.49 1

E 27 89% 0 0

aac(6′) L 1861 60% 0.68 2

E 51 100% 0 0

aph(2′′) L 306 42% 0 0

E 6 100% 0 0

aph(3′) L 1144 69% 0.53 1

E 26 81% 0.69 1

aph(6) L 2551 70% 0 0

E 8 88% 0 0

β‑lactams
A L 5038 74% 1.72 11

E 105 95% 1.47 5

B1/B2 L 1054 56% 0 0

E 55 98% 0 0

B3 L 1921 86% 0.71 3

E 14 86% 0 0

C L 1224 93% 0.28 0

E 45 100% 0 0

D L 1771 77% 0 0

E 93 96% 0 0

Macrolides
erm L 554 59% 0.60 2

E 46 87% 1.39 6

mph L 430 55% 0 0

E 19 100% 0 0

Quinolones
qnr L 273 68% 0 0

E 20 95% 0 0

Tetracyclines
Efflux L 381 96% 0 0

E 34 100% 0.22 0

Enzyme L 250 95% 0 0

E 12 100% 0 0

Ribosomal protection L 1031 98% 1.36 10

E 21 100% 2.62 14
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Furthermore, latent ARGs were more abundant than 
established ARGs in all external environments except 
for wastewater, especially aminoglycoside, β-lactam, and 
tetracycline resistance genes. The human- and mammal-
associated metagenomes contained a high abundance of 

latent and/or established ARGs where aac(6′) , class A β
-lactamases, erm genes, and RPGs were almost ubiqui-
tously present. Additionally, there were strong similarities 
between the distributions of latent and established ARGs 
in human, pig, and bovine digestive system resistomes 

Fig. 1 Principal component analysis of the abundance of A latent and B established ARGs. Aquatic includes samples from fresh, lentic, and marine 
water; Plants includes rhizosphere samples; Infants include samples from their digestive system; Wastewater includes activated sludge, water and 
sludge, fecal source, and raw wastewater; Terrestrial includes soil samples; Human includes samples from the skin, digestive and respiratory systems; 
Birds includes samples from their digestive system; and Mammals includes samples from the digestive systems of bovines, mice, and pigs. The 
analysis was based on log‑transformed ARG abundance using all metagenomic samples but a maximum of 400 per environment are shown. The 
ellipses are calculated based on a multivariate t‑distribution at a 75% confidence level. Latent ARGs were in general more diverse than established 
ARGs and showed less overlap especially for the aquatic, terrestrial, and plant environments

Fig. 2 Distribution of the A relative abundance and B α‑diversity for latent and established ARGs. Distribution of the log‑transformed abundance 
and α‑diversity per gene class. The colors indicate antibiotic type with higher opacity for latent ARGs and higher transparency for established ARGs. 
RPG is short for ribosomal protection gene
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(especially pronounced for aac(3), aac(6′) , aph(3′) , class 
A and B3 β-lactamases, erm genes, and RPGs). Waste-
water and birds had the highest abundance of both latent 
and established ARGs where only established aac(2′) and 
class B3 β-lactamases were rare (Additional File 2: Figs. 
S2-S3). Interestingly, only one gene class, latent aac(2′) , 
was only found in the external environments but not in 
any of the host-associated metagenomes.

There was a positive correlation between latent and 
established genes (Additional File 2: Fig. S4), which 
was strong for aph(6) and tetracycline efflux pumps, 
especially in digestives systems, activated sludge, and 
wastewater ( 0.67 < ρ < 0.99 , p < 1× 10−6 ). Much 
lower correlations were seen for class B3 β-lactamases 
and aac(6′) , which were only significant in the human 
skin and digestive system, respectively.

