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Executive Summary

The EUMETSAT Polar System (EPS) Second Generation (EPS-SG) will provide conti-
nuity of observations of the current EPS, and will include the Ice Cloud Imager (ICI).
ICI is a conically scanning radiometer that will measure at millimetre and sub-millimetre
wavelengths. It will have 13 channels, operating within the range of 183 GHz to 664 GHz.
The primary objective of ICI is the quantification of cloud ice. It is expected that the
data will be used in support of numerical weather prediction and for the verification and
parameterization of ice clouds within climate applications.
The main retrieval quantities to be produced at the EUMETSAT Central Facilities will be
the integrated ice water path (IWP), the mean ice particle size by mass, and mean mass
height. A retrieval algorithm based on Bayesian Monte Carlo integration (BMCI) has
previously been developed. A crucial part of the retrieval algorithm is the cloud radiation
retrieval database, consisting of pairs of atmospheric/surface states and corresponding
simulated ICI observations. The aim of the study Development of a cloud radiation
database for EPS-SG ICI is the generation of a state-of-the-art retrieval database ready
for operational use upon the launch of EPS-SG.
The study was divided into three core tasks to be performed. This document is composed
of technical reports written for each of the tasks. A brief description of the contents of
each report are as follows:

• The Task 1 report is an exploration of the limitations of an existing preliminary
database and a review of database generation methods. Generation of a completely
new database was deemed necessary, and a path forward was defined regarding
both generation and performance assessment. Several requirements were placed
on the new database including the consideration of polarisation, three dimensional
variability within cloud structure, and improved snow and sea ice surface emissivity
models.

• The Task 2 report contains a description of the methods used to generate the new
retrieval database. Focus is placed upon methods that differ from those used to
generate a previous, preliminary database. In short, the report describes how:

– A database covering ∼ 9.5×106 samples was generated, including descriptions
of the input data, processes, and outputs of the scheme.

– 3-D atmopsheric states, also referred to as scenes, were generated in order to
capture the variability of cloud structure. Two-dimensional stretches of radar
reflectivity from CloudSat were used as the primary source of information on
the spatial structure of clouds, but were combined with MODIS multispectral
data and ERA5 atmospheric/surface data to effectively widen the data and
produce a three-dimensional scene.

– A state of the art radiative transfer model was applied to simulate ICI. Vari-
ables taken into account include sensor characteristic data, atmospheric ab-
sorption, surface emissivity models, and hydrometeors.

– Multiple particle models, consisting of a habit and a particle size distribution,
are included within the database. The report describes how the models are
selected for a simulation such that reality is statistically represented.

• The Task 3 report summarises the completed database, presenting a statistical
overview of the simulations and cloud ice products. Validation of the database

iii



is discussed, and it is shown that distributions of IWP samples in the database
match distributions of IWP present in the DARDAR product. Also included in
the report are validations performed for two test databases, consisting of simulated
observations of The Global Precipitation Measurement (GPM) Microwave Imager
(GMI) and The International Submillimetre Airborne Radiometer (ISMAR). This
allowed for an assessment of the database generation techniques when confronted
with real observations. Inversions of the real GMI observations showed realistic
spatial distributions in agreement with DARDAR. Finally, an assessment of re-
trieval performance was carried out, applying BMCI alongside the new database.
Retrievals are shown to satisfy the accuracy requirements stipulated in the study,
and it is shown that retrieval accuracy is higher for lower latitudes.

In summary, the final cloud radiation database is in statistical agreement with data,
performs well in retrieval tests, and demonstrates an improvement over the preliminary
database. ICI will provide the first operational observations in the sub-millimetre region,
and full operational coverage for 21 years is expected. During this time, retrievals of cloud
ice products utilising this database will provide valuable data for weather and climate
models.
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1 Introduction

1.1 Background

The Ice Cloud Imager (ICI) will be part of the European Organisation for the Exploitation
of Meteorological Satellites (EUMETSAT) Polar System’s Second Generation (EPS-SG).
ICI is a passive conically scanning radiometer that measures wavelengths from millimeter
(mm) to sub-millimeter (sub-mm) range through 13 channels ranging from 183GHz to
664GHz. The main aim of ICI is to quantify cloud ice in support of climate monitoring,
as well as to parametrize and validate ice clouds in weather and climate models.

A key aspect for the future ICI observations is global retrievals of ice water path (IWP).
Previously, a retrieval algorithm based on a retrieval database and Bayesian Monte Carlo
Integration (BMCI) was shown to be suitable for the task (Rydberg 2018). The retrieval
database is a large set of synthetic scenes and the corresponding simulated observations.
For the BMCI retrieval algorithm to be successful, the database should contain a large
number of states such that each possible ICI measurement finds several matches. Further,
these states should represent the atmospheric and surface conditions as realistically as
possible. For instance, it is essential that vertical and horizontal cloud structures in
the database follow the natural variability closely. In addition, pressures, temperatures,
humidities, and surface emissivities must also be included in a realistic way.

1.2 Purpose of this document

The purpose of this document is to provide a review of the literature relevant to meth-
ods for the generation of cloud radiation databases for IWP retrieval. The information
gathered herein shall be discussed with EUMETSAT to propose a way forward for the
database generation.

This document is structured as follows. A description of the relevant IWP retrieval
databases available in literature are discussed in Sect. 1.3 [R-2]. The limitations of the
preliminary database are discussed in Sect. 1.4.1 [R-3]. Section 2 provides an assessment
on overcoming the existing gaps and limitations of the preliminary database [R-3]. This
section also covers the discussion on hydrometeor microphysical assumptions [R-6] and
use of antenna patterns to avoid beam filling errors [R-8]. In Sect. 3, an assessment of
other requirements necessary to generate the database are made [R-4].

1.3 Previous works

Several attempts at creating IWP retreival databases for sub-mm measurements can be
found in the literature. Table 1 gives a detailed summary of such databases. Among the
first attempts to retrieve IWP from sub-mm observations is by Rydberg et al. (2007).
They presented an algorithm to create a database of synthetic one-dimensional (1D) at-
mospheric states. They merged radar data and statistics from in situ measurements to
generate varying cloud structures. The algorithm also included oriented hydrometeors (as
spheriods), but each channel was represented by a single frequency, and spectral differ-
ences between two side-bands were ignored. Additionally, the study was constrained to
northern mid-latitudes due to unavailability of radar data in other regions. Later, Ryd-
berg et al. (2009) extended the study by creating a retrieval database of three-dimensional
(3D) atmospheric states using CloudSat measurements as input but with simplified cloud
microphysics assumptions. They transformed two-dimensional (2D) Cloudsat profiles
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along with weather data from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) to 3D through a stochastic iterative amplitude adjusted Fourier trans-
form algorithm (Venema et al. 2006). In an another study, Evans et al. (2012) presented
an algorithm to retrieve IWP using sub-mm measurements from flight campaigns. They
created the retrieval database of 1D scenes based on CloudSAT and Calipso measure-
ments and employed detailed microphysical assumptions. They utilized cloud in situ
measurements of microphysical probability distributions to model realistic cloud profiles.
However, the biggest constraint of their method is that the microphysical assumptions are
either valid locally or seasonally. This hampers the extension of the database to represent
global variability. Attempts at coupling a mesoscale numerical weather prediction (NWP)
model and radiative transfer to generate the database also exist in literature. Wang et al.
(2016) have attempted a statistical retrieval of cloud parameters for ICI. They simulated
hydrometeor profiles with Weather Research and Forecasting (WRF) model to cover 12
different meteorological situations covering Europe. The hydrometeor microphysics was
determined through WRF Single Moment - 6 class (WSM6) scheme (Hong and Lim 2006).
A more recent study by Brath et al. (2018) also developed a retrieval database by using at-
mospheric profiles based on Icosahedral Nonhydrostatic (ICON, Zängl et al. 2015) model
profiles, but with simplified microphysical assumptions. They assumed rain and cloud ice
as Mie spheres and snow as aggregates. In all these studies mentioned above, the retrieval
database reflects only a part of the global variability. These studies focus either on a par-
ticular season or certain latitudinal region. Among the retrieval databases which cover
the global scenarios include the preliminary cloud radiation database (Rydberg 2018) and
also Goddard Profiling algorithm (GPROF, Randel et al. 2020). These are described in
the next sections.
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1.3.1 Preliminary retrieval database

Previously, a preliminary cloud radiation retrieval database was developed by the Now-
casting Satellite Application Facility (Rydberg 2018). A method to generate 2D (ver-
tically and horizontally) varying states consistent with stretches of radar reflectivities
from the cloud profiling radar (CPR) of CloudSat was developed and used. Rain and
ice water content fields were retrieved for a set of assumptions of particle size and shape
distributions, and taking additional weather data (including liquid water content) from
ERA-Interim into account. A land-sea mask was used to categorize surface type (land
or water), and surface topography and wind speed data were taken into account. The
Atmospheric Radiative Transfer Simulator (ARTS, Buehler et al. 2018) version 2.3, was
applied to simulate ICI measurements in a slant down-looking pseudo two-dimensional
(2D) geometry. Single scattering properties for the rain and ice hydrometeors categories
were taken from Eriksson et al. (2018).

1.3.2 Other operational retrieval databases

The GPROF algorithm (Randel et al. 2020) has been providing instantaneous rainfall
rates and vertical structures of precipitation and other related auxiliary parameters since
1996. GPROF makes use of BMCI and is the only existing operational inversion systems
that can be compared with the ICI retrievals of concern here.

The operational version of GPROF uses 1D Eddington approximation to compute
brightness temperatures (Tb). The simulations are based on retrievals performed in the
central part of the swath where radar and radiometer data are at hand. The surface
emissivity is calculated separately for ocean and land. For the former, fast microwave
emissivity model (FASTEM, Liu et al. 2010) is used to calculate the ocean surface emis-
sivities as a function of surface wind speed. While for the latter, the emissivities are
defined by the soil moisture. When the surface is moderately dry or without any veg-
etation, the emissivity is assumed to be 0.9. However, for other regions, the emissivity
for water covered surfaces is modified between 0% to 20% to represent various categories
of soil moisture. The atmospheric absorption model is monoRTM (Moncet and Clough
1997). Scattering effects from cloud water are ignored. However, for rain drops, the scat-
tering properties are calculated using Mie theory by assuming a spherical shape. Further,
the ice particles are also assumed to be spheres at frequencies up to 89GHz. For higher
frequencies, an ensemble of non-spherical ice particles are considered and single scattering
properties are calculated by using the discrete dipole method. Melting particles are not
considered.

1.4 The way forward

The retrieval of IWP from satellite measurements is a non-unique and non-linear problem.
The quality of the retrieval database is the most crucial element of the inversion algorithm.
Often simplified assumptions made in forward modelling limit the a priori information
for the BMCI retrieval. Thus, to develop a comprehensive cloud radiation database, it is
important to identify gaps and limitations to find the best way forward.

1.4.1 Main limitations of the preliminary database

Even if the preliminary database represents the state-of-the-art, it clearly has several
limitations. Some discussion of the matter, but not complete, is found in Eriksson et al.
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(2020). Presently, the main limitations are considered to be:

• Surface emissivity: A complete surface emissivity model for land and snow is
not available for sub-mm wavelengths. The preliminary database used an existing
model (TELSEM) and simply assumed a constant emissivity over the frequency
range covered by ICI. This is a simplification. In addition, the existing models
are based on measurements at lower frequencies and there could be a systematic
difference between the emissivity below and above 160GHz.

• Simplified particle model: The clearest limitation is that the preliminary
database did not consider particle orientation, and differences between vertically
and horizontally polarised channels were strongly underestimated. Several ice par-
ticle habits were used but the selection needs to be revisited. The assumed particle
size distribution (PSD) also needs to be revisited, specially if some random variation
should be added.

• Representation of footprint: The preliminary database applied essentially a 1D
antenna pattern, while the full 2D response must be represented as shown by Bar-
lakas and Eriksson (2020). On the other hand, the independent beam approximation
applied in the preliminary database is sufficient, true 3D radiative transfer is not
required, also shown by Barlakas and Eriksson (2020).

1.4.2 Discussion

The main strength of the database applied in GPROF is that it is based on observed
3D scenes. This gives a good representation of both vertical and horizontal structures of
rain hydrometeors. However, the radar onboard the Global Precipitation Measurement
(GPM) core satellite lacks sensitivity to ice hydrometeors and we can not use these scenes
for developing a retrieval database for ICI. To obtain global observation on ice hydrom-
eteors, CloudSat is so far the only choice, the sensor used in the preliminary database.
When it comes to the representation of ice hydrometeor scattering properties and the
capability of the radiative transfer software applied, the quality is higher in the ICI pre-
liminary database than in the GPROF simulations. That said, the GPROF simulations
have other strengths, but they are less relevant for ICI. The above put together points
towards developing the new retrieval database along the lines of the preliminary one, but
addressing the limitations identified.

That is, several critical extensions, such as implementation of 3D atmospheric scenes,
hydrometeor orientation, surface emissivity for complex surface types (snow/sea ice),
representation of antenna patterns will be required. This will necessitate generation of a
totally new database. Thus, the preliminary version will be completely replaced and a
new version will be implemented in place. The new database will follow the same basic
approach as used for the preliminary database, that is using CloudSat reflectivities as
core data source. Further, in addition to the necessary modifications mentioned, several
other smaller extensions will also be made.
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2 Methods to address current gaps and limitations

2.1 Generation of 3D scenes

Studies (e.g. Bauer et al. 1998, Kummerow 1998, Battaglia et al. 2006) have analysed the
impact of 3D-type effects in passive microwave radiative transfer for microwave frequencies
(up to 183GHz). Davis et al. (2007) were the first to extend the analysis towards sub-
mm wavelengths. They followed a stochastic approach to generate 3D mid-latitude cirrus
scenes using ground-based 2D radar observations as input. However, due to limited scope
of their study, their results were inconclusive in certain cases. A more comprehensive
study towards 3D effects at sub-mm wavelengths was made by Barlakas and Eriksson
(2020). They used Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm
(Venema et al. 2006) to generate the 3D cloud fields from 2D Cloudsat radar observations.
Another attempt at generating the 3D scenes has been made by Barker et al. (2011) using
collocated A-train observations. In this study, we shall consider these two methods to
generate the 3D scenes. These two are described below.

2.1.1 IAFFT

Barlakas and Eriksson (2020) generated 3D cloud fields from 2D Cloudsat fields using
IAFFT algorithm (Venema et al. 2006). This algorithm is commonly used to generate
surrogate data. To generate 3D cloud scenes, the algorithm inputs Cloudsat measurements
in pressure and latitude grids and iterates the power spectra to adapt the amplitude dis-
tribution and Fourier coefficients to the 3D fields in pressure, latitude and longitude grid.
ARTS 3D Monte Carlo (ARTS-MC) was used to perform the realistic full 3D pencil beam
simulations for tropical and mid-latitude scenarios. The pencil beam calculations were
integrated over the sensor field of view to get antenna weighted brightness temperatures.
They made an analysis of the performance of 3D simulations against the simulations with
independent beam approximations (IBA) and 1D simulations. In IBA, beam filling in-
troduced a slight overestimation in the Tbs and the corresponding bias was between 0.1
and 1K. On the other hand, 1D simulations had significant influence from beam filling
effects which increased both with frequency and footprint size. For instance, at 15 km
resolution, neglecting cloud heterogeneities led up to root mean square error of 4K at
183GHz, which increased to 13K at 666GHz.

The main limitations of IAFFT is that it cannot account for cloud classification infor-
mation, if needed. Also, Rilemark and Svensson (2020) have shown that while filling in,
discontinuities can arise between neighboring pixels.

2.1.2 The Barker 3D cloud-construction algorithm

Barker et al. (2011) present an algorithm that constructs 3D distributions of cloud from
passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred syn-
ergistically from lidar, cloud radar and imagery data. This section presents the most
important aspects of the algorithm while more details are given in Appendix A. Effec-
tively, the construction algorithm widens the active retrieved cross-section (RXS) of cloud
properties, by using a match-and-substitute algorithm that fills in off-nadir pixels/columns
with cloud property profiles from the swath center. For this purpose radiances from a
passive multi spectral imager (MSI) for an off-nadir, recipient, pixel are compared with
corresponding values for a range of pixels along the RXS; close matches are identified as
potential donors with the closest to the recipient pixel being designated as the proxy to
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literally stand in for the recipient. This is repeated until all pixels in the required 3D
domain are filled.

Barker et al. (2011) applied the algorithm on MSI data from Moderate Resolution
Imaging Spectroradiometer (MODIS) onboard Aqua, and RXS data from the lidar Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite (CALIPSO) and the Cloud Profiling Radar onboard Cloud-
Sat. These sensors/platforms are all part of NASA’s A-train constellation and have been
operating in more than 10 years, and that implies that a collocated dataset covering all
types of weather conditions is available.

The Barker et al. (2011) construction algorithm uses actual data along the across-track
direction to widen the basic 2D cross-section into a 3D field, as opposed to the IAFFT
algorithm by Venema et al. (2006) that only uses the properties of the basic 2D cross-
section in order to generate a stochastic 3D field. An additional advantage of the Barker
et al. (2011) construction algorithm is that it is basically designed to generate consistent
3D fields of many parameters, and this is less clear how to acheive using the algorithm
by Venema et al. (2006).

The Barker et al. (2011) construction algorithm is based on the assumption that two
closely spaced cloudy pixels having close to identical temperature and moisture profiles
and only small differences in a number of spectral top of atmosphere radiances will have
similar cloud property profiles. This is clearly an assumption that is not always valid.
Another issue is that it can not be guaranteed that a good MSI match can be found at
all if only pixels closely spaced in space and time are considered. Barker et al. (2011)
points out that the algorithm is a 3D construction algorithm and not a 3D reconstruction
algorithm, since the data used does not allow for a proper reconstruction. Anyhow, Barker
et al. (2011) showed that the algorithm was able to reconstruct the cloud mask, with only
small errors, of the RXS out to a distance of at least 20 km from the “local database”.
We therefore judge that the Barker et al. (2011) 3D construction algorithm, or a variant
of it, is the most promising algorithm to deploy for the present study.

2.2 Surface emissivity

An important aspect for the retrieval database is modelling of the surface emissivities in a
realistic manner. The impact of surface is mostly important for frequencies up to 325GHz.
For higher sub-mm frequencies, the weighting functions peak in the upper atmosphere,
hence surface impact is mostly negligible. In this section, we describe the various studies
available in literature that describe the surface emissivity for water, land and snow/sea
ice surface types.

2.2.1 Water bodies

Over water, the emissivity is primarily related to the wind speed. In preparation for
EPS-SG, a parametrisation of the surface emissivities for water bodies up to 700GHz
is available through Tool to Estimate Sea-Surface Emissivity from Microwaves to sub-
Millimeter waves (TESSEM2, Prigent et al. 2017). Its performance has been tested by
Prigent et al. (2017) using the International Submillimeter Airborne Radiometer (ISMAR)
observations with some encouraging results. While some uncertainties can be expected
when more observations will be available, we will employ TESSEM2 emissivity parametri-
sation to simulate surface effects over water bodies.
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Table 2: Brief description of the various land (snow-free) emissivity estimates available
in literature.

Study Input data Frequency Comments

Hewison (2001)
airborne
measurements
(over Sweden)

24 to
157GHz

Emissivity increases with
frequency

Karbou et al.
(2005)

Satellite based
retrievals
(AMSU)

24 to
150GHz

150GHz retrievals were noisy,
Emissivity estimates at
89GHz a good proxy for
radiance simulations at both
150 and 183GHz

Table 3: Brief description of various snow-cover emissivity estimates available for frequen-
cies up to 183GHz.

Study Input data Frequency Comments

Hewison et al.
(2002)

Airborne
measurements
over the Arctic

25 to
183GHz

Emissivity at 183GHz higher
than 157GHz

Harlow (2009)
Airborne
measurements
over Alaska

89 to
183GHz

Emissivity increases with
frequency except for fresh
snow events

Munchak et al.
(2020)

Satellite based
retrievals (GMI)

10 to
166GHz

OEM retrievals, 20 snow-cover
classes, Emissivity increases
with frequency for cold and
dry snow, mountain snow,
shallow/early snow, opposite
trend

Camplani et al.
(2021)

Satellite based
retrievals (GMI,
ATMS)

10 to
166GHz

Emissivity increases with
frequency for cold and dry
snow

2.2.2 Land

Over land, snow-cover and sea ice surfaces, it is often a challenge to model surface emis-
sivity due to strong temporal and spatial fluctuations. Analogous to TESSEM2, a new
version of climatology based Tool to Estimate Land-Surface Emissivities at Microwave
frequencies 2 (TELSEM2) has been developed by Wang et al. (2017) to provide surface
emissivities over land, snow-cover and sea ice for frequencies up to 700GHz. However, in
TELSEM2, the emissivity estimates are empirical approximations. Thus, it is important
to look for other emissivity estimates that exist in literature. This section describes the
existing literature for surface emissivities over snow-free and snow-covered (both land and
sea ice) surfaces.

Snow free surfaces A common approach for land emissivity estimates (snow-free) is to
use retrieved values from surface-sensitive channels (below 89GHz) as estimates for higher
frequencies. A couple of studies (Table 2) have attempted to retrieve surface emissivi-
ties up to 157GHz, but none have attempted to retrieve estimates at 183GHz or higher.
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Figure 1: Polarisation difference contours (166V−166H) as a function of 166VGHz bright-
ness temperatures (Tb) for observed GMI data (red) and simulated values (blue) over
snow-covered land (left) and sea ice (right).

Hewison (2001) retrieved emissivities upto 157GHz, using flight measurements over forest
and agricultural lands in Sweden. They observed that emissivity increases with frequency.
On the other hand, Karbou et al. (2005) retrieved land emissivities up to 157GHz using
satellite observations, but showed that emissivity estimates at 89GHz are a good proxy
for radiance simulations at both 150 and 183GHz. Similarly, at the ECMWF, assimilation
of all-sky radiances assumes that land emissivity is sufficiently invariant with frequency,
and the emissivity estimates from surface-sensitive channels serve as a reasonable approx-
imation for sounding channels (Baordo and Geer 2016). TELSEM2 also follows this trend
and the emissivity values for snow free land are assumed to be constant for frequencies
above 85GHz. However, little is known about emissivity trend beyond 183GHz in the
sub-mm range. At higher frequencies (above 166GHz) water vapour often obscures the
surface signal. As a result, at high frequencies, impact of surface signal is low in the
tropical belt and other areas with high water vapour content. However, in winter, and
at higher latitudes, dry atmosphere with snow free surfaces requires modelling surface
emissivities in a realistic way.

Snow-covered surfaces (land and sea ice) In TELSEM2, the emissivity values for
snow-covered land are assumed to be constant for frequencies above 85GHz. Further,
the sea ice emissivities are parametrized upto 183GHz using Special Sensor Microwave -
Imager/Sounder (SSMIS) derived emissivities (Boukabara et al. 2011) but only for new
ice and first year sea ice classes. Multi year ice emissivities are assumed constant for
frequencies above 85GHz. However, data from aircraft campaigns (e.g. Hewison et al.
(2002)) have shown that emissivity at 183GHz is consistently higher than at 157GHz
for both snow and sea ice surface types. In another study, Harlow and Essery (2012)
studied the variability of snow emissivity over different snow-packs. They observed that
the snow emissivities increase monotonically with increasing frequency for stratified snow.
However, for fresh snow, the emissivity estimates follow a decreasing trend. Additional
issue which is often raised while retrieving surface emissivity over snow-covered surfaces
is assumption of specular or lambertian reflection. However, this is not important for ICI,
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Table 4: Brief description of the different snow-cover emissivity estimates available in
literature for frequencies above 183GHz.

Study Input data Frequency Comments

Tait et al.
(1999)

Airborne
measurements,
(snow-covered
regions northern
US)

220GHz

increasing Tbs with frequency
over snow-covered surfaces -
could be due to increasing
emissivity

Haggerty and
Curry (2001)

Ship/airborne
measurements
(snow-covered
Arctic)

37 to
220GHz

Emissivity over snow-cover
increases beyond 150GHz
(Fig. 2)

Wang et al.
(2016)

Airborne
measurements
(continental ice
and sea ice
Greenland)

up to
325GHz

comparisons with TELSEM2
poor, emissivities increase
between frequencies 150 and
183GHz, but decrease at
higher frequencies

as at conical scanning angles, the differences between specular and lambertian reflection
vanish.

Based on the above studies based on measurement campaigns, we have developed a
probabilistic snow-emissivity model that provides polarised emissivities for snow-covered
surface types (both over land and sea ice) at frequencies between 150 and 190GHz. This
model gives a random estimate of the snow emissivity from a standard normal distribution
depicting the valid range of emissivity values. The valid range was decided through emis-
sivity values reported in literature (Hewison et al. 2002, Harlow 2009, Harlow and Essery
2012) and the model was fine-tuