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Extending the reach of uncertainty quantification in nuclear theory
Isak Svensson
Department of Physics
Chalmers University of Technology

Abstract
The theory of the strong interaction—quantum chromodynamics (QCD)—is un-
suited to practical calculations of nuclear observables and approximate models
for nuclear interaction potentials are required. In contrast to phenomenolog-
ical models, chiral effective field theories (χEFTs) of QCD grant a handle on
the theoretical uncertainty arising from the truncation of the chiral expansion.
Uncertainties in χEFT are preferably quantified using Bayesian inference, but
quantifying reliable posterior predictive distributions for nuclear observables
presents several challenges. First, χEFT is parametrized by unknown low-
energy constants (LECs) whose values must be inferred from low-energy data of
nuclear structure and reaction observables. There are 31 LECs at fourth order
in Weinberg power counting, leading to a high-dimensional inference problem
which I approach by developing an advanced sampling protocol using Hamilto-
nian Monte Carlo (HMC). This allows me to quantify LEC posteriors up to and
including fourth chiral order. Second, the χEFT truncation error is correlated
across independent variables such as scattering energies and angles; I model
correlations using a Gaussian process. Third, the computational cost of com-
puting few- and many-nucleon observables typically precludes their direct use
in Bayesian parameter estimation as each observable must be computed in ex-
cess of 105 times during HMC sampling. The one exception is nucleon-nucleon
scattering observables, but even these incur a substantial computational cost in
the present applications. I sidestep such issues using eigenvector-continuation
emulators, which accurately mimic exact calculations while dramatically reduc-
ing the computational cost. Equipped with Bayesian posteriors for the LECs,
and a model for the truncation error, I explore the predictive ability of χEFT,
presenting the results as the probability distributions they always were.
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Moon
1. The celestial orb which revolves
round the earth; the satellite of the
earth; a secondary planet, whose light,
borrowed from the sun, is reflected to
the earth, and serves to dispel the dark-
ness of night.

– Webster’s Dictionary, 1913
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Chapter 1

Introduction

Since its discovery, quantum chromodynamics (QCD) has remained our most
fundamental theory for describing the dynamics of strongly interacting parti-
cles. QCD is part of the Standard Model (SM) of particle physics and describes
how quarks and gluons interact via their force-carriers, the gluons themselves.
The quarks are confined into composite particles—hadrons—such as the nu-
cleon. Nuclear forces arise from residual quark and gluon interactions in a
similar manner to how the Van der Waals forces arise between molecules [1].
One can pursue QCD calculations on a finite space-time lattice using the lattice
QCD method [2], but such calculations are currently too computationally ex-
pensive for general use in nuclear theory [3]. Nuclear theory is more commonly
formulated in terms of nucleons and the forces acting between them.

The quantum state |ψ〉 of an interacting A-nucleon system is governed by
the time-independent non-relativistic A-nucleon Schrödinger equation

(Ĥ0 + V̂NN + V̂NNN + . . .) |ψ〉 = E |ψ〉 , (1.1)

where Ĥ0 denotes the kinetic energy operator of the free nucleons, V̂NN (V̂NNN )
is a two-nucleon (three-nucleon) potential operator, and E is the eigenenergy
of the system. Theoretical predictions for nuclear observables may be found
by numerically solving Eq. (1.1), a problem physicists have been working on
for decades [4]. From now on, I will for simplicity denote Eq. (1.1) as “the
Schrödinger equation”.

Today, ab initio many-body methods are routinely used for solving the
Schrödinger equation. Ab initio (literally meaning “from the beginning”) is
a somewhat broad term, but an ab initio method typically entails adopting a
relevant set of degrees of freedom—often nucleons and pions—and performing
calculations in a systematically improvable way [5]. Recent years have seen
dramatic improvements in the capabilities of ab initio methods (see Ref. [6] for
a recent review).
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Introduction

Computing nucleon-nucleon (NN) elastic scattering cross sections via the
Lippmann-Schwinger (LS) equation is straightforward and has been possible for
more than half a century [7], while three-nucleon (NNN) scattering presents
more of a challenge and is currently attracting attention [8–11] with or without
three-nucleon forces (3NFs). This is a clear example of how rapidly—naïvely
exponentially—the computational complexity of Eq. (1.1) increases with A.
Practitioners seeking to study few-nucleon systems frequently turn to the no-
core shell model (NCSM) [12, 13], which considers the dynamics of all nucleons.
The NCSM basis must in practice be truncated at some finite number of har-
monic oscillator (HO) excitations above the lowest configuration, limited by a
parameter Nmax. The number of basis states grows roughly exponentially with
Nmax, and the dimensionality of the Hilbert space reaches the order 104, in Ja-
cobi coordinates, for the A = 3, 4 observables in Paper I. The lowest eigenvalue
and eigenstate takes about 1 minute to solve for using a Lanczos algorithm [14].
Beyond the reach of NCSM, polynomially-scaling methods like the in-medium
similarity renormalization group (IMSRG) [15] and coupled cluster (CC) [16]
methods push the boundaries in terms of medium- and heavy-mass nuclei, cur-
rently reaching 208Pb [17]. All of these methods utilize physically motivated
approximations to yield numerically exact solutions to the Schrödinger equa-
tion, for which I will use the term simulation. This is in contrast with so-called
emulated solutions, which efficiently mimic simulator output at the cost of some
accuracy. Emulators play a critical role for uncertainty quantification (UQ) in
modern nuclear theory.

The challenge of solving the many-body Schrödinger equation notwithstand-
ing, we need a model for the nuclear potential V̂ and an estimate of its theo-
retical uncertainty. The latter aspect is the main focus of this thesis. Research
on V̂ has been underway for almost a century, initially through phenomeno-
logical models which over time have reached a very high level of refinement.
Accurate phenomenological potentials such as CD-Bonn [18] are still in use,
but unfortunately provide little information regarding any theoretical uncer-
tainty in predictions. To bridge the gap between phenomenological models
and costly lattice QCD calculations, we turn to effective field theories (EFTs),
specifically chiral effective field theory (χEFT) [1, 19, 20]. χEFT can provide
insight into the uncertainty of the theoretical predictions, while also remaining
applicable in practice. Weinberg [21–24] proposed to adopt a set of relevant
degrees of freedom—e.g., nucleons and pions—and construct a nuclear inter-
action potential from the most general effective Lagrangian Leff that observes
the symmetries of QCD, notably approximate chiral symmetry, and expand-
ing Leff in powers of Q = p/Λb. Here, p is a low-momentum scale and Λb is
the breakdown scale of the theory. Λb is expected to be of the same order of
magnitude as the nucleon mass, i.e., Λb ≈ 1 GeV. The chiral expansion yields
an infinite number of terms encoding different types of pion-nucleon (πN) and
nucleon-contact interactions. For practical calculations, the expansion must be
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truncated, and it is therefore important to employ a suitable power counting
scheme wherein the diagrams are ordered according to the importance of their
contributions. The power counting scheme assigns an order k ≥ 0 to each inter-
action diagram: the dominant interactions comprise the leading order (LO), and
higher-order corrections—suppressed by successively higher powers of Q—are
sorted as next-to-leading order (NLO), next-to-next-to-leading order (NNLO),
and so on. The systematic suppression of higher-order corrections yields a prin-
cipal handle on the uncertainty induced by the finite truncation of the series,
i.e., the EFT truncation error.

χEFT employs nucleons and pions as effective degrees of freedom in its so-
called ∆-less variant [1], which we use in Papers I-III. In its ∆-full variant, used
in Paper IV, the ∆(1232) resonance is also included as an explicit degree of free-
dom (see, e.g., Ref. [25]). χEFT is well suited for analyzing physics characterized
by momenta comparable to the pion mass (mπ ≈ 140 MeV) [20] and has been
shown to provide a quantitative and accurate model of the strong nuclear inter-
action in many applications [6]. Yet open questions regarding appropriate power
counting [26–29] remain to revolve issues grounded in renormalization. Here, I
use standard Weinberg power counting as shown in Figs. 1.1 and 1.2. No inter-
actions contribute at order k = 1 [30] and we therefore designate k = 0, 2, 3, . . .
as LO, NLO, NNLO, and so on. As shown in Fig. 1.1, only 2NFs appear at
the lowest orders with the well-known one-pion exchange (1PE) at LO, while
Fig. 1.2 reveals that 3NFs enter at NNLO (NLO) in ∆-less (∆-full) χEFT.

Each new order in the chiral expansion introduces a number of unknown
parameters known as low-energy constants (LECs) that govern the strength of
the corresponding interaction diagrams. The LECs are divided into categories
based on the type of interaction, e.g., “contact LECs” for short-range nucleon-
contact interactions and πN LECs for long-ranged π-exchanges. Power counting
places an important expectation on the LECs in that they are supposed to be
of “natural” size (i.e., of order 1) in appropriate units of the breakdown scale;
a failure to fulfil this expectation is an indication that the EFT is not working
as advertised. The number of LECs starts at just two at LO, but grows rapidly
to 11 at NLO and above 30 at next-to-next-to-next-to-leading order (N3LO).
In this thesis, I will denote a single LEC as α and all (in the context relevant)
LECs as ~α.

The LECs generally have to be inferred from experimental data. They are
consequently imbued with an uncertainty which, like the EFT truncation error,
will propagate to observable predictions. Additional uncertainties can also ap-
pear, such as numerical errors from the solution of the Schrödinger equation.
Quantifying these uncertainties and their impact on predictions is of funda-
mental importance for precision nuclear physics, and the motivation for this
thesis.

In recent years, Bayesian inference methods have been developed as a tool
for UQ in χEFT [31–36]. The Bayesian interpretation of probability enables us
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Introduction

Figure 1.1: Hierarchy of two-nucleon forces (2NFs) in χEFT according to Wein-
berg power counting. Solid lines represent nucleons, dashed lines represent
pions, and double lines represent ∆ excitations. In this figure, Q denotes the
low-momentum scale and Λχ the breakdown scale. Figure from Ref. [1]. Copy-
right © Elsevier 2011. Reproduced with permission.
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Figure 1.2: Like Fig. 1.1, but for 3NFs. Figure from Ref. [1]. Copyright ©
Elsevier 2011. Reproduced with permission.
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to infer a probability density function (PDF), called a posterior, for the LECs
at a given chiral order. This posterior can be conditional on a range of given
information, such as the empirical data used for the parameter estimation and
a statistical model for the EFT truncation error [32]. The Bayesian framework
also allows—or rather, requires—us to encode a priori beliefs or assumptions in
the so-called prior PDF. This gives us a straightforward way to encode, e.g., our
expectation of natural LECs. In this thesis, the quantified uncertainties in the
LEC posteriors are propagated to predictions of NN scattering observables to
yield posterior predictive distributions (PPDs) with an added model discrepancy
term [37] for the energy-dependent EFT truncation error.

The dimensionality of the posterior is at least equal to the number of LECs,
which unavoidably means that Bayesian parameter estimation at NLO and be-
yond entails evaluating a high-dimensional PDF. This poses a significant com-
putational challenge whose only realistic solution is the application of Markov
chain Monte Carlo (MCMC) sampling. Unfortunately, the performance of stan-
dard MCMC algorithms degrades rapidly with increasing dimensionality and
therefore require very long runtimes even at NLO. In this work, I therefore
introduce an advanced MCMC sampling algorithm, Hamiltonian Monte Carlo
(HMC) [38, 39], to Bayesian UQ in χEFT and show it to be adept at sampling
high-dimensional parameter spaces. The use of HMC opens up the possibility
of inferring joint posteriors for the LECs and other quantities of interest, such
as the EFT expansion parameter Q.

Together with my collaborators, I extend the reach of UQ in nuclear theory
to include Bayesian inference of 3NFs in Paper I through the use of NCSM
emulators. In Paper II, we employ HMC to perform efficient inferences and
predictions in the NN sector up to NNLO in ∆-less χEFT. In Paper III, we
extend further to include N3LO and investigate the charge dependence of the
strong nuclear interaction through PPDs of effective range expansion (ERE)
parameters. In Paper IV, we combine HMC and NN scattering emulators [40,
41] with advanced modeling of correlated EFT truncation errors in ∆-full χEFT
to investigate the effects on posteriors and predictions, paving the way for fully
Bayesian analyses in the few-nucleon sector and establishing a stepping stone
towards Bayesian ab initio theory for atomic nuclei.
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Chapter 2

Simulating solutions to the
Schrödinger equation

Solving the Schrödinger equation is a central challenge in nuclear theory. A
list of commonly-used ab initio many-body methods to this end is presented in
Chapter 1. The purpose of this chapter is to summarize the methods I use and
to establish the corresponding notation for describing the NN system. Here, I
only discuss simulations, i.e., numerically exact methods that yield high-fidelity
results but are computationally costly in the context of Bayesian inferences.
Approximate solutions—emulation—will be discussed in Chapter 4.