Fig. 3 Relative abundance of latent and established ARGs divided per gene class and environment. Each gene class is represented by two 
rows: L for latent and E for established. The labels Birds, Bovines, Mice, Pigs, Humans, and Infants denote metagenomes from the corresponding 
digestive system. Respiratory system and skin only include human samples. The color intensity reflects the gene‑ and environment‑specific relative 
abundance, which was calculated based on the median of the relative log‑transform abundance over all samples from the environment. To make 
the genes comparable, all values were normalized based on the environment with the highest abundance. RPG is short for ribosomal protection 
gene
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Analysis of the pan‑resistomes and core‑resistomes reveals 
commonly encountered latent ARGs
Next, we analyzed the size and diversity of the latent 
and established resistomes by calculating their corre-
sponding pan-resistome. This was done for each envi-
ronment by repeatedly sampling 100 metagenomes and 

counting the number of genes that were detected in at 
least one of the samples (Fig. 4; see the “Methods” sec-
tion). The size of the pan-resistomes varied consider-
ably between the environments. The metagenomes from 
the external environments (soil, wastewater, activated 
sludge) and human skin had the largest pan-resistomes 

Fig. 4 Pan‑resistomes and core‑resistomes. The length of the left and right bars describe the size of the pan‑ and core‑resistome, respectively. 
The pan‑resistome includes all genes encountered in at least one sample from the environment, and the core‑resistome includes all genes that 
were commonly encountered (at least 50% of the samples). The colors indicate antibiotic type with higher opacity for latent ARGs and higher 
transparency for established ARGs. The computations were done based on rarefied metagenomes that, for each environment, were repeatedly 
subsampled down to 100 samples. The figure shows the average number of genes over all 100 samples. The labels Birds, Bovines, Mice, Pigs, 
Humans, and Infants denote metagenomes from the corresponding digestive system. Respiratory system and skin only include human samples
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with, on average, > 1700 ARGs. In contrast, the number 
of ARGs in the pan-resistomes of the digestive systems 
was more than twofold lower ( < 800 genes on average). 
All pan-resistomes were dominated by latent ARGs, a 
pattern that was especially pronounced in the external 
environments where 86% to 98% were latent ARGs. In 
comparison, 74% to 85% of the pan-resistome ARGs 
were latent in the digestive systems of humans, mam-
mals, and birds.

To investigate if specific classes of ARGs were selected 
for within an environment, the pan-resistomes were 
compared to their corresponding core-resistome, 
defined as the ARGs that were commonly encountered 
in an environment (detected in at least 50% of the ran-
domly sampled metagenomes; see the  “Methods” sec-
tion). The sizes of the core-resistomes were, as expected, 
considerably smaller than the pan-resistomes—on aver-
age, the core-resistome accounted for 4.7% of the match-
ing pan-resistome (Fig.  4). The external environments 
except wastewater had small core-resistomes with less 
than ten genes on average, suggesting that they con-
tain few ARGs that are ubiquitously present over the 
detection limit. In contrast, the core-resistomes for the 
digestive systems (excluding infants) were larger, rang-
ing between 24 and 99 ARGs, constituting between 5% 
and 13% of their corresponding pan-resistomes. In the 
human microbiome, the digestive system had the larg-
est core-resistome (39 ARGs, 4.8% of the pan-resistome) 
followed by the respiratory tract (25 ARGs, 17.2%) and 
skin (10 ARGs, 0.5%). The wastewater metagenomes had 
the overall largest core-resistome, containing as many as 
128 genes (4.7% of the pan-resistome), suggesting that a 
significant collection of ARGs is commonly encountered 
in wastewater treatment plants.

Moreover, the latent ARGs constituted a large part of 
the core-resistomes. In the host-associated metagen-
omes, the proportion of latent ARGs varied between 31% 
(infants) to 67% (bovine). The core-resistome of waste-
water contained the largest number of latent ARGs (44 
ARGs), corresponding to 34% of the total core-resistome. 
Although the pan-resistome of activated sludge was 
relatively large (62% the size of the wastewater pan-
resistome), the core-resistome was considerably smaller 
(29% the size of the wastewater).

We, furthermore, noted that the distribution of ARG 
classes differed between the core- and pan-resistomes 
(Additional File 1: Table  S3, S4). Tetracycline resistance 
genes were, for example, overrepresented in the core- 
compared to the pan-resistomes in the human, bird, and 
mammal digestive systems (p= 1× 10−6 ), while ami-
noglycoside resistance genes were underrepresented 
in humans and pigs (p= 1× 10−4 ). This pattern could 

be seen for both latent and established ARGs (Fig.  4). 
Indeed, for the human digestive system, as many as 59% 
of the core-resistome ARGs were tetracycline resistance 
genes of which 64% were latent. In contrast, not a single 
aminoglycoside resistance gene, neither latent nor estab-
lished, was identified to be part of the human digestive 
system core-resistome.

Latent ARGs were shared between host‑associated 
environments
Established ARGs are known to spread between envi-
ronments, including human and animal microbiomes. 
To investigate if this was also true for latent ARGs, we 
visualized the overlap between the core-resistomes from 
different environments as networks (Fig. 5). Remarkably, 
all host-associated metagenomes, as well as wastewater 
and activated sludge, contained ARGs that were shared 
between their core-resistomes. For the human digestive 
system, 73% of the latent and 100% of the established 
ARGs in the core-resistome were also encountered in at 
least one other environment. The largest number of genes 
shared with the human resistome was found in the pig 
digestive system (11 latent and 24 established ARGs, 90% 
of the core-resistome), followed by birds (8 latent and 21 
established ARGs, 74%), and wastewater (5 latent and 24 
established ARGs, 72%). In contrast, the overlap between 
the human digestive system and the core-resistomes from 
other parts of the human microbiome (skin and respira-
tory system) was substantially lower. Finally, the largest 
number of overlapping ARGs between any environments 
was seen between the wastewater and bird metagenomes 
(14 latent and 52 established). The shared part of the 
core-resistome consisted mainly of tetracycline resist-
ance genes. Latent macrolide, β-lactam, and aminogly-
coside resistance genes were also shared mainly between 
birds and wastewater but also between the digestive sys-
tems of other species. All latent and established ARGs 
found in activated sludge were also found in the core-
resistome of wastewater.

Context analysis shows indications of mobility for several 
commonly encountered latent ARGs
The established ARGs used in this study are mobile and 
can thus efficiently spread between bacteria. To inves-
tigate the potential for horizontal transfer of the latent 
core-resistome ARGs, we annotated their genomic 
context in their host bacteria for (1) genes related to 
mobile genetic elements (MGEs) commonly associated 
with ARGs (conjugative elements, transposons, and 
integrons) and (2) co-localized established ARGs (see 
the “Methods” section). Of the 108 latent ARGs present 
only in core-resistomes of a single environment, 15.7% 
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were located with an MGE-associated gene, while 7.4% 
were located next to an established ARG (Table 2 and 
Additional File 3: Table  S6). For the 29 latent ARGs 
commonly encountered in at least two environments, 
these proportions increased to 48% and 21%, respec-
tively. Finally, 31 (23%) of the latent ARGs present in 
the core-resistome were found in at least one human 
pathogenic species.

Discussion
In this study, we investigated the abundance and diversity 
of latent ARGs, which are largely uncharacterized and 
only sporadically represented in the current databases. 
From the analysis of a wide range of bacterial commu-
nities, represented by more than 10,000 metagenomic 
samples, we showed that latent ARGs are, compared to 
established ARGs, both more abundant and diverse. 

Fig. 5 Core‑resistome overlap between environments. a Networks where nodes represent environments with their node size proportional to 
the size of the environment’s core‑resistome. The width of the edge is proportional to the number of core‑resistome ARGs shared between two 
environments. Only overlaps of at least five ARGs are shown. b The heatmaps show the number of core‑resistome ARGs shared between two 
environments for each antibiotic type. The labels Birds, Bovines, Mice, Pigs, Humans, and Infants denote metagenomes from the corresponding 
digestive system. Respiratory system and skin only include human samples. Qnr is an abbreviation for quinolone resistance
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Table 2 Context analysis of selected latent core‑resistome ARGs

Cluster ID1 Closest ARG 2 Host Host3 Associated Co‑localized Environments4

ARG class [% identity] phyla species MGE/integron ARGs

Tetracyclines

C8 RPG Tet(W/N/W) Act, Collinsella sp., MPFFATA , MOBQ erm(B) Birds, Bovine,

[12] [80%] Firmicutes LActinobacteriaobacillus sp. Humans, Mice,

Pigs, Wastewater

C7 RPG Tet(44) Pro, Campylobacter fetus [P] MPFFATA, Birds, Bovine,

[2] [86%] Firmicutes MOBQ , MOBP1 Humans, Mice, Pigs

C10 RPG Tet(32) Firmicutes Clostridium clostridioforme, MPFFA , MOBP1 Birds, Bovine,

