
Contact-free measurement of surface tension on single droplet using
machine learning and acoustic levitation

Downloaded from: https://research.chalmers.se, 2024-03-20 11:58 UTC

Citation for the original published paper (version of record):
Argyri, S., Evenäs, L., Bordes, R. (2023). Contact-free measurement of surface tension on single
droplet using machine learning and
acoustic levitation. Journal of Colloid and Interface Science, 640: 637-646.
http://dx.doi.org/10.1016/j.jcis.2023.02.077

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Journal of Colloid and Interface Science 640 (2023) 637–646
Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

journal homepage: www.elsevier .com/locate / jc is
Contact-free measurement of surface tension on single droplet using
machine learning and acoustic levitation
https://doi.org/10.1016/j.jcis.2023.02.077
0021-9797/� 2023 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: bordes@chalmers.se (R. Bordes).
Smaragda-Maria Argyri, Lars Evenäs, Romain Bordes ⇑
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
h i g h l i g h t s

� An acoustic levitator was used for
contactless determination of surface
tension.

� A dataset of over 50,000 photographs
of levitated aqueous surfactant
droplets was built.

� The droplet contours were processed
through a neural network.

� Limitations of theoretical frameworks
were surpassed by the machine
learning approach.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 24 October 2022
Revised 2 February 2023
Accepted 14 February 2023
Available online 23 February 2023

2000 MSC:
0000
1111

Keywords:
Contact-free
Surface tension
Machine learning
Levitating
Droplet
a b s t r a c t

Hypothesis: Acoustic levitation provides the possibility to deform levitated droplets in a controllable, and
quantifiable manner, thus offering a means to measure the surface tension of a liquid droplet based on its
deviation from sphericity. However, for new generation of multi-source and highly stable acoustic levi-
tators, no model relates the acoustic pressure field to the deformation and surface tension. Utilizing a
machine learning algorithm is expected to identify correlations between the experimental data without
any set preconditions.
Experiments: A series of aqueous surfactant solutions with a large range of surface tensions were pre-
pared, and evaporated under levitation, while the acoustic pressure was varied. A dataset of over
50,000 images was used for the training and evaluation of the machine learning algorithm. Prior to that,
the machine learning approach was validated on in silico data that also included artificial noise.
Findings: We achieved high accuracy in predicting the surface tension of single standing droplets (�0.88
mN/m), and we surpassed certain physical conditions related to the size, and shape of the suspended
samples that simpler theoretical models are subject to.
� 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Most commonly the measurement of surface tension involves
the use of a solid object (e.g., needle, Du Noüy ring, Wilhelmy plate
etc.), which poses the major risk of contamination, or surface
induced error. Acoustic levitation constitutes an appealing method
to levitate, and manipulate small volume droplets of liquids, thus
minimizing such shortcomings. The major advantage of acoustic
levitation over other levitation techniques (e.g., magnetic levita-
tion, optical tweezers, etc.) is that acoustic waves interact with
matter regardless of properties like magnetism, dielectricity etc..
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In the case of a liquid suspended in an acoustic levitator, the
droplet will deviate from a spherical shape (i.e., minimum surface
area governed by surface tension), to an ellipsoid (Fig. 1a), due to
the applied acoustic pressure. In Fig. 1b, the simulation of the
acoustic pressure field of the acoustic levitator used in this study
is depicted. The areas of low pressure (i.e., acoustic nodes) act as
physical traps since the surrounding high pressure constrains the
levitated object around the center of the node (z = 0 mm,
Fig. 1b). The main forces governing the droplet deformation are
the surface tension, acoustic radiation force, and gravitational force
(Fig. 1c). Surface tension, which tends to minimize the surface free
energy of the droplet by reducing its surface area, will oppose
deformation. On the contrary, the acoustic radiation force on the
surface of the droplet will promote it. The weight of the droplet
will affect its vertical position with respect to the acoustic node
(z < 0 mm, Fig. 1b) [1]. Hence, for heavier droplets the surface
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Fig. 1. (a) Coordinate system, where r polar coordinate radius, / polar coordinate angle,
acoustic levitator used in this study. (c) Illustration with the forces applied on the levit
surface acoustic pressure, PAW: penetrating acoustic waves ST: surface tension. (d) Phot
(9.0 V) showing the correlation between the droplet shape, and the volume. (e) Photograp
m) showing the correlation between the droplet shape, and the voltage. (f) Photographs
correlation between the droplet shape, and the surface tension.
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acoustic pressure (SAP, Fig. 1c) will be higher, consequently the
shape will deviate more from sphericity. Furthermore, the gravita-
tional force impacts the deformation to a larger extent, when the
radius of the droplet is larger than the capillary length, kc. In that
case, the gravitational force will be higher than the Laplace pres-
sure, and as a result, the droplet will be flattened at the top, due
to its own weight.

As shown in Fig. 1d, for fixed voltage, and surface tension, the
droplet tends to be more spherical for smaller volumes. This is
attributed to the acoustic radiation force applied on the surface
of the droplet. The heavier the droplet, the lower the vertical posi-
tion, z of the droplet will be, thus the acoustic radiation force will
induce a greater deformation. On the contrary, a smaller droplet
will be positioned closer to the center of the node. Therefore, the
acoustic pressure applied on the surface of the droplet will be
lower, thus the droplet shape will be closer to spherical. When
Surface tension (mN/m)
55 70

Voltage (V)
7.4 8.2

1 mm

Volume ( L)
1.3 0.8

and h azimuth angle. (b) Simulation of the acoustic pressure field generated by the
ated droplet: AAP: applied acoustic pressure, RAW: reflected acoustic waves, SAP:
ographs of levitated droplets with constant surface tension (29 mN/m), and voltage
hs of levitated droplets with constant volume (2.1 lL), and surface tension (48 mN/
of levitated droplets with constant volume (2.0 lL), and voltage (7.0 V) showing the
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the volume and surface tension are constant, the deviation from
sphericity will be greater as the applied acoustic pressure increases
(Fig. 1e, where the voltage is used as a measure of the acoustic
pressure intensity). In contrast, a droplet with lower surface ten-
sion requires less acoustic radiation force to be deformed, for the
same volume, and voltage, as shown in Fig. 1f. In all cases
described above, the radius of the droplets is below the capillary
length.

From the examples above, it is clear that the description of the
deformation relies on a simple principle (i.e., balance of applied
forces), yet a major difficulty lies in the accurate description of
the surface acoustic pressure of the self-standing droplet. The
acoustic pressure field generated by acoustic levitators can be
described in a relatively straightforward manner, assuming that
each ultrasonic transducer acts as a point source. However, the
acoustic pressure field is affected by the levitated object, due to
reflected acoustic waves from the surface of the droplet, while
the acoustic waves that are not reflected will be absorbed by the
droplet. Another complication is that the surface acoustic pressure
changes with droplet volume, as described above.

In the case of the Langevin horn (i.e., a simple single source, uni-
axial levitator), Trinh and Hsu, [2] experimentally evaluated the
theory that correlates the shape of the droplet, the volume, and
the acoustic pressure, with the surface tension. However, a signif-
icant amount of constraints have to be accounted for, to simplify
the equation systems. As a result, the derived equation is valid
for spherical or nearly spherical droplets with a volume less than
2.5 lL. These conditions limit the experimental conditions, and
choice of studies, significantly. Later on, Tian et al., [3] developed
an analytical solution that could estimate the shape of an acousti-
cally levitated droplet, and its position within the acoustic pressure
field for larger droplets. In a following publication Tian et al., [4]
applied the analytical approach to determine the surface tension
of acoustically levitated samples. It was estimated that the sensi-
tivity of the method was�2 mN/m for surface tension values lower
than 50 mN/m. It was stated that the reason the sensitivity was
low compared to other techniques (typical statistical error:
�0:1� 0:5 mN=m [5]), due to low stability of such type of acoustic
levitator. Langevin horns are often reported as difficult to operate
[6], owing to extremely low lateral forces, which may cause the
suspended droplet to escape the acoustic node sideways
(Fig. S1b, Supporting Information).

Recently, Marzo et al. [7] designed a new generation of acoustic
levitators that uses multiple ultrasound transducers operating at
low voltage. The transducers are positioned in a spherical configu-
ration, which provides enhanced control, and unprecedented sta-
bility of the levitated droplet, due to higher lateral forces
(Fig. S2b, Supporting Information). This type of setup delivers
higher acoustic pressure close to the acoustic node (Fig. 1b). There-
fore, the shape of the droplets can be compressed more easily in
comparison to the Langevin horn, thus limiting the use of the exist-
ing theoretical models for the determination of surface tension.

To circumvent this issue we took advantage of the high stability
of multi-source acoustic levitators and employed a data-driven
approach through a machine learning algorithm that established
correlations between the surface tension, and deformation of the
droplets, depending on the volume, position in space, voltage,
and current. This approach presents several advantages over a
mathematical estimation of the acoustic pressure field, that would
then be used to correlate surface tension and deformation. Firstly,
the required inputs for the machine learning algorithm can be
directly, and easily accessed from the experimental setup, in the
form of voltage and current consumption. For instance, the acous-
tic pressure, which is usually difficult to measure accurately
through a microphone, can be replaced by the applied voltage.
The second advantage is that the neural network intrinsically
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accounts for the experimental errors, and provides a resilient sys-
tem for which the accuracy can be higher than that of traditional
models. Lastly, special cases (e.g., big droplet, large deformations,
very low surface tension etc.) that would normally require a spe-
cialized theoretical framework, could be accounted for by the same
machine learning algorithm, provided that these extreme cases
were represented in the training dataset.

