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The most important application is a proof of the dimen-
sion growth conjecture of Heath-Brown and Serre for
all integral projective varieties of degree d > 2 over Q.
For projective varieties of degree d > 4, we prove a
uniform version N(W; B) = Oy, (B4™ W+¢) of this con-
jecture. We also use our global determinant method to
improve upon previous estimates for quasi-projective
surfaces. If, for example, X" is the complement of the
lines on a non-singular surface X C P? of degree d,
then we show that N(X";B) = Od(B3/\/d(logB)4 + B).

. d d d
For surfaces defined by forms ayxj + a;x] + a;x5 +

d
3

metric result for Fermat surfaces to show that N(X"; B) =
0,4(B¥Vi(log B)*) for B > e.

a; x5 with non-zero coefficients, then we use a new geo-
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INTRODUCTION

In this paper, we shall study the number N(W; B) of rational points of height at most B > 1 on
quasi-projective subvarieties W of P" defined over Q. The height H(x) of a rational point x on W
will always be given by H(x) = max(Ixyl, ..., Ix,|) for a primitive integral (n+1)-tuple (x,...., x,,)
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representing x. We will use the O and << notation for functions defined for B > 1. If g is a function
from [1, o0) to [0,00), then we write N(W; B) = O(g(B)) or N(W; B) << g(B) when there is a constant
C > 0 such that N(W; B) < Cg(B) for all B > 1. The constant C will depend on some parameters,
which we include as indices.

It is trivial to show that N(X; B) = O ,(BY™ X*1) and this is the best possible upper bound for
projective varieties X C P" of degree 1. For integral projective varieties of degree d > 2, one can
obtain a better bound by means of the large sieve. Serre used in his book [46] arguments of S.
Cohen to show that N(X; B) = Ox(BY™ X*+1/2(log X)) and on p. 178 in [46] he asks if this can be
improved to N(X; B) = Ox(BY™ X(log X)°) for some constant ¢ = ¢y > 0. The main result of this
paper is the following bound conjectured by Serre in [47, p. 27].

Theorem 0.1. Let X C P" be an integral projective variety of degree d > 2 defined over Q. Then,
N(X;B) = Oy (BimX+e),

In the case of hypersurfaces, this was first conjectured by Heath-Brown in [25, p. 227] and later
(see [12]) he went on to formulate the following uniform version of Serre’s conjecture.

Conjecture 0.2. Let X C P" be an integral projective variety defined over Q of degree d > 2. Then,
N(X;B) = 0y, ((BYImX+<),

Conjecture 0.2 was shown for hypersurfaces of degree 2 in [27, theorem 2] and for geometrically
integral varieties of degree d = 2 and d > 6 in a paper [12] of Browning, Heath-Brown and the
author. In Section 7, we shall prove the following uniform bounds.

Theorem 0.3. Let X C P" be an integral projective variety over Q of degree d. Then,

N(X;B) = 0y, (BYmX+e) ifd>4
N(X,B) — On,g (BdimX—1+2/\/3+E> lf d=3.

This generalises the result in [42] for varieties of degree d > 4 with finitely many planes of
codimension 1. To deduce Theorem 0.1 from Theorem 0.3, it remains to establish the non-uniform
bound OX,e(BdimX“) for varieties of degree 3. This is done in Section 8 by ad hoc methods, very
different from the methods in the first seven chapters.

If X is integral, but not geometrically integral, then the rational points on X will lie on a proper
closed subset consisting of O, ,(1) components of degrees bounded in terms of d and ». It is thus
enough to show Theorem 0.3 in the case where X is geometrically integral. By considering the
affine cone of a suitable birational projection of X onto a hypersurface as in [12], we deduce
Theorem 0.3 from the following result for affine hypersurfaces (see Theorem 7.4).

Theorem 0.4. Let f(yy,....Y,) € Z[yy,...,¥,], 1 = 3 be a polynomial such that its homogeneous
part h(f) of maximal degree is irreducible over Q. Let d = deg h(f) and n(f;B) be the number of
n-tuplesy = (y;, ..., ¥,) of integers such that y,, ..., y, € [-B,B] and f(y) = 0. Then,

n(f;B) = Oy, (B"2*¢) ifd>4

n(f;B) = 0,. (B"—3+2/ \/3+E) ifd=3
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It suffices to show Theorem 0.4 when n = 3, thanks to a hyperplane section argument. In the
case where d > 6, this was done in [12]. It is much more difficult to establish the theorem for
affine surfaces of degree d < 6. To do this, we develop a global version of Heath-Brown’s p-adic
determinant method [27]. This global method is considerably more complicated to use than its
local counterpart. But it gives sharper estimates for a number of Diophantine counting problems
and it will also be used to establish the bounds in Theorems 0.5-0.9 for projective surfaces. As the
proofs are very similar, we refer to the discussion of the proofs of those results for an introduction
to the proof of Theorem 0.4 for affine surfaces.

If X C P" contains a rational linear subspace of codimension 1, then N(X; B) >>B4™ X ‘We can
thus not expect a lower growth order than r = dim X for X in Theorem 0.2. To obtain a better
bound, we must count points on the complement X C X of all (r — 1)-planes on X. In this paper,
we shall use our determinant method and some new geometric results to improve upon previous
bounds for N(X"; B) for surfaces.

Let us first state our results for non-singular surfaces.

Theorem 0.5. Let X C P? be a non-singular projective surface of degree d defined over Q and U be
the complement of the union of all curves of degree at most d — 2 on X. Then,

N(U;B) = 0, <B3/\/d(logB)4 + 1) :
Moreover, if X" is the complement of the union of all lines on X, then

N(X’;B) = 0, <B3/ Vi(log B)* + B) .

Theorem 0.6. Let X C P* be a non-singular complete intersection of two hypersurfaces of degree
d, and d, and let U be the complement of the union of all curves of degree at mostd, + d, — 3 on X.
Letd = d,d,. Then,

N(U;B) = 0y, (33/ \/d“) .
Moreover, if X" is the complement of the union of all lines on X, then
N(X';B) = 0y, (33/ Ve 4 B) :

The interest in U comes from the fact that there are O4(1) curves of degree <d - 2 on a non-
singular surface X of degree d in P*> and O,4(1) curves of degree < d,+d, - 3 on a non-singular
complete intersection of two hypersurfaces of degree d; and d, in P* (see [14] and [5]).

The estimates in Theorem 0.5 should be compared with the estimates N(U;B) =
Od’E(B3/\/ d+2/(d-1+e) and N(X";B) = Od,E(B3/\/d +2/(d-1D+e 4 Bl+¢) of Heath-Brown [27]
and the estimates in Theorem 0.6 with the estimates N(U;B) = Oy .(BY/ Vd+2/(dy+dy=2)+¢) apd
N(X";B) = Od,E(B3/\/d+2/(d1+d2_2)+E + B)in [5].

An interesting consequence of Theorem 0.5 is the following uniform estimate for diagonal
surfaces, which is sharper than the bound in [28, theorem 13].

Corollary 0.7. Let X C P3 be the surface given by the equation aoxg + ale + azx‘zi + a3xg = 0 for
a quadruple (ay, a;, a,, a;) of rational numbers different from zero. Let X’ C X be the open subset
Sforwhich aixf + ajx;i #0forall0<i< j<3.
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Then,
N(X;B) =0, (33/ Vi(log BY* + 1) .
We shall also study singular surfaces. The following result improves upon theorem 7 in [27].

Theorem 0.8. Let X C P" be a geometrically integral projective surface of degree d defined over Q.
Then,

N(X;B)=0,,,. (BS/\/d+s 4 B3/2V/d+2/3+¢ | Bl+s> ’
unless d = 4 and there is a two-dimensional family of conics on X. In that case

N(X;B) =0, (B¥/?*¢) and
N(X"; B) = 0x(B*/?).

It is not surprising that the exponent 3/ \/ d occurs in the above estimates. If X C P" is the \/ d-
fold Veronese embedding of P? for a perfect square d, then X is of degree d in P" and N(U; B)>>,
B3Vd for any dense open subset U of X.

The most important ingredient in the proofs of Theorems 0.5-0.8 is the following result.

Theorem 0.9. Let X C P" be a geometrically integral projective surface of degree d defined over Q
and B > 1. Then there exists a set of Od,n(B3/ 2y/d log B + 1) geometrically integral curves of degree
0,4(1) on X such that the following holds.

(a) Ifn = 3 and X is non-singular, then all but Od(B3/\/d(10g B)* + 1) rational points of height < B
on X lie on one of these curves.

(b) In general, there exists a constant ¢ > 0 depending only on d and n such that all but
Od’n(B3/ Vd+e/log+10gB)y g rional points of height < B lie on one of these curves.

The function f{B) = B¢/1o80+108 B) on (1, ) extends to a continuous function on [1, &) with f(1) =
¢¢ and f{B) = O, (B*) for all £ > 0. We may thus replace O, ,(B* Vd+e/log(i+log B)) by Oy o(BY Vd+e)
in (b).

‘We now present the main ideas behind the proofs of the uniform bounds for surfaces in Theo-
rems 0.5-0.9. To describe the proof of the bounds in Theorem 0.5 for non-singular surfaces in P3,
let us first recall two basic results of Heath-Brown [27] (see theorems 14 and 5).

Theorem 0.10. Let X C P"*! be a geometrically integral projective hypersurface of degree d defined
over Q. Then there exists for alle > 0, B > 1 a set of Od’r’g(B(’“)/ di/r ey hypersurfaces Y; C P"+! of
degree O, (1) not containing X such that all rational points of height < B on X lie on one of these
hypersurfaces.

Theorem 0.11. Let Z C P3 be an integral curve of degree & defined over Q. Then N(Z;B) =
05’€(B2/6+£).

From Theorems 0.10 and 0.11 it follows immediately (see [27, theorem 11]) that N(U; B) =
0,4.(BY Vd+2/(d=1+¢) for non-singular surfaces X € P* of degree d.
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The following result was first presented in a talk at the Max-Planck institute 2002.

Theorem 0.12. Let X C P'+! be a geometrically integral projective hypersurface of degree d over Q.
Then there exists for B > 1 a hypersurface Y of degree Od,,’E(B(’“)/ rd!/ "+) not containing X such
that all rational points of height < Bon X lieon Y.

To prove Theorem 0.12, we use our global version of Heath-Brown’s p-adic determinant method.
The main difference is that we consider congruences between integral coordinates of the rational
points of height < B for (almost) all primes up to order B"+1)/ rd'/"+¢ instead of just one prime of
order BU+D/rd/"+¢ a5 in [27, theorem 14].

For surfaces X of degree d, there is thus an auxiliary surface Y c P3 of degree O, .(B¥ 2\/d“),
with X¢Y such that all rational points of height < B on X lie on Y. If the implicit constant
k = k(9, €) in 0.11 were of order 05’5(52“), then Theorem 0.5 would follow. But no one has been
able to prove this in spite of the recent progress in [13].

Instead, we deduce Theorem 0.5 from Theorem 0.9(a) and a slight refinement of Theorem 0.11.
For cubic surfaces, we need also a method based on Hilbert schemes from [43] to deal with the con-
tribution from the conics in Theorem 0.9. To prove Theorem 0.9 in its turn, we use the following
result, which is shown by combining the techniques in the proofs of Theorems 0.10 and 0.12.

Theorem 0.13. Let X C P'*! be a geometrically integral hypersurface over Q of degree d
and B> 1. Let Q ={py,..., p;} be (a possibly empty) set of primes and P; be a non-singular
F, -point on X, for each i €{1,...,t}. Let q; = p; ... p; if t > 1 with g, =1 if t = 0. Then there
is a hypersurface Y(Py,...,P,) C P"*! over Q of degree Oy,(q~'BU+D/r4"" log Bq + log Bq + 1)
not containing X such that all rational points on X of height < B which specialise to P; for
ie{l,.. t}lieonY(Py,...,P,).

Here X, C P;“ denotes the reduction (mod p) of the scheme-theoretic closure of X in PVZ“. If
p

Q is empty then we recover Theorem 0.12 while the case where Q consists of a single prime of
order BU+D/rd"/"+¢ ig related to a statement in [27] used to establish Theorem 0.10.

We now sketch the proof of Theorem 0.9(a). Full details will be given in Section 3. We first
use Siegel’s lemma to reduce to the case where X is defined by a primitive integral form F of
discriminant A = O,4(B¥), where k > 0 only depends on d. Let p;< p, < ... be the sequence of primes
not dividing A and u be the index for which (p,...p,)/p, < eB*?V¢ <p,...p,. Thenu < p, = 041+
log B) and q,, = py...p, = O4(B¥2V4 log B+1).

We now apply Theorem 0.13 for r = 2 and the sets Q; = {p;,..., p;} of the first ¢ primes of this
sequence for t € {0,..., u}. Let x be a rational point on X of height < B and (P,,..., P,) be the list
of the specialisations of x to F, -points on X B forie{l,...,u}. Let Y(P,,..., P;), 0 <t < u be the
surface in Theorem 0.13 and D, be an irreducible component of X N Y(@) containing x.

There are two cases.

CaseI: D, C Y(Py,..., P,)
Case II: There exists ¢ € {0,...,u—1} such that D, C Y(P,,..., P,) but D, ¢ Y(P;,..., P, ).

Incasel, D, C XN Y(P,,..., P,)and deg D, < d(deg Y(P;...., P,)) = O4(1 + log B). There are at
most d(deg Y(@)) = Od(B3/ 2\/dlog B +1) such curves D,.. One may now show (see Lemma 3.13 and
Theorem 3.16) that the total contribution from the curves D, with 1 <<; deg D, <<, 1 + log Biis
acceptable by applying the determinant method to each of these curves.
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In case II, x belongs to D, N Y(P;,..., P, , ), which is of codimension 2 in X. There are thus by
the theorem of Bézout [19, 8.4] at most deg D, deg Y(P;...., P, , ) rational points on D, N Y(P;,...,
P, 1) and at most d(deg Y(P,..., P,))(deg Y(P;...., P, , ) rational points on X, lying on different
irreducible components of X N Y(P;,..., P;) and X N Y(Py,..., P, . 1).

By Theorem 0.13 we have that deg Y(P;, ..., P,,;) = Od(q;rllByz\/d(logB)z_i +logB + 1) for
i =0,1. We now sum over all (¢ + 1)-tuples (P,,..., P, ;) for t €{0,...,u — 1}. This will give
0,(BY \/d(log B)* + 1) rational points as there are O4(q, ,) sequences (P,,..., P, ;) and g7, | =
Od(B3/ \/d(logB)2 + 1). This completes our description of how to deduce Theorem 0.9(a) from
Theorem 0.13. The proof of Theorem 0.9(b) is similar although somewhat more complicated.

We shall in fact in Theorem 3.16 prove a theorem for projective surfaces, which is more general
than Theorem 0.9 for n = 3. This result is a consequence of a “main lemma” 3.2 for projective
r-dimensional hypersurfaces, which concerns the set X(Q; By, ..., B, ) of rational points that can
be represented by integral (r + 2)-tuples (xy,..., X, , ;) in the region Ix,,| < B,,,, m € {0,..., r + 1}.
This generalisation is used to prove Theorem 0.4 for surfaces. We then apply Lemma 3.2 to the
case when By =1and B, = B, = B; = B.

The proofs of Theorem 0.6 and Theorem 0.8 resemble the proof of Theorem 0.5. For some sur-
faces, we use again the method with Hilbert schemes in [43] to deal with the contribution from
the conics which appear in Theorem 0.9. To obtain Theorem 0.7 from Theorem 0.6, we also use
the new result (see Theorem 9.4) that there are no curves of degree < (d + 1)/3 apart from the
obvious lines on a non-singular Fermat surface of degree d.

The central technical result of the paper is thus Lemma 3.2. It is an improvement of the impor-
tant theorem 14 in [27]. In this paper we shall only apply it for surfaces, although there are
interesting applications to varieties of higher dimensions. For some applications of Theorem 0.9
to threefolds, see [44].

Here is a short description of the contents of the sections. In Section 1, we construct auxiliary

hypersurfaces containing X(Q; By...., B, ;). In case By = -+ = B, | = B, we get Theorem 0.12.
In Section 2, we generalise this to subsets of X(Q; By ..., B, ) satisfying congruence con-
ditions. In particular, when By = --- = B, ,; = B, we obtain Theorem 0.13. In Section 3, we

prove the central technical results discussed above and deduce Theorem 0.9. In Section 4, we
study the geometry of the Hilbert scheme of conics on a surface in P? by means of the rela-
tive Riemann-Roch theorem of Knudsen-Mumford. These results are used in Section 5 to count
the rational points on the conics which may appear when we apply Theorem 0.9. In Section
6, we prove Theorems 0.5-0.8 and in Section 7 we establish Theorems 0.3 and 0.4. In Section
8, we prove Theorem 0.1 for the remaining class of varieties of degree 3. Finally, in Section 9,
we show a result on the degrees of curves on Fermat surfaces, which we need for the proof
of Corollary 0.7 in Section 6. This section is purely geometric and independent of the previous
sections.

The first version of this paper appeared around 2010 and this version is almost identical to a
version from 2011 except that we have added references to some later papers, which were influ-
enced by this paper. Walsh [50] and Castryck, Cluckers, Dittman and Nguyen [13] have managed to
remove log B- and B¢-factors in some of the estimates here. The latter paper contains precise results
on how the implicit constants depend on the degree of the variety. There is also a recent paper by
Paredes and Sasyk [36] devoted to the dimension growth conjecture for projective varieties over
arbitrary global fields.

For other applications of the global determinant method the reader may consult the papers of
Browning [8] and Xiao [50].
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1 | ANEW VERSION OF THE DETERMINANT METHOD

In this section, we shall describe a new global version of Heath-Brown’s p-adic determinant
method in which we make simultaneous use of congruence modulo all small primes. The main
goal is to prove Theorem 1.2. To formulate the theorem, we shall need the following notation
which will be used throughout the paper. In the sequel, a hypersurface X in P” *! will mean an
equi-dimensional closed subscheme of codimension 1.

Notation 1.1. Let X C P *1 be a hypersurface over Q and F(x,,...,X,, 1) € Q[Xy,..., X, ] bea
form which defines X. Let B, ..., B, ;; € R . Then,

(i) X(Q; By, ..., B, )is the set of rational points on X which may be represented by an integral
(r + 2)-tuple (xy, ..., X, 1) with Ix,,| <B,, forme{0,...,r+1}. If By = --- = B,,; = B, then
we denote this set by X(Q; B).
(i) N(X; By, ..., B, ;1) =#X(Q;By,..., B, ;) and N(X; B) = #X(Q; B).
(iii) V=By...B, ;1.
iv) T = max{BOf o Bf J’r“ } with the maximum taken over all (r + 2)-tuples (fy , ..., f, . ;) for which

1
the corresponding monomial xg 0 xlm

.x, 7 oceur in F(xg , ..., X, ;. ) with non-zero coefficient.

Theorem 1.2. Let X C P'*! be a geometrically integral hypersurface of degree d defined over
Q and let (By,...,B,;1) € Rr;;z. Then there exists a hypersurface Y C P™*! over Q of degree

1/r
Od’,((V/Tl/d)l/rd logV + 1) which contains X(Q; By, ..., B, 1), but which does not contain X.
In particular, if By = -+ = B,,; = B, then there exists a hypersurface Y C P"™! over Q of degree
0,4, (BU+V/ rd'" 10g B + 1) which contains X(Q; B), but which does not contain X.

Before we give the proof of the theorem, we first prove some lemmas. We shall use the following
notation.

Notation 1.3.

(i) E is the scheme-theoretic closure of the hypersurface X C Pgl in P}
(i) X, = ExzF, for a prime p.
(iif) up is the multiplicity of the F,-point P on X,,.
(iv) n, = Yp up where P runs over all F,-points P on X,,.

There is always a primitive form F(x, , ..., X, ; 1) € Z[Xg , ..., X, ;. ;] which defines X c P/ and
we have then that E = Proj(Z[x, , ..., X, . 11/(F)) and X, = Proj(F, [Xg 5. Xy 1]/(Fp)) for the image
F,of FinF,[xg,..., % 41]-

Lemma 1.4. Let X C P"*! be asin 1.2 and p be a prime. Let &, ..., £ be primitive (r + 2)-tuples of
integers representing integral points on E. Let Fy, ..., F be forms in (x,, ..., x, 1) With integer coef-
ficients and A = det(Fj(fl)) be the determinant of the s X s-matrix M = (Fj(fl))l < j,1 <s. Then
there exists a non-negative integer N > r!'/"(r /(r + 1))s1+1/’/np1/’ + Og4,,(s) such that pN|A.

Proof. Let P be an F,-point on X, and sp = #I for the subset Ip C {L...,s} of indices [
such that & + pZ’ *2 represents P. Then, by [42, 2.5], there exists a non-negative integer

Np = (r!/up)l/r(r/(r + 1))s;+1/r + O, (sp) such that pNP | det(A) for each spXsp-submatrix A of
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M with second indices [ in Ip. If we apply this to all F,-points P on X, and use Laplace expansion,
then we get that pV |A for N = Y p Np = riV"(r/(r + D)X p sp' V" /up’™ + Oy (). By Holder’s

(r+1)
inequality, ¥, sp < (3 1p)/ (T, s}lfl/r ,u;)/r)r/ " Hence, > sy]/r/u}l,/r > s1+1/’/n;/r
and N = Y, Np > r!'/"(r/(r + 1))Sl+1/r/n}1)/r + 0y4,(s), which finishes the proof. O

Lemma 1.5. If X, is geometrically integral, then n;/ "/p—1=0,4,(p7'?.

Proof. Let X, g, be the singular locus of X,. Then the sum of the degrees of the irreducible
components of Xpsing 1s bounded in terms of d and r by the theorem of Bézout (see [19, 8.4]).
Hence, by [32, lemma 1], we have #X, ,(F,) = Oy (p"Hand Yp (up-1)<(d - D#X), ing(Fp) =
Og4, (0"1). As #X,(F,) = p" + 0,4,(p"~V2) by [32, theorem 1], we thus find that n, /p"-1=
Od,,(p_l/z). To complete the proof, use the inequality |a'/" — 1| < | — 1| fora = n,/p">0. [

Notation 1.6.

(a) Letm=(my,..., m, . ;) be an (r + 2)-tuple of non-negative integers. Then, deg(m) = m + --
+m, . Also, if x = (xg, ..., X, ), then X = x(r)”" x:nﬁrl.

(b) IfX c P"*!isahypersurface over Q defined by a primitive form F(x, ..., X,,;) = 2. a,,x2 in
Z[xy, ..., X,;1], then H(X) = max |a,,|.

Lemma 1.7. Let X C P'*! be an integral hypersurface over Q of degree d. Then one of the following
two statements holds.

(a) There exists a projective Q-hypersurface Y C P"+1 of degree d different from X which contains

X(Q;By, .- s Byyp):
(b) HX) = 0,4,(VO) where 6 = (d +r + 1)!/(d — DI(r + D\

Proof. This is proved in [27, theorem 4] for r = 1 and the same argument may be used to prove
Lemma 1.7 for r > 1.

Lemma 1.8. Let d be a positive integer and let m = (my, ..., m, ;) run over all (r + 2)-tuples of non-
negative integers with deg(m) = d. Then there exists a finite set of universal forms ®,(a,,), ..., ®,(a,,)
in a,, with integer coefficients with the following property. Whenever the variables a,, take values in
a field K, then the form B

F(xg, s Xp1) = 2 A X

is absolutely irreducible over K if and only if ®,(a,,) # 0 in K for somei € {1, ..., t}.

Proof. Let Hy, be the Hilbert scheme of hypersurfaces of degree k in P"*! and v;: H; X Hy; —
H,, ke{l, ..., d -1} be the morphism obtained by multiplying forms of degree k and d - k. Then
F(xg,...,X,,1) = Y, a,,x™ has a factor over K of degree k if and only if the corresponding K-point
on H, belongs to v, (H, X H, _ ). Also, as H, x H,_ is a projective scheme, v, (H, X Hy _;)
must be a closed subset of H; by the main theorem of elimination theory. The union of all images
v H, XxHy_;), ke{l,...,d— 1} is thus a closed subset of H; defined by a finite set of forms
®,(a,,), ..., Da,,) over Z such that F is reducible over K if and only if all ®;(a,,) = 0 in K. This
completes the proof. N O
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Lemma 1.9. Let X C P'*! be a geometrically integral hypersurface over Q of degree d and
By, ---»Br41) € R’;;Z. Then one of the following two statements holds.

(a) There exists a projective Q-hypersurface Y C P'+1 of degree d different from X which contains
X(Q; By, ..., B,41)-

(b) The product 7y of all primes where X,, is not geometrically integral satisfies logmy = O, (1 +
logV).

Proof. Let F(x,,..., X, 1) = Y, a,, X2 be an integral primitive form defining X and ®,(a,,), ...,
®,(a,,) be the values of the universal forms in Lemma 1.8 of the coefficients a,, of F. Then ®,(a,,,)
# 0 for some i € {1, ..., t} as X is geometrically integral. Also, by applying Lemma 1.8 to F, and
K =F, for the prime factors p of ®,(a,,), we obtain that 7y is a factor of ®;(a,,). But the degree
D of @, is bounded in terms of d and r. Hence, if H(X) = Od,r(Ve) for some 6 :Z)d,r(l), then there
exists ) = O, (1) such that ®,(a,,) = Oy (V¥). Therefore, by Lemma 1.7, we conclude that log 7y
<logl®,(a,)l <<4,1+ log Vif (a) does not hold. This completes the proof. O

Lemma 1.10. Let 7 > 1 be an integer and p run over all prime factors of m. Then,

Zlogp/p <log logm + 2.
plz

Proof. We may and shall assume that 7 is square-free. Let m be a positive integer such that m <=
and v,(n) be the highest integer such that p “»(M| . We then have (cf. [49, pp- 13-14]):

m 210gp/p - Zlogp < 2 vp(m!)logp < Z vp(m!)log p = logm! < mlogm,
pim plz plz p=m

Zlogp/p <logm + (1/m)210gp <logm+ (1/m)logm.
plz plm

To obtain the assertion, let m = [log 7] for 7= > 2. O

Lemma 1.11. Let X C P"*! be a hypersurface defined by a form F(xy,...,x,,;) of degree d
and V, T be as in 1.1 Let (B, ...,B,,;) € R.*? and & = (§,, ..., &,41), | €{1,..., s} be primitive
(r + 2)-tuples of integers representmg ratlonal points in X(Q; By, ..., B, ). Then there exist mono-
mials Fy(Xg, s Xp41)s oo s Fg(Xg, vy X, y1) Of the same degree k = (r!/d)"/"s'/" + 04 (1) such that
no non-trivial linear combination of these forms is divisible by F and such that

log | det(F;(£)))] < (r!/d)!/" ST/ og(VI/ 4D yT1/d0HDY 4 glog s + Og4,(slogV).  (112)

Proof. On applying [42, 3.4] in the case of hypersurfaces, n = r + 1 for the lexicographical ordering
< of the monomials in (x, , ..., X, , ;) we obtain:

log | det(F;(£))| < (r1/d)"/"(r/(r + 1))s[s"/" logW + Og,(log V)] + slogss, (1.13)

4 parn (r+1)/r . . .
where W = (B’ ... B, +1) and (ag.,...,a,,,) are the invariants introduced by Broberg
in [5, Section 2]. But as B0 Bajr*l‘ (V/Tl/d)l/ (r+D) (see [43, 1.4b]), we deduce that

(r /(r + 1)) log W = log (VM(r + 1)/Tl/ d(r+1)) which completes the proof of Lemma 1.11. O
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Proof of Theorem 1.2. We may assume that alternative (b) in 1.9 holds. Let 7 be the product of
all primes p where X, is not geometrically integral. Then,

z logp/p <log(1+1logV)+0y,(1) (1.14)
plz
by 1.9(b) and 1.10.
Now suppose we are given s > 1 integral primitive (r + 2)-tuples & = (§,,..., §, +1) with

lefl,..., s} such that |§,,| < B, for m € {0, ..., r + 1} and F(§) = O for all . We may then by
Lemma 1.11 find monomials F;,1 < j < sof degree k = (r/d)M s/ + 0,4,(1) such that no non-trivial
linear combination of these forms is divisible by F and such that (1.12) holds. We shall prove that
the determinant det(Fj(fl)) of this sXs-matrix vanishes if s is large enough.

We first apply Lemma 1.4 to the primes p < s/ where X, is geometrically integral and write
Z: <l for a sum over these primes. We then obtain a positive factor D of det(F;(§))) which is
relatively prime to 7, such that

log D > r!'/" (r/ (r + 1)) s**1/7 Z* (logp)/nll,/r +04,(s5) Z* log p.

pssl/r pSS]/r

The last term is O, (s'*V") since Y p<sir logp = O(s'/) (see [49, p. 31], for example).

;)" < pandlogp/n,/” >logp/p — (n,/” - p)log p)/p*if m,/" >

p. Hence, by 1.5 we conclude that log p/n;/r >logp/p + Og4,(log p/p*/?) for all p where X, is

Also, logp/nll,/r >logp/p ifn

%

geometrically integral. Therefore, Zp <1/ 10gp/ nllj/ "> Z; <1 108p/p +04,(1) and

logD > r!Y/"(r/(r + 1))s*+1/" Z* log p/p + Oy ,(s"*1/7).

pssl/r

But ZPSSW logp/p — Z;gsl/" logp/p <log(1+1logV)+0,4,(1) by (1.14) and
2 p<si/r10gp/p = (logs)/r + O(1) (see [49, p.14]).

Hence,

logD > (r!"/" /(r + 1))s' 1/ [log s — log (1 + log V)] + O4,.(s'*1/"). (1.15)

If we combine this with (1.12) and use the fact that log s = O,(s""), then we get that

1/r
log (Idet(F,(EN/D) < (V/7/(r + Wi+ log (V/TVH " (1 +1ogVY [5) + Oy, (s(s/
+logV)), where in case det(Fj(fl)) = 0 we formally set log 0 = -c0.
For s > (log V)", we conclude that there is a constant C > 1 depending only on d and r such
that

1/r
log(| det(F;(E)I/D) < (17 /(r + 1)s*/"log (v /T (1 + 1og VY /5) + log C]. (1.16)
1/r
In particular, det(Fj(fl)) =0fors > C(V/T/ d)l/ d (1 +1logV)". Thereis thus a positive integer

1/dl/r
s <q, (V/TYYT (logV) +1,
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such that det(F;(§)) = 0 for any set of s integral (r + 2)-tuples § = (§,..., §,41), 1 <<
representing points in X(Q; By , ..., B, ;). There are, therefore, integers 4,, ..., A, not all zero,
such that the form G = ,|F; + -+ + AJF; vanishes at X(Q; By, ..., B, ;). By Lemma 1.11, G is a
form of degree

rdl/r
k= (/)57 +0,4,(1) = 04, (V)T 1og v + 1),

which is not divisible by F. It will therefore define a hypersurface Y c P’ *! with all the
desired properties. If B, = - = B,,, = B, then V = B"*2? and T = B%. Hence, deg Y =
0,4, (Br+b/r /" 1og B + 1) in that case. This completes the proof of Theorem 1.2.

Theorem 1.17. Let C C P" be an integral curve of degree d over Q. Then N(C;B) = On(B2/d) if
d<2and

N(C;B) =0y, (Bz/d log B + 1)
for general d. If C is not geometrically integral, then #C(Q) = Oy ,(1).

Proof. Suppose first that Cis geometrically integral and that d > 3. Then the assertion follows from
Theorem 1.2 and the theorem of Bézout when n = 2. If n > 2, we apply the birational projection
argument in [12, section 3] for a suitable linear projection 1: C— P? from a (n - 3)-subspace not
intersecting C C P". It is shown there that we may choose A4 such that the image A(C) is a geo-
metrically integral plane curve of degree d and such that there exists a constant ¢, <<;, 1 with
N(C; B) < dN(A(C); ¢y B). Therefore, as 1 + log coB = Oy ,(1 + log B), we conclude that:

N (C; B) < dN(A(C); ¢oB) <q.n (coB)? (1 +logcyB) <4, B¥?logB + 1.

If d = 2, then we use the estimate N(A(C); ¢,B) << (¢,B)? in [9, theorem 6] instead of Theo-
rem 1.2 and if d = 1, then we apply [27, lemma 1(iii)]. To prove the assertion for curves that are not
geometrically integral, we apply the arguments in the proof of theorem 2.1 in [41]. This completes
the proof. O

The uniform bound in 1.17 is a slight improvement of the bound N(C; B) = Od,E(BZ/ d+¢) ip
[27, theorem 3] for space curves. It is easy to show that B d<<c N(C; B) << B*d for Q-rational
projective curves C. Hence the uniform bound in 1.17 is close to best possible for rational curves.
For non-rational curves, there are sharper uniform bounds due to Ellenberg and Venkatesh [17].

2 | COUNTING FUNCTIONS WITH CONGRUENCE CONDITIONS

In this section, we shall prove a more precise version of 1.2 with congruence conditions.

Notation 2.1. Let X, E,(By,...,B,;1) € Rgz and X(Q; By,..., B, ;1) be as in 1.1 and 1.3. Let
D1 ---» Py be primes and P; be an Fpi—point on Xpi = EXsz,- foreachiefl,..., t}.

(i) X(Q; By, ..., B, 1. Py, ..., P,) is the subset of points in X(Q; By, ..., B, ;1) which specialise to
PyonX, foreachi€fl,..., t}. If By = -+ = B, .| = B, then we write X(Q; B; Py, ..., P,) for
this set.
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(i) N(X; By, ..., B, 4 ; P, ..., P)=#X(Q; By, ..., B, . 1 Py, ..., P). If By = -- =B, , , = B, then
we denote this number by N(X; B; Py, ..., P,).

Theorem 2.2. LetX C Pgrl be a geometrically integral hypersurface of degree d over Q and

By, --»Br41) € R;z. Let(py, ..., p,) be a (possibly empty) strictly increasing sequence of primes and
P; be a non-singular F , -point on X, for eachi € {1,..,ul. Letq=p;..p, ifu>landq=1if
u = 0. Then there exists a hypersurface Y C P'*! over Q of degree

1/rd"/r
04, (q—1<V/T1/d) logVq +logVq + 1)
with X(Q; By, ..., B,41; Py, ..., P,) C Y(Q), which does not contain X.
Proof. It suffices by Lemma 1.9 to treat the case where the product 7y of all primes where X, is
not geometrically integral satisfies log 7y = O, (1 + log V). Set = = g7y. Then, by Lemma 1.10 we

get

Y logp/p = 0g, (log(1+logVg)). (2.3)
plm

Now suppose that §,1 < I < s are primitive integral (r + 2)-tuples representing rational points
inX(Q; By, ..., B, 1; Py, ..., P,) # @. We may then by Lemma 1.11 find s monomials Fj,1<j<s
of degree k = (rl/d)"s"/" + Oy (1) such that no non-trivial linear combination of these forms is
divisible by F and such that

log | det(F;(£))| < (r!/d)!/ s/ Jog (Vl/(’H)/Tl/d(rH)) +slogs+0,, (slogV).  (2.4)

By repeating the same argument that was used to obtain (1.15) we find a positive factor D of
det(Fj(gl)), which is relatively prime to 7, such that:

logD > (r!l/r/ (r+ 1)> s/ [(logs) —log (1 +1ogVq)'] + Oy, (s1+1/r) . (2.5)
There is also, by [42, 2.5], for each i € {1, ..., u} a p;-power d; which divides det(Fj(fl)) such that
logd;/logp; = r'/" (r/ (r + 1))s"/" + 04, (s).
Hence if D" = d; ...d,, then D" is a positive factor of det(Fj(fl)) with (D, D) =1and
logD" = r!"/"(r/ (r +1))s'*"/"logq + 0,4 (s log 9). (2.6)

If we compare (2.4) with (2.5) and (2.6), then we get that

1/dv/r
log(| det(F(§))I/DD) < (r/"/ (r+ 1)) s/ log(q (v/T'/*) " (1 +10gV)'/5)

+ 04, (s (sl/r + log Vq)) .
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There exists, therefore, a constant C > 0 depending only on d and r such that
log(| det(F;(§,))|/DD")

1/r
<@/ (r+ 1))stHT [log(q’(V/Tl/d)l/d (1 +1logVq)'/s) + log C] 2.7

r —-r 1/d 1/d'"
for s > (log Vq)". Hence det(F}(fl)) = 0 for any s> max{Cq~"(V/T'/%)

(logVq)"}. There is thus a positive integer

(1+1logVq),

Lyailr
§ <4, Max { q” (V/Tl/d> (1+1logVq),(ogVq),1 } ,

such that det(Fj(fl)) = 0 for any set of s integral (r + 2)-tuples &, 1 <[ < s representing points in
X(Q; By, ..., B, . 1; Py, ..., P,). There are, therefore, integers 4,, ..., 4, not all zero, such that the
form G = 4,F, + --- + A,F vanishes at X(Q; By, ..., B, . 1; P}, ..., P,). By Lemma 1.11, G is a form
of degree

1

Vrdilr
k= (rl/d)Y" s + O4,(1) =0y, <q_1 <V/T1/d> (1+1ogVq) + (logVq) + 1) ,

which is not divisible by F. It will therefore define a hypersurface Y ¢ P" *! with all the required
properties. This finishes the proof of Theorem 2.2.

Lemma 2.8. Let X C Pgrl be a geometrically integral hypersurface of degree d over Q and
By, ---»Br41) € R;Z. Let (p,, ..., py) be a strictly increasing sequence of primes such that q =

1/r
Dy Dy = e(V/Tl/d)l/rd and P; be a non-singular F , -point on X, for each i € {1,...,u}. Then
there exists a hypersurface Y C P"*! over Q of degree O, ,(1 + log V') and of height H(Y) < q/, f =
O0,(1 +log V) with X(Q; By, ..., B,1; Py, ..., P,) C Y(Q), which does not contain X.
Proof. Let &, 1 <1 < s be primitive integral (r + 2)-tuples representing rational points in
X(Q; By, ..., B, .15 Py, ..., P,) and Fj(xo, ..y X, 11), 1 £ j < s be monomials of the same

degree k = (ri/d)!"sV/" + 0,4,(1) such that no non-trivial linear combination of these forms is
divisible by F (see Lemma 1.11). By the Hadamard inequality:

2 s N N
det (F;(&))* < szl (lel Fj(§z)2> <s szl F(Bys s By (2.9)
From the proofs of [42, 3.4] and Lemma 1.11, we obtain the bound
N
log sz1 |Fj(BO, ,B,+1)| < (/DY) + 1) log W + Oy, (slog V)
where (r/(r + 1))log W = log (VV/(r +1)/71/d(r + 1) e have thus

log Hj-=1 |Fj(BO, ’Br+1)| < (r!/d)l/rsl+1/r log (Vl/(r+1)/T1/d(r+1)) +0,, (slogV). (210
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Let A(f) = n, + --- + n, for the non-decreasing sequence (r;):2, of integers N > 0, where N occur
("*N=1) times. Then, any ¢ X ¢ minor of Fj(§l) is divisible by g4(?) (see [42, 2.4]). Moreover, from

r—1
nr <Y <t < () < (g + 1) /1), we deduce that #V7/"—r < < AV and that A(f)

1/rdV/"

=rV"(r/(r + 1)) V7 + 0,(t). We have thus for q > e(V /T'/?) that

log qA(s) > (r!/d)l/rsl+1/r log <V1/(r+1)/T1/d(r+1)>

+(!Y () (r + 1)) s"YT 4+ 04, (s(1 + log V). (2.11)

There exists, therefore, for g > e(V /T"/ d)l/ rd'lt a positive constant C depending solely on d and
rsuch that s5/2 Hj‘:1 |F;(By, ..., Byi1)| < q4® fors > C(1 + log V)". For such g and s we have thus
that det(F;(§)) = 0 since det(F;(&)) < g*®) and det(F;(§)) is divisible by gi e,

Now let s be the smallest integer with s > C(1 + log V)". There are then s monomials Fj, 1 <
Jj < s of degree k = O, ,(1 + log V) such that det(F;(§)) = 0 for any set &, 1 < I < s of integral
(r + 2)-tuples representing points in S = X(Q; By, ..., B, . 1; Py, ..., P,). f : P" 15 PS~1 g the
morphism defined by Fj, 1 <j < s, there is thus no s-subset of h(S) which spans PS~L. The linear
span IT of h(S) is therefore a (t — 1)-plane in P*~! for some ¢ < s.

Let x;, 1 < I < t be rational points in S such that {h(x,), ..., h(x,)} spans IT and &,1 <[ < t be
primitive integral (r + 2)-tuples representing these points. Then the s X t matrix A = (Fj(fl)) is of
rank t. Let A be the greatest common divisor of all ¢ X ¢t minors of A. By [4, theorem 1] there exists
a form G(xg, ..., X, . 1) € ZF, + - + ZF; of degree k and height at most (A~det(ATA)"/2)!/(s-0)
which vanishes at &, ..., &. This form will define a hyperplane A in P*~! containing IT such that
Y = h™}(A) is a hypersurface in P *! containing S. To estimate H(Y), we note that

det (474) < [T, (X Fi60") < 0TIy 5 (B Braa)” < a9,

Therefore, as A is divisible by g*("), we conclude that

1/2.1/(=1)
)

_ s 1/(s—t) _ B
< <q A()gs/2 szl ‘Fj(BO,...,B,H)D < qUAE=AM)/(s=1),

H(Y) < (A ldet(ATA)

where (A(s) - A(0)/(s - t) < ng < r1V7sY" = 0,(1 + log V). Hence H(Y) < ¢/ for some f = 0,(1 +
log V). This completes the proof. O

In our applications of Theorem 2.2 and Lemma 2.8 we shall also need the following result.
Lemma 2.12. LetX C Pgl be a geometrically integral hypersurface of degree d over Q and q =

Py - Py > 1 be a square-free number such that X, is geometrically integral for all primes factors p;
of q. Then the following holds.

(@) [T, #X,(F,,) < q" exp(C(logq)"/?/ loglog q)

for some positive constant C depending only on d and r.
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(b) If the singular loci of all Xppi=1,..,uare of codimension 3 or more and if

. u
p; >4, logq fori=1,...,q,then Hi:l #X,(F,) =0g4,(q").

Proof.

(a) We have already seen in the proof of Lemma 1.5 that #X,,(F,)/p" -1= 04 (p~"?) for any prime
p where X, is geometrically integral. There is thus a positive constant A depending solely on
d and r such that

H?:l #Xpi(Fpi) < qr<H;‘:1 1+ pi—1/2)>A.

The desired estimate therefore follows from the bound (see [49, 1.5, theorem 5]):

[T, @+ P <exp(@ + oW))(log )'/*/ loglog ).

i

(b) By Hooley’s generalisation [29] of Deligne’s theorem, we have that #Xp(Fp) — #P’(Fp) =
Od,r(p’_l) for any p € {p;, ..., p,}. There is thus a positive constant E depending solely on
d and r such that

E -E
u u 1 u 1
Hi=1 #Xpi(Fpi) < qr (Hizl (1 + b; )) < qr<Hi:1 (1 — D )) .
By Lemma 1.10 and the last assumption:

Z; p;" < (loglog g +2) /logmin;p; = Oy, (1).

Asa, = —log(l-p~') —p~' > 0and ¥, a, converges, we have therefore that

—tog (T[T, - pH) = X1, (~logl = p) = 04, (D),

Hence (H?=1 1- pi_l))_E is bounded in terms of d and r, which completes the proof. O

3 | CONSTRUCTION OF SOME HYPERSURFACES AND
CODIMENSION 2 CYCLES

The main goal of this section is to prove Lemma 3.2, which forms the technical heart of this paper.
It states that all rational points on a hypersurface X C P" *! over Q that may be represented by
integral (r + 2)-tuples in a box lie on a reasonably small number of subvarietes of codimension 1
or 2.

Lemma 3.1. Let X CP'*! be a geometrically integral hypersurface over Q of degree d.
Let (By, ..., B,41) € R’;;z. Suppose that X C P'*! is the only hypersurface of degree d containing
X(Q; By, ..., B1)- Then the following holds.

(a) If x is a non-singular point in X(Q; By, ..., B,,), then the product 7, of all primes p where x
specialises to a singular F ,-point on X, satisfies log 7, = Oy (1 + log V).
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(b) If X is non-singular, then the product Tging Of all primes p where X, is singular satisfies
log 7ging = Oy, (1 + log V).

Proof. Let F(Xgy, ..., X, 4 1) = 20, X" € Z[X,, ..., X, ;1] be a primitive form defining X c P"*+1.
We have then by Lemma 1.7 that max la,,| = Oy, (V{4 +7+D/d-DIr+Dh Ty prove (a), let
&=(&, ..., & 1) be an integral primitive (r + 2)-tuple representing a non-singular point

x € X(Q; By, ..., B, 1) and m € {0, ..., r + 1} be chosen such that (6F/6x,,)(&) # 0. Then, 7, is
a factor of (6F/dx,,)(£) and log 7, < log I(8F/dx,,)(é)| = O,4,(1 + log V). To prove (b), we use that
Tsing is @ factor of the discriminant A # 0 of F. Therefore, log 77, <log 1Al = Oy ,(1+ log V). []

The following lemma plays a central role in the proofs of the main theorems of this paper.
By a prime divisor on X we shall mean a closed integral subscheme of codimension 1.

Main Lemma 3.2. Let r > 2 and X C P™*! be a geometrically integral hypersurface over Q of
degree d. Let B = (B,,...,B, ;) € Rgz. Then there exists a set of prime divisors D, y € I'on X and
a (possibly empty) set of effective codimension 2 cycles Z(q) on X indexed by a set Q of square-free
factors q > 1 of an integer q* with the following properties:

(@) logg* = 0,,(logV) andlogV < p <, logV forall prime factors p of q*

1/r
®) g =04, (vV/TVH " 1ogV) forall g € Q
(c) log#Q = 0y4,(logV /loglogV) if V > eand #Q =0 if V<e.
(d) There exists foreach q = p, ... p,41 € Q,p; < Py < *+* < Dyy1, a decomposition

Z(q) = Y\ Z(Py, ., Pryy)
of Z(q) into effective cycles Z(Py, ..., P, 1) with

2/rd!/" 1/rd"

deg Z(Py, ..., P,,1) = Oy (g 2(V/TYY) (logV)* + g~ L(v/TY%) (logV)?