[7] [76%] Dorea formicigenerans, Mice, Pigs

C14 RPG Tet(32) Firmicutes Acetatifactor muris, MPFFATA , MOBQ, Birds, Bovine,

[3] [88%] Blautia coccoides MOBP1 Humans, Mice, Pigs

β‑lactams

C34 A CepA‑44 Bacteroidetes Bacteroides vulgatus [P], Humans

[31] [54%] Bacteroides massiliensis [P]

C46 A cepA Bacteroidetes Bacteroides caecimuris, MPFFA, Mice

[11] [41%] Parabacteroides distasonis MPFFATA
C35 A CfxA3 Bacteroidetes Bacteroides fragilis [P], MPFB Humans, Pigs,

[8] [84%] Bacteroides eggerthii Respiratory system

C37 A CfxA6 Bacteroidetes Bacteroides vulgatus [P], MOBB Pigs

[3] [81%] Bacteroides ovatus

C30 C ACC‑7 Proteobacteria Thauera humireducens, Class 1 integrase, tet(G) Activated

[3] [47%] Thauera sp. IS91‑family transposase sludge, Wastewater

C22 C ADC‑221 Proteobacteria Acinetobacter baumannii [P], MOBQ blaOXA−58 Wastewater

[6] [61%] Acinetobacter bereziniae

C89 D OXA‑209 Bacteroidetes Myroides odoratimimus [P] MPFB blaOXA−347, Wastewater

[1] [89%] tet(X)

C94 D OXA‑209 Bacteroidetes Vaginella massiliensis tet(X4) Wastewater

[1] [73%]

Macrolides

C50 erm Erm(42) Firmicutes, Anaerofustis stercorihominis, MPFFA Birds, Bovine,

[6] [48%] Proteobacteria Dechloromonas aromatica, Pigs, Wastewater

C41 erm Erm(42) Firmicutes, Salmonella enterica [P], MPFFATA, Birds

[4] [42%] Proteobacteria Eubacterium rectale MOBQ , MOBP1
C105 erm Erm(F) Bacteroidetes Bacteroides fragilis [P], MPFB , MOBP1 tet(Q) Wastewater

[3] [63%] Alistipes onderdonkii

C38 erm Erm(42) Firmicutes Solobacterium sp. MPFFA , MPFFATA, Pigs

[5] [49%] MOBV
C109 erm Erm(X) Actinobacteria Corynebacterium dentalis, MOBF Birds

[2] [57%] Trueperella pyogenes

C67 mph Mph(E) Bacteroidetes Myroides odoratimimus [P] MOBP1 Wastewater

[1] [83%]

Aminoglycosides

C87 aac(3) AAC(3’)‑IXa Firmicutes Lactobacillus amylovorus, MOBT Birds, Pigs

[13] [30%] Lactobacillus gallinarum

C132 aac(6’) AAC(6’)‑Iad Firmicutes Clostridioides difficile [P] MPFFATA, Pigs

[2] [56%] MOBQ
C130 aac(6’) AAC(6’)‑Im Firmicutes Ruminococcus flavefaciens, MPFFATA Bovine

[14] [55%] Butyrivibrio sp.

C128 aac(6’) AAC(6’)‑Ib7 Proteobacteria Pseudomonas aeruginosa [P] Class 1 integron aac(6’)‑31, aadA6, Birds,

[1] [74%] sul1, blaOXA−2 Wastewater

C84 aph(3’) APH(3′′)‑Ib Proteobacteria Vibrio cholerae [P] aph(6)-Id Birds, Activated