2.1 The non-relativistic Schrödinger equation in
a partial-wave basis

The non-relativistic and time-independent Schrödinger equation for the NN
system states that

Ĥ |ψ〉 = (Ĥ0 + V̂ ) |ψ〉 = E |ψ〉 (2.1)

where E is the energy associated with the system in the state |ψ〉, V̂ is the
operator representing the interaction potential, and Ĥ0 is the kinetic energy
operator for the relative motion of the two nucleons,

Ĥ0 = p2

2µ. (2.2)

Here, p is the relative momentum and µ is the reduced mass. In this work,
the potentials V̂ are represented in a plane-wave partial-wave basis. We use
a basis that couples the nucleon spins S = s1 + s2 and the relative orbital
angular momentum L to the total angular momentum J = L + S. I denote the

7



Simulating solutions to the Schrödinger equation

quantum numbers corresponding to S, L, and J as S, L, and J , respectively,
while p = ‖p‖. Each state in the basis is further characterized by its isospin
T, with associated quantum number T , and parity π = (−1)L. I denote the
projections of J and T on the quantization axis ẑ, which I take to be the beam
axis, as m and Tz, respectively. The Pauli exclusion principle dictates that only
antisymmetric basis states are allowed; this is easily achieved in the NN case
by only including channels where (−1)L+S+T = −1 [42]. This factor arises as
a result of applying the two-body antisymmetrization operator Â12 to the NN
states, where

Â12 = 1
2!

(
I− P̂12

)
(2.3)

and P̂12 is the permutation operator that swaps particle indices 1 and 2.
Using this notation we can denote a state for two nucleons as |LSJTTzπ; p〉.

From now on, I will leave T , Tz, and π implicit and denote an NN state as
|LSJ ; p〉. J and π—and hence S—are always conserved, and the interaction
potential in a given partial wave (PW) can be written as

〈L′SJ ; p′| V̂ |LSJ ; p〉 = V SJL′L(p′, p) (2.4)

where 〈L′SJ ; p′| and |LSJ ; p〉 represent the final and initial states, respectively.
L, however, is not always conserved as the strong nuclear force includes non-
central (tensor) components, and PW channels where L 6= L′ are referred to
as coupled channels. For NN systems, we have |L − L′| = 0, 2. Scattering
experiments are generally defined in terms of the laboratory energy Tlab, which
is related to the center-of-mass (c.m.) momentum p via

Tlab =

√
(p2 +m2

t )(p2 +m2
p) + p2 −mpmt

mt
(2.5)

where mp (mt) is the mass of the projectile (target) particle.
Quantum states are frequently described using spectroscopic notation short-

hand 2S+1LJ , where L = 0, 1, 2, 3, . . . are denoted S, P,D, F , and so on in al-
phabetical order. For example, the singlet state |LSJ〉 = |000〉 is denoted 1S0.
Using this notation, the lightest-mass bound state of nucleons—the deuteron—
consists of a neutron and a proton bound in the coupled triplet state 3S1-3D1
with a ground state energy of E(2H) = −2.224575(9) MeV [43] and no bound
excited states. Computing E(2H) thus entails setting up a potential

V3S1-3D1 =
(
V 31

00 V 31
02

V 31
20 V 31

22

)
(2.6)

and solving Eq. (1.1).
In this work, the elements of V̂ are derived from χEFT [1] where V̂ typically

depends linearly on the LECs. Thus, the potential contribution in each PW
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Two-nucleon elastic scattering

E
lab

Center-of-mass frame

θ

θ

p −p

p'

−p'

Figure 2.1: NN elastic scattering in laboratory and c.m. coordinates. The
projectile and target nucleons are colored blue and yellow, respectively. Tlab is
the laboratory energy, p (p′) is the initial (final) c.m. momentum, and θ is the
c.m. scattering angle. In the laboratory frame, the target nucleon is initially at
rest.

channel consists of a constant part V̂const and contributions that depend on the
LECs,

V̂ (~α) = V̂const +
NLECs∑
i=1

f(αi)V̂i, (2.7)

where NLECs is the number of LECs and f(αi) = αi up to NNLO in Weinberg
power counting [1, 19, 20]. This property will be important in Chapter 4.

2.2 Two-nucleon elastic scattering
In order to solve the Schrödinger equation for NN scattering observables, we
rewrite it in an alternate form, the LS equation. The LS equation is equivalent to
the Schrödinger equation under imposition of boundary conditions stipulating
that the eigenvalues vary continuously with p and the eigenstates are free waves
in the absence of an interaction potential. Derivations of the LS equation can be
found in any textbook discussing scattering, for example Ref. [44]. Here, I will
follow the method outlined by Sakurai [45] which I find simple and instructive.

We start by letting |φ〉 represent a plane-wave eigenstate of Ĥ0 with energy
E0:

Ĥ0 |φ〉 = E0 |φ〉 . (2.8)

We seek the solution to the Schrödinger equation,

(Ĥ0 + V̂ ) |ψ〉 = E0 |ψ〉 , (2.9)

with the same eigenenergy E0 as the free particles. Using Eq. (2.8) we can

9



Simulating solutions to the Schrödinger equation

rewrite Eq. (2.9) as

(E0 − Ĥ0) |ψ〉 = (E0 − Ĥ0) |φ〉+ V̂ |ψ〉 (2.10)

and, applying 1/(E0 − Ĥ0), we get

|ψ〉 = |φ〉+ 1
E0 − Ĥ0

V̂ |ψ〉 , (2.11)

where we have required that |ψ〉 → |φ〉 as V̂ → 0. This is the solution to
Eq. (2.9), except that 1/(E0 − Ĥ0) is singular. The singularity can be dealt
with by introducing a small imaginary part iε:∣∣ψ±〉 = |φ〉+ 1

E0 − Ĥ0 ± iε
V̂
∣∣ψ±〉 (2.12)

where |ψ+〉 (|ψ−〉) represents an outgoing (incoming) wave. Eq. (2.12) is the LS
equation. However, in order to arrive at a form that is useful in practice, we
introduce the transition operator T̂ according to

V̂
∣∣ψ+〉 ≡ T̂ |φ〉 (2.13)

and multiply Eq. (2.12) by V̂ from the left to yield

T̂ |φ〉 = V̂ |φ〉+ V̂
1

E0 − Ĥ0 + iε
T̂ |φ〉 . (2.14)

In operator form, this reads

T̂ = V̂ + V̂ Ĝ0T̂ (2.15)

where we have introduced

Ĝ0 = 1
E − Ĥ0 + iε

(2.16)

which is known as the free Green’s function or, alternatively, the free resolvent.
Formally solving for T̂ yields

T̂ = V̂

1− V̂ Ĝ0
(2.17)

which in practice amounts to a matrix inversion. Numerically, the imaginary
part of the free resolvent can be handled using the Cauchy principal value
method [7]. T̂ encodes all information about the scattering process and in
knowing it we are in a position to compute scattering cross sections. In prac-
tice, nuclear potentials defined in momentum space need to be represented as

10



Two-nucleon elastic scattering

a matrix on a grid of finite momenta p, which is conveniently achieved using
Gauss-Legendre quadrature. Obtaining converged solutions to the LS equation
for NN scattering usually entails inverting a ∼ 100 × 100 matrix. In addition
to the Gauss-Legendre grid points we typically want to add one point for the
on-shell momentum we are interested in such that we get the corresponding T̂ -
matrix element needed for computing observables. Solving the LS equation once
is not challenging; however, we must repeat the calculation for every laboratory
energy Tlab that we are interested in, and given that the world database of elas-
tic scattering cross sections [46, 47] comprises around 6000 data points across
hundreds of energies in the 0 < Tlab ≤ 350 MeV range, the computational cost
adds up to be quite significant in the context of a Bayesian analysis; in Papers
I-III, solving once for all relevant observables requires of the order of 10 s (wall
time). Solving for T̂ is the dominant cost, and the overall cost therefore scales
roughly linearly with the number of unique energies.

2.2.1 Computing scattering observables from the T̂ ma-
trix

Once we have the on-shell T̂ -matrix element TSJL′L, where

TSJL′L = 〈L′SJ ; p| T̂ |LSJ ; p〉 (2.18)

we must perform a few steps before we arrive at cross sections [42]. The Ŝ
matrix relates the incoming and outgoing states of a scattering process, and its
on-shell element SSJL′L is related to TSJL′L via

SSJL′L = 1− 2µp× 2iTSJL′L. (2.19)

Note that the factor 2µp depends on the normalization of the interaction po-
tential V̂ . Once SSJL′L is known, we may compute the spin-scattering matrix
M [48], which yields the scattered part of the final state. The partial-wave
decomposition of M is given by [49]

MS′S
m′m(θ, φ) =

√
4π

2ip

∞∑
J,L,L′

(−1)S−S
′
iL−L

′
Ĵ2L̂Y L

′

m−m′(θ, φ)

×
(

L′ S′ J
m−m′ m′ −m

)
×
(
L S J
0 m −m

)
× 〈L′SJ | Ŝ − 1 |LSJ〉

(2.20)

where Y L′

m−m′(θ, φ) is a spherical harmonic, Ĵ =
√

2J + 1, L̂ =
√

2L+ 1, and
the parentheses are Wigner 3j symbols. θ defines the c.m. scattering angle;
since we have chosen ẑ to be the beam axis and we have cylindrical symmetry,
we have (θ, φ) = (θ, 0). For NN scattering, MS′S

m′m is a 4× 4 matrix to account

11



Simulating solutions to the Schrödinger equation

for singlet and triplet states. One must choose a convention which I define thus:
M0

00 0 0 0
0 M1

−1−1 M1
−10 M1

−11
0 M1

0−1 M1
00 M1

01
0 M1

1−1 M1
10 M1

11

 (2.21)

In practice, Eq. (2.20) must be truncated at some finite values of J, L, L′. In
Papers I, II, and III, we truncate to Lmax = 30, while Jmax = 30 is used in
Paper IV. These values are sufficient for converged results for Tlab ≤ 350 MeV,
where convergence is defined as the method error being negligible compared to
other uncertainties.

All elastic scattering observables can be computed from M. These observ-
ables can be broadly categorized as total cross sections σtot (denoted SGT in
the SAID convention [50]), unpolarized differential cross sections σ(θ) (DSG),
and various spin observables, such as spin polarization and correlation. Spin
observables are normalized to the differential cross section and therefore take
values between −1 and 1. The M matrix can be used to directly compute all
of these observables. For example, the differential cross section is given by [51]

dσ

dΩ = 1
4 Tr MM†. (2.22)

However, it is convenient to define the Saclay amplitudes a-e and use these to
compute cross sections. They are given by

a = 1
2(M1

11 +M1
00 −M1

1−1)

b = 1
2(M1

11 +M0
00 +M1

1−1)

c = 1
2(M1

11 −M0
00 +M1

1−1)

d = 1
2 cos(θ) (−M1

11 +M1
00 +M1

1−1)

e = i√
2

(M1
10 −M1

01)

and can be used to compute all elastic scattering cross sections; see Ref. [48] for
a complete list. To give one example, the total cross section σtot is given by

σtot = 2π
p

Im(a+ b), (2.23)

which is the optical theorem expressed in terms of Saclay amplitudes.
Computing the Saclay amplitudes is less computationally demanding than

solving for T̂ . However, it is still worthwhile to avoid unnecessary recompu-
tations by precomputing as many factors in (2.20) as possible. This will be
discussed in Section 4.3.2.
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Chapter 3

Bayesian inference and sampling

In recent years, the common approach [52–59] of representing the nuclear in-
teraction and subsequent predictions of nuclear observables as a function of a
single set (or a few sets) of optimized LEC values has started to shift [9, 17, 60,
61]. This shift has been precipitated by rapidly improving computational power,
algorithmic improvements [6, 62], the introduction of Bayesian UQ to nuclear
theory [31–36], and, even more recently, by the introduction of fast and accu-
rate emulation of nuclear observables through eigenvector continuation (EC)
emulation [63–65]. Still, comprehensive UQ including inference of posterior dis-
tributions for all relevant LECs has yet to be achieved. In this chapter I present
my contributions towards this goal.

3.1 Linking experiment and theory
If we operate under the assumption that an observable y has a true value
ytrue [37], an experiment typically yields a value yexp which is ytrue plus an
error δyexp:

yexp = ytrue + δyexp. (3.1)

The error δyexp typically follows a normal distribution [46, 47] with a standard
deviation σexp, i.e, in general,

pr(δyexp) = N
(
0, σ2

exp
)
. (3.2)

Theory, meanwhile, yields a ~α-dependent prediction yth(~α) with an error δyth:

ytrue = yth(~α) + δyth (3.3)

Thus experiment and theory are related via [35]

yexp = yth(~α) + δyth + δyexp. (3.4)
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Bayesian inference and sampling

This relationship forms the basis of defining a likelihood function. If we assume
that δyth is independent of δyexp and also follows a normal distribution with
standard deviation σth, then

pr(yexp|~α) = N
(
yth(~α), σ2

th + σ2
exp
)

(3.5)

which serves as a suitable likelihood function for a single datum. Alternatively,
we can forgo the notion of a “true” value and directly link experiment and
theory via Eq. (3.4).