+(log V)%,

where (Py, ..., P,,) runs over all sequences of non-singular points in Hfii X, (Fp).

© Y, degZ(q) = 04, (v /1"
q€Q

Vc/ log(1+log V))

for some constant c depending only on d and .

rdl/r
() #T = 0,,(V/TY)" " logV + 1) and deg D = 0,,(1 +logV) fory € T
(g) There exists for each y € I' a hypersurface of degree O,,(1+1logV) and of height

1/r
od,r((v/Tl/d)f/rd (log V)f), f =0, + log V) which contains D, but not X.

(h) There exists for each non-singular point x € X(Q; By, ..., B,,) outside UyeF D, an integer
q € Q such that x belongs to the support of Z(q) and such that x specialises to a non-singular
F-point on X, for each prime factor p of q.

(i) If X is non-singular, then we may obtain all the above conclusions for a set Q which is totally
ordered with respect to | and with

Y, deg2() = O, (/4" (g v>’+2> .

qeQ
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Proof. If V < e, then we choose a set of O,(1) hyperplane sections containing X(Q; B) and let
D,, y € T be the irreducible components of these hyperplane sections. If X(Q; B) is con-
tained in another hypersurface Y of degree d, then we let D,,y € I' be the components of
X n Y. We have then by the theorem of Bézout in [19, 8.4] that #I' = O,4(1) and, moreover,
that deg D, = 04(1) for each y € T. In both cases, all the assertions of 3.2 will hold for the
above divisors D,, y € I' and Q = @. We may and shall thus in the rest of the proof assume
that V > e and that X ¢ P" *! is the only hypersurface of degree d containing X(Q; B). Then,
log 7y = Og4,(log V) by Lemma 1.9 and log 75;,, = Oy ,(log V) by Lemma 3.1. By the previous
lemma we get also that log 7, = O, (log V) for any non-singular point x in X(Q; By, ..., B, ; 1).
There is thus when V > e a positive constant k; depending only on d and r such that . < V¥ for
any such point x.

For a prime p which does not divide 7y, let 77, be a product of all primes p; < p not dividing 7y
with p; > log V'and 7, = 1if there are no such primes. Let p* be the largest prime not dividing 7y
such that

di/r
7, < eV (vyTi/d) e (3.3)
Such a prime must exist since 77, = 1 for the smallest prime p not dividing 7.
For ¢* = p*m,, we then have
, di/r
g > evhi (v ri/d) e (3.4)

As p* is the next prime after some prime factor of 7ym,«, we obtain from Bertrand’s pos-

P y
d r
tulate that p* < 2737+ and then from (3.3) that ¢* < 2e7TXV"1(V/T1/d)l/r

O4,(logV) by 1.9.
To estimate p*, we use standard results for 6(x) = ZPSX log p (see [49, p. 31]). This gives

. Hence logq* =

p* << 8(p*) <logmy +logq* + 6(logV) <, logV,

thereby proving (a).
If x € X(Q; B) is a non-singular point on X, then it follows from the bound 7, < Vvki and (3.4)
that there exists a factor q of g*, which is relatively prime to 7,7y with

Vrdi/r

q>e(v/TY9) (3.5

1/r
Let Q be the set of all factors g > 1 of g* such that q/p < e(V/Tl/d)l/rd for any prime p
dividing g. Then, as p < p* = O, ,(log V) for each prime factor p of g*, we get that

1 dl/r
g =0y, (v TV

logV) (3.6)
for all g € Q. Hence (b) holds.

Now note that log d(g*) = O(log g*/log log g*) (see [34, p. 56]) for g* > e and that the function
Sfix) = x/log x is strictly increasing for x > e. Therefore, as #Q < d(g*), we conclude from (a) that
log #Q = Oy ,(log V/log logV) for V > e. This proves (c).
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We now choose a hypersurface Y(P,, ..., P,) asin 2.2 for each sequence (P,, ..., P,) where P;isa
non-singular F, -pointon X, fori€ {1,...,u} and where p; < p, < ... < p,. We allow the sequence
(Py, ..., P,) to be empty in which case we will write Y(@) instead of Y(P,, ..., P,). For (P, ..., P,)

1/r
withq = p; ... p, > e(V/Tl/d)l/rd
2.8 hold. Then, as V > e we get that:

, we choose Y(P, ..., P,) such that the stronger conditions in

degY(Py,...,P,) =04, (logV), 3.7)

rdl/r
H(Y(Py,...,P,)) =0y, <(V/T1/d)f /rd (logV)/ > f=0,(ogV), (3.8)

1/r
for sequences (Py, ..., P,) withq = p; ... p, > e(V/Tl/d)l/rd and g € Q.

We may now define Z(q) for ¢ € Q. Let ¢ = pp,...p; +; be the prime decomposition of g

with increasing prime factors and (P, ..., P, . ) run over all sequences of non-singular points
in Hfg X, (Ep). Then Z(q) = ¥ Z(P;, ..., P; 1), where Z(Py, ..., P, ;) is the formal sum of
the components of all intersections D n D’ of irreducible components D of X N Y(P,, ..., P;) and

irreducible components D’# D of XN Y(P;, ..., P, , 1).
To establish the bound for deg Z(P,, ..., P, ;) in (d), we apply the theorem of Bézout in
[19, 8.4], which gives the following bound:

deg Z(Py,...,P, ;) < degX -degY(Py,...,P,) - degY(Py, ..., P;, ).

Also, by Theorem 2.2 and the assumption V > e, we have for u = tand u = ¢ + 1 that

. 1d 1/rdV/"
deg Y(P,,..., P,) <g, <qu (V/T ) +1> logVq,,

where q, = p;p,...p, foru>0and g, =1foru=0.
We have already seen that g, , ; | g* and log Vg* = O, (log V). Hence,

_ 1/rd!/"
degY(Py,...,P,) <4, <q[ Y(v/TY/4) /

+ 1> logV,
d -1 1/d 1/rd"/"
eg Y (P, ..., Pryy) <q, | 55 (V/T9) +1)logV,
1/rd'/" 1/rd"/"
deg Z(Py,...,P, 1) <4, <q;1(V/T1/d) Ty 1> <q[‘+11(V/T1/d) Ty 1> (logV)*.
(3.9)
Therefore, as q; ' = p;41q,,; = P19 " and p,,q <, logV (cf. (a)), we obtain the bound for

deg Z(Py, ..., P, . 1) in (d).
By (b) and (d),

1/d1/r
deg Z(P,, ..., Pry)) <, 4 (V /T d) (log V)" +2.
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As log V < exp(16(log V)/2/e*loglog V) for V > e, we have thus

1/

1/rd*/"
deg Z(Py,...,P,1) <g4, q"(V/Tl/d) exp (16 (r + 2) (log V)2 /e* loglog V> )

By Lemma 2.12(a), Hfii #X, (F,) < q" exp(C(log q)"?/ log log q) for some constant C > 0

depending only on d and r. Moreover, as log g = O, ,(log V), we have
(log Q?/ loglogq <, (log )2/ loglog V.

for V>e.
On summing over all sequences (Py, ..., P, ;) of non-singular points in Hfii #X, (Fp,), we
therefore get

1/rd/"
degZ(q) = Od’,(V/Tl/d> exp (Cl(log V)2 /loglog V) , (3.10)

for some positive constant C; depending only on d and r.
For V > e, we have further by (c) that #Q = exp(C,log V/ log log V) for some constant C, > 0
depending only on d. Hence for V' > e, we obtain that

Z degZ(q) = Oy <<V/T1/d)1/dl/

exp(clogV /loglog V)> , (3.1)
qeQ

with ¢ = C; + C, > 0 depending solely on d and r. This proves (e).
We now define the prime divisors D, C X, y € T'. These will be the irreducible components

of X n Y(@) which are contained in Y(P,, ..., P, , ;) for one of the sequences (P, ..., P, ) of

1/r
non-singular points in [*] X o (Fp ) With g =pip,...p, ;1 € Qsatisfying g > e(V /T"/ ayt/rd

By the theorem of Bézout in [19, 8.4], (3.7) and Theorem 2.2, we obtain that
degD, < degX - degY (Py,...,P,y;) = Oy, (logV),

/r
Card T < deg(X N Y(#)) < degX - degY(¥) = Oy, <(V/T1/d)1/rd1 log V) ,

thereby proving (f). Moreover, as D, C Y(P,, ..., P; ), we see from (3.7) and (3.8) that (g) is
satisfied for the divisors D,,.

To prove (h), let x € X(Q; By, ..., B, , ;) be a non-singular point outside Uyer D, . There exists
1/r
then by (3.5) a square-free number q = q,,; = py ... Dy41 = e(V/Tl/d)l/rd in Q, such that x spe-

cialises to a non-singular F, -point P;on X, fori=1,...,t+1. Let D, be an irreducible component
of X N Y(@) containing x. One cannot have D, C Y(P,, ..., P, ;) since this would contradict the
assumption that x ¢ U},Er D, . Hence there is an index u € {0, ..., t} with D, C Y(P,, ..., P,) but
D, ¢ Y(P,, ..., P, ). This means that x belongs to the support of Z(q,.,) for the factor q,,,; =
Di---Puy1 € Qof g, € Q, thereby proving (h).

If X is non-singular, then we change the definition of the constant k; > 0 and choose it such
that the stronger condition 7, < VK1 holds. By (3.4), there exists then a factor q of g*, which
is relatively prime to 7, such that (3.5) holds. Let ¢ = p;p,...p, be the prime decomposition of
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1/r
such a factor with increasing prime factors. If we choose such a g with q/p,, < e(V /T"/ d)l/rd ,

then (3.6) holds. For V > e, let Q be the set of products q; = p;p,...ps t €11, ..., u}. We may then
use the same arguments as above to establish (a)-(h) for the new set Q. This set is totally ordered
with respect to the relation | and #Q = w(q) = O(log g/log log q) (see [34, p. 55]). Hence for V> e,
we obtain from (a) that #Q<<;, log V/log log V.

Now let ; = g} + -+ + ¢, and V> e. Then, by (d) and Lemma 2.12(b) we have

2/rd1/r 1/rd1/’
Y degz(g) <, Z,_2<V/T1/d> logV)* +3,_, (V/Tl/d> (logV)* + =, (log V)?.
q€Q
(3.12)

Further, Z; < #Q <, logV and

; u—1 G i ; u—1 1 i(u—1—t) ;
z:i=quZ<q > SquZ(E) <2qu
u

1/rd"/"

for i > 0. Hence, as g, = 0,4, ((V/T'%)

1/r
that ¥ .odegZ(q) <4, (V/ T d)l/ d (logV)"*2. This proves (i), thereby completing the
proof of Lemma 3.2. O

logV) (cf. (3.6)), we obtain from (3.12)

We now apply Lemma 3.2 to surfaces X in P3. Then the divisors D,,y € I in 3.2 are integral
curves on X of degree O,(1 + log V). The following lemma will be sufficient to estimate the con-
tribution to N(X; B) from curves D,, y € I of high degree, such that it only remains to consider
curves of low degree.

Lemma 3.13. LetB € Ril and X C P? be a geometrically integral surface over Q of degree d and of
height H(X) = 0,4(V®) for some 6 = O(1). Let Y C P? be a hypersurface over Q not containing X of
degree O4(1 + log V) and of height H(Y) = O4(V/) for some f = O4(1 + log V). Let D be an integral
component of degree § on X N Y. Then,

ND;B) = 0y (V¥/+9(1 + logV)*).

Proof. As #D(Q) = O,4(1) if D is not geometrically integral (see 1.17), we may assume that D is
geometrically integral. Let F (resp. ) be primitive integral forms defining X (resp. Y). Then at
least one of the determinants

dF /dx; OF /dx;

i = |58 /ox, 3F /ox;

ij—

for 0 <i <j < 3 will not vanish identically on D. Let ® be one of these forms and U be the open
subset of D where @ # 0. Also, let D be the scheme-theoretic closure of D in P%.

To estimate N(U; B), we will use a set of s = (5;2 —1=26(8 + 3)/2 monomials F,, ..., F, of
degree § = deg D in (x,, X;, X,, X3) such that no non-trivial linear combination of these forms van-
ishes on D. It is easy to see that such a set of monomials exists by utilising a birational projection

from D to a plane geometrically integral curve of degree &.
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Now let p > 4V8/0+3) and P be a non-singular F,-point Pon D, = D x4 F,. We shall then
prove that there is a non-zero form G = 4,F; + --- + A,F;, which vanishes at D(Q; V; P). To see
this, it suffices to show that det(Fj(fl)) = 0 for any set §,, ..., & of primitive integral quadruples
representing s = 6(8 + 3)/2 rational points in D(Q; V; P). The integer det(Fj(fl)) is divisible by pA(s)
for A(s) = s(s — 1)/2 and Idet(F;(§))! < SV < s5V%. Moreover, s2/6 ~ 1 < 4 for s = (8 + 3)/2 > 2
and 26/(s — 1) < 48/s = 8/(8 + 3). Hence, if p > 413/ +3) we get that

|det(Fj(§[))| S SSv5S — (82/(8—1)V25/(s—1))s(s—1)/2 S (4V8/(5+3))S(S—1)/2 < pA(S)

and det(Fj(fl)) =0.
By the theorem of Bézout, we have therefore that

N(D;B;P) < N(D;V;P) < degD - deg G = (deg D)* <; (1 +log V). (3.14)

for such P.

We next show that there exists a constant C > 1 depending solely on d and & such that for
B € R with V> C, we may find a set Q of O4(1 + log V) primes in (4V3/¢ +3), 818/ +3)] with
the property that any point in U(Q; B) specialises to a non-singular F,-point Pon D, = D x, F,
for some p € Q.

To see this, let £ be an integral quadruple representing a point in U(Q; B)C P3(Q; B). The
assumptions for deg X, H(X), deg Y and H(Y) imply that |®(§)l = O ; 5(V*) for some g = O,4(1 +
log V). We now use a quantitative form of Bertrand’s postulate. It is e.g. known [35, p. 38] that
Yr<p<axlogp > %(log 2)x + O(x'/?log’x) and hence that [, ,,, p > e**/* if x is sufficiently
large. There exists therefore a constant C > 1 depending only on d and § such that [],_,.,, p >
|®(&)| for x = 4V¥/(+3) with V > C. This implies in its turn that there is a set Q of O, 5(1 + log V)
primes in (4V8/(6+3) gy8/(6+3)] with [Tycq p > 19(8)| for B € RY, with V> C. We may therefore
for such B find a prime p € Q such that ®(§) is not divisible by p and such that £§(mod p) defines
a non-singular F,-point P on D,,.

‘We have thus for V> C that

N(U;B) < #Q - max,cq #D,(F,) - maxpN(D; B; P).
This coupled with (3.14), #Q = Oy 5(1 + log V) and #D,,(F,) = O4(p) shows that
N(U;B) = 04 5(V¥C(1 + 1og V)*) (3.15)

for B € RY  with V> C and hence for all B € RY as N(U; B) < N(P*; B) << V.

To estimate N(D — U; B), recall that ® vanishes on D — U but not on D and that D is an
irreducible component of X N Y. Therefore,

N(D —U;B) <degD -deg® < degX -degY - (degX + degY —2) <, (1 +logV)?

by the theorem of Bézout. This finishes the proof. O

Theorem 3.16. Let X C P? be a geometrically integral surface over Q of degree d and X, be the non-
singularlocusof X. Let B € Ril. Then there exists for each € > 0 a set ode((V/Tl/d)l/2 dlogV +1)
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geometrically integral curves D;C X, A € A = A, of degree O(1/¢) such that

1/4/d 1/2+/d
N <an - U DA;B> = Od <(V/T1/d> Vi Vc/log(1+logV)> + Od,g ((V/Tl/d> \/ VE>

VISIN

for some positive constant ¢ depending only on d. Moreover, if X is non-singular, then we may find a
set of geometrically integral curves D,C X, A € A = A, of degree O(1/¢) such that

N <X -U D,I;B) =0, <<V/T1/d>1/\/d(10g V)4> +04, ((V/Tl/d)l/wdva> .

AEN

Proof. 'We apply the main lemma in the case r = 2. Let D, C X,y € I'and Z(q) C X, g € Q be as
in 3.2 and as in 3.2(i) if X is non-singular. Then, N(X,,, — Uyer D,;B) < quQ deg Z(q) by 3.2(h).
We have, therefore, by 3.2(i) that

N <X - U D,; B> <0y <(V/T1/d>1/\/d(log V)4> (3.17)

yel

if X is non-singular and by 3.2(e) that

1/+/d
N (an - UDy;B> <04 ((V/Tl/d) Ve togasiog V)> . c=0,0)  (318)

yer

in general.
Now let AC T be the subset of all indices y € I such that deg D, <16/¢. Then,

N <an -U D,I;B) <N (an -U Dy;B> +#I-max,cr_ AN (D,;B). (319
1eA yer
To estimate N(Dy; B)foryeTl — A, let Y, C P3 be the surface containing D, in 3.2(g). Then, X ¢
Y, degY, = 0,1 +log V) and H(Yy) = Od(Vf) for some f= O(1 + log V). We may therefore apply
Lemma3.13to Y=Y, and D = D, and conclude that

N(D,;B) = Oy, (VE/ 2(1 + log V)3) (3.20)

for any divisor D, with indexy € I' — A.
From 3.2(f) and (3.20), we obtain

)1/2\/d >1/2\/d

#T - max o \N(D,; B) <4, (V/Tl/d V21 +logV)* <, (V/Tl/d Ve, (321)
The desired bounds for N(X,; — (J;ep D;;B) now follow from (3.17), (3.18), (3.19) and

(3.21). 0

We may now state two corollaries of Lemma 3.2, which will play a central role in the proofs of
Theorems 0.5-0.9.
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Corollary 3.22. Let X C P3 be a geometrically integral surface over Q of degree d and let B > 1.
Then there exists a set of Od(B3/ 2d log B + 1) geometrically integral curves D;C X, A € A of degree
0,4(1) and a positive constant c depending only on d such that

N <X -U D,I;B) = 0, (B3/Va+e/10g0+10eB)y - qnd such that
AEA

N <X — U D,I;B) = Od(B3/\/d(logB)4 +1) ifX is non-singular.
AEA

Proof. Let By = B, = B, = B; = B. Then V = B* and V/T"? = B*. Now apply the previous theorem
in the case r = 2, By, = B, = B, = B; = B and for some value of ¢ not greater than 3/8\/ d. Then we
obtain a set of geometrically integral curves D,;C X as above except that we only get that

N <an _ U DA,B) — Od(B3/\/d+C/10g(l+10gB))

AEA

for singular surfaces. But it follows from the Jacobian criterion and the theorem of Bézout that
the singular locus of X is contained in a union of O,4(1) integral curves D C X of degree O4(1) and
from Theorem 1.17 that #D(Q) = O,4(1) if D is not geometrically integral. We may therefore obtain
the same bound for N(X — |, D;; B) by including O,4(1) geometrically integral curves of degree
0,4(1) in the singular locus of X to the set D;C X, A € A. This finishes the proof. O

Corollary 3.23. Let X C P" be a geometrically integral surface over Q of degree d. Then there exists
a positive constant C depending solely on d and n such that the following holds. There exists for each
B >1a set ode,n(B3/2\/d log B + 1) geometrically integral curves of degree O, ,,(1) on X such that

there are Od’n(B3/ Va+c/ log(1-+log B)) points in X(Q; B), which do not lie on any of these curves.

Proof. We consider a linear birational projection X — P3 from an (n—4)-subspace not intersecting
X C P" as in [43, 8.1]. We may then reduce to the case of hypersurfaces in P3 by an argument
similar to the reduction to plane curves in the proof of Theorem 1.17. O

4 | THE HILBERT SCHEME OF CONICS IN P3

The aim of this section is to prove some results on the geometry of the Hilbert scheme of conics
in P3, which we will need in Section 5 to count rational points on families of conics. We shall
throughout this section work over an algebraically closed field K of characteristic 0.

Let P? be the Grassmannian of planes in P3. There is a universal rank 3 subbundle S and
a quotient line bundle Q on P3V (cf. [15, p.198]). Let H be the projective bundle P(Sym?SY) of
Sym?SY and 77 : H — P3" be the associated morphism. We use here and in the sequel the “classical”
definition in [19, Appendix B5] (and not the dual one of Grothendieck) of a projective space bundle
P(E) associated to a vector bundle E on a scheme.

H is a parameter space for one-dimensional closed subschemes C C P? of degree 2 spanning a
plane. Such subschemes have arithmetic genus 0 by the adjunction formula. We may therefore
regard H as the Hilbert scheme of closed subschemes of P with Hilbert polynomial P(t) = 2t + 1
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(cf. [21, 1.b]). We shall in the rest of this section use the word conic for a closed subscheme of P3
with Hilbert polynomial 2¢ + 1. A conic may thus be a union of two intersecting lines or a double
line.

Let p: 3— H be the universal family of conics in P?,i: § — H x P?itsembedding in H X P? and
q: S— P be the restriction to S of the projection pr,: H X P> — P3. Then p is flat and projective
with conics C C P? as fibres. Hence as H'(C, O(k)) = 0 and dim H°(C, O(k)) = 2k + 1 for k > 0
for conics, we conclude from the semicontinuity theorem [24, I11.12.9] that R! p,.(¢*(Op3(k))) = 0
and that p,(q*(Op3(k))) is locally free of rank of 2k + 1 for k > 0.

To find embeddings of H into projective spaces, we start with the functorial map from
pry.(prOps (k) to pry,(i,i*(pr;Ops(k)) = p.(q*(Ops(k))) for pr;: H x P°— H. If h € H rep-
resents the conic C C Pl3c ;) Over the residue field k(h) of O, then the induced map from
pr1..(pr50p3 (k))®yk(h) to D.(q"(Op3(k)))®uzk(h) can be identified with the restriction map
from HO(P?{(M, Op3(k)) to H°(C, 0. (k)). As this map is surjective for all h € H, the map from
pry.(pr;Ops(k)) to p+(g*(Op;(k))) must also be surjective. By flat base change [24, I11.9.3], there
is further a functorial isomorphism Oy Xy f,Ops(k) — pry,(pr;Ops(k)) for f: P;< — K. The
Og-module pry,(pr;Op: (k)) is thus free of rank " T = dim HO(P3, Ops (k)).

Let o) 1 A**lpr) (priOps(k)) —» A**1p, (q*((Ops(k))) be the (2k + 1)-th exterior product
of the above map. Then o} is a surjective map from a free Ox-module to an invertible Og-
module, which defines to a morphism p;, : H — P(AZ***1HO(P3, Ops(k))") for k > 1 (cf. [24, 11.7.1]
and [37, 2.3]). As Sym*V = HO(P?, Ops(k)) for V = HO(P?, Op3(1)), we will regard p, as a mor-
phism from H to P(A2K*1Sym*VV). The geometry of this morphism will be important when
we apply the determinant method to families of conics. For k = 1, we recover the morphism
7:H— PV,

There is a canonical isomorphism between the projective bundles H = P(Sym?S") and P(E)
for E = Sym?(SY® Q). We shall in the sequel identify H with P(E) and let Og(1) denote the
tautological line bundle. The Chow ring of H = P(E) is generated by the first Chern classes ¢, (7*Q)
and c,(0g(1)) (see [19, 8.3.4]). In particular, Ch!(H) = Zc¢,(7*Q)® Zc,(Ox(1)).

Lemma 4.1. Let [D;] € Ch'(H), k> 1 be the inverse image of the hyperplane class in
Ch!(P(A**1Sym*VY) under the contravariant map induced by p, : H — P(A**+1Sym<VV).
Then,

[Dy] = key (7" Q) + <§> ¢,(05(1)) fork >1.

Proof.  Let L =q*(Op:(1)). Then [D;]=c,;(A**(p.(q"Ops(k))) = c,(det(p,L®¥)) and
Rip,L® = Rip,(q*Ops(k)) = 0 when i > 0 and k > 0. There exist therefore by the Riemann-
Roch theorem of Grothendieck and Knudsen-Mumford (see [31, theorem 4] and [18, p. 184])
elements a,,a,,a, = p,(c;(L)?) in Ch!(H) such that c,(det(p,L®)) = a, + ka, + (lz)a2 for all
k > 0. In particular, a, = ¢,(det(p,Og)) = ¢;,(Oy) = 0 and a; = c,(det( p,.L))= [D,].

To determine a, = p,(c,(L)?), let A C P3 be a line and D C H be the scheme parameterising all
conics C C P3 which meet A. Then, p, (¢, (L)*)=[D] (cf. [23, p.167]) and a, = ¢;(Og(1)) as Dis given
by the vanishing of a global section of Oy(1) (cf. [19, 3.2.22]). Finally, as p; = 7 we have that D;C
H is given by the vanishing of a global section of 7*Q. Hence, a; = ¢,(7*Q), thereby completing
the proof. O
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We shall write ChP(H) (resp. Ch,(H)) for the Chow group of cycles on H of codimension p
(resp. dimension p) and U : ChP(H) x Ch4(H)— ChP * 9(H) for products in the Chow ring. This
gives a natural intersection pairing U : Ch?(H) X Ch,(H) — Ch,(H) = Z.

Lemma 4.2. Let X C P3 be an integral projective surface of degree d > 2 and Hy, C H be the Hilbert
scheme of conics on X. Let Y be an integral curve on Hy and F C X X Y be the conic bundle surface
over Y induced by the universal family of conics over Hy and k > 1. Then the following holds.

(a) dimz(Y) =1

(b) The projection pr;: F — X is surjective.

© 6@ QUIY]=[K(Y) : K(x(Y))]dega(Y).
(d) ¢, (0O V[Y] = [K(F) : KX)]d.

© [DJUIY] 2 k+ ().

@) [DJUlY]>2k+ (z)d unless Y is mapped isomorphically onto a line in P3V under .

(g) Assume that pr;: F—X is birational, pr,: F—Y smooth and that all fibres of pr, pass through a
non-singular point P on X. Then there is a finite morphism ¢: P>2—P? of projective degree two
which maps P? birationally onto X.

Proof. For (a), we use that the restriction of 7 to Hy is finite and for (b) that X is integral. To
prove (c), we interpret ¢,(7*Q) U [Y] as the number of fibres C of pr,: F—Y whose linear span
IT = (C)c P3? contains a given point P € P3. If P is sufficiently general, these conics will span
deg 7(Y) different planes IT and there will be [K(Y): K(n(Y))] different conics in each plane IT
parameterised by points on Y. This proves (c). To obtain (d), we interpret c;(Og(1)) U [Y] as the
number of fibres of pr,: F—Y, which meet a given line L. If we choose this line general enough,
then it will intersect X in d different points and each fibre of pr,: F—Y in at most one point. This
proves (d) as there are [K(F): K(X)] fibres of pr,: F—Y passing through a general point on X.
To obtain (e) and (f), we apply Lemmas 4.1 and 4.2(a)—~(d). Then we get that deg 7(Y) > 1 and

[DiJU Y] = k[K(Y) : K(z (Y))|(deg 7(Y)) + <§> d[K (F) : K(X)].

Hence (e) and (f) hold as [K(Y): K(7z(Y))]deg 7(Y) > 2 under the hypothesis in (f).

To show (g), let p,: F — Y be the base extension of pr, along the normalisation Y — Y. Then
F is non-singular and the composition q,: F — X of F = Fx,Y—F with pr, birational. There is
thus a unique factorisation q; = 7. p; (see [24, p. 91]) through the normalisation 7: X — X. Let P =
n~'(P) and E = p;'(P) = q;(P). Then P is non-singular on X and the restriction of p, to F' — E
quasi-finite as there are only finitely many fibres of pr, passing through a given point on X— P. As
p,: F — X is birational, we have thus by Zariski’s main theorem [24, p. 280], that p, restricts to an
isomorphism from F — E to X — P and that X is non-singular.

As P is a fundamental point of p;*, there is a unique morphism 7, : F — Z with p, = u o, for
the blow-up u: Z — X at P (see [24, p. 411]). 7, is an isomorphism over Z— u~!(P) and quasi-finite
over u~!(P) as only finitely many fibres of pr, pass through an infinitely near point of P. Hence p,
is isomorphic to the blow-up at P by Zariski’s main theorem. As E is a section of the ruled surface
p,: F — Y, there is thus (cf. [24, p. 375]) an isomorphism ¢, : P> —X, where the lines through
¢51(P) are sent to the fibres of p,. Hence 7. ¢,: P?—X is finite and birational and its composition
¢: P?—P3 with X C P* of projective degree 2 as it sends lines through ¢ *(P) to conicson X. []
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Lemma 4.3. Let X C P? be an integral projective surface of degree d > 3 and Hy C H be the Hilbert
scheme of conics on X. Then the following holds.

(a) If Y is an integral curve on Hy which is mapped isomorphically onto a line on P3V under
7 :H — P, then n(Y) is dual to a line in the singular locus of X.

(b) IfdimHy > 2, then X is a scroll or a Steiner surface of degree 4 with singular locus of X consisting
of three possibly coinciding lines.

(c) Suppose thatdim Hy > 2 and that X is not a scroll. Then there is exactly one component S of Hy
of dimension more than one. This component S is an integral rational surface with

deg 0, (S) = 4k* + 4k® — 2k? < kK*(2k +1)* forallk > 1.

Proof.

(a) Let L c P3 be the line dual to 7(Y) ¢ P3¥ and F C X X Y be the conic bundle surface over Y in
Lemma 4.2. The hypothesis implies that any plane IT C P? containing L is spanned by a unique
fibre C of pr, : F— Y and hence that the surjective morphism pr; : F— Xrestricts to an isomor-
phism from C\L to (IT n X) \ L. But this can only occur if L is of multiplicity > 2 on II N X as
deg C < deg (Il n X). Hence L must be in the singular locus of X as otherwise it would be
simple on IT N X for some plane IT containing L.

(b) Suppose that X is not a scroll. There is then a non-singular point P on X not lying on any
line on X and thus an integral curve Y on Hy such that all conics parameterised by Y are non-
singular and pass through P. As pr,: F— X is birational if d > 3 by [48, p. 158] we thus conclude
from 4.2(g) that X C P? is isomorphic to a birational projection of the Veronese surface V,C
P’ from a line disjoint from V,. Hence X is a Steiner surface of degree 4 with a singular locus
of X consisting of three possibly coinciding lines (cf. [48, p. 135]).

(c) Let ¢: P> — P? be a morphism as in 4.2(g) and X, be the non-singular locus of X. There is
then a bijection between lines A ¢ P? with A n $~(X,;) # @ and conics C C X with Cn X, #
@ where C = ¢(A). These conics will therefore be parameterised by an open subscheme Q of
H, isomorphic to an open subsurface of the dual projective plane P2V and the closure S of Q
is the only component of Hy of dimension at least two. By the above bijection, there is further
one conic on X passing through two given non-singular points on X and this conic is actually
parameterized by a point on Q C S.

There are thus 16 conics on X meeting two disjoint lines in P* which intersect X transversally.
By the geometric interpretation of ¢;(Og(1)) in the proof of Lemma 4.1, we have therefore

¢ (0Op(M) U ¢, (0g(1)) U [S] = 16. (4.4)

Next, let L C P2 be a line that intersects X transversally in P;, P,, Py and P,. Then a conic C on
X will span a plane IT = (C) D L if and only if C passes through two of these points. There are thus
altogether six such conics. As ¢;(7*Q) is the class of all conics on X, which span planes through a
given point on P3, we have thus that

(T QU (T QUIS] = 6. (4.5)

Finally, let L, C P2 be a line that intersects X transversally in P,, P,, P; and P, and P be a point
in P3— L, such that the four lines L; = (P, P;), 1 < i < 4 spanned by P and any of P; intersect X
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transversally. There are then for each i three conics C on X, which contain P; and for which (C) D
L;. Hence

¢,(0p() U e (* Q) U [S] = 12. (4.6)

For [Dy] = ke (77Q) + (g)cl(OE(l)), we now obtain from (4.4) to (4.6) that

2
deg p) (S) = [D,] U [D,] U[S] = 6k? + 24k (’;) + 16<§> = 4k* + 4k> — 2k?,

thereby completing the proof. O

Lemma 4.7. Let X C P? be a projective surface of degree d > 2. Then the Hilbert scheme of conics
on X has O4(1) integral components and deg p,(Y) = Oy (1) for each of these components Y.

Proof. See [43,3.5]. Ol

5 | RATIONAL POINTS ON THE UNION OF CONICS

In this section, we shall obtain an estimate for the contribution from the conics to N(X; B) for a
family D; ¢ X, 1 € A as in Corollary 3.22. We will get crucial savings by using that the rational
points are less dense on conics of large height. These savings are especially important if the conics
are parameterised by points on a curve or surface of high degree, which is the motivation for the
geometric results in Section 4.

We keep the notation in Section 4 such that H (resp. Hy) is the Hilbert scheme of conics
in P3 (resp. on X C P3), V is the vector space of linear forms in the homogeneous coordinates
(Xo» X1, Xy, X3) of P3. We shall also let p; : H — P(A%K+ 1Sym*V), k > 1 be the morphism described
in Section 4.

The monomials of degree k in (x,, X;, X,, X;) form a basis of Sym*V and there is therefore
a basis of A%+ 1Sym*V consisting of exterior products of 2k + 1 monomials of degree k. Let
H: P(A***+1(Sym*V)¥)(Q) — R be the standard height function defined by the dual basis. Then
H depends only on the homogeneous coordinates (X, x;, X,, X3). We let H,,(C) = H(pi(h)), k > 1
for a conic C c P? over Q parameterised by h € H(Q). It can thus be viewed as the height of the
projective linear 2k-subspace spanned by the image of C under the k-fold Veronese embedding of
P3.

To compute H,(C), let Fj,1<j< (k + 1)(k + 2)(k + 3)/6 be an ordering of the set of monomials
in (xy, X1, X,, X;) of degree k and §}, 1 <1 < 2k + 1 be quadruples of integers representing rational
points on C whose images under the k-fold Veronese map span L,. Then H;(C) = M/A for the
greatest absolute value M of all the (2k + 1) X (2k + 1)-minors of (Fj(fl)) and the greatest common
divisor A of these minors.

Lemma 5.1. Let C C P? be a non-singular conic defined over Q. Then,
N(C;B) = Oy (B/H ()Y @K + B®)  foranyk > 1.

Proof. See [43, 4.1(a)]. O
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Lemma 5.2. Let X C P? be a geometrically integral projective surface of degree d > 3 and S Cc Hy
be an integral component. Let k > 1. Then,

(a) N(pi(S);RIeF)) =0, (R?logR+1) ifdimS = 1.
(b) N(py(S); Re Pe(9)'"*)y = 0, (R7/**1/k(log R)> +1) if dim S = 2,

and X is not a scroll.

Proof.

(a) Fork>1p; : H— P(A***1Sym*VV)is a closed immersion into some projective space. Hence
N(py(S); RI8PcS)) = 04 (R?log R + 1) by Theorem 1.17 and Lemma 4.7.

(b) By Lemmas 4.3 and 4.7(b), we have d = 4 and deg p,(S) = O,(1). We now apply Corollary 3.23
to the closed immersion p;: S € P(A2k + 1Sym*VV) and B = R%€Pc(S)"* We then obtain a set of
O, (R**log R + 1) geometrically integral curves Y,, v € T of degree Oi(1) on p(S) C
P(A8ISymKV) such that all but O, (R3*+0k(1/10g(1+10gR))) points of height < B lie on one of
these curves. It thus only remains estimate the contribution from the curves Yy, yeTlto

N(pk(g);Rdegpk(S)l/z)‘
By Theorem 1.17 we have that N (Y},;Rdegpk(s)l/z) < R? deg py(5)'/?/ deg pi(Y) logR + 1 for all
y € T. By Lemmas 4.2(e), 4.2(f) and 4.3(c), we have further that deg p,(S)"?/deg pi(Y,) <
(2k 4+ 1)/(2k—1) for all y € T and that deg p,(S)"/?/deg p,(Y) < 2k + 1)/2k if Y,, is not mapped iso-
morphically onto a line in P3 under 7. By Lemmas 4.3(a) and (b) there are at most three curves
Y C S that are mapped isomorphically onto lines in P3V under 7. Therefore,

D N(Y,; REP”y « (R3/? log R + 1)(RXHD/2k [og R + 1) + RA2KHD/CkD 1og R 4 1,
yer

which is acceptable for k > 1. This completes the proof.
The following result will be used to estimate the contribution from the conics D; C X, 1 € Ain
Corollary 3.22.

Lemma 5.3. Let X C P3 be a geometrically integral surface over Q of degree d > 3 and E be a set of
Od,g(Bf *€) integral conics over Q on X for some positive real number f. Then the following holds.

(a) ZCGE N(C;B) — Od,f’E(Bl"'f_df/S*'k + Bl+3 4 Bf+3s)
ifdimHy < 1 or if all conics C € E are parameterised by points on irreducible components of
dimension at most one on Hy.

(b) Ifdim Hy > 2 and X is not a scroll, then d = 4. Further, if #E = 0,(B/**), then

2 N(C,B) — OE(B43/28+25)
CeE

Proof.

(a) By Lemma 4.7 there are O,4(1) integral components Y of Hy. It it therefore enough to show
the lemma in the case where all conics C in E are parameterised by points on an integral
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one-dimensional component Y of Hy. By Lemma 4.2(e),

k d 1-3d/4
> = a7,
degpk(Y)_k+d<2> (2k+1)k<4+ o >

There exists thus for each pair f> 0, ¢ > 0 an integer k = k(f, €) such that
degp (Y)/(2k + Dk > d /4 —2¢/f. 5.4)

Now let R be a real number with 1 < R < B2, There are, then, by Lemma 5.2(a) O s (R*B°)
conics C with H,(C)"/ 98P«Y) ¢ [R, 2R] and we have by Lemma 5.1 and (5.4) that N(C; B) =
Oy (BR*4/* 4 B¥) for each of these conics. The total contribution from these conics is thus
Oy (B'* #R*4/* + R2B¥). On summing over dyadic intervals [R, 2R] which cover [1, B/?],
we obtain that the conics with H, (C)'/ 48°(Y) < Bf/2 contribute with Oy (B HI/-df8+3¢
B! t3¢ 4 B/ *+3)in total.

For conics with H, (C)1/ 4%8P(Y) > B//2 then N(C; B)= 0y (B'~ ¥ /8+¢ + B*) by Lemma 5.1.
Therefore, as #E = O, (B * ¢) we get a total contribution of Og(B'* J=dfI8 +2¢ 4 Bf+2¢) from
these conics C, thereby proving (a).

(b) By Lemma 4.3(b), d = 4. The contribution to ) .. N(C;B) from conics parameterised by
points on components of dimension < 1is thus O,(B' * 38+ 3¢) by (a). We may thus assume that
all C € E are parameterised by points on the unique two-dimensional irreducible component
S C Hy described in Lemma 4.3(c) with deg o, (S)< (2k + 1)? for k > 1.

Now fix k > 1 and consider the conics C € E with H,(C) € [R, 2R] for some R with 1 <R
< B There are O,(R7?* 1k (log R)> + 1) such conics by Lemma 5.2(b). We have also by
Lemma 5.1 and (5.4) the uniform bound N(C; B) = O (BR*/>~! + B?), k > 1 for each of these
conics. The total contribution from these conics is thus Oy ((BR>? + Vk +7¢/3  R7/2+1/k +epe)
On summing over O(log B) dyadic intervals [R, 2R] which cover [1, B¥'*], we get for each k >

. . . 1/2
1 a total contribution of O (B*/28 +3/14k +¢/2) with Hk(C)l/pk(S) < B3/14,

For conics C with Hk(C)l/F”‘(S)l/2 > B3/14, then N(C; B) = Oy (B"/*+%/7) by Lemma 5.1
and (5.4). The total contribution from a set of O.(B¥* *¢) such conics on X is thus
Oy (B¥/2+ 1Ty Hence, ¥ e, N(C; B) = Oy (B*/28+3/18k+11¢/7) for all k > 1, which suffices
to deduce (b).

6 | RATIONAL POINTS ON PROJECTIVE SURFACES

The aim of this section is to prove Theorems 0.5-0.9. The following result improves upon theorem
0.1in [43] and theorem 7 in [27].

Theorem 6.1. Let X C P" be a geometrically integral surface over Q of degree d. Let X' be the
complement of the union of all lines on X. Then,

N(X';B) =0, E(Ba/\/d+s + B3/2\/d+2/3+€ + B1+s)’
unless d = 4 and there is a two-dimensional family of conics on X. Then

N(X’;B) = 0, (B“?'/ZS“) and N(X';B) = Ox(B*?).
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Proof. We first prove the theorem when n = 3. If d < 2, then X" = @. We may and shall therefore
assume that d > 3. There exists by Corollary 3.22 a set of #I" = Od,n(B3/ 2\/dlog B +1) geometrically
integral curves C,, y € T of degree O4(1) such that all but 0y, (B Vd+0q,,(1/ log(1+10g BY)) rational
points in X(Q; B) lie on one of these curves. As N(C,; B) = Od’n(BZ/ 3log B + 1) for the curves
C,, y € T of degree > 3 (see Theorem 1.17), there are thus Oy (B 2Vd +2/ 3(log B)? + 1) points in
X(Q; B), which lie on one of these curves.

To estimate the contribution from the conics, we apply Lemma 5.3 with f = 3/2 \/ d.If dim Hy
<1, then we conclude from 5.3a) that there are O (B! * 3/ Vd=3vd 6+ | pl+e) points in the set
X(Q; B), which lie on one of the conics G,. The total contribution from all C,,, y € " of degree > 2 to
N(X'; B) is thus acceptable, thereby proving the theorem when n = 3 and dim Hy < 1.

If dim Hy > 2, then by 5.3b) there are O,(B*¥/?® ) points in X(Q; B), which lie on one of the
conics C,. As d = 4 (see Lemma 4.3), we have thus that N(X; B) = 0.(B*/?8+¢) for such surfaces.
To establish the last assertion, we use the existence (see the proof of Lemma 4.3(c)) of a finite
morphism ¢: P>—P? of projective degree 2 which maps P? birationally onto X. Then H(y)* <<y
H($(y)) for all y € P%(Q) (see [46, p. 15]. Hence X(Q; B) N $(P*(Q)) <<y B*2. To get that N(X"; B)
= Ox(B*?) it now only remains to that apply Theorem 1.17 to the components of a closed set T C
X such that ¢ maps P?> — ¢~'(T) isomorphically onto X — T.

To prove the theorem when n > 3, we use a projection 1: P” \ A — P? from a linear projective
(n—4)-plane A C P" not intersecting X. By [12, Section 3] we may choose this morphism A such
that Z = A(X) C P3 is of degree d with at most d points in X over each point of Z and such that
there is a constant ¢, = O, ,(1) such that H(A(x)) < ¢,H(x) for all rational points x on P \ A. By
[43, 8.1d] we may further assume that there exists a proper closed subscheme T of Z such that
X\ A7X(T) is isomorphic to Z \ T under 1 and such that T c P? is given by Oy ,(1) equations of
degree O ,(1). Therefore, 1 maps (X'~ A~YD))(Q; B) injectively into Z'(Q; ¢,B). By the Bézout
theorem in [19, theorem 8.4.6] we have further that the sum of the degrees of the irreducible
components of T is bounded in terms of d and n. It follows that this is also true for A='(T) such
that N(X" n A7(T); B) = O,4,(B) by Theorem 1.17. Hence as Theorem 6.1 holds for Z c P?, we
conclude that it also holds for X c P". O

Remark 6.2. If d = 3,4 or 5, then we get that N(X; B) = On)E(B3/\/d+E) unless d = 4 and
dim Hy > 2.

Theorem 6.3. Let X C P be a non-singular surface over Q of degree d and let U be the complement
of the union of curves of degree < d - 2 on X. Then,

N (U;B) = 0, <B3/\/d(10gB)4 + 1) .

Proof. The result is known when d < 2 (see [27, theorem 2] for a sharper result when d = 2).
We may thus assume that d > 3. Let D; C X, 1 € A be a set of O,(B* 2\/dlog B + 1) geometrically
integral curves D; C X, 1 € A of degree O4(1) as in Corollary 3.22. Then,

N <X -U DA;B> =0, <B3\/d(logB)4 + 1) .
AEA

To estimate the contribution to N(U; B) from the curves D;, we apply Theorem 1.17. Then we get
N(D;; B) = 0,4(B¥(4~Dlog B + 1) for curves D, of degree at least d — 1. The total contribution from
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the curves D;, A € A to N(U: B) is thus 0,(B¥/2Ve +2/d=D(log B)? + 1), which is acceptable for d >
4. When d = 3, we get O(B\/3/ 2 +23(log B)? + 1) in total from the curves D; of degree > 3 and for
the conics D; we get O, (B! + V32-3V3/16 +¢ 4 pl+¢) in total by Lemma 5.3(a) as dim Hy, < 1. This
gives the desired bound for N(U; B) when d = 3, thereby completing the proof. O

Corollary 6.4. Let X C P3 be a non-singular surface over Q of degree d. Then,

N(X;B) = 0,(B%/Vi(log B)* + B).

Proof. Itis proved in [14] that there are O,4(1) curves of degree < d — 2 on X. The result thus follows
from Theorems 6.3 and 1.17.

Corollary 6.5. Let a = (ay,a,;,0a,,0as) be a quadruple of rational numbers different from zero
and n, 4(B) be the number of primitive integer solutions in the region max(|xy|, ..., |x;|) < B to the
equation
aoxg + alx‘li + azxg + a3x‘31 =0,
with aoxg + ajx;i #O0forj=1,2,3.
Then,

neq(B) = 0, (33/ Va(log BY* + 1) .

Proof. The case d =1 s trivial and the case d = 2 follows from [27, theorem 2]. So let d > 3 and
X c P? be the surface over Q defined by the equation aoxg + ale + azxg + a3x§1 = 0. Then itis
known (see [16, Example 2.5.3(a)] or Theorem 9.4 below) that there are 3d? lines on X and that their
union is defined by the equation (aoxg + ale)(aoxg + azx‘zi)(aoxg + a3x§l) = 0. It thus suffices
to prove that N(X"; B) = 0,4(BY Vi(log BY* +1).

There are O4(1) curves of degree < d—2 on X (see [14]). We thus get the assertion from Theo-
rem 6.3 provided we can prove that N(C; B) = O 4(B \/d(log B)* +1) for any curve C on X of degree
6 with 2 < § < d—2. But is shown in Theorem 9.4 below that § > (d + 1)/3 for any curve which is
not a line. Hence N(C; B) = Od(B6/ (d+ l)log B) by Theorem 1.17, which is acceptable for d > 3. This
finishes the proof. O

Theorem 6.6. Let X C P* be a non-singular complete intersection of two hypersurfaces of degree d,
and d, and let U be the complement of the union of all curves of degree at most d; + d, —3 on X. Let
d = dldz. Then,

N(U;B) = 0y, <B3/ \/d”) .

Proof. 1fd; =1ord, =1, then X C P*is given by equations a, X, + -+ + a, X4 = G(xp, ..., X4) =0
where some q; # 0. If ay # 0, then G(x, ..., X3, -(ag /az)xy -----(as /a,)x3) is a form in (xy, ..., x3)
which defines a non-singular surface X c P? of degree d = d; + d, - 1 = d,d,. The projection a:
X—X from (0,0,0,0,1) is an isomorphism, which maps U onto the complement U of all curves of
degree at most d - 2 on X and with H(a(x)) < H(x) for x € X(Q). We have thus by Theorem 6.3 that
N(U; B) < N(U; B) = 04(B¥V4(log B)* +1). If d, = d, = 2, then X is a del Pezzo surface of degree
4. It is well-known that there is no two-dimensional family of conics on such a surface. Hence
N(U;B) = OE(B3/\/d *+¢) by Theorem 6.1.
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For the remaining pairs (d,, d,) we choose a set #A = 0,(B>>V4log B + 1) geometrically integral
curves D;, A € A of degree O,4(1) as in Corollary 3.23. Then, all but Od’n(B3/\/d+Od,n(1/10g(1+10g3)))
rational points in X(Q; B) will lie on one of these curves. Moreover, by Theorem 1.17 we have that
N(D;; B) = 0,4(B*°log B + 1) for curves D, of degree > 3. The total contribution from the curves
D;, A € A of degree > & is thus O4(BY 2Vd+2/3(1og B + 1), which is acceptable for & > 44/d /3.
This completes the proof when d = d,d, > 8, since then deg D, > d; + d, —2 > 4\/d /3 for all
curves D, with Un D; # @.

We now treat the remaining case {d;, d,} = {2, 3}. The total contribution from the curves D,,
A€ Aofdegree > 4 is then O,(B¥?V6+2/4+¢) which is acceptable. If deg D, = 3, then D, is
contained in a hyperplane H C P* and either a non-singular twisted cubic in H or a plane cubic
[22, proposition 18.9]. The self-intersection number (D;. D;) = 2p,(D;) — 2 (see Ex. I1.8.4(c) and
Ex.V.1.3 in [24]) such that (D;. D;) = -2 for a twisted cubic. We may therefore apply the Hilbert
scheme arguments in [14] and conclude that there are only O(1) non-singular twisted cubics on
X. The total contribution from these cubics is thus OE(BZ/ 3log B + 1) by Theorem 1.17.

Let Q C P* be the unique quadric containing X. Any plane cubic C on X will span a plane
IT € Q. Hence X can only contain a plane cubic when Q is singular. Also, as X is non-singular,
the vertex v of Q must then be a point outside X. By projecting from v, we obtain a morphism
h: X— Q’ to a non-singular quadric in P?, which maps the integral plane cubics on X onto lines
on Q’. These lines are the fibres of two morphisms g;: Q’— P!, i = 1, 2 and any plane cubic on
X is therefore a fibre of one of the two morphisms f; = g;h to P'. By [24, I11.10.7] the set S of
points s € P}(C) such that X; = X xp1 k(s) is singular is finite and by [2, II1.11.4] we have that
XXc) = X5 e s X(X,) with all x(X;) > 0. Hence as y(X;) > 1 for integral and singular fibres (cf. [20,
p. 508]), we conclude that there are at most y(X) such fibres of f;. The Euler-characteristic y(X¢)
=24 as X is a K3-surface (cf. pp. 590-592 in [20]). There are thus at most 48 singular plane cubics
on X and they contribute with O,(B*> log B + 1) to N(X; B).

To count points on the non-singular plane cubics, we choose a birational projection 8: X— P3 as
in [12, Section 3] and apply the arguments that we used for the conics in the proof of Theorem 6.1.
Then deg S(X) = 6 and all but O(1) plane cubics on X are mapped isomorphically onto plane cubics
on B(X). There exists also a constant ¢, such that N(D;; B) < N(B(D,); c,B) for all these cubics. It
is thus enough to prove that the sum of N(5(D;); c,B) over all non-singular plane cubics 8(D;) is
of order O,(B* V6+¢) By [41,1.8], we have N(C; B) = O.((B/H(IT)/3)*3+¢ 4+ 1) for a non-singular
cubic C on a plane IT C P3. The planes I1; C P? spanned by the cubics A(D;) are images of
planes on Q and hence parameterised by a one-dimensional subscheme of bounded degree of the
dual space P3V. There are thus by Theorem 1.17 O(R?) such planes IT; of height H(IT) < 2R for R
> 1. The contribution from the non-singular cubics spanning planes of height H(IT) € [R, 2R] is
therefore O,(B*3 * ¢R!%/° 4+ R?) and if we cover [1, B¥/ 416 by O(log B) dyadic intervals [R, 2R], then
we get O,(B3+4/ 3V6+26) i total. If H(IT) > B¥4V®, then N(C; B) = 0.(B*37Y 6V6+¢) which gives
0.(B¥3+4 3V6+22) i total as #A = 0.(B¥ 2/6 +5) The contribution to N(X; B) from the cubics is
thus O, (B3 +#/ 3V6+25) which is acceptable. This completes the proof. O

Corollary 6.7. Let X C P* be a non-singular complete intersection of two hypersurfaces of degree d,
and d, and d = d;d,. Then,

N (X';B) = 0,, <B3/ ve+e 4 B) .

Proof. 1t is proved in [5, lemma 12] that there are O4(1) curves of degree < d; + d, —3 on X. The
result therefore follows from Theorems 6.6 and 1.17. O
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7 | INTEGRAL POINTS ON AFFINE SURFACES AND THE
DIMENSION GROWTH CONJECTURE FOR PROJECTIVE VARIETIES

In this section, we shall prove Theorems 0.3 and 0.4. We will use the following notation.

Notation 7.1. Let X C P'*! be a quasi-projective variety over Q.

(a) S(X;B)isthe set of rational points on X which may be represented by an integral (v + 2)-tuple
@, x, ..., %, )withIx, | <Bformefl,...,r+ 1}
(b) Ni(X; B) = # S5,(X; B).

Theorem 7.2. Let X C P" be a geometrically integral surface over Q of degree and X,,; be the non-
singular locus of X. Let B = (1, B, B, B). Suppose that the hyperplane I1, defined by x, = 0 intersects
X properly. Then there exist a positive constant c bounded solely in terms of d such that the following
holds.

There exists for each B> 1a set ode(Bl/\/d log B + 1) geometrically integral curvesD; C X,A € A
of degree O4(1) such that N(X,;; — o D13 B) = 0,4 (B2/ Vd+c/log(+logB)y

Proof. If B= (1, B, B, B), then V = B3and T = B¢ by the assumption on I, N X. The theorem
therefore follows from Theorem 3.16 applied to the case B = (1, B, B, B) and for some value of ¢
not exceeding 1/31/d. O

Corollary 7.3. Let X C P? be a geometrically integral surface over Q of degree d. Suppose that the
scheme-theoretic intersection I, N X defined is geometrically integral. Then

N, (X;B) = Oy, (BY/VE + B”E) .
Proof. LetD; C X,A€ A, cand B=(1, B, B, B) be as in Theorem 7.2. Then,
N, (X,sB)< Y, Ni(D3;B)+0, ( B2/ Vd+e/ 10g(1+logB)> '

Further, if C is a geometrically integral space curve of degree &, then N,(C; B) = 05,5(31/ S+e)
by the results on affine curves in [3, 38, 39]. We have thus that Ny(D;; B) = Oy (B2 *°) for
any curve D;, A € A of degree > 1. The total contribution to N,(X; B) from these curves is thus
0, (BY Vd +1/2+€) Moreover, by proposition 1 in [12] there are 0, .(BY Vd+e 4 Bl+€) points in
S,(X; B) on the union of the curves D;, A € A of degree 1. We have thus shown that N;(X,,;; B) =
Od,a(BZ/\/d +e 4 gl+e),

The singular locus X, of X is contained in a union of O,4(1) integral curves D C X of degree
0,4(1) with #D(Q) = O,4(1) if D is not geometrically integral (see the proof of Corollary 3.23). We
have thus by the above estimates for affine curves that Ny (Xi,,; B) = Oy (B ), which completes
the proof. O

Theorem 7.4. Let f(y1,¥,,¥3) € Z[y;, Y2 Y3, be a polynomial such that its homogeneous part
h(f) of maximal degree is irreducible over Q. Let d = deg h(f) and n(f; B) be the number of triples
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y = (1, Y3, Y3) of integers such that y,,y,,y; € [-B,B] and f(y) = 0. Then,

n(f;B) =0y, (B'*) ifd>4

n(f;B) =0, (B2N3+f) ifd = 3.

Proof. Let F(xy, X;, X, X3) = xgj(xl/xo, X, /Xy, X3/Xy) and X C P3 be the surface over Q defined by
F. Then IT, n X and X are geometrically integral since h(f) and hence also fis irreducible over Q.
It is clear from the definitions that N;(X; B) = n(f; B). The result is therefore just a reformulation
of Corollary 7.3. O

Remark. Theorem 0.3 follows from Theorem 7.4 and [12, proposition 8].

The following result gives an almost complete answer to the dimension growth conjecture
(Conjecture 0.2) of Heath-Brown and improves upon the previous results in [12, 42].

Theorem 7.5. Let X C P" be a geometrically integral projective variety of degree d and dimension
r defined over Q. Then,

N(X;B) = Od,n,a(Br+E) ifd>4

N(X;B) = 0,, <B"1+2/ V3+E) ifd = 3.
Proof. Use Theorem 7.4 and [12, theorem 2]. |

Remark. The birational projection argument in [12, section 3] implies that Conjecture 0.2 holds
for projective varieties of degree d as soon as it holds for projective hypersurfaces of degree d.
Conjecture 0.2 is thus known to be true for varieties of degree 2 [27, theorem 2] and for varieties of
dimension at most 3 by [27, theorem 5], [27, theorem 9], [6] and [9, theorem 3]. It was first shown
for non-singular hypersurfaces by Browning and Heath-Brown [11, theorem 1].

Castryck et al. [13] have recently been able to remove the Bé-factor in Theorem 7.5 when d > 5
and there is also now a sharper bound N(X; B) = O,, .(B" /7 +¢) for d = 3 (see [45]).

8 | INTEGRAL AND RATIONAL POINTS ON CUBIC
HYPERSURFACES

The aim of this section is to prove the dimension growth conjecture for projective cubic hypersur-
faces and thereby obtain a proof of Theorem 0.1 for all projective geometrically integral varieties
over Q of degree d > 2.

The main new ingredient (see Theorem 8.11) will be an estimate for cubic polynomials f €
Q[y,, ..., y,] where the homogeneous cubic part h(f) vanishes on a two-dimensional affine linear
subspace over Q. As we will not require uniformity of the implicit constants, we may and shall
assume that h(f) vanishes on the linear subspace defined by y; = --- =y,, = 0. The homogenisation
F(Xg, ..., X,) = X3 f1/Xg, ..., X,/%y) of fis then a cubic form over Q which will vanish on the line
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AcC Pg defined by x;, = x; = -+ =X, = 0. It will thus have an expansion

F = Ly1x] + 2L, %, + LypX5 + 2Q1 ) +2Q,x, + C, (8.1)
where Ly, L5, Ly, Q;, Q, and C are homogeneous polynomials in Q[x, X;, ..., X,,]. There is also

a similar expansion of f{y,, ..., y,,) = F(L,y;, .-+, V)

[ =10y + 2001, + byys + 2101 + 24,9, + ¢, (8.2)

where I}, 15, 1. 41, 42, ¢ € Q[ys, ..., y,] are the polynomials obtained from L, L5, Ly;, Q;, Q,
and C by lettingx, =landx; =y, fori=3, ..., n.

Lemma 8.3. Let F € Q[x,, Xy, ..., X,,] be an irreducible cubic form as in (8.1) and suppose that at
least one of the forms Ly, L,,, L,,, Q;, Q, does not vanish. Then the closed subset of Ag_z defined by
L1 =1, = b, = q = q, = ¢ = 0is of codimension at least 2.

Proof. Tt follows from the irreducibility of fand (8.2) that the highest common factor (I;y, 1, [, g3,
5, ¢) =1. There is thus no prime ideal in Q[yj, ..., y,] of height 1 containing the ideal generated by
Ly, s, Lo, 4, g, and ¢ and hence no irreducible component of codimension 1 in the given closed
subset. O

Lemma 8.4. Let F € Q[xy,X,,...,X,] be a cubic form as in (8.1) and X C Pg be the hypersur-
face defined by F. Let Y C Ag be the affine hypersurface with coordinates y; = x;xy fori =1,...,n
defined by f(y1, .-, ¥n) = F(L, Y1, ., ¥)-

Suppose that the singular locus of Yis of codimension at least 2 in Y and that the line A C X defined
byxy=x; = -+ = x,, = Oisnot contained in the singular locus of X. Suppose also that X is not a cone
with vertex on A. Then (see (8.2)):

Lhi i ¢
D=l L, q
9 49 ¢

does not vanish identically.
Proof. The assertion is equivalent to the assertion that the ternary quadratic form
Quen (X0, X1, X5) = X7 + 29, XX +24:X0X, + 1, X7 + 21X, X, + 1, X5

defines a non-singular conic in Pi over K=Q(ys, ...,¥,). To show this, let p: Y—»AE‘I_2 be the mor-
phism which sends (3, ...,¥,) to (s, ...,¥,). Then, if we apply the theorem of generic smoothness
[24, 111.10.8] to the restriction of p to the non-singular locus of Y, we conclude that any singular
point on the generic fibre of p belongs to the singular locus of Y. Therefore, as Y is non-singular
in codimension 1, the generic fibre of p must be smooth and X;, vanish at any singular point P on
the conic in Pé defined by Qgen(Xo, X, X5). The ternary quadratic form Qge,(Xo, X;, X5) is thus
non-singular if and only if the binary quadratic form [}, X 12 +21,X. X, + 1LLX g is non-singular and
D#0ifand onlyif L;,L,, —L? #0.

If L,,L,, — L%2= 0, then there exists a linear form L € Q[x;, ..., x,,] and rational numbers 4;
such that L; = 2;L for 1 <i <j < 2. We may thus, when D = 0, assume that L;; = L;; = 0 after a
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Q-linear change of coordinates in x; and x,. Then (8.1) reduces to:

But for such a form F we cannot have that L,, = 0 since this would imply that A C Sing X.
Also, we cannot have that Q; = 0 since X would then be a cone with vertex (0,1, 0 ..., 0) on A.
Henceif L;; = L;;, =0, then D =—122qf # 0. This shows that D cannot vanish identically.

In what follows, we shall say that a line on X is simple if it is not contained in the singular locus
of X.

Lemma 8.5. Let F € Q[x,, X, ..., X,,] be a cubic form form asin (8.1), X C Pg be the hypersurface
defined by F and X be the line defined by x, = x5 = -+ = x,, = 0. Suppose that A is disjoint to the
singular locus Sing X of X = 0 or that A is simple on X and there is more than one geometric point on
AnNSing X. Then Ly L,, — L%z does not vanish identically.

Proof. If L;;L,, — szz 0, then we may as in the previous proof assume that L;; = L, = 0 and
F=Lyx3 +2Qx; + 2Q,x, + C. Then AC Sing X when L, = 0 while A n Sing X = {(0,1,0, ..., 0)}
when L,, # 0. Hence L, L,, —L%z cannot vanish under the given assumptions. O

Notation 8.6. Zy; =Z n [-B, B] for B> 1.
n(f; B): = #{y = (v, ..., ¥,) € Z;: fly) = 0} for polynomials f € Q[y;, ..., y,]-

Lemmas8.7. Lete>0and f(y),y = (1, -, ¥,) bea polynomialin Q[y,, ..., y,] and g(y) = f(e(y))
for a Q-linear automorphism ¢ € GL,(Q). Then n(f;B) = O;(B®) if and only ifn(g;B) = 0, (B°).

Proof. This is trivial and left to the reader. O

Theorem 8.8. Let F(xy,X;,...,X,) be an irreducible cubic form over Q and X C Pg be the
hypersurface defined by F. Let Y C A’é be the affine hypersurface with coordinates y; = x;/x, for
i=1,..,ndefined by f(y1,....¥,) = F(,y1,...,¥,) and Z C Pg‘l be the hypersurface defined by

h(f)(xq, s X)) = F(0, Xy, ..., Xpp)
Suppose that the following conditions hold.

(1) Y has singular locus of codimension at least 2.
(ii) There is a rational line A on Z, which is disjoint from the singular locus of X or which is simple
on X with more than one geometric point of multiplicity 2 on X.

Then n(f;B) = Oy (B"~%*).
Proof. By Lemma 8.7 we may assume that A is given by x, = x; = --- = x,, = 0 and that F has
an expansion as in (8.1). We may also assume that f € Z[y,, ..., y,,] after replacing F by mF for a

suitable integer m.
Let f,(01, ¥,) =f01, Y2, b3, ..., b ) forb=(b; ..., b,) € Zg_z. Then,

n(f;B)= Y n(fy;B) (8.9)

n—2
beZj

where n(fy; B) = #{(y1, ¥,) € Z3: f,(1, ¥,) = 0}
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If D # 0 (cf. Lemma 8.4) and Ly, Ly,—L?, # 0 at b € Z!~2, then n(f,; B) = O.(B%) by lemma 13 in
[12]. The total contribution to the sum in (8.9) from such (n—2)-tuples is thus O(B" =2 *+¢).

For the remaining b € Zg_z with f;, # 0, we use the trivial estimate n(fy; B) = O(B). To estimate
the number of such b, we first note that by (ii), X cannot be a cone with vertex on A as there cannot
be more than two geometric points on A N Sing X. We may hence apply Lemmas 8.4 and 8.5 and
conclude that D and L;;L,, —L%z do not vanish. There are, therefore, O](B”_3) (n —2)-tuples b €
Zg’z such that D or L;;L,, —L%z vanishes at b. The total contribution to the sum in (8.9) from all
b € Z}> with f;, # 0 and D(Ly; Ly, —L3,) (b) = 0 is thus O(B"~?).

It remains to estimate the contribution from the (n — 2)-tuples b € Zg_2 with f, = 0. These
(n — 2)-tuples lie on an affine variety of dimension < n — 4 (see Lemma 8.3). There are thus
O(B"~*) such (n — 2)-tuples and we have n(f,; B) < (2B + 1)* for such b. This gives O(B"~?) in
total. We have therefore shown that the right-hand side of (8.9) is of order Of,E(B”“2 *¢), thereby
completing the proof of Theorem 8.8.

To treat the case when there is a rational line on Z not satisfying 8.8(ii), we apply the following
result.

Proposition 8.10. Let F be an irreducible cubic form in Q[x, X1, ..., X,] and X C Pg be the hyper-
surface defined by F. Suppose that there is a rational point P of multiplicity two on X such that x,
vanishes at P and such that the projective tangent cone of X at P is not a double hyperplane in Tp(P™)
defined by xé. Let f(¥1,->Y) = F(1,y1,...,¥,). Then n(f;B) = Of,E(B”‘ZH).

Proof. We may after a linear coordinate change in (x;, ..., X,,) (see Lemma 8.7) assume that P =
(0,1,0, ..., 0). There are then forms Q, C in (X, X,, ..., X,;) with

F (xg, X155 X)) = X1Q (X0, Xg, e s X)) + C (X, X5 o0, Xpp)
where after a further linear coordinate change in (x,, ..., X,,) we can suppose that
Q (xg, X5, -5 X)) = XL (g, X5, oo, X,,) + Qq (X, X3, 05 X))

for some linear form L # 0. We may also after replacing F by mF for a suitable m € N assume that
Q and C have integer coefficients.

Let A = Z[x,, X3, ..., X,,] and R € A be the resultant of Q,C € A[x,]. Then R is the determinant
of the Sylvester matrix of Q and C and hence a sextic form in (x,, x5, ..., X,,). R cannot be the zero
polynomial as Q and C have no common factor of positive degree for irreducible F. By the theory
of resultants R belongs to the ideal in A[x,] generated by Q and C.

Fora=(as,...,a,) € 2" 2, letq,(y,) = Q(L, 5, as, ..., a,) and ¢,(y,) = C(1, y,, as, ..., a,). Then
a,9,(a,) + ¢c,(a,) = 0 for any pair (a,, a,) € Z* with fla,, a,, as,..., a,) = 0. As Ha): = R(l, as,
..., a,) belongs to the ideal of Z[y,] generated by q,(y,) and c,(y,), we have thus for such a that
qq(ay)Ir(a). Also, if a € Z};~2, then r(a) = Oy(B®). There are, thus, for a € Z;~* with r(a) # 0 only
Oy(B°) possible values for g,(a,) for (a;, a,) € Z? with flay, a,, a, ..., a,) = 0.

We may now count the contribution to n(f; B) from all (y,, ..., y,) with R(1, 3, ..., y,,) # 0
and y,L(, ¥, Y3, ---» ¥,) # 0. For a = (as, ..., a,) € Z"72, let f,(3y, y,) = f,(v1, ¥2,03, ..., @,,) and
l.0r) = LA, y;, as, ..., a,). Then, y,1,(v,) = q,(v,)— Q1 a3, ..., a,) and ,1,(r,) = Of(BZ) for y,
€ Zg. There are, thus, O;.(B°) possible values of y, for each non-zero value of y,l,(y,). To con-
clude, we have therefore shown that there are Op (B*) solutions (y;, y,) = (a;, a,) € Z;, with
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¥,1,(0,) # 0 to the equation f,(;, y,) = 0 for each a € Z}} 2 with r(a) # 0. This gives Oy (B" 2 * %)
n-tuples in Zj in total with f= 0 and y,L(1, ¥, ¥3, - -+, ¥, )R(Y35 ..., ¥,) # 0.

The remaining contribution comes from n-tuples in Z}; which lie on the closed subset W C A"
defined by the equations f = y,L(1, y5, Y3, .-+, Y. )R}, ..., ¥,) = 0. Here f & Q[y;, ..., y,] as L #
0. It is therefore clear from the irreducibility of f that W is of dimension < n—2. There are thus
O](B”_Z) n-tuples in Z which lie on W. This completes the proof. O

We now come to the most important new result of this section.

Theorem 8.11. Let F(x,...,x,) be an irreducible cubic form over Q and f(yi,...,¥,) =
F(1,yy,...,y,) Let X C P’é be the hypersurface defined by F and Z = H n X for the hyperplane
HcC Pg defined by x, = 0. Suppose that the singular locus of Y = X — Z is of codimension at least
2 in Y and that there is a rational line A on Z with the following properties:

(i) Xis not a cone with vertex at a point on A.
(ii) If A is simple on X, then there is no rational point P € A of multiplicity two on X for which the
projective tangent cone of X at P is a double hyperplane in Tp(P") defined by x(z).

Then n(f;B) = Oy (B"~%*).

Proof. Suppose first that A is simple on X. We may then apply Theorem 8.8 if there is no or more
than one singular geometric point on A and Proposition 8.10 when there is only one singular
geometric point on A. It thus only remains to treat the case when A is a double line on X. We may
then assume that A C H is given by the equations x; = --- = x,, = 0 such that

F (xg, %1, s X)) = X1Q7 (X, X35 o5 X)) + X5Q5 (X5 X35 000, X)) + C (X, X35 005 X)

for some forms Q; Q, and C.Ifnow 4,Q; +4,Q, =0for 4;, 4, € Q, then 4, = 1, = 0 since otherwise
Xwould be a cone with vertex on (0, /12, —1;,0,...,0) € A. Therefore, at least one of the quadratic
forms Q, or Q, is not divisible by x(z), such that we may apply Proposition 8.10 to P = (0,1,0, ..., 0)
or P=(0,0,1, ..., 0). This finishes the proof. O

If we combine this theorem with the results in the paper [9] of Browning and Heath-Brown,
then we obtain the following general theorem.

Theorem 8.12. Let G(x,, ..., X,) be an absolutely irreducible cubic form over Q. Then, n(G;B) =
OG,E(Bn_2+€)'

Proof. If the hypersurface Z Pg_l defined by G is a cone, then we may assume that its vertex is
given by the equation x,,, , ; = - =X, =0, m < n (see Lemma 8.7). Let Gy(x,, ..., X,,,) = G(x;, ...,
X 0, ..., 0). Then G, is absolutely irreducible and n(G; B) < (2B + 1)*"n(G,; B). We may and
shall therefore assume that the hypersurface Z defined by G is not a cone.

We now use the fact that any non-conical cubic hypersurface of dimension > 3 is normal (see
[33, theorem 3.1]). We may thus apply Theorem 8.11 for non-conical cubic hypersurfaces of dimen-
sion > 3 with a rational line. If on the other hand there is no rational line on Z, then the assertion
is already known by theorem 2 in [9].

It thus only remains to treat the case when dim Z < 3. But then the result is already known
thanks to theorems 3 and 9 in [27] and theorem 3 in [9]. O
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Remark. In the case of cubic hypersurfaces with singular locus of codimension > 4, this result was
first obtained by Browning [7] by means of a version of the circle method.

Theorem 8.13. Let X C P™ be a projective, geometrically integral, r-dimensional variety over Q of
degree d > 2. Then N(X; B) = Ox (B"**).

Proof. It suffices by Theorem 7.5 and the following remark to prove this for varieties of degree 3.
It is then proved in [12, section 3] that there exists a finite birational morphism f: X— P"* ! over
Q which maps X onto a cubic hypersurface Z and a constant ¢ such that H(f(x)) < cH(x) for all
x € X(Q). Therefore, as N(Z; B) = O, (B" * ©) by Theorem 8.12, we will also have that N(X, B) =

OX,s(Br + E). O

9 | CURVES ON FERMAT SURFACES

In this section, we shall study the degrees of curves on Fermat surfaces.

Theorem 9.1. Let K be an algebraically closed field of characteristic 0 and X C P" be the hyper-
surface given by the equation aoxg + -+ anxg = 0 for an (n + 1)-tuple (ay, ..., a,) of non-zero
elements in K. Let C be a closed integral curve on X of degree & and geometric genus g which does
not lie on any other hypersurface of degree d defined by a diagonal form boxg + o+ bnxg. Then the
following holds.

(@ (n+1)8(d—-(n—1)) <néd+n(n—1)(g—1).
(b) n+1)(d-(m—-1)) <nd+nn-1)(6-3)/2

Proof.

(a) LetII c P" be the hyperplane defined by the equation y, + --- +y,, = 0 and h: C — II the
morphism which sends (x, ..., x,,) to Vg, ..., ¥,) = (aoxg, w0, @, x9). Let 7: C;— C be the nor-
malization of C and f= hr. Let V be the n-dimensional K-subspace of H(C;, f*O(1)) spanned
by f*y;, i =0, ..., n. For s € V'\ {0}, let (s), = Y. ordp(s)P be its divisor of zeroes. The set
My, = {ordp(s)}; € V'\{0} consists of n non-negative integers. The ramification sequence
ayP, V) <P, V)<... £a,_ (P, V) of f: C,—II at P € C is defined by

Mpy={ay(P,V),1+ a;(P,V),..,(n —1) + a,_1(P,V)}.

By the Pliicker formula for f: C;—II ~ P"~! (see (*) in exercise C13 in [1, Ch. I]), we get

n—1

z Zoci(P,V)=nD+n(n—1)(g—1), (9.2)

PEC, i=0

where D = 8d is the degree ), ordp(s) of the divisors (s), of zeroes of s € V'\{0}.

Let (), =), mpP be the divisor of zeroes of ¢t = 7%(x,...x,) € HO(Cy, m0p(n + 1)). Tt is
an effective Weil divisor of degree (n + 1)d on C;. To obtain the desired result, it is enough to
prove that

n—1

D (P, V) > mp(d—(n—1) (9.3)

i=0
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for closed points P on C;. This is clear if mp = 0, since o;(P,V) > 0 by definition. If mp > 1,
we reorder (X, ..., x,,) such that ordp 7*x,, = 0 and ordp 7*x, < ordp 7%, < -+ < ordp 7%, ;.
Then, as (f*yy, ..., f*¥,.1) is a basis of V, we obtain that ord, ffy; <i+ (P, V) fori=0,...,
n—1. Also, mp = ordp 7*; + -+ + ordp 7%, ; where j = max(n — mp, 0). Hence,

n—1 n—1

n—1 n—1
Y a®,V)= Y aP,V)> Y (ordpmy; — i) = dmp — ¥ i > mp(d - (n—1)).
i=0 i=j i=j i=j

(b) It suffices by (a) to prove that 2g — 2 < §(8 — 3). If C is a plane curve, then this follows from
Exercise 1.7.2(a) and Exercise IV.1.8(a) in [24]. If C is not contained in a plane, then we project
it birationally to a plane curve C’ and use that g(C) = g(C") and deg C < deg C’. This completes
the proof. O

The following theorem improves upon previous results (cf. [28]) on the degrees of curves on
Fermat surfaces.

Theorem 9.4. Let K be an algebraically closed field of characteristic 0 and X C P? be the surface
given by the equation aoxg + ale + azx‘zi + a3xg = 0 for a quadruple (ay, a,, a,, a;) of non-zero
elements in K. Then the following holds.

(a) Letj=1,2or3. Then the subscheme of X defined by aoxg +a jx‘.i = 0 is a union of d? lines.
(b) Letd >3 and C C X be a closed integral curve on X, which is not one of the 3d? lines described in
(a). Then the degree of C is at least (d + 1)/3.

Proof. (b) Suppose first that C lies on another surface defined by a diagonal equation boxg +
ble + bzxg + b3x§1 = 0. Then the two diagonal forms define a one-dimensional subscheme Y of
P3, which is connected (see [24, Exercise 11.8.4]). If b;/a; # bj/a; forall 0 <i<j<3,then Yisalso
non-singular. Hence Y is integral and C = Y of degree d? in this case. If b;/a; = b;/a; = A for some
i <ji, then (by — Aag)x? + (b; — Aa)x? + (b, — Aay)x4 + (b; — Aas)xd isabinary form G inx, and
x; for k, | ¢ {i, j}. We may thus, then, find a linear factor L of G, which vanishes on C. Moreover,
this linear form cannot divide akxl‘j + ale as akx,‘f + ale # 0 on C. Hence the plane section of
X defined by L is integral and C of degree d in this case.

It remains to consider the case where C lies on no other diagonal surface of degree d. Then
4(d — 2) < 3d + 3(deg C — 3) by 9.1(b), which is equivalent to the desired assertion. O
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