[1] [89%] sludge, Wastewater
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This pattern was especially pronounced for the soil and 
aquatic bacterial communities. More surprisingly was 
that wastewater, the human and animal digestive sys-
tems—all known to contain a large collection of estab-
lished resistance genes [9, 22]—also harbored a high 
diversity of latent ARGs. Furthermore, several of the 
latent ARGs commonly encountered in either wastewa-
ter or the host-associated environments were also shared 
between environments, especially between humans, pigs, 
birds, and wastewater. We also showed that these wide-
spread latent ARGs were, to a large extent, mobilized 
and associated with integrons, conjugative elements, 
and insertion sequences. Additionally, several of the 
commonly encountered latent ARGs were found in spe-
cies from multiple phyla and several pathogens, includ-
ing Pseudomonas aeruginosa, Salmonella enterica, and 
Campylobacter spp. This study thus demonstrates that 
there are latent ARGs enriched in the human and animal 
microbiomes that are already both mobile and present in 
virulent pathogens (including ESKAPE) [47]. This sug-
gests that some latent ARGs may constitute major risks 
to human health [8, 48, 49].

Our analysis showed that there were similarities in 
the distribution of latent and established ARGs between 
metagenomes. The correlation between the abundance of 
latent and established ARGs was overall positive but, for 
most gene classes, moderate in size, which is in accord-
ance with earlier results based on a smaller set of latent 
ARGs [28]. However, stronger correlations were found 
for macrolide and tetracycline resistance genes in the 
host-associated and wastewater metagenomes. Moreover, 
latent and established ARGs showed similar over- and 
under-representation patterns in the core-resistomes. In 
particular, both latent and established tetracycline and 
macrolide resistance genes were overrepresented in the 
core-resistomes compared to their pan-resistomes. In 
contrast, β-lactamases and aminoglycoside resistance 
genes were instead underrepresented. It is plausible that 
the similar patterns of latent and established ARG abun-
dance observed in this study are a result of antibiotic 
consumption. Tetracyclines and macrolides are antibiot-
ics that are efficient in the anaerobic conditions where 
these bacterial communities thrive [50]. Other antibiot-
ics, such as aminoglycosides are, in comparison, generally 
less efficient under anaerobic conditions [51], and may 
not induce as strong selection pressures in the digestive 
system, which may reduce the relative abundance of the 

corresponding ARGs. Nevertheless, our results suggest 
that latent and established ARGs are, at least partially, 
affected by similar selection pressures. Consideration 
of the larger resistome—including the large diversity of 
latent ARGs—is, therefore, necessary to understand how 
antibiotic selection pressures affect bacterial communi-
ties and the selection of antibiotic resistance genes.

Several of the latent commonly encountered ARGs 
were shared between environments, especially the host-
associated digestive systems. However, in relation to the 
composition of ARGs in our reference database, latent 
ARGs were, compared to established ARGs, shared to a 
less extent. Indeed, our results showed that most latent 
core-resistome ARGs are not widespread, at least not at 
detectable levels. This suggests that are strong evolution-
ary barriers that prevent many of the latent ARGs from 
horizontally transferring between hosts and efficiently 
spreading between environments [52]. Indeed, many of 
the latent ARGs were found in bacterial chromosomes 
and are, thus, most likely not as mobile as the estab-
lished ARGs, which are often located on mobile genetic 
elements known to efficiently spread to pathogens [53]. 
There are also fitness costs associated with the horizontal 
acquisition of genes, which may require latent ARGs to 
adapt to their new host before they provide a significant 
evolutionary advantage [54]. Indeed, many types of ARGs 
require a high expression to induce a significant resist-
ance phenotype and, therefore, codon optimization can 
be needed for efficient translation. Nevertheless, the con-
tinuous discovery of novel and more efficient ARGs in 
clinical setting suggest that the latent resistome still con-
tains highly potent resistance determinants [55–57]. It is, 
therefore, possible that some of the common and shared 
latent ARGs identified in this study constitute emerging 
resistance genes, but are associated with either a high 
fitness cost or are located on inefficient mobile genetic 
elements which prevent them from spreading en masse 
among human pathogens.

The pan-resistomes were heavily dominated by latent 
ARGs. In the external environments, as much as 95% 
of the pan-resistome consisted of latent ARGs, while 
the number was somewhat lower in the host-associated 
environments ( > 74% ). Our results thus suggest that all 
environments contain large reservoirs of latent ARGs 
and can serve as important sources of new resistance 
determinants. Indeed, new ARGs are constantly being 
discovered in clinical settings, but their origins are 

Table 2 (continued)
Gene sequences of the 1429 variants (clustered into 133 ARGs) of all latent core‑resistome ARGs are found in Additional File 3: Table S5. The corresponding 
information for all latent core‑resistome ARGs is found in Additional File 3: Table S6.1Cluster ID and ARG class with the number of gene sequences in the cluster given 
in brackets.2The closest established ARG identified by protein alignment against CARD with the identity level given in brackets. 3Pathogenic species are indicated 
with [P].4Environments where the ARG was considered part of the core‑resistome.
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often unknown [7]. This suggests that some resistance 
genes are likely transferred from bacteria that are not 
yet available in our sequence repositories. Consider-
ing that most of the human pathogens and commensals 
today have sequenced genomes, many ARGs are, there-
fore, likely to originate from non-clinical bacteria [4, 8]. 
Indeed, the majority of the origins of 37 investigated 
established ARGs came from bacterial species com-
monly found in the environment, but which were inter-
estingly also sporadically associated with the human 
microbiome [7]. This indicates that antibiotic selection 
pressure is likely a factor promoting the mobilization 
and successive transfer of latent ARGs into pathogens 
[52]. Our results show that, in addition to the human 
microbiome, wastewater-associated bacterial commu-
nities may be high-risk environments for the mobiliza-
tion of new clinically relevant ARGs. Firstly, significant 
concentrations of antibiotics are commonly encoun-
tered in the influent of wastewater treatment plants, 
suggesting that the selection pressures needed to pro-
mote the mobilization of latent ARGs may be present 
[58–60]. Secondly, the wastewater metagenomes also 
contain established ARGs, many of which originate 
from the human microbiome, along with a pleth-
ora of MGEs that can efficiently transfer genes into a 
wide range of pathogens [61, 62]. Finally, as shown in 
this study, wastewater metagenomes also maintain a 
diverse pan-resistome with ARGs from all included 
gene classes. In fact, the wastewater pan-resistome was 
larger than in soil, reflecting an increased likelihood 
that compatible and efficient resistance determinants 
are present. Developing improved methods for the 
identification and surveillance of environments with 
an increased risk for mobilization of resistance genes 
will be critical to stopping the transfer of new efficient 
resistance determinants into human pathogens. Here, 
the characterization of both the latent and established 
resistome—and thus the full resistance potential of a 
bacterial community—will be crucial.

Shotgun metagenomics offers a holistic approach to 
studying bacterial communities. Commonly used data-
bases, such as ResFinder, CARD, and ARGs-OAP [25–
27], are highly focused on established ARGs already 
associated with clinical isolates and will, therefore, over-
look latent ARGs and underestimate the total diversity of 
the resistome. Since no comprehensive reference data-
base was available when this study was performed, puta-
tive ARGs were computationally predicted by analyzing 
almost half a million bacterial genomes. We used fAR-
Gene, a method that uses probabilistic gene models that 
are optimized both for sensitivity and specificity, where 
the latter is especially important to avoid false positives 

[33]. To make sure that our predictions are as accurate 
as possible, we limited the study to gene classes that had 
been thoroughly evaluated. Indeed, predictions from 
fARGene have been experimentally validated repeatedly 
and showed that between 70% and 86% of the predicted 
ARGs induce a resistance phenotype when expressed in 
Escherichia coli [12, 13, 15, 16, 34]. This suggests that a 
large proportion of our latent ARGs are likely to be cor-
rect and thus provide resistance in at least some bacte-
rial species. Thus, the reference database assembled for 
this study could be applied in other areas where broad 
screening of ARGs are important, such as diagnostics and 
surveillance of antibiotic-resistant bacteria. We, further-
more, argue that larger and more diverse reference data-
bases are essential for the analysis of ARGs using shotgun 
metagenomics. Indeed, our study shows that 38% of 
the ARGs commonly encountered in the human diges-
tive system are latent and there is a risk that these genes 
are overlooked in analyses based on existing databases. 
However, even if computational methods can be used 
to explore latent ARGs, the available bacterial genomic 
and metagenomic sequencing data only represent a tiny 
fraction of the total microbial diversity on earth [63]. The 
abundance and diversity of latent ARGs presented here 
should thus be considered conservative estimates. The 
latent resistome is, consequently, likely to be substantially 
larger than what is depicted in this study.