In this study, we built a more compact multi-source acoustic
levitator, compared to TinyLev et al. [7], which led to enhanced sta-
bility of the levitated sample. The setup (Fig. S3, Supporting Infor-
mation) enabled the acquisition of a large experimental dataset,
that consisted of over 50,000 photographs of levitated aqueous
surfactant droplets. The high data availability enabled the applica-
tion of a machine learning-based approach. The machine learning
aspect of the study was divided into two parts. Firstly, we investi-
gated the validity of a data-driven approach using a simplified
mathematical model for Langevin horns. This model allowed the
generation of contours based on initial conditions (i.e., acoustic
pressure, volume, surface tension) which constituted the in silico
dataset. This dataset was used to construct the architecture of a
supervised neural network (NN), and to evaluate the effect of arti-
ficially generated noise on the accuracy of the predictions. The
neural network was then trained with experimental data, for
which the acoustic pressure parameter was substituted by the
driving voltage of the levitator, the current consumption, and the
position of the droplet along the z-axis. With this methodology,
we demonstrate that deformation of acoustically levitated data
can be processed with a data-driven approach toward the predic-
tion of meaningful measurements, while avoiding the need of
developing complex models.
2. Experimental section

2.1. Chemicals

Sodium dodecylsulfate (SDS) was provided by Merck,
cetyltrimethylammonium bromide (CTAB), and Triton X-100 were
purchased from Sigma–Aldrich Sweden AB.

2.2. Surfactant solutions preparation

Series of aqueous solutions of SDS (0.01 – 100 mM), CTAB (0.001
– 96 mM), and Triton X-100 (0.0001 – 10 mM) were prepared in
milli-Q water, at 23 �C. The solutions were stored at room temper-
ature for up to 5 days. The measurements were acquired within a
maximum of 3 days after the solution was prepared.

2.3. Surface tension measurements

The surface tension of the surfactant solutions was measured
with the pendant drop method, using an Attension Theta optical
tensiometer, by Biolin Scientific, Finland. A minimum of 10 dro-
plets were formed with a 0.718 mm needle, and let for equilibrat-
ing for about one minute before starting the measurements that
would last for 3 min, following the practice described in [8]. An
average of the equilibrated values was then taken. Longer record-
ing times were not considered as the effect of evaporation was
noticeable. A black and white digital camera is used to record
images of droplets, and the surface tension is determined by fitting
the Young–Laplace equation on the contour of the droplet.

2.4. Acoustic levitation

The acoustic levitator was built based on the TinyLev levitator
presented by Marzo et al. [7]. The scaffold of the device was 3D



Table 1
Range of input parameters for the generation of in silico drop contours.

Parameter Min value Max value

Volume (lL) 0.50 2.50
Surface tension (mN/m) 30.00 72.00
Acoustic pressure (Pa) 1,500 4,000
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printed with polylactic acid (PLA), and it consists of 36 ultrasonic
transducers in total, 18 at the top, and 18 at the bottom. Each
transducer operates at a frequency of 40 kHz. The driving voltage
ranged between 6.5 to 11 V. Description of the setup is found on
https://github.com/sargyri/Drop_Lev.

2.5. Simulation of acoustic pressure field

The simulations of the acoustic pressure fields were generated
through the Python library Levitate [9]. Each transducer is consid-
ered a point source, with directivity of a circular ring, and the
acoustic pressure is calculated as a superposition of the single
sources. The acoustic pressure of a single transducer is given by
[10]:

pj ¼
eikrj

r
J0ðkrj sinðhjÞÞ ð1Þ

where rj is the distance between a transducer j and the levitation
point, hj is the angle between a transducer j and the z-axis, and J0
is the Bessel function of the first kind of order 0.

The Python code used for the following simulations can be
found on https://github.com/sargyri/Drop_Lev.

2.6. Generating in silico data

Trinh and Hsu, [2] utilized a Langevin horn to study the defor-
mation of liquid droplets in an acoustic pressure field. They estab-
lished the mathematical expression below, to describe the
equilibrium shapes of acoustically levitated droplets based on the
theory presented by Marston et al. [11,12]:

rðhÞ ¼ Rþ xðhÞ ð2Þ
where h is the azimuth angle (Eq. (S2), Supporting Information), and
R the equivalent spherical radius of the droplet. Parameter xðhÞ
describes the deviation from sphericity and is expressed as

xðhÞ ¼ � 3
64r

ð3 cos2ðhÞ � 1ÞR2P2
s b0 1þ 7

5
ðkRÞ2

� �
ð3Þ

where r is the surface tension, and b0, and k the compressibility and
wavenumber of the host medium (i.e., air), respectively.

This equation was derived by applying the Gor’kov potential to
describe the acoustic radiation force, which is valid only for spher-
ical objects with a radius below 1/10 of the operating wavelength,
ko of the device (f ¼ 40 kHz for the acoustic levitator used for this
study):

ko ¼ u
f

ð4Þ

where, u is the speed of the speed in air and f is the operating
frequency.

Another condition that should be fulfilled is that the gravita-
tional force must not exceed the Laplace pressure. For this condi-
tion to be true, the droplet radius needs to be lower than the
capillary length (kc), which is defined as

kc ¼
ffiffiffiffiffiffiffiffiffiffiffi
c

q � g
r

ð5Þ

where, c is the surface tension, q the density, and g the gravity
acceleration.

In total, 70,000 contours were generated from Eqs. (2) and (3),
while the variation range of the input parameters is shown in
Table 1.