3.2 Bayesian predictions
We wish to make predictions of an unknown observable ynew conditioned on
existing data D and information I, where I encompasses all assumptions and
choices such as the chiral order, computational methods in use, and our model-
ing of errors. As χEFT features inherent uncertainties, we write our prediction
as a PDF pr(ynew|D, I) using standard statistical notation, where pr(A|B) in-
dicates a PDF for A conditioned on B, and pr(ynew|D, I) is a PPD for ynew.
Our prediction depends on the LECs, i.e., ynew = ynew(~α), which themselves
are uncertain. To progress, we marginalize in ~α [66]:

pr(ynew|D, I) =
∫

pr(ynew, ~α|D, I)d~α. (3.6)

By applying the product rule of probability calculus we get

pr(ynew|D, I) =
∫

pr(ynew|~α,D, I) pr(~α|D, I)d~α. (3.7)

Now, ynew does not depend on D since ~α is given, a situation known as condi-
tional independence. We can therefore simplify this to

pr(ynew|D, I) =
∫

pr(ynew|~α, I) pr(~α|D, I)d~α. (3.8)

Assuming that pr(~α|D, I)—the posterior for the LECs—is known, we can eval-
uate Eq. (3.8), and we have our PPD for ynew. This is a univariate distribution.
Note, however, that this PPD only takes into account uncertainties in the LECs
~α; it does not account for the energy-dependent truncation error in χEFT. We
model the truncation error δyth as a PDF pr(δyth|c̄2, Q, I) where c̄2 and Q char-
acterize the convergence of an observable in χEFT (see below). Assuming we
can draw samples from both pr(ynew|D, I) and pr(δyth|c̄2, Q, I), we can predict
ynew including a truncation error term.

The posterior for the LECs is not known, however; we must define it, and
evaluate it numerically. This is a central challenge when one wishes to extract
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PPDs of nuclear observables using χEFT. We can use Bayes’ theorem to rewrite
the posterior,

pr(~α|D, I) ∝ pr(D|~α, I) pr(~α|I), (3.9)

where the two factors on the right-hand side are the likelihood and the prior,
respectively. The likelihood is common to both Bayesian and frequentist statis-
tics, but the prior is unique to Bayes. As the name implies, the prior represents
our knowledge of ~α prior to seeing any data, and introduces a degree of subjec-
tivity to a Bayesian analysis. This subjectivity can be partly mitigated by either
choosing a weak prior, or by choosing a restrictive prior that is based upon solid
information from previous studies or theoretical arguments [67]. The following
sections are devoted to defining the likelihood and the prior. For notational
simplicity, I now omit explicit conditioning on I.

3.3 What data?
Our Bayesian inferences are conditioned on data D, which we must choose. A
natural candidate for LEC inference is NN elastic scattering cross sections,
which are abundantly available thanks to a large number of experiments across
many decades. Throughout this thesis I use the Granada database [46, 47] which
comprises 6 384 neutron-proton (np) and proton-proton (pp) elastic scattering
cross sections measured in the 1 eV to 350 MeV range of laboratory energies
Tlab. During inferences, I consistently truncate the database at Tlab = 290 MeV,
i.e, below the pion-production threshold. The higher-energy data is used during
model checking as validation data. The bulk of the database is comprised of
integrated cross sections σtot (SGT in the SAID convention [50]), differential
cross sections σ(θ) (DSG), and polarizations Ay(θ) (P). The remainder consists
of various types of higher-order spin observables. For the exact details of the
data used in each analysis I refer to the respective papers. It would be straight-
forward to include, e.g., deuteron properties as data in an inference, however the
abundance of scattering observables makes this inclusion generally redundant.
In principle, heavier nuclei can be included in the same way as the deuteron and
could certainly provide information the deuteron cannot; however, every other
nucleus presents (at the very minimum) a three-body problem that comes with
additional computational challenges.

Conspicuously absent from the Granada database are neutron-neutron (nn)
cross sections. The neutron’s lack of electric charge makes nn experiments
impractical since particle accelerators rely on electric charge for their opera-
tion. This is somewhat problematic for us, since χEFT features explicit isospin
symmetry breaking at NLO and beyond [68], and we must include data that
features nn interactions in order to constrain the corresponding LEC C̃nn1S0

. Or,
more accurately, we have plenty of data to infer C̃nn1S0

; the issue is that nearly
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all of it is A ≥ 3 data that is non-trivial to make theoretical calculations of.
One solution is to use ERE parameters, i.e, the nn 1S0 scattering length ann1S0
and/or effective range rnn1S0

, for which empirical values exist [1, 69]. Extracting
empirical values for these ERE parameters is done by analyzing some reaction
or observable that results in two neutrons with a low relative energy [69]; for
example, the deuteron breakup reaction nd −→ nnp can be used. In Paper II,
I use the empirical scattering length ann1S0

= −18.9 ± 0.4 [69] fm to constrain
C̃nn1S0

.
I developed a new code for calculating scattering cross sections in Paper IV

(see Chapter 4). This code does not yet take electromagnetic interactions into
account, and pp cross sections are therefore excluded from D in that project,
as well as np cross sections below 30 MeV since the magnetic moments of the
neutron and proton interact and contribute with a small but non-negligible
effect at low energies [70]. In analogy with C̃nn1S0

, we can constrain C̃pp1S0
using

ERE parameters where electromagnetic effects have been removed.
In the ∆-less theory, 3NFs enter at NNLO, and A ≥ 3 and/or NNN scat-

tering data is necessary if we wish to constrain the corresponding LECs, cD and
cE . Data from, e.g., 3H and 4He—systems with more than one neutron—can
in principle be used to constrain C̃nn1S0

, but we also have two 3NF LECs cD and
cE to infer, and we need at least one datum per LEC. NNN scattering data,
such as nucleon-deuteron (Nd) scattering observables, is an excellent candidate
for this purpose, which should be explored in the future. Recent PPDs of Nd
cross sections using χEFT can be found in Refs. [8, 9], using only 2NFs, and
the effects of 3NFs are explored in Refs. [10, 11]. In Paper I, however, bound-
state properties of A = 3, 4 systems are used instead. In particular, we use
the binding energies of 3H and 4He, the point-proton radius of 4He, and the β-
decay comparative half-life of 3H. We also discuss the importance of including
truncation errors for consistent results, see Chapter 5.

3.4 Likelihood
The traditional approach to fitting, or optimizing, the LECs in χEFT is to
define a χ2 cost function [71]

χ2 =
N∑
i=1

(
yth,i(~α)− yexp,i

σexp,i

)2
, (3.10)

where yexp,i is the ith datum, yth,i(~α) is the corresponding computed observable
value, σexp,i is the standard deviation of the experimental error, and N is the
number of data points. The LEC vector ~α∗ that minimizes this cost function is

~α∗ = argmin(χ2) (3.11)
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and can be challenging to find. This approach is equivalent to maximizing [72]
the χ2 likelihood

pr(D|~α) ∝ exp
(
−1

2χ
2
)
, (3.12)

and is an example of maximum likelihood estimation (MLE). MLE is a staple
of frequentist statistics and has been used in several LEC inferences to extract
optimized LEC values ~α∗ (see, e.g., Refs [18, 52, 57, 73–75]), on occasion along
with local approximations of LEC covariance matrices in order to propagate
LEC uncertainties to predictions [54, 59] (see also Paper I). However, a Bayesian
approach delivers the PDF pr(~α|D), which a frequentist approach does not.

The likelihood (3.12) with χ2 defined by Eq. (3.10) assumes that the residuals
are uncorrelated and follow a normal distribution. Furthermore, it assumes that
the experimental error is the only source of uncertainty. We can introduce an
independent theory error by replacing σexp,i in Eq. (3.10) with σi, defined as [54,
71]

σ2
i = σ2

exp,i + σ2
th,i (3.13)

where σth,i is the standard deviation of an assigned theoretical (Gaussian-
distributed) error. We can circumvent the restrictive assumption that the re-
spective errors in σ2

i are internally uncorrelated by introducing a covariance
matrix Σ, where

Σ = Σexp + Σth. (3.14)

By introducing the residual vector

~r = ~yth − ~yexp (3.15)

the corresponding likelihood can be written as [35]

pr(D|~α,Σexp,Σth) ∝ exp
(
−1

2~r
T ·Σ−1 · ~r

)
. (3.16)

The likelihood is conditional on ~α since ~yth depends on ~α.

3.4.1 Characterizing the theoretical uncertainty
How do we, then, quantify the theoretical error? A core strength of χEFT
is that it gives us a principal handle on the theoretical error; the sub-leading
contributions to an observable should at each order be suppressed by a factor
Q (see Chapter 1), where we define Q as Q = max(mπ, p)/Λb or a smoothed
version of this function. The asymptotic convergence of an observable in χEFT
may thus be formalized as [32]

yth = yref

∞∑
n=0

cnQ
n (3.17)
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where yref is a dimensionful reference value—for example an empirical value—
and cn are dimensionless expansion coefficients. In practice we must truncate
this expansion at a finite chiral order k, resulting in

yk = yref

k∑
n=0

cnQ
n + yref

∞∑
n=k+1

cnQ
n (3.18)

where the second term is the (unknown) truncation error δy(k)
th . It must be noted

that the ansatz in Eq. (3.17) could potentially be improved upon, inadequate
for certain observables, or even outright erroneous; further research is necessary
for validation. What is beyond doubt is that χEFT currently does come with
a non-negligible truncation error. We may compute cn up to order k as

cn = y
(n)
th − y

(n−1)
th

yrefQn
(3.19)

where y(n)
th is a theoretical prediction at order n, with obvious modifications for

c0. We assume that cn is drawn from some unknown underlying distribution
that is common to all orders. The known expansion coefficients cn, n = 0, . . . , k
give information about the unknown distribution for c, where we drop the sub-
script to indicate that we are not specifying the chiral order. We expect that the
expansion coefficients are of natural size to conform with with our expectations
about EFT convergence. Under the assumption that c is normally distributed
with variance c̄2, i.e,

pr(c|c̄2) = N (0, c̄2) (3.20)

we find [35]
pr(δy(k)

th |c̄
2, Q) = N (0, σ2

th,k) (3.21)

where
σ2
th,k = c̄2y2

ref
Q2(k+1)

1−Q2 (3.22)

If we assume that the expansion coefficients are uncorrelated, we can build a
(diagonal) theory covariance matrix according to

Σth,ii = c̄2y2
ref,i

Q
2(k+1)
i

1−Q2
i

. (3.23)

We use this form for Σth in Papers I-III, with c̄ determined as the root mean
squared (RMS) value of a set of expansion coefficients calculated using Eq. (3.19)
and a point-estimate LEC vector found using MLE with c̄ = 1. (In Paper I,
we simply use c̄ = 1 throughout.) However, the expansion coefficients are
undeniably correlated across x = (Tlab, θ) from visual inspections of calculated
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coefficients, and we can generalize (3.23) by introducing a correlation matrix, or
kernel function, k(x, x′) which encodes the correlations in the EFT truncation
error between x and x′. This leads to [35, 36]

Σth,ij = c̄2k(xi, xj)yref,iyref,j
Qk+1
i Qk+1

j

1−QiQj
(3.24)

How, then, can we find a faithful representation of correlated EFT errors?
Melendez et al. [36] introduced modeling of expansion coefficients as draws from
a Gaussian process (GP) [76]. A GP is a stochastic process from which any finite
number of random samples jointly follow a multivariate normal distribution. In-
troducing a mean functionm(x) and a covariance functionK(x, x′) = c̄2k(x, x′),
a GP f(x) is written as

f(x) ∼ GP (m(x),K(x, x′)) . (3.25)

In general, scattering observables are functions of both laboratory energy Tlab
and the c.m. scattering angle θ, in which case x ∈ R2 and the GP is a function
R2 → R1. The exception to this is total cross sections, which are only functions
of Tlab. Given a vector ~x ∈ RN , where N is the number of inputs x, draws from
the GP are by definition normally distributed, i.e.,

~f | ~x ∼ N (m(~x),K(~x, ~x)), (3.26)

where m(~x) ∈ RN and K(~x, ~x) ∈ RN×N . The key quality of a GP is that,
as long as we have determined m and K, we have a closed-form expression
for f at any input x. In our case, the output of f is an expansion coefficient.
We can compute a set of expansion coefficients ccal for a given observable at
a predetermined set of calibration points ~xcal, calibrate the GP to ccal, and
learn the covariance matrix c̄2k(~x, ~x) at the inputs ~x defined by the data D.
Inserting the result into Eq. (3.24) then yields the covariance matrix for the
EFT truncation error since we assume a Gaussian prior.