Conclusion
This study constitutes the first large-scale analysis of the 
latent resistome, i.e., the collection of antibiotic resist-
ance genes present in bacterial communities that are not 
(yet) considered major clinical problems and is, therefore, 
largely uncharacterized. Our findings show that latent 
ARGs are ubiquitously present in relatively high abun-
dance in all analyzed environments and have a diversity 
that surpasses that of established resistance genes. Many 
commonly encountered latent ARGs are associated with 
MGEs and detected at high abundance in multiple envi-
ronments. More alarmingly, several MGE-associated 
latent ARGs are already present in highly virulent human 
pathogens. This suggests that they may provide an evo-
lutionary advantage and reduce the efficacy of antibiotic 
treatments in the clinic. We conclude that both latent 
and established ARGs need to be considered to capture 
the consequences of antibiotic selection pressures and 
how they affect the promotion and spread of ARGs. The 
origin of the vast majority of clinically relevant ARGs—
including those that have been recently described—
remains unknown. It is therefore vital that the diversity 
and characteristics of the latent resistome are included 
as a component in the assessment of risk environments 
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for the mobilization of new ARGs. This may facilitate the 
implementation of improved management strategies that 
limit the introduction of new resistance determinants in 
human pathogens and clinical settings.
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Additional file 1: Table S1 shows the number of metagenomic samples 
per environment included in the study. Table S2 shows the results for 
the assessment of higher and lower abundance and diversity of the 
established ARGs compared to the latent ones for each antibiotic class. 
Table S3 shows the results for the assessment of over‑ and under‑repre‑
sentation of ARGs in the core‑resistomes compared to their correspond‑
ing pan‑resistome for each antibiotic type. Table S4 shows the number 
of ARGs in the pan‑ and core‑resistomes for each environment and gene 
class.

Additional file 2: Figure S1 shows the principal component analysis 
(PCA) of the α‑diversity of latent and established ARGs. Figures 2 and 3 
correspond to the distribution of the log‑transformed relative abundance 
and α‑diversity of latent and established ARGs for each gene class and 
environment. Figure S2 shows the host‑associated metagenomes and 
Figure S3 the external environments. Aquatic includes samples from 
fresh, lentic, and marine water; Plants includes rhizosphere samples; 
Infants include samples from their digestive system; Wastewater includes 
activated sludge, water and sludge, fecal source, and raw wastewater; 
Terrestrial includes soil samples; Human includes samples from the skin, 
digestive and respiratory systems; Birds includes samples from their diges‑
tive system; and Mammals includes samples from the digestive systems 
of bovines, mice, and pigs. RPG is short for ribosomal protection gene. 
Figure 4 shows the correlation between the abundance of latent and 
establish ARGs for each gene class and environment. The color intensity 
reflects the size of the estimated correlation coefficient and an asterisk (*) 
marks significant correlations (p<0.001). Gray squares indicate environ‑
ment and gene classes with an insufficient number of non‑zero observa‑
tions to calculate the correlation coefficient and/or the p‑value.

Additional file 3: Table S5 shows all latent core‑resistome ARGs and 
the fARGene gene sequences within their clusters (90% identity level). 
The table includes the gene sequence identifiers; the clusters to which 
each sequence belongs; which of the sequences were cluster centroids 
and, hence, used as the representative sequence for the ARG; and the 
nucleotide sequences. Table S6 shows the context analysis of all latent 
core‑resistome ARGs. The table includes the cluster identifiers; ARG class; 
the number of gene sequences in the cluster; the closest established ARG 
with % amino acid identity to CARD; host phyla of the gene sequences 
when identified; host species of the gene sequences when identified with 
human pathogens marked; genes associated with mobile genetic ele‑
ments (MGEs) identified in the genetic context of the gene; co‑localized 
ARGs in the genetic context of the gene; and the environments where the 
ARG was considered part of the core‑resistome. Table S7 corresponds to 
the 10,375 metagenomic run IDs included in this study and retrieved from 
the ENA. Table S8 corresponds to the NCBI Assembly IDs used to build 
the fARGene database.
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