Each contour was described by 900 data points in terms of the
polar radius and the azimuth angle. This number of points corre-
sponds to the average experimental contour points library OpenCV
provides when it extracts the contour from the image. To ensure
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that the coordinates are evenly distributed, and describe the con-
tour well, the 900 contour points were interpolated, then the polar
coordinate, / was set constant, and the radius, r was determined
through the interpolation fit.

The two conditions related to the wavelength and capillary
length were applied to the in silico data to eliminate the contours
that did not apply to these conditions. An additional threshold was
set on the aspect ratio to ensure that the generated contours were
physically valid. As shown in Fig. S4d (Supporting Information),
certain contours appear to have a negative curvature, which does
not correspond to an equilibrium droplet shape, since in that case,
the droplet would have burst. Even after the first two conditions
were applied, some contours had a negative curvature. For that
reason, only the contours with an aspect ratio between 0.66–1
were included in the dataset. Representative examples of the
applied thresholds can be found in Fig. S5, Supporting Information.

The input features used for the training of the neural network
with in silico data were the 175 radii evenly distributed around
the contour, and the acoustic pressure. The surface tension was
considered the target feature (i.e., the value that the neural net-
work was trained to predict).

2.7. Addition of artificial noise on in silico data

Noise was added on the in silico contours, to assess the effect of
the potential experimental error on the ability of the neural net-
work to successfully derive correct surface tension predictions.
From our experience, the main source of noise originates from
the degree of instability the levitator exhibits while the setup
was steady. The more unstable a levitator is, the more the droplet
will move in the air. When the movement takes place in the xz
plane (view Fig. 1d) - horizontally, and vertically - it can induce
blurriness in the images. Subsequently, if the droplet moves in
the y plane (i.e., forwards, and backward) it can appear larger when
it is closer to the camera, or smaller (i.e., lower volume) when the
droplet is further away from the camera. Additionally, we assumed
that the contour was defined by �0.5 pixel.

To replicate the experimental noise, artificial noise was added
to the polar radius to ensure equivalent error distribution along
the contour. The degree of noise is defined in pixels and converted
into millimeters. The contour disturbance added resulted from the
multiplication of the degree of noise with a random number
between 0 and 1 (view Eq. (6)).

disturbance ¼ degree of noise � calibration factor

� random number

2 ½0;1� ð6Þ
The lowest limit for the degree of noise was set at 0.5 pixels. The
upper limit was chosen to be 5 pixels, which produced a realistic
maximum experimental noise, caused by blurred droplet bound-
aries due to levitation instabilities. The contour disturbance was
applied on all contours. The noisy dataset was split into 80% train-
ing data and 20% test data with the same random state number
used in the in silico dataset without noise. The random state num-
ber ensures that the splitting will contain the same random con-
tours every time you repeat it. Then the model was trained with
the noisy training dataset and its accuracy was evaluated through

https://github.com/sargyri/Drop_Lev
https://github.com/sargyri/Drop_Lev


Table 2
Summary of the neural network model developed for the prediction of surface
tension. The output shape defines the number of neurons present in each layer, and
the number of parameters is shown in the last column. The total number of trainable
parameters is 13,376.

Layer (type) Output Shape No. Parameters

dense 0 (Dense) (None, 50) 8,950
dense 1 (Dense) (None, 40) 2,040
dense 2 (Dense) (None, 30) 1,230
dense 3 (Dense) (None, 20) 620
dense 4 (Dense) (None, 15) 315
dense 5 (Dense) (None, 10) 160
dense 6 (Dense) (None, 5) 55
dense 7 (Dense) (None, 1) 6
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the MAE value on the test dataset. The training and evaluation were
repeated 6 times and the standard deviation was calculated.

As mentioned above, the choice of radii was performed by
defining an array of 175 polar angles, /, equally distributed around
the contour and interpolating around the contour. If the droplet is
slightly tilted in the xz plane, the radii will not be at the exact same
positions, which leads to data inconsistencies. This can occur if
either the camera or the levitator is perfectly aligned vertically.
The following equations were applied for determining the tilted
x and y coordinates of the contours:

xtilt ¼ cosðtilt angleÞ � x� sinðtilt angleÞ � y ð7Þ
and,

ytilt ¼ sinðtilt angleÞ � xþ cosðtilt angleÞ � y ð8Þ
where xtilt and ytilt are the tilted x and y coordinates, tilt_angle the
tilting angle around the y-axis, while x and y are the Cartesian coor-
dinates describing the initial contour Cartesian coordinates.

The contours in the in silico dataset were randomly tilted along
the y-axis within an angle range from 0 to the maximum tilt angle
(e.g., from 0 to �25�). The dataset was split into 80% training and
20% test data, with the same random splitting applied on the in sil-
ico dataset without noise, as described above. The training of the
machine learning algorithm was repeated 6 times, and the MAE
was used as the evaluation parameter.

In all cases, the MAE of each noisy dataset was compared to the
MAE produced by the function Dummy Regressor from the Sklearn
library. This regressor calculates the average value of the target
feature (i.e., surface tension) in the training dataset and returns
that value as a prediction for all cases in the test dataset. It
describes the condition at which the neural network is not gaining
any insight from the training. Therefore, it sets an upper-
performance boundary of MAE the neural network may return
for a specific dataset.

2.8. Experimental data acquisition

A digital camera (acA1440-220um, Basler, Germany) was uti-
lized to capture images of the droplets over time. The contours of
the droplets were extracted using python and via the OpenCV
library. The Canny edge detection algorithm [13] along with the
findContour function [14] were used to identify the droplet edges.
The calibration of the camera (mm/pixel) took place with the help
of a disposable needle with a known diameter (0.83 mm). The
image resolution (calibration factor) corresponded to 3 lm/pixel,
for the chosen setup. Each levitating droplet was left evaporating
over a period of 30 min, and images were captured at 1 fps. The
voltage was varied continuously with a rate of 0.01 V/s. The vol-
ume of the droplet was calculated according to the disk method
(Eq. (S1), Supporting Information). Since the volume and the initial
concentration of the droplet were known, we used the adsorption
isotherms (Fig. S8, Supporting Information) to back-calculate the
surface tension of the droplet at any point in time.

It was observed experimentally, through the OpenCV library,
that a tilting angle of maximum 5–6� may occur. For that reason,
all contours were corrected for tilting, through Eqs. (7) and (8).
Another source of data irregularities that may arise is related to
the position of the center of the droplet. The Python library
OpenCV sets as point (0,0) the upper left corner of the image. Con-
sequently, the coordinates, and thus the position of the center will
depend on the relevant position of the experimental equipment.
For that reason, the center of each droplet was offset and centered
around the point (0,0). In the final csv file with the data, each row
corresponds to one frame, and each column to one characteristic of
the depicted droplet (e.g., coordinates, volume, voltage, etc.).
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2.9. Machine learning algorithm

The ability of the neural network to predict surface tension from
the droplet’s characteristics was initially evaluated on in silico data
without noise. Then, noise was added to the in silico data, to test
the robustness of the algorithm. Finally, the neural network was
used on the experimental data of acoustically levitated droplets
of surfactant solutions. The input features in the case of in silico
data were 175 polar radii, r that were equally distributed around
the contour and the acoustic pressure that was used as input in
Eq. (3). For the experimental data, the input features were again
175 radii, but the acoustic pressure was substituted by the vertical
position, voltage, and current. In both cases, the output of the neu-
ral network (i.e., target feature) was the surface tension.

The following procedure was applied on both in silico and
experimental datasets, thus generalized terms are used. Initially,
the dataset was split into training (80% of the total data), and test
dataset (20% of the total data). The training of the neural network
(Table 2) was performed on 80% of the training dataset, and the
rest 20% was used for validation. The neural network has access
to both the input features in addition to the target feature of the
training dataset. The training thus enables the creation of correla-
tions that provide a prediction of surface tension. The ability to
predict surface tension accurately was then evaluated through
the test dataset, where the neural network has access only to the
input features.

The training dataset was normalized to feature values between
0 and 1. This was performed by finding the maximum value of each
feature (i.e., column) in the training dataset, and then dividing the
whole column by that value. The values in the test dataset were
transformed based on the maximum values in the training dataset.
If the test dataset was utilized to transform the range of the data,
access to the surface tension values would be required, which will
not be the case when the algorithm needs to be applied on exper-
imental data. This means that the data range of the test dataset
may be below 0 and above 1, depending on the maximum values
of the training dataset, which shows the applicability of a machine
learning algorithm on data outside the training range.

The architecture of the neural network can be seen in Table 2.
The neural network consists of 8 fully connected layers. The num-
ber of neurons from the top layer to the bottom is 50, 40, 30, 20, 15,
10, 5, and 1 neuron(s). The ”swish”, and ”softplus” activation func-
tions, and the ”Adam” optimizer used were from the TensorFlow
library.

Subsequently, the training and evaluation of the machine learn-
ing model were performed on the training, and test datasets,
respectively. The mean squared error (MSE) was used as the min-
imization parameter (i.e., the model will store the weights, and
biased of each layer that leads to the minimum MSE). The model
that led to the minimum MSE was saved, and tested on new data,
to evaluate the ability of the model to predict on new data (i.e.,
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generalization). An open source framework containing the
machine learning algorithms and the data is available on https://
github.com/sargyri/Drop_Lev.
2.10. Feature importance

The contribution of each feature to the prediction error of the
neural network was investigated through a permutation feature
importance algorithm, introduced by Fisher, Rudin, and Dominici
(2018) [15].

The employed algorithm is described as follows.

� The MAE of the neural network, when no feature is permuted, is
determined by training the model and predicting on the test
dataset.

� One feature is permuted at a time, by shuffling the rows of the
column. The MAE is determined by using the trained model and
predicting on the test dataset.

� When all features are permuted, and the corresponding MAE
are saved, we compare the MAE before, and after permutation.
The feature importance is defined as FI ¼ MAEafter �MAEbefore.

� The procedure is repeated 3 times for statistical purposes.

This algorithm allows the investigation of the influence each
feature has on the machine learning predictions. It should be
pointed out that this method is not used to add interpretability
to the neural network, but to evaluate the choice of features used
in the training, and whether this choice has a physical meaning.
The higher the difference between the MAE before, and after per-
mutation, the greater the influence of the feature on the predic-
tions. For more information on machine learning interpretability
the reader may refer to the book by C. Molnar [16].
3. Results and Discussion

3.1. Validation of machine learning approach on in silico data

To examine the ability of the machine learning algorithm to
determine the surface tension, we used Eqs. (2) and (3) to generate
70,000 in silico contours by using as inputs in the equation the vol-
ume, acoustic pressure, and surface tension. In Fig. S4a-c (Support-
ing Information), is shown the volume, acoustic pressure, and
surface tension distributions for the 70,000 generated contours,
while Fig. S4d (Supporting Information) shows the overlapped gen-
erated contours. Physical restrictions were applied so that the con-
tours had physical validity (i.e., no negative curvature, see Fig. S4d,
Supporting Information). The restrictions eliminated 19,453 con-
tours, which left 51,956 contours that were physically meaningful.
The new data distributions and contours are shown in Fig. 2a-d.

The range of volume, acoustic pressure, and surface tension
were chosen based on two criteria: to simulate realistic experi-
mental conditions, and to eliminate the least amount of contours
possible. Specifically, the volume range was between 0.5 and 2.5
lL. The upper volume limit was set so that the majority of the con-
tours will be in accordance with the shape restrictions the Gor’Kov
theory sets, while the minimum limit was chosen based on exper-
imental observations. The acoustic pressure range was between
1.5–4 kPa and it was chosen in accordance with the pressure range
reported by Trinh and Hsu, [2]. The surface tension was selected to
be in the range of 30 to 72 mN/m as the typical surface tension
range of aqueous surfactant solutions.

In Table 2, the architecture of the chosen neural network is
shown. The features that were input in the neural network were
175 radii describing each contour, and the acoustic pressure for
the respective contour, while the surface tension was the output
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(i.e., target feature). The dataset was split into training (80% of
the dataset), and test data (20% of the dataset). Before importing
the training data in the neural network, all data were pre-
processed by transforming the features column-wise in the range
between 0 and 1, based on the range values of the training dataset.
In Fig. S6a-b (Supporting Information), the evolution of the mean
absolute error (MAE), and the mean squared error (MSE) during
training are shown. It can be observed that the traces of the train-
ing, and validation errors, are in good agreement for both error
parameters, which indicates that the neural network fits the data
well without overtraining. In Fig. 2e, the predictions are compared
with the surface tension values from the test dataset that were
input in Eq. (2). Each scattered point corresponds to one in silico
contour, while the color bar expresses the density of points. It is
observed that all points are on the diagonal, which represents
the ideal case where the real values are equal to the predicted ones.
The average mean absolute error (MAE) was equal to 0.06 mN/m.
From the error distribution of the test dataset is shown in Fig. 2f,
it was found that 100% of the predictions are in the range of
�0.5 mN/m, which corresponds to the statistical error of common
surface tension measurement techniques.

3.2. Validation of machine learning approach on in silico data with
artificial error

During the experiments, two main types of error may arise:
blurriness around the contour due to the movement of the droplet,
and tilted contours in case the camera, and the acoustic levitator
are not well aligned. The sensitivity of the camera lies in the range
of �0.5 pixel. However, we have experimentally observed that for
our setup, contour blurriness may lie in the range of �0–3 pixels.
To investigate the effect of blurriness on the ability of the machine
learning algorithm to predict the surface tension, distortion in the
range of�0–5 pixel was added on all contours to simulate the most
extreme case. The same neural network model (Table 2) was eval-
uated on noisy data, while as in the case of in silico data without
noise, the input features were 175 radii describing each contour,
and the acoustic pressure.

The training and evaluation of the machine learning algorithm
were performed for each case of contour distortions (Fig. 3a), and
the MAE was used as a tool to assess the performance of the model.
Fig. 3b shows the relation between the MAE, and the distortion of
the contours. It is observed that the MAE increases as the contour
distortion increases. The error increase is expected since high con-
tour distortion can potentially alter the features that the neural
network recognizes, and derives the predictions from. Fig. 3c
shows that the error distribution becomes wider as the contour
distortion increases. The error range increases incrementally from
�0.5 mN/m, when no noise is added, to �3 mN/m, when 5 pixels of
noise are added.

The highest MAE value was compared with the result of the
Dummy Regressor function. Through this function, all the predic-
tions are equal to the mean surface tension value of the training
dataset. Hence, this provides the highest MAE that we would
expect in the case where the neural network was predicting ran-
domly. The MAE calculated by the Dummy Regressor was 10.1
mN/m (Fig. S7, Supporting Information). Consequently, even at
the highest introduced degree of noise, we have not reached the
upper MAE limit which means that even though the error
increased, the neural network does not predict randomly, but in
fact learns from the training dataset, even if more errors are made.

Each contour was described by keeping the polar angle, / con-
stant, and interpolating to find the radius, r at that angle. In case a
droplet is tilted, the interpolated radius, r will not correspond to
the correct polar angle /. Experimentally the tilt angles range from
0 to 5�. To simulate this case, the contours were randomly tilted

https://github.com/sargyri/Drop_Lev
https://github.com/sargyri/Drop_Lev
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Fig. 2. In-silico data distribution of (a) volume, (b) acoustic pressure, and (c) surface tension of 51,956 contours after restrictions were applied. (d) Examples of contours
generated based on the given (a-c) parameters. (e) Comparison between the true surface tension values (i.e., used as input in Eqs. (2) and (3)), and the predicted values (i.e.,
output of neural network). The darker the area, the more densely packed it is with scattered points. (f) Error distribution of the machine learning pred.ictions in mN/m.

Fig. 3. (a) Contours were increasingly distorted to simulate experimental noise that can arise from the instability of the acoustic levitator. The contours are shifted vertically
for illustration purposes. (b) The mean absolute error (MAE) is plotted as a function of the degree of contour distortion in pixels. (c) The error distortion of the predictions as
the distortion increases. The predictions were repeated 6 times, and an average was calculated. (d) The contours were randomly tilted with an increasingly larger tilting angle.
(e) The mean absolute error (MAE) is plotted as a function of the maximum tilting angle. (f) The error distribution of the machine learning predictions is plotted for each
tilting angle. The predictions were repeated 6 times, and an average was calculated.
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(Fig. 3d) within an angle range from 0� to the maximum tilt angle
(e.g., from 0 to �25�). The training and prediction of the machine
learning algorithm were repeated 6 times, and the MAE was eval-
uated. Fig. 3e shows the MAE with respect to the maximum tilting
643
angle. It is observed that the error increases when tilting is
induced. However, no clear correlation between the tilt, and the
error is distinguished. Furthermore, the MAE is not as large as
the one caused due to contour distortion. This is most likely
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attributed to the spherical shape the majority of the in silico con-
tours have after the physical restrictions are applied. As a result,
little or no difference is caused on the interpolated radius, r, due
to tilting.
3.3. Machine learning approach on experimental data

A series of aqueous surfactant solutions at different starting
concentrations were prepared. Three different surfactants were
chosen: sodium dodecyl sulfate (SDS, anionic), cetyltrimethylam-
monium bromide (CTAB, cationic), and Triton X-100 (non-ionic).
The surface tension of the solutions was determined through the
pendant drop method and plotted as isotherms (Fig. S8, Supporting
Information). This allowed the calculation of the surface tension at
any concentration when the starting concentration and the volume
of the droplet at any point in time are known. The experimental
data were collected by capturing images of the levitated droplet
over a period of 30 min, with a frame rate of 1 frame per second.
For each solution, the measurements were repeated 3 times. A total
of 322,145 contours were detected. From those, 58,368 contours
were chosen for the training.

The choice of data was made with the intent to have a relatively
uniform surface tension distribution and to cover the adsorption
isotherm of each surfactant equally well. That way we could avoid
introducing a form of bias in the algorithm, and we could examine
the level of accuracy of the predictions throughout the isotherm,
respectively. The distributions of surface tension, volume, and volt-
age of the experimental data are shown in Fig. 4a-c. In Fig. 4d, rep-
resentative examples of droplet contour are shown.

In accordance with the previous results, the dataset was pre-
processed by correcting for the tilting, and the vertical position
(see Methods) to eliminate this form of experimental error. Follow-
ing, the dataset was split in the same way as for the in silico gen-
erated data: into 80% training (46,694 instances), and 20% testing
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Representative contours. (e) Comparison between the true values, and the predicted value
prediction on the test dataset (11,674 instances), in mN/m.
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(11,674 instances). Furthermore, the values of the features were
processed as previously.

The same neural network architecture used for the surface ten-
sion prediction on in silico data was applied (Table 2). In this case,
the input features were: 175 radii describing the droplet contour,
the voltage, the current, and the position of the droplet along the
z-axis. By comparing the training, and validation curves (Fig. S6c-
d, c-d, Supporting Information), no overtraining was observed,
since the MAE, and MSE curves overlap.

From Fig. 4e, it is observed that the majority of the predictions
agree with the true surface tension values that were measured
through the pendant drop method. Furthermore, it is observed that
the neural network appears to perform very well within the lower
surface tension values (ST < 40 mN/m). This is due to the fact that
in that range the droplets tend to be smaller, and more deformed.
In Fig. 4f, the error distribution is shown, from which we calculated
that the network shows 70% confidence that the surface tension
error will be in the range of �1 mN/m, while the average MAE
was found to be 0.88 mN/m.

In Fig. 5a-c, we observe that the predictions from the test data-
set are in good agreement with the pendant drop measurements
throughout the adsorption isotherms of all 3 surfactants used for
the training, while very few outliers are observed.

Moreover, a feature importance analysis through permutation
was performed in order to gain insight into how the machine
learning algorithm weighs each feature, towards making a predic-
tion. This allows a qualitative investigation of how logical the deci-
sions are, and how well they reflect the physical reality. In Fig. 6a,
the mean absolute error increase when a feature has been per-
muted is shown. It is observed that cumulatively the radius has
the greatest effect on the predictions, followed by the voltage, cur-
rent, and vertical position. In Fig. 6b, the importance of the coordi-
nates is color coded, with the dark purple signifying higher
importance and the light yellow the lowest. Hence, it is seen that
the extreme contour points (i.e., top, bottom, left, right) have the
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Fig. 5. Predictions from the test dataset on the adsorption isotherm of each surfactant used. With a solid blue line are indicated the pendant drop measurements and with red
crosses the predictions from the machine learning algorithm. (a) Predictions on SDS. (b) Predictions on CTAB. (c) Predictions on Triton X-100.

Fig. 6. (a) Bar plot that illustrates the importance of each feature that was used in the training of the neural network. (b) The 175 radii that define the droplet contour is color
coded with respect to the feature importance. The darker the color, the higher the influence of that radius in the machine learning predictions. (c) Density distribution of
volume in the test dataset. (d) Prediction error with respect to the volume. (e) Density distribution of aspect ratio in the test dataset. (f) Prediction error with respect to the
aspect ratio of the droplet.
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greatest contribution to the prediction, since they differentiate the
most, depending on the characteristics of the droplet (e.g., surface
tension, volume, voltage etc.). Hence, they contain more useful
information for establishing a correlation between the contour
points, and the surface tension. The voltage, current, and position
of the droplet are associated with the surface acoustic pressure
on the droplet. Hence, there is a clear relation to the deformation
of the droplet, with voltage having the greatest influence. Overall,
it appears that the machine learning algorithm reaches a decision
based on the physical parameters that we would expect to be the
most relevant. The same feature importance analysis was per-
formed with the in silico data, leading to the same conclusions
(Fig. S9, Supporting Information).

To further investigate whether the source of prediction error is
related to the size (i.e., volume), or the deformation (i.e., aspect
ratio) of the droplet, we compared the density distributions of
the volume (Fig. 6c), and aspect ratio (Fig. 6e) e) to the prediction
error. In Fig. 6d, we observe that the error is relatively equally dis-
tributed throughout the volume range (Fig. 6c). A larger prediction
error appears in the volume range of 2 to 4 lL, however, the major-
ity of the contours lie in that range. As a result, the probability that
a larger error may arise due to other parameters (e.g., instabilities)
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increases. A similar tendency is observed between the aspect ratio
range distribution (Fig. 6e) and the error distribution (Fig. 6f). A
small fraction of higher error is observed in the range of 0.66 to
0.8, where the majority of the contours are found. Consequently,
no conclusive correlation between the volume or aspect ratio value
with the prediction error is identified. On the contrary, the
machine learning algorithm appears to perform very well for larger
volumes, and deformations.
4. Conclusions

Using a compact and highly stable acoustic levitator, the acqui-
sition of a large experimental dataset suitable for a data-driven
approach was possible. We developed a suitable machine learning
algorithm that predicted the surface tension of acoustically levi-
tated small-volume droplets of aqueous surfactant solutions. The
neural network was first tested on in silico data without noise,
and achieved a mean absolute error of 0.06 mN/m. When artificial
noise was added, the error increased, however, the algorithm was
still able to identify correlations between the input parameters and
the surface tension. Once trained and tested on experimental data,
the mean absolute error was 0.88 mN/m in a range of surface ten-
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sion from 30 to 70 mN/m. In all cases, no overtraining occurred. An
Open source framework containing the machine learning algo-
rithms and the data is available on https://github.com/sargyri/
Drop_Lev.

In regard to the rare previous attempts to correlate the surface
tension with the shape deformation of acoustically levitated dro-
plets [2–4,11,12], our approach is not restricted by the physical
conditions that apply to the existing models. Specifically, the algo-
rithm predicted equally well on experimental data with volume
higher than 2.5 lL, and aspect ratios lower than 0.66, which offers
higher flexibility and data availability for this type of contactless
measurement. Furthermore, we were able to determine the surface
tension by utilizing parameters that are easily accessible (i.e., con-
tour, voltage, current, position), and without the need of determin-
ing the surface acoustic pressure, often a source of large error.
Finally, we achieved significantly better accuracy compared to pre-
vious work [2] that stated a 15% error in determining the shape of a
droplet when the volume, acoustic pressure, and surface tension
are known. We also achieved similar to better accuracy, as it was
stated that for droplets with surface tension below 50 mN/m, the
sensitivity of the technique was �2 mN=m [4].

One limitation of our study is the fact that only aqueous surfac-
tant solutions with a density close to 1 g/ml were used. For mea-
surements on other liquids, the acoustic impedance should
actually be accounted for in the training of the neural network.
As acoustic impedance is directly proportional to the density of liq-
uids, this latter can be used as a proxy for it. However, due to the
versatility of machine learning, it is expected that the neural net-
work will perform equally well on liquids with various densities
if trained with a more density-diverse dataset. The future work
plans are to investigate this aspect along with the possibility of
studying interfacial rheology in regimes that are difficult to attain
with the pendant drop technique.
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