We use the above approach in Paper IV to investigate the effect of correlated
EFT truncation errors on the parameter inference. We calibrate a GP for each
type of observable in the data set (i.e., disregarding possible inter-observable
correlations). This leads to a block-diagonal structure for Σ. NN elastic scat-
tering observables typically exhibit smooth behavior as a function of x and it is
therefore reasonable to model the truncation error as a smoothly varying func-
tion. A suitable and commonly used kernel in this situation is the radial basis
function (RBF), or squared exponential, kernel which has the form

k(x, x′) = exp
[
− (x− x′)T l−2(x− x′)

2

]
, (3.27)
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where l = diag(lT lab, lθc.m.) encodes the correlation lengths in Tlab and θ. For
total cross sections, this simplifies to a single correlation length lT lab. We assume
that m(~x) = µ is a constant function.

We determine µ, c̄2, and l in a Bayesian way. We place a conjugate prior
on the hyperparameters µ and c̄2, and thus have closed-form expressions for
their joint posterior (see Paper IV for details). Unfortunately, no conjugate
prior exists for l [36] and we therefore place a uniform prior on lT lab and lθc.m.
according to

pr(lT lab) = U(ε, 290) (3.28)
pr(lθc.m.) = U(ε, 180) (3.29)

where ε = 10−5. One could perform a full Bayesian inference and MCMC sample
the posterior for (l, c̄2, µ) jointly with ~α at the cost of a substantial increase
in dimensionality. However, we are well-prepared to handle high-dimensional
parameter spaces (see Section 3.6). For the present we content ourselves with
employing maximum a posteriori (MAP) estimates for these quantities.

We find in Paper IV that our estimate of c̄2 is rather small, thus dimin-
ishing the effect of the exact modeling of the truncation error, yet that the
effective number of data decreases when we account for correlated errors. See
also Chapter 5 for further results and discussions.

3.5 Priors for the low-energy constants
An appropriate prior reflects our state of knowledge before incorporating any
data into our analysis. Ideally, there should be no significant tension between
the prior and the posterior, as this indicates conflicting prior beliefs. Such
tensions could indicate inadequate error modeling, or perhaps better, hint at
as-yet-undiscovered physics insights. I use a few different priors for the LECs in
this thesis, and here I will summarize the central points. I refer to the respective
papers for further details.

In Paper I, which focuses on the 3NF LECs cD and cE , we use MLE with a
local approximation of the parameter covariance matrix to find a prior for the
2NF LECs. This prior is an example of an informative prior which is strongly
constraining, standing in for an expensive-to-evaluate likelihood. The benefit
of this approach is thus that we bypass the need for the relatively expensive
calculations of NN observables during the sampling of the full posterior, which
also includes the 3NF LECs. The computational load incurred by the sampling
is thus greatly reduced. As will be discussed in Chapter 4, the advent of scat-
tering emulators means that the necessity of such shortcuts has recently faded
considerably [41].

In addition to cD and cE themselves, we also infer posteriors for c̄2 and Q,
which characterize the truncation error in the NNN sector. We place a weakly
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informative prior on Q in the form of a beta distribution B(Q|a = 3, b = 5)
which encodes that 0 < Q < 1 and that we expect that Q < 0.5. For c̄2

we adopt a conjugate prior, i.e., a prior that after exposure to data yields an
analytic posterior of the same form. Specifically, we use a scaled inverse chi-
squared distribution that reflects our belief that c̄ is of order 1.

We use the same priors throughout Papers II-IV. The prior for the contact
LECs is an uncorrelated Gaussian of width 5 in the appropriate units (see, e.g.,
Paper II):

pr(~α) ∝ exp
(
−1

2~α
2/52

)
(3.30)

This weakly informative prior encodes our expectation that the LECs are of
order 1 by mildly penalizing large values. We have detected little reason to
change this prior over the course of this work since nearly all LECs stay well
within its confines. The only exceptions are a small number of fourth-order
contacts at N3LO, e.g., D1S0 and D3S1 which take on somewhat unnatural
values; here, the prior helps prevent overfitting to high-energy data. For the
πN LECs entering at NNLO and N3LO we adopt an informative prior based
on a so-called Roy-Steiner analysis of πN scattering data [77, 78]. In principle,
we could use a weak prior for these LECs and include πN scattering data in
the likelihood, but this prior is more precise (at least in the ∆-less case) and
computationally less demanding. Our Bayesian framework straightforwardly
allows for such flexibility.

3.6 Sampling the posteriors with Hamiltonian
Monte Carlo

With the exception of LO, the LEC posteriors defined above are high-dimensional
functions of Ndim = 10-31 parameters. Evaluating such functions on a grid
is intractable since the number of grid points grows exponentially. Table 3.1
demonstrates this so-called curse of dimensionality for a hypothetical posterior
where each evaluation takes 1 s to complete (i.e, about the actual evaluation
times in this work, which span roughly 0.5 s to 15 s). The problem is exac-
erbated by our a priori lack of knowledge about the posterior: where are we
going to place the grid points? We want to draw samples in regions of high
probability mass. The vast majority of the high-dimensional parameter space
contributes negligibly to any expectation value 〈f(~α)〉 of a function f of the
LECs. We need a sampling method that simultaneously minimizes the number
of evaluations needed and identifies the region(s) of probable LEC values. Our
best option is to use MCMC sampling to address this problem.
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Table 3.1: Time needed to evaluate a hypothetical multidimensional posterior
on a grid. Each evaluation takes 1 s, and we take 10 samples per direction.

Ndim Samples/Ndim Samples Time
1 10 10 10 s
2 10 100 1 min 40 s
3 10 1000 17 min
4 10 10000 2.7 h
10 10 1010 317 years
15 10 1015 32 million years
18 10 1018 Twice the age of the universe

3.6.1 Genesis of MCMC: the Metropolis algorithm
MCMC saw the light of day in 1953 in the shape of the Metropolis algorithm [79],
named after its inventor1. Following a subsequent improvement by Hastings [80]
the algorithm has become known as Metropolis-Hastings.

Metropolis-Hastings and all other MCMC algorithms (see, e.g., Ref. [81] for
a detailed overview) employ Markov chains to sample a PDF pr(~α). A Markov
chain is a stochastic process where the probability distribution for each sample
only depends on the previous sample, so-called memorylessness. Over time,
the distribution of samples will converge to a unique stationary distribution as
long as the Markov chain will eventually visit every possible sample (so-called
ergodicity). Metropolis-Hastings, and all other MCMC algorithms, construct
Markov chains in such a way that the stationary distribution is the sought PDF
pr(~α).

Given a current sample ~α, the algorithm proceeds by proposing a new sample
~α

′ from a proposal distribution q. q is typically (but not necessarily) a normal
distribution centered on ~α. Then, the Hastings ratio

r = pr(~α ′)q(~α|~α ′)
pr(~α)q(~α ′ |~α) (3.31)

is computed followed by the acceptance probability

a = min(1, r). (3.32)

The new sample is accepted with probability a, a criterion we may call the
Metropolis criterion. If the sample is rejected, a new copy of ~α is appended
to the chain. In finite (but possibly very long) time, the Markov chain will
converge to provide samples from pr(~α).

1One of Metropolis’s co-authors, Arianna Rosenbluth, passed away in 2020. She is credited
with the first implementation, but was largely unaware of the impact the algorithm has had.
https://www.nytimes.com/2021/02/09/science/arianna-wright-dead.html
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The Metropolis-Hastings algorithm works quite well for many problems, and
it certainly outperforms evaluating pr(~α) on a grid by a huge margin. However,
for the problems relevant in this thesis it is not sufficient. The reason is that the
samples are autocorrelated, i.e., subsequent samples are not independent of each
other. As a method based on random walks in some high-dimensional space,
each step must be rather small, or else nearly every proposed sample would
be rejected. The small steps induce autocorrelation. If we assume that the
samples are not autocorrelated, but rather completely uncorrelated, the central
limit theorem states that the sampling variance of a parameter expectation
value 〈α〉 is given by Var [〈α〉] = Var [α] /N , where N is the number of samples.
With autocorrelated samples, however, the sampling variance is

Var [〈α〉] = τ
Var [α]
N

(3.33)

where

τ = 1 + 2 lim
N→∞

N∑
h=1

ρ(h). (3.34)

τ is known as the integrated autocorrelation time, and depends on the autocorre-
lation function ρ(h), where h is the separation of the samples; i.e., ρ(h) measures
the autocorrelation between two samples that are h steps apart. With corre-
lated samples, ρ(h) is greater than 0 and thus the sampling variance Var [〈α〉] is
greater than it would be without autocorrelations. This motivates us to define
the effective sample size (ESS) as

ESS = N/τ. (3.35)

To keep ESS high, we need to collect many samples and keep τ low. Unfortu-
nately, τ tends to increase with Ndim as the sampler needs to take very short
steps in high-dimensional spaces, or risk wandering into uninteresting regions.
To compensate, we must increase N , which is costly. MCMC samplers are thus
not immune to the curse of dimensionality.

A modern, and very popular, variation on the Metropolis-Hastings algorithm
is provided by emcee [82], a so-called affine-invariant ensemble sampler [83].
The “ensemble” refers to a collection of simultaneous walkers at different loca-
tions in the parameter space, each of which provides their own chain of samples
to the collective whole. Metropolis-Hastings does not employ this concept and
might thus be called a single-walker algorithm by analogy. emcee is easy to use
and provides overall superior performance to Metropolis-Hastings, but is still
affected by strong autocorrelation in higher dimensions. There is, however, one
algorithm that excels at suppressing τ in high-dimensional spaces.
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3.6.2 Hamiltonian Monte Carlo
HMC [38], originally known as Hybrid Monte Carlo, was conceived by lattice
QCD physicists to increase sampling efficiency in high-dimensional spaces by
combating autocorrelated samples. The key idea of HMC is to consider an
MCMC walker as a “ball” gliding through the parameter space by simulating
Hamiltonian dynamics, rather than to do a random walk. I can conclude that
this works very well in our application, with the caveat that it requires an
experienced user in order to get the most out of the algorithm. It is my intention
and hope that this section can help you, the reader, use HMC effectively for
your sampling needs.

Throughout this thesis I use a custom implementation of HMC, which is
publicly available2. Its implementation and use is extensively documented in
Papers II and III, and I refer to those papers for further details. My implemen-
tation, and the mathematical details presented in this thesis, is mainly based on
Ref. [39]. I use what might be referred to as vanilla, or standard, HMC; more
advanced variants also exist, such as the No-U-Turn sampler [84], which aims
to simplify the process of tuning HMC, and Riemannian Manifold HMC [85],
which aims to address shortcomings related to sampling complicated functions.
A complicated function might be, for instance, one that exhibits strong curva-
ture, or bimodality where the two modes have different shapes.

HMC proceeds by reimagining the posterior—which, for simplicity, I will
here denote pr(~α)—as a potential energy function U(~α). Explicitly, we have
U(~α) = − ln pr(~α), for reasons that will become clear shortly. In addition, we
introduce an auxiliary momentum ~p of the same dimensionality as ~α and a
corresponding kinetic energy function K(~p). The titular Hamiltonian is thus

H(~α, ~p) = K(~p) + U(~α) = K(~p)− ln pr(~α). (3.36)

Please note that this Hamiltonian is unrelated to the nuclear interaction Hamil-
tonians discussed in other chapters! We can link H(~α, ~p) to a probability distri-
bution using the canonical Boltzmann distribution from statistical mechanics,

pr(~α, ~p) = 1
Z

exp
(
−H(~α, ~p)

T

)
= 1
Z

exp
(
−U(~α)
T

)
exp
(
−K(~p)
T

)
, (3.37)

where Z is a normalization constant and T is the “temperature” of the system,
here serving to render the exponent dimensionless. pr(~α, ~p) will be subjected
to the Metropolis criterion, where Z will cancel out, and we can thus set Z =
1. We see from Eq. (3.37) that the joint PDF pr(~α, ~p) is the product of two
distributions in ~α and ~p separately, and if we set T = 1 and marginalize over ~p
we reacquire pr(~α).

2https://github.com/svisak/montepython.git
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The kinetic energy function, K(~p), is an implementation design choice. We
employ the commonly used form

K(~p) = 1
2~p

TM−1~p, (3.38)

whereM is a user-chosen positive-definite symmetric matrix known as the mass
matrix. This form yields a Gaussian PDF for ~p. The expression for the joint
PDF pr(~α, ~p) becomes

pr(~α, ~p) = exp(−H(~α, ~p)) = pr(~α) exp
(
−1

2~p
TM−1~p

)
. (3.39)

So, now we have the existing sample ~α, we have reimagined the (negative
log) posterior as a potential energy surface, we have introduced a momentum
~p, and we have a link between H(~α, ~p) and pr(~α, ~p). How do we propose a new
sample (~α, ~p)? Naturally, we simulate Hamiltonian dynamics for a finite period
of time, i.e., we solve Hamilton’s equations

dαi
dt

= ∂H

∂pi
(3.40)

dpi
dt

= −∂H
∂αi

(3.41)

where i indexes the dimension. A ball governed by Hamiltonian dynamics will
follow a path of constant total energy, which in this case also means a path of
constant probability pr(~α, ~p). If we, for the moment, ignore any numerical errors
in the simulation, this means that pr(~α, ~p) subjected to the Metropolis criterion
will always be accepted. Yet, even though the total energy is conserved, the
potential and kinetic energies will have changed. And since we marginalize over
~p (by simply discarding it), we are left with a guaranteed-to-be-accepted sample
~α

′ that can be located far from the previous sample. This is the brilliance
of HMC. Once the proposed sample has been accepted, the momentum ~p is
resampled and the process begins again.

Our choices for K and U mean that we can rewrite Hamilton’s equations as

dαi
dt

= ∂K

∂pi
= (M−1p)i (3.42)

dpi
dt

= − ∂U
∂αi

. (3.43)

The important thing to note here is that ∂U/∂αi is a partial derivative of the
negative log posterior with respect to the ith LEC; we must therefore have
access to the gradient of the negative log posterior in order to use HMC. In
practice, this is achieved using automatic differentiation (AD) [86, 87] which
will be discussed further in Chapter 4.
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Unfortunately we cannot ignore numerical errors in the simulation, and in
practice the Metropolis criterion will sometimes reject proposed samples due to
unconserved total energy. To mitigate this problem, it is necessary to (i) simu-
late Hamiltonian dynamics using a short time step, and (ii) use a numerical in-
tegration method where the numerical error does not accumulate. The standard
method in HMC is known as leapfrog integration, which is a so-called symplectic
integrator. Symplectic integration means that the local discretization error is
equally likely to be positive or negative in each step and that the integration pre-
serves the time-reversibility and volume-preservation of Hamiltonian dynamics.
This is crucial for MCMC as time-reversibility and volume-preservation are pre-
requisites for upholding detailed balance, a sufficient requirement to guarantee
that the MCMC algorithm converges to the correct stationary distribution [67].

HMC features three hyperparameters that need to be tuned by the user.
These are the integration timestep ε, the number of timesteps L, and the mass
matrixM. Detailed discussions of how to choose these parameters can be found
in Papers II and III. Here, I will only summarize my methods for picking M.
Simply put, a performantM needs to be a decent approximation of the inverse
of the LEC covariance matrix [88]. I have tested manual methods to construct
M, e.g., by using an identity matrix or by exploiting previously published LEC
uncertainties. I have concluded that these methods are unusable, and that more
sophisticated methods are called for.

In Paper II, I found success in extracting M by using a short preliminary
MCMC sampling of the posterior, approximating the parameter covariance from
the samples, and inverting the result. This method yielded integrated autocor-
relation times τ of order 1, i.e., virtually uncorrelated samples. In fact, at LO
and NLO, we find τ < 1, i.e., anti-correlated samples, a condition known as
antithetic sampling [89]. With τ < 1, the ESS becomes greater than the num-
ber of actual samples, indicating extremely efficient sampling. However, this
tuning method is quite cumbersome and somewhat unreliable. It also proved
inadequate for successfully sampling the extremely challenging N3LO posterior.
Fig. 3.1 shows autocorrelation functions for the HMC samplings performed in
Paper II. For comparison, corresponding results achieved with emcee are also
shown. It is clear that emcee yields much higher autocorrelations. At the same
time, it must be noted that simulating Hamiltonian dynamics is expensive and
accounts for the vast majority of the computational cost in HMC. Thus, HMC
can only be worthwile if the decrease in autocorrelations ultimately compen-
sates for the increased per-sample cost. We show in Paper II that this is indeed
the case in our application to χEFT.

In Paper III I devised a new method inspired by MLE with local covari-
ance approximation, as discussed in Section 3.4. By replacing the preliminary
sampling with an optimization using the BFGS algorithm [91–94] I was able to
extract a local approximation of the parameter covariance matrix which I used
to constructM efficiently. Using this method, anticorrelations between samples
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Figure 3.1: Autocorrelation functions at LO, NLO, and NNLO as achieved with
HMC (top) and emcee (bottom). Gray lines represent individual LECs, and
colored lines represent the average. The HMC algorithm was tuned using the
“preliminary sampling” method (see text). Originally published in Ref. [90]
(Paper II). Copyright © 2022 by the American Physical Society. Reproduced
with permission.

increased somewhat, thus increasing performance. More importantly, we were
able to extract a converged N3LO posterior with τ ≈ 3.

The integrated autocorrelation time is useful not only to judge the efficiency
of the sampling, but also to assess its convergence [95]. Assessing convergence is
necessary in any MCMC application, or the results are meaningless. Unless the
sampled PDF is analytic or well understood (rendering MCMC redundant), it is
not possible to declare an MCMC chain for a continuous PDF “converged” since
the sampler cannot explore the entire parameter space in finite time and the
unexplored regions may contain non-negligible probability mass. Convergence
testing should thus be understood as trying to detect signs of non-convergence.
Multimodal distributions in particular are prime sources of what we may call
false convergence; an MCMC chain could easily have sampled one mode to “con-
vergence” while completely missing other modes. There are sampling methods,
such as nested sampling [96] and parallel tempering [97, 98], which are designed
to handle multimodality, but the problem remains a difficult one in practice.

Convergence testing using τ is based on the evolution of τ estimates as the
length N of the MCMC chain increases. If N is low, then τ will be underesti-
mated; it is thus very dangerous to trust estimates of τ if τ � N does not hold!
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Figure 3.2: Convergence of the estimate of τ with respect to the length N
of the chain. The results for emcee are averaged over all walkers, hence the
seemingly short chains; the real number of samples can be found by multiplying
the indicated number by the number of walkers (10 at LO, 50 at NLO, and 65
NNLO). The grayed area indicates the non-convergence zone, i.e., N < 50τ .
Originally published in Ref. [90] (Paper II). Copyright © 2022 by the American
Physical Society. Reproduced with permission.

For every MCMC sampling one should thus plot the τ estimate as a function
of N , and verify that τ has stabilized. Only if (i) τ has stabilized, and (ii)
N > n · τ for some constant n � 1 can we claim that the chain is converged.
The constant n is an arbitrary cutoff, for which different suggestions exist. The
emcee authors recommend n = 50, which we also apply here. Fig. 3.2 shows
the evolution of τ for the samplings performed in Paper II, i.e., for samplings
at LO-NNLO using both HMC and emcee. It is clear that the τ estimates for
the HMC chains stabilize very rapidly, and cross the convergence threshold of
N > 50τ within about 50 samples. We could have imposed a much stricter con-
vergence criterion, say n = 1 000, and still declared convergence. For emcee,
the τ estimates continue to rise until about 10 000 samples at LO and roughly
500 000 samples at NLO (the estimates for emcee are averaged over 10 walkers
at LO and 50 walkers at NLO, respectively). At NNLO, emcee does not reach
convergence.
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Many methods for assessing MCMC convergence have been devised (see
Ref [99] for a recent review). Beyond the τ convergence criterion discussed
above, I have also employed the standard Gelman-Rubin diagnostic R̂ [100,
101], which relies on multiple identically-prepared chains run in parallel. The
essence of R̂ is to compare the variance within chains to the variance between
chains, and from this information compute the potential variance reduction
longer chains would offer. R̂ is discussed in more detail in Paper II; here, it
suffices to say that I find the τ convergence criterion to be stricter and thus
more useful.

3.7 Sampling/importance resampling
The flexibility of the Bayesian framework is demonstrated in Paper III, where
we infer all relevant LECs except one (C̃nn1S0

) using HMC, and then extend the
posteriors to include C̃nn1S0

using a sampling technique known as sampling/im-
portance resampling (SIR) [61, 102, 103]. Here, I will outline the technique in
general terms with our application to C̃nn1S0

inference in mind. Particular details
can be found in Paper III.

SIR is a straightforward and intuitive method that is useful in low-dimensional
problems, such as extending an already-resolved high-dimensional parameter in-
ference problem by including an additional parameter. We wish to draw samples
from a non-trivial PDF h(θ) defined in terms of some unnormalized distribution
f(~θ), i.e.,

h(~θ) = f(~θ)∫
f(~θ)d~θ

. (3.44)

In our case, f(~θ) is the unnormalized joint posterior for C̃nn1S0
and all other

LECs. To proceed, we define a sampling distribution g(~θ) which is trivial to
sample from; for example, g(~θ) might be a uniform or Gaussian distribution.
From g(~θ) we draw N samples of ~θ, and for each sample ~θi we calculate weights

wi = f(~θi)
g(~θi)

(3.45)

from which we define the normalized weights qi according to

qi = wi∑N
j=1 wj

. (3.46)

The samples ~θi, weighted by qi, are then distributed according to h(~θ) [102].
The main difficulty in using SIR is choosing an appropriate sampling distri-

bution g(~θ) which is trivial to sample from and that preferably resembles f(~θ).
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We cannot escape that dim(g) = dim(h), and in our simplest case—NLO—we
then have dim(g) = 11. However, through HMC we already have an excellent
representation of the posterior for all LECs except C̃nn1S0

, in the form of a Markov
chain with virtually uncorrelated samples. These samples are indeed trivial to
sample from once they have been acquired. The only remaining question is the
marginal sampling distribution for C̃nn1S0

, and here we are aided by both χEFT
and nuclear physics in a broader sense. χEFT tells us that C̃nn1S0

is expected to
be of natural size, and we also know that the charge dependence of the strong
nuclear force is a small effect (≈ 1% [1]). We can thus inspect the marginal
posteriors for C̃np1S0

and C̃pp1S0
, and define a marginal sampling distribution for

C̃nn1S0
that covers roughly the same values, with some margin for safety.

SIR works very well in our application and we were able to painlessly amend
our HMC-sampled posteriors with C̃nn1S0

. The resulting joint posterior picks up
parameter correlations between C̃nn1S0

and other parameters, most notably posi-
tive correlations with C̃np1S0

and C̃pp1S0
as expected for a small charge dependence.

The results will be further discussed in Chapter 5.
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Chapter 4

Emulating solutions to the
Schrödinger equation

The computational cost of simulating solutions to the Schrödinger equation
with numerically exact methods is a major hurdle for Bayesian inferences. It is
therefore understandable that LEC inference has thus far generally been limited
to MLE through optimization [52, 54, 59, 74, 104, 105], a challenging enough
problem in itself. As I demonstrate in Papers II and III, it is now possible—if
costly, and with the aid of modern hardware and highly optimized software—
to sample joint Bayesian posteriors for the LECs up to fourth order in χEFT
conditioned on NN data. Conditioning such an inference on data beyond the
NN sector is, unfortunately, costly in the extreme. We must find ways to
compute observables faster.

Emulators [106] provide the required leverage. Emulation, as opposed to
simulation, yields approximate solutions to (in this case) the Schrödinger equa-
tion at a fraction of the computational cost. GP emulation [76] is one of the
best-known methods for emulation, but its accuracy is limited. For an emulator
to be useful, its error with respect to the corresponding simulation must be suf-
ficiently small relative to other uncertainties. In 2018, Frame et al. introduced
EC to the nuclear theory community as a method of finding extremal eigenval-
ues and eigenvectors of matrices too large to deal with using standard linear
algebra methods [63]. König et al. subsequently built upon EC to construct
highly efficient and accurate emulators for bound-state properties of nuclei [64].
EC emulation has since garnered considerable interest in the nuclear theory
community and has been applied to NN [40, 41] and NNN scattering [107],
many-body systems [65], among others [60, 108]. As it turns out, EC can be
understood as an existing model order reduction (MOR) method known as the
reduced basis (RB) method [109].
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4.1 Model order reduction

A large matrix (here generically denoted A) containing all relevant information
about a problem is commonplace in nuclear theory. Frequently, however, much
of the information contained in A is of little interest. The aim of MOR is to
compress the full problem to a smaller form which maintains the important
properties of A with high accuracy. Of particular interest to us is a subtype
of MOR, parametric model order reduction (PMOR), which allows us to create
reduced-order models which depend linearly on a set of parameters. These
parameters are the LECs in the present application. EC takes the problem at
hand and projects the original large-space system onto a smaller subspace, thus
creating a low-dimensional representation. For the Hamiltonian, the subspace
is spanned by eigenvectors of the original problem at a number of preselected
values of the input parameters.

A note on terminology is in order. Emulation occurs in two distinct stages:
offline and online. The offline stage, which may also be known as “training”
or “calibration”, encompasses the construction of the emulator and is a one-
time cost which may be expensive to perform. In contrast, the online stage
is when the emulator is in use; operations performed during the online stage
should be computationally cheap. A major component of the offline stage is the
computation of a number of snapshots; a snapshot is the result of a simulation,
i.e., an exact solution to the problem at hand.

4.2 Variational emulators

We need two types of emulators: one for bound states, and one for scattering
amplitudes. However, most of the work relevant for this thesis entails scattering
emulators. Nevertheless, both emulator types are variational in nature, i.e., we
are looking for approximate solutions ψ̃ = ψ̃(~β) to a functional S[ψ] where ψ̃
depends on variational parameters ~β and the stationarity condition δS[ψ̃(~β)] =
0 is fulfilled for ~β = ~β?. Here, ψ represents exact solutions. Starting from the
ansatz

ψ̃ =
Ns∑
i=1

βiψi = U~β (4.1a)

U = [ψ1, . . . , ψNs ], (4.1b)

where ψi = ψi(~αi) are Ns snapshots of ψ at Ns different sets of LECs ~αi, I will
now define S and find ~β? for both types of emulators.
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4.2.1 Neutron-proton scattering
For np scattering we wish to find T̃ which emulates the on-shell T̂ -matrix ele-
ment T for a given momentum p. The formalism for doing so has been devel-
oped [40, 41] by combining EC with the Kohn [110] and Newton [111] variational
principles, respectively. Here, I employ the method developed in Ref. [41], which
uses the Newton variant.

To find a functional S, we first write the LS equation in two equivalent
forms:

T̂ = V̂ + V̂ Ĝ0T̂ (4.2a)
T̂ = V̂ + T̂ Ĝ0V̂ (4.2b)

Rewriting Eq. (4.2a) as
V̂ = T̂ − V̂ Ĝ0T̂ (4.3)

and inserting into Eq. (4.2b) yields

T̂ = V̂ + T̂ Ĝ0(T̂ − V̂ Ĝ0T̂ ) = V̂ + T̂ Ĝ0T̂ − T̂ Ĝ0V̂ Ĝ0T̂ . (4.4)

If we subtract Eq. (4.4) from the sum of the two variants of the LS equation we
get the Newton functional [111]

S[T̂ ] = V̂ + V̂ Ĝ0T̂ + T̂ Ĝ0V̂ − T̂ Ĝ0T̂ + T̂ Ĝ0V̂ Ĝ0T̂ . (4.5)

which is stationary around exact solutions to the LS equation.
As in Eq. (4.1a), we make the ansatz

T̃ =
Ns∑
i=1

βiT̂i (4.6)

where each T̂i = T̂i(~αi) is a snapshot of the on-shell T̂ -matrix element at differ-
ent sets of LECs. Inserting Eq. (4.6) into Eq. (4.5) yields

S[T̂ ] = V̂ + ~β T~b− 1
2
~β TB~β (4.7)

where the elements of the column vector ~β and the matrix B are

bi = T̂iĜ0V̂ + V̂ Ĝ0T̂i (4.8a)
Bij = T̂iĜ0T̂j + T̂jĜ0T̂i − T̂iĜ0V̂ Ĝ0T̂j − T̂jĜ0V̂ Ĝ0T̂i. (4.8b)

The stationarity condition dS/d~β = 0 then yields

B ~β? −~b = 0 (4.9)
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and the resulting emulator is obtained as [41]

T̂ ≈ V̂ + 1
2
~b TB−1~b. (4.10)

The only LEC dependence here is in the potential, V̂ = V̂ (~α). Chiral potentials
are linear with respect to the LECs, see Eq. (2.7). We can therefore precompute
the constituent terms of ~b and B, and evaluating the emulator for a new set of
LECs consists of performing simple dot products over the terms in Eqs. (4.8a)
and (4.8b) where V̂ appears, followed by an evaluation of Eq. (4.10).

4.2.2 Bound-state properties of nuclei
The premise for emulating bound-state properties of nuclei is the same as for
NN scattering, but the expressions differ since this is an eigenvalue problem.
We can rewrite the Schrödinger equation,

Ĥ |ψ〉 = E |ψ〉 , (4.11)

as a functional
S[ψ] = 〈ψ| Ĥ |ψ〉 − E(〈ψ|ψ〉 − 1). (4.12)

As before, we seek an approximate solution that fulfils the stationary condition
δS[ψ̃] = 0. We have [109]

δS[ψ] = 2 〈δψ| Ĥ − E |ψ〉 − δE(〈ψ|ψ〉 − 1) = 0. (4.13)

With an ansatz as in Eq. (4.1a), we get

δS[ψ] = 2δ~β†U†(Ĥ − E)U~β − δE(~β†U†U~β − 1) = 0 (4.14)

which is approximately fulfilled by the variational parameters ~β? when

U†ĤU ~β? = ẼU†U ~β?. (4.15)

If we define

H̃ = U†ĤU (4.16a)
N = U†U, (4.16b)

where N is the norm matrix, this is recognized as a generalized eigenvalue
problem in Ns (i.e., the number of snapshots) dimensions,

H̃ ~β? = ẼN ~β?, (4.17)
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with eigenvalues Ẽ. By substituting Eq. (4.15) into Eq. (4.13) we see that Ẽ
is an approximation for the eigenenergy E of the original Schrödinger equa-
tion. Crucially, dim(H̃) is far smaller than dim(Ĥ). The reason for this is
that while the number of basis states needed to construct Ĥ can be high, its
effective dimensionality—its information density—is often low [63]. Thus, the
computational effort needed to find Ẽ is a small fraction of what is required for
E.

4.3 Implementation of fast neutron-proton scat-
tering emulators

In Paper IV, I develop Python [112] code for both simulation and emulation of
T̂ -matrix elements, along with code to compute scattering observables in line
with the formalism introduced in Chapter 2.

4.3.1 Construction of emulators
It is important to note that an emulator as presented in Section 4.2.1—Eq. (4.10)
in particular—emulates the on-shell T̂ -matrix element for one energy and one
PW only. Emulators must be constructed and evaluated for every channel at
every energy for which we wish to compute a scattering cross section; a great
number of emulators, and some bookkeeping, will thus be required for inference
problems. My choices of data and PW truncation in Paper IV results in 177
unique energies and 182 channels, for a total of 32 214 emulators. For simplicity,
I will from now on use the word “emulator” to denote the collection of emulators
at a specific energy.

It is straightforward to create an emulator by directly implementing Eq. (4.10)
and looping over each channel of the PW basis. However, we can gain efficiency
by using the superiority of NumPy [113] operations over Python loops and ex-
ploiting the linearity (2.7) of the chiral potential V̂ with respect to the LECs
~α. In the offline stage we can precompute

Xij = T̂iĜ0T̂j + T̂jĜ0T̂i (4.18)
Yij = T̂iĜ0V̂ (~1)Ĝ0T̂j + T̂jĜ0V̂ (~1)Ĝ0T̂i (4.19)
Zi = T̂iĜ0V̂ (~1) + V̂ (~1)Ĝ0T̂i (4.20)

for 1 ≤ i, j ≤ Ns and only store the on-shell elements (or any off-shell elements,
for that matter, if they are of interest). X will then be an Ns × Ns matrix,
Y a block-diagonal matrix stored as an (NLECs + 1)-length vector of Ns × Ns
matrices, and similarly Z an (NLECs + 1)-length vector of Ns-length vectors. In
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the online stage it is then sufficient to compute ~α ·Y, ~α · Z, and

Bij = Xij −Yij (4.21a)
~bi = Zi (4.21b)

followed by an evaluation of Eq. (4.10). These steps are repeated for each
channel at each energy. At this point, we have all on-shell T̂ -matrix elements
required to compute observables.

4.3.2 Fast observables from emulated T̂ -matrix elements
The process of computing observables, as detailed in Section 2.2.1, is identical
whether the T̂ -matrix elements are simulated or emulated. With emulation,
however, going from T̂ to cross sections represents a considerable fraction of
the overall computational cost and in order to truly leverage the advantage of
emulation we should try to compute cross sections as efficiently as possible.

The key to achieving this is precomputation of as many factors as possible in
the spin-scattering matrix (2.20). Since we know at the outset which observables
appear in the likelihood (see Chapter 3), the only a priori unknown factor
is 〈L′SJ | Ŝ − 1 |LSJ〉 and we may compute M by multiplying the T̂ -matrix
elements with precomputed factors and summing over all channels. From there,
cross sections can be computed via the Saclay amplitudes. Doing this, I find that
emulating T dominates the overall computational cost of computing scattering
cross sections.

4.3.3 Snapshots of T̂
As discussed in Section 4.2.1, a number of snapshots of the T̂ matrix are needed
to construct an emulator. It is advisable to choose LECs for the snapshots by
using a space-filling method such as Latin hypercube sampling (LHS) [114] for
two reasons. The first is to cover as much of the parameter space as possible,
thus informing the emulator about the interesting parameter region. The second
is to avoid (nearly) linearly dependent columns in (4.8b), which may impact our
ability to invert B. In order to use LHS, one must define the extent of the space.
χEFT is helpful here: the expected naturalness of the LECs implies that we
only need to explore a relatively small region in the vicinity of zero. Previous
works also support this conclusion [52, 54, 59, 74, 104], with Ref. [105] being
especially relevant here since we employ ∆-full χEFT in Paper IV.

In Paper II, I infer that the LO LECs (C̃1S0 and C̃3S1) are both confined
to a minute region near C̃1S0 ≈ C̃3S1 ≈ −0.1 × 104 GeV−2, in agreement with
earlier works (see, e.g., Ref. [54]). There is, to my knowledge, no precedent for
large values of these parameters, and their expected natural size is |C̃| ∼ 0.15×
104 GeV−2 [115]. Hence, my LO emulators are trained in [−0.3, 0.3]×104 GeV−2
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Figure 4.1: The np differential cross section σ(θ) at Tlab = 1.0 MeV and θ = 25
degrees, computed at ∆-NNLO as a function of C̃np1S0 using simulation (black)
and two different emulators trained with Ns = 1, 2 snapshots (green and orange,
respectively). The snapshots are shown as colored dots. All other LECs are kept
fixed at their ∆-NNLOGO values [105] in both the offline and online stages.

for both parameters. The NN contact LECs at NLO and NNLO in ∆-full EFT
take on somewhat larger values than at LO so we need to train in a wider region;
I choose [−4.0, 4.0] (in naturalness units) in all directions. The exact limits
are not important as we expect the emulators to both inter- and extrapolate
well [64]. The recent ∆-NLOGO and ∆-NNLOGO interactions [105] find all
parameters to be naturally-sized with maximum parameter values around 2.5
(in the appropriate units), well within my limits. Alternatively, the Bayesian
priors could be exploited to provide regions for training the emulators, but in
the present case I find that my simple prescription is satisfactory.

I have found that fewer than ten snapshots are needed in order to achieve
emulator errors that are orders of magnitude smaller than the experimental
error for the observables we wish to compute, as discussed in the next section.

4.3.4 Emulator accuracy
A useful emulator introduces an error ∆yemul that is negligible in comparison
to the experimental error δyexp and the EFT truncation error δyth. Here, I
will demonstrate that ∆yemul � δyexp; we show in Paper IV that this holds for
the truncation error as well. But let me first illustrate the emulator accuracy
visually.

Figs. 4.1 and 4.2 show np differential cross sections at Tlab = 1.0 MeV and
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Figure 4.2: Same as Fig. 4.1, except at Tlab = 100.0 MeV and θ = 25 degrees.

100.0 MeV, respectively, both at a scattering angle of 25 degrees. All other
details are identical. The cross sections are computed at ∆-NNLO as a function
of C̃np1S0. A simulation and two different emulations are shown. The emulators
are trained in one direction using one and two snapshots, respectively. All other
LECs are fixed at their ∆-NNLOGO values. The figures demonstrate remarkable
accuracy. At just two snapshots, the emulated results are indistinguishable from
the simulation, even through the challenging interpolation in Fig. 4.1 where the
cross section shows a strong curvature with respect to the LEC. We also see
that even a single snapshot yields a reasonable agreement with simulation at
the higher energy in Fig. 4.2. However, we clearly require at least two snapshots
to achieve an accurate emulator, especially since all other directions are fixed
in this case.

A more quantitative result can be seen in Fig. 4.3, which shows the emulator
error as a fraction of the experimental error for 2 779 np scattering observables,
where data in the 0 < Tlab < 30 range is included in addition to the data D.
The observables are calculated with Ns = 8 snapshots at ∆-NNLO. The LEC
values are taken from ∆-NNLOGO [105]. The values shown in the figure are
calculated as

∆yi =
|yemulation − ysimulation|i

∆yexp,i
(4.22)

where i is the index of the observable and ∆yexp,i is (the standard deviation
of) the experimental error. The figure shows that, for most observables, the
emulator error is roughly 0.1% of the experimental error and thus negligible. In
the worst case, ∆yemul is just under 10% of ∆yexp,i, which is minor for a single
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Figure 4.3: Emulator error at ∆-NNLO as a fraction of the experimental error
for 2 779 np scattering observables. The emulators were trained using Ns = 8
snapshots with LECs in the interval [−4.0, 4.0] in natural units (see Chapter 1).
The snapshots were produced with LHS. The validation set of LECs is the ∆-
NNLOGO set.

datum. Fig. 4.3 further reveals that there are structures to the emulator error;
this is quite expected, as many observables are measured in clusters at narrow
intervals of energies and angles within the same experiment. In particular,
observables that are identical except for the scattering angle are computed using
the same emulator and it is natural that the error is similar.

Fig. 4.4 shows the same type of plot, but calculated at ten randomly gen-
erated sets of validation LECs instead of the ∆-NNLOGO set. The validation
sets are generated the same way as the training snapshots, but with a differ-
ent random seed. The figure shows that the overall behavior of the emulators
is consistent within this parameter space. I conclude that the NN scattering
emulator errors are negligible and thus do not model the ensuing uncertainty in
the inference of the LECs.

4.3.5 Automatic differentiation and code acceleration with
JAX

As discussed in Chapter 3, we need not only the observables but their gradients
with respect to the LECs in order to use HMC. Several optimization algorithms
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Figure 4.4: Emulator error at ∆-NNLO as a fraction of the experimental error
for 2 779 np scattering observables. The emulators were trained using Ns = 8
snapshots with LECs in the interval [−4.0, 4.0] in natural units (see Chapter 1).
The snapshots were produced with LHS. Ten sets of validation LECs are in-
cluded in the figure.

also rely on gradient information. Since our emulators are linear in ~α, it is
straightforward to differentiate them with respect to the LECs. However, in
HMC one needs gradients of the entire (negative log) posterior with respect to
the LECs. Deriving explicit expressions for these gradients would, while possi-
ble, be laborious, in particular as the truncation error is GP-modeled and future
applications might entail HMC-sampling of the hyperparameters. A superior
alternative is to use automatic differentiation (AD) [86, 87]. AD exploits the
fact that all mathematical calculations performed on a computer are broken
down into a set of elementary operations (addition, multiplication, etc.) and el-
ementary functions (log, cos, etc.) whose derivatives are known. By repeatedly
applying the chain rule, and overloading variable types to also include deriva-
tive information, AD can compute gradients of arbitrary functions to machine
precision. The computational overhead is typically about a factor of two to
three [86]. In Papers I-III, where I employ a C/Fortran code to simulate NN
scattering observables, an AD library called Rapsodia [87] is used in combina-
tion with some analytic expressions to extract gradients. In Paper IV, where
observables are emulated in Python, I instead use JAX [116].

A brief demonstration of AD in JAX is in order. In Listing 4.1, I instruct
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JAX to compute the value and the gradient of a function lnposterior, which
of course represents the Bayesian (log) posterior for the LECs ~α (the so-called
traced variable). This function includes every aspect of the posterior, including
calculation of all included observables through emulation, the LEC prior, and so
on. Note that the JAX library can trace gradients through relatively advanced
operations such as matrix inversions and eigenvalue problems.

Listing 4.1: Demonstration of how to use JAX to compute the gradient of a
function.

1 import jax
2

3 def lnposterior (lecs , *args , ** kwargs ):
4 ’’’Log posterior for the LECs. ’’’
5 value = lnlikelihood (lecs , *args , ** kwargs )
6 value = value + lnprior (lecs , *args , ** kwargs )
7 return value
8

9 def lnprior (lecs , *args , ** kwargs ):
10 [ function definition omitted ]
11

12 def lnlikelihood (lecs , *args , ** kwargs ):
13 [ function definition omitted ]
14

15 # Tell JAX that we want gradients of lnposterior
16 lnposterior_AD = jax. value_and_grad ( lnposterior )
17

18 # Evaluate for an LEC array ’lecs ’
19 value , gradient = lnposterior_AD (lecs)

The variables value and gradient will now contain the value of the log posterior
computed at ~α and its gradient with respect to ~α, respectively. The syntax is
such that the first argument to the differentiated function defines the variable
for which the gradient should be computed. Thus, JAX is in principle extremely
easy to use. However, all code executed as part of lnposterior must abide by
some relatively minor restrictions imposed by the library, and existing code may
need to be altered in order to conform. To give two examples:

• in-place modification of array elements (e.g. arr[0] = x) is not allowed.
Instead, something like arr = arr.at[0].set(x) must be used.

• Most NumPy operations need to be performed using JAX’s NumPy ex-
tension, jax.numpy.

I refer the reader to the documentation [117] for all details.
Unfortunately, the code as shown in Listing 4.1 is likely to carry a signif-

icant computational overhead compared to a non-differentiated version due to
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the design of JAX. But JAX has a trick up its sleeve that will actually make the
differentiated code faster than a standard Python implementation. This trick
is just-in-time compilation (JIT). JIT takes the Python function and, upon first
invocation, caches a compiled version of it in memory, thus increasing execution
speed of subsequent calls. In JAX, AD and JIT are designed to be used together
to create a very powerful tool for machine learning and other computationally
demanding applications. The syntax—and caveats—for JIT is similar to the AD
functionality. For example, to introduce JIT in Listing 4.1 one might add the
following line: lnposterior_AD_JIT = jax.jit(lnposterior_AD). The func-
tion lnposterior_AD_JIT may then be used the same way as lnposterior_AD.

JIT is very powerful and my usage of it is relatively mundane, as it is mainly
intended to be used on graphics processing units (GPUs) and other hardware
accelerators whereas I am using it on standard central processing units (CPUs).
Nevertheless, the resulting execution speed is impressive. For example, one
evaluation of a ∆-NNLO posterior conditioned on 2 779 scattering cross sections
(where the energy range 0 < Tlab < 30 has been included for benchmarking)
across a total of 87 906 PW channels takes 1.3 s with AD on a modern CPU, or
0.4 s without AD, with emulators trained on eight snapshots. The CPU used for
these benchmarks is a 16-core Intel Core i9-12900K. No explicit multithreading
is done in my code.

4.4 Emulating the no-core shell model for few-
body systems

In Paper I, we emulate observables for 3H, 3He, and 4He, using the approach
laid out in Section 4.2.2 applied to the NCSM method [12, 13] to analyze the
χEFT truncation error. We wish to emulate

Ĥ(~α) |ψ(~α)〉 = E(~α) |ψ(~α)〉 , (4.23)

where |ψ(~α)〉 denotes the ground state and E(~α) its energy and the LEC depen-
dence is made explicit. Using Ns = 50 NCSM snapshots of |ψ(~α)〉 we construct
the generalized eigenvalue problem given by Eq. (4.17), thus reducing the basis
size from dim[Ĥ(~α)] ≈ 104 to dim[H̃(~α)] = 50. Ĥ(~α) is linear with respect to
~α,

Ĥ(~α) = Ĥconstant +
NLECs∑
i=1

αiV̂i, (4.24)

where Ĥconstant encompasses all LEC-independent contributions and V̂i encom-
passes all contributions that depend on αi. The subspace-projected Hamiltonian
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is likewise linear:

H̃(~α) = H̃constant +
NLECs∑
i=1

αiṼi. (4.25)

The subspace projections of H̃constant and Ṽi need therefore only be computed
in the offline stage. The online stage then entails computing the sum (4.25) and
solving the eigenvalue problem Eq. (4.17).

It is straightforward to emulate observables other than ground-state energies.
The expectation value of an observable Ô(~α), given by

〈Ô(~α)〉 = 〈ψ(~α)| Ô(~α) |ψ(~α)〉 , (4.26)

can be emulated as

〈Ô(~α)〉 ≈ ~β?(~α)†
[
U†Ô(~α)U

]
~β?(~α), (4.27)

where ~β?(~α) is an emulated eigenstate corresponding to |ψ〉 (~α).
The emulators developed for Paper I show errors (compared to simulation)

that are orders of magnitude smaller than the corresponding experimental un-
certainty and/or the error of the NCSM simulation itself. Meanwhile, the com-
putational speedup is vast: from ∼ 1 minute to 10 ms, or a factor of 6 000.
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Chapter 5

Inferred posteriors and posterior
predictive distributions

Broadly speaking, Bayesian analyses of parametric models yield two results:
the intermediate posterior PDF for the values of the parameters, and the final
PPDs for unobserved values of observables. In this chapter I will highlight and
discuss selected results of both types of distributions in the context of χEFT.
In many cases I will present results that are included in the papers, but with
some of the details expanded upon.

5.1 A gentle introduction: leading order
The LO in standard Weinberg power counting has deficiencies that have been
known for quite some time [26]. It yields predictions that struggle to meet ex-
pectations; part of which is exemplified in Paper II, where the EFT expansion
coefficients for the LO-NLO shift in theoretical predictions are concerningly
large, i.e., the NLO correction is greater than it is expected to be. Efforts to
improve this situation are under way (see, e.g., Ref. [29] and references therein),
but in the meantime LO predictions should be viewed with a measure of scep-
ticism. These issues notwithstanding, LO can teach us important lessons about
UQ in χEFT since its two-dimensional parameter space can be thoroughly ex-
plored without MCMC.

We do this in Paper II and find that the LEC posterior conditioned on
NN scattering data is multimodal. We explicitly show that the posterior is
bimodal due to the emergence of an np bound state—the deuteron—at C̃3S1 ≈
−0.05 × 104 GeV−2. Near the LEC value where the bound state forms, the
total cross section at low energies grows extremely large and the likelihood
for observed data becomes correspondingly small. Most MCMC algorithms—
including HMC—will not be able to cross this barrier in practice. The same
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effect occurs in the 1S0 channel, and we therefore know that the LO posterior
is (at least) quad-modal. We can, however, safely discard all parameter values
where the deuteron is unbound and/or an unphysical bound state appears in
the 1S0 channel. We can generalize this reasoning to higher orders and in
principle dismiss any LEC values that predict unphysical bound states between
two nucleons. While we do not do so, incorporating such knowledge in the
information I could certainly be worthwhile; as an example, there are 23 NN
contact LECs at N3LO in Weinberg power counting, all of which can be chosen
such that one or more bound states do (or do not) appear in their respective
channels within the EFT low-energy range of validity. From a pure modeling
perspective, dismissing values known to yield unphysical results can significantly
limit the parameter space.

The disjointed regions of probability mass in the LO posterior also highlights
the importance of vigilance regarding signs of multimodality. We routinely ran-
domize starting points for the optimization algorithm and the MCMC sampler.

5.2 Posteriors for the low-energy constants
Beyond LO, the complexity of the sampling problem increases dramatically,
with the next-simplest case—NLO—featuring eleven LECs. Throughout this
work, we employ HMC to sample all posteriors and we have yet to encounter
a posterior which we have not been able to sample efficiently with our HMC
protocol. As an example, we show in Paper II that the HMC sampling at NLO
is over six times more efficient than if we use the affine-invariant emcee [82]
sampler. Given that the wall-time to reach convergence for this particular
emcee sampling is in excess of a week, this is a major improvement. With
HMC, we achieve antithetic sampling (see Chapter 3) with τ = 0.78, which
yields an ESS 1.3 times greater than the length of the MCMC chain. Beyond
NLO, we have only achieved converged results with HMC.

The HMC sampling at NLO in Paper II is a key moment, as it is our first
successful application of HMC to a challenging sampling problem. The result-
ing posterior is shown in Fig. 5.1. The figure, which is also included in Paper
II, shows the LEC posterior at NLO in ∆-less χEFT conditioned on np and
pp scattering data in the 0 < Tlab ≤ 290 MeV range using an uncorrelated
truncation error model. The posterior has some features that we have since
come to expect. First, we see strong correlation between the charge-dependent
leading-order LECs C̃np1S0

and C̃pp1S0
, which is unsurprising given that the charge-

dependence of the strong nuclear force is known to be a small effect. Second,
we see (in this case strong) anticorrelations between leading-order LECs C̃ and
higher-order LECs C acting in the same partial waves, while most other LECs
are pairwise uncorrelated. For example, C̃3S1 and C3S1 are strongly anticorre-
lated. Third, the posterior is overall very narrow, i.e., the LECs are very well
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Figure 5.1: NLO posterior for the LECs in ∆-less χEFT in units of 104 GeV−2

(C̃) and 104 GeV−4 (C). Originally published in Ref. [90] (Paper II). Copyright
© 2022 by the American Physical Society. Reproduced with permission.

determined. This observation returns in all posteriors we have seen.
In Paper III, we present a sucessful sampling of an LEC posterior at N3LO in

∆-less χEFT. The dimensionality of this posterior puts printing it in its entirety
out of the question (it is published as supplemental material in Paper III), but
a subset of the LECs are shown in Fig. 5.2. The included LECs are the fourth-
order contact LECs D, which do not appear at the lower orders. These LECs
are more sensitive to high-momentum data, and we find that we must include
data above 40 MeV in order to constrain all of them. The most notable feature
in Fig. 5.2 is that three LECs—D1S0 , D3S1 , and D3P1—are unnaturally sized.
Precedents for unnaturally-sized D1S0 exist [52], and the choice of the regulator
can impact the size of the LECs [104]. However, the in my opinion most striking
aspect of this N3LO result is that it was nearly as easy to accomplish as the
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Figure 5.2: Marginal posterior for a subset of the LECs at N3LO in ∆-less
χEFT. Only NN contact LECs exclusive to N3LO and higher orders are shown,
i.e., eight πN LECs are excluded along with eleven lower-order contact LECs.
Hence, 19 LECs are not shown. The LECs are shown in units of 104 GeV−6.

lower-order samplings, inspiring confidence in attempting even more challenging
samplings in future works.

In Paper III we also employ SIR to extend the posteriors by inferring C̃nn1S0
from an empirical scattering length ann1S0

= −18.9 ± 0.4 fm [69], where elec-
tromagnetic effects have been removed. We place a conjugate prior on c̄2 for
C̃nn1S0

and find that this results in a wider marginal posterior for this LEC than
the two other charge-dependent LECs, C̃np1S0

and C̃pp1S0
. We also find that MAP

predictions of 2H, 3H, 3He, and 4He observables, such as ground-state energies,
are in good agreement with experimental results given that we do not include
3NFs. The exceptions to this finding are predictions of 3,4He and 3H at N3LO;
we can only speculate as to the cause, but the unnaturally-sized D LECs may
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Figure 5.3: NNLO posterior for the LECs in ∆-full χEFT, in units of 104 GeV−2

(C̃), 104 GeV−4 (C), and GeV−1 (c).

contribute. Of course, the NN and NNN LECs should ideally be simultane-
ously inferred from A ≥ 2 data. We also show that this two-stage sampling
procedure yields identical results to an MCMC sampling where we in the first
step approximate the marginal posterior for the HMC sampled LECs by a mul-
tivariate normal distribution and then sample all LECs with HMC in a second
step. The posteriors resulting from Paper III were used by Miller et al. [9] to
investigate the impact of LEC variability on Nd elastic scattering.

In Paper IV we turn to emulation and employ the ∆-full variant of χEFT.
Here, much effort goes into characterizing correlated EFT truncation errors to
investigate the effect of including non-zero, finite correlation lengths. Fig. 5.3
shows a ∆-NNLO LEC posterior with a correlated model for the truncation
error. A central question we wanted to answer is whether the very narrow
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posteriors we find with an uncorrelated error model will become significantly
wider if we take correlations in the truncation error into account. We find
that the posteriors do indeed become wider—by roughly a factor of 2-3 at
∆-NLO and about 1.5 at ∆-NNLO—by comparing with a posterior that is
identical except that an uncorrelated error model is used. Since the balance
of experimental and theoretical errors changes with the chiral order, it is not
surprising that the characterization of the truncation error has a greater impact
at NLO than at NNLO. Unlike the corresponding result shown in Paper IV, I
here include empirical 1S0 scattering lengths for nn and pp scattering ann1S0

and app1S0
= −17.3 ± 0.40 fm [1] in order to infer C̃nn1S0

and C̃pp1S0
. As for ann1S0

,
electromagnetic effects have been removed (by the originators of the empirical
value) for app1S0

. Except for the inclusion of (C̃nn1S0
, C̃pp1S0

), Fig. 5.3 is identical to
the corresponding result in Paper IV, i.e., the included scattering lengths only
affect the explicitly charge-dependent LECs. The truncation errors for ann1S0

and
app1S0

are treated as uncorrelated.
In Paper I, we employ a multivariate normal prior for the NN LECs based

on an MLE with a local approximation of the LEC covariance. We use the naïve
estimation c̄ = 1 for the standard deviation of the EFT expansion coefficients.
Meanwhile, in Paper II, we perform a full sampling of a nearly identically speci-
fied Bayesian posterior with c̄ = 2.08. The similarities between these inferences
naturally invites a comparison and present us with an opportunity to judge the
fidelity of the NN prior in Paper I. Fig. 5.4 shows the two results side-by-side.
We see that the position of the mode has shifted somewhat, in particular for
C3P0 and C1P1 , but the width of the one-dimensional marginal PDFs are over-
all similar. The latter observation is somewhat counter-intuitive since we have
explicitly doubled the size of the EFT truncation error in the HMC sampled
posterior and we could thus reasonably expect the posterior to be notably wider.
However, this behavior appears quite consistently in all posteriors we have pro-
duced: the size c̄ of the truncation generally influences the location of the PDF
to a far greater extent than its width. However, inspecting the two-dimensional
pairwise PDFs indicates that the volume of the MCMC-sampled posterior (in
terms of some multidimensional credible region) is indeed substantially larger.
In Paper IV we incorporate c̄2 as a parameter in the HMC sampling of the
posterior to investigate whether we have underestimated the size truncation er-
ror. We find that this has a small but notable effect on the width of the LEC
posterior.

5.3 Tension: πN prior vs. posterior
Throughout this work we employ a Roy-Steiner [77, 78] prior for the πN LECs
appearing at NNLO and above, in lieu of incorporating πN scattering data in
our likelihood. Assuming that all uncertainties are adequately modeled, the
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Figure 5.4: Side-by-side comparison between the prior for the NNLO NN con-
tact LECs from Paper I (black contour lines) and the posterior in Paper II
(filled purple contours). Only parameters estimated in both projects are in-
cluded. The LECs are shown in units of 104 GeV−2 (C̃) and 104 GeV−4 (C).

posterior for these LECs should considerably overlap with the adopted prior.
However, throughout Papers II-IV, this is not the reality we face. We mostly find
posteriors for the πN LECs that differ considerably from the priors we adopt,
indicating tension between the respective analyses of πN and NN scattering
data. We find the greatest overlap at ∆-NNLO in Paper IV, where the discrep-
ancy is relatively minor and the MAP of our NN analysis appears within the
3σ (99.7%) credible region of the bivariate marginals of the Roy-Steiner prior.
This is shown in Fig. 5.5. At NNLO and in particular N3LO in ∆-less χEFT,
the discrepancy is such that the priors and posteriors are in clear conflict which
must be resolved in future work. Note that the Roy-Steiner determination of
the πN LECs is less precise in the ∆-full case than in the ∆-less case, due to the
relatively unknown πN∆ axial coupling hA [78]. We do, however, find in Pa-
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Figure 5.5: Roy-Steiner priors and MAP estimates in units of GeV−1. The
MAP estimates are shown as black dots. The Roy-Steiner priors are displayed
as gray contour lines filled with purple. The contour lines encompass 68, 95,
and 99.7 % of the probability mass, respectively. (a) ∆-less NNLO. (b) ∆-full
NNLO.

per III that the prior and posterior overlap perfectly at NNLO when only NN
scattering data in the range 0 < Tlab < 40.5 MeV is taken into consideration.
This indicates that the conflict likely originates from high-energy data and the
need for improved χEFT error models, possibly in both kinds of analyses.

5.4 Inferring three-nucleon forces
In Paper I we use the leverage of emulation of few-body observables to infer a
posterior for the 3NF LECs cD and cE at NNLO in ∆-less χEFT. We employ
conjugate priors for the truncation error parameter c̄2 and the expansion pa-
rameter Q, and as data we use a set of A = 3, 4 observables: binding energies,
radii, and the β-decay half-life of the triton.

The posterior for (cD, cE) displays a strong mutual correlation. In addition,
we find that the posterior is insensitive to the variablity of the NN LECs.
Given our available data, the triton (comparative) half-life fT1/2 is essential for
a robust inference of both LECs. The other observables only constrain a linear
combination of the two LECs (see, e.g., Ref. [17]), while fT1/2 constrains cD but
not cE , as expected [118]. We further find that the EFT truncation error needs
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to be taken into account in order to find a consistent fit for the observables
we consider. With our modeling of the truncation error, we find that we can
produce joint PPDs for the considered observables which are consistent with
the experimental values.

5.5 Posterior predictive distributions
In the end, we are interested in PPDs of observables, a selection of which I will
now present. All PPDs shown here include sampling of the EFT truncation
error. In Paper II, we perform a large-scale investigation into the predictive
ability of our model: PPDs at LO-NNLO for all observables in the Granada
database [46, 47] are provided as supplementary material to that paper. Overall,
we find that our predictions are overly confident, i.e., the PPDs are too narrow.
We trace the cause to an underestimated variance c̄2 of the EFT truncation
error.

We quantify the quality of our predictions by use of empirical coverages,
i.e., we systematically compute credible intervals for our predictions and check
how frequently these intervals cover the experimental data. Ideally, a (say)
50% credible interval should cover the experimental data 50% of the time. Due
to our overly confident predictions, we generally find empirical coverages that
fall short of this expectation. However, by improving our estimation of c̄2 we
find empirical coverages that indicate overall reliable PPDs. We improve the
estimation of c̄2 by learning about the truncation error from all chiral orders
available to us, i.e., up to and including N3LO, whereas at first we only learned
about c̄2 from orders up to the order at which we made predictions.

Naturally, we carry over our learned lessons into Paper III, where similar
but improved inferences are performed. Here, we do not repeat the in-depth
model check, but instead focus on learning about the charge dependence of the
strong nuclear force via ERE parameters. The ERE is generally given by

p cot(δ) = −1
a

+ 1
2rp

2 +O(p4) (5.1)

as p→ 0, where δ in our case is the 1S0 NN phase shift. Fig. 5.6 shows PPDs
for the 1S0 scattering lengths a and effective ranges r for nn (left column), np
(middle column), and pp (right column) scattering. The scattering length for
nn, ann, serves as a model check as we condition our inference on this empirical
datum and it is therefore unsurprising that the modes of all three PPDs coincide
with the empirical value. All other PPDs are predictions. We note that all
PPDs are consistent with the empirical results, with the possible exception of
the N3LO prediction of app, where the PPD only overlaps with the edge of the
95% confidence interval of the empirical value. This latter result is in line with
the rather poor N3LO predictions for 3,4He, mentioned above. We also note
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Chapter 6

Outlook

Theoretical predictions of nuclear structure and reaction observables are inher-
ently PDFs, and should where possible be presented as such. In this thesis I
extend the reach of UQ in nuclear theory to include LEC inference up to fourth
order in χEFT via the HMC [38, 39] sampling method, 3NFs, and correlated
models for the EFT truncation error via GPs. I implement fast np scattering
emulators [41] and use them in conjunction with AD to infer LEC posteriors in
the ∆-full variant of χEFT. I compute PPDs of scattering observables both as
a model-checking tool and for making predictions of unseen data. The results
in this thesis open up multiple enticing avenues for future research, a selection
of which I will highlight here.

Simultaneous inference of two- and three-nucleon forces from A ≥ 2 data.
An obvious near-term outlook is to combine the techniques used in this thesis
to perform simultaneous inferences of the NN , πN , and NNN LECs. Through
emulation of few-nucleon systems and HMC sampling, all technology needed to
do this is in place. Such an inference may be conditioned on NNN scattering
data since the required emulators are available [107].

Improved error modeling. The behavior of the EFT truncation error is quite
complex. While we account for, e.g., correlations across NN scattering ener-
gies and angles using GPs and investigate the effect of sampling the variance
c̄2 of the truncation error jointly with the LECs, several aspects remain unac-
counted for. Future work could model correlated errors across observable types,
including different scattering observables and bound-state properties. Since the
HMC sampling method is well-equipped to handle high-dimensional parame-
ter spaces, we expect to be able to marginalize over multiple truncation-error
hyperparameters—such as correlation lengths and c̄2—as opposed to using MAP
estimates. Similarly, the posterior for the EFT expansion parameter Q may be
inferred and marginalized over as well.

Advances in MCMC sampling. My implementation of HMC has proved to
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be an efficient and reliable tool for sampling LEC posteriors, and its core oper-
ational principles have remained unchanged throughout Papers II-IV. However,
further developments could certainly be beneficial. At the top of the list of
potential improvements we find Riemannian manifold HMC [85], or some sim-
ilar technology, which could (i) alleviate the user’s burden of tuning the mass
matrix, and (ii) increase the algorithm’s ability to efficiently sample PDFs with
complicated shapes. This is important because tuning the mass matrix is a crit-
ical part of using HMC. Implementing the No-U-Turn sampler [84] is a further
outlook, albeit a less useful one in my opinion.

PPDs of NNN scattering with 3NFs. NNN scattering is not only of interest
in the inference stage, but also as a target for predictions. For example, the Ay
puzzle (see, e.g., Ref. [125]) could conceivably find its explanation through UQ.

PPDs of light-, medium-, and heavy-mass nuclei. With quantified PDFs
for the LECs and the EFT truncation error, the theoretical uncertainty can be
propagated to ab initio predictions of atomic nuclei. Targets of interest include
neutron-rich light elements, ground-state energies of medium-mass nuclei such
as isotopes of oxygen, or observables of heavy-mass nuclei such as 208Pb with
links to infinite nuclear matter. Open questions remain regarding the modeling
of EFT truncation errors for bound states, e.g., how do we define an appropri-
ate low-momentum scale and how do we model discrete, correlated truncation
errors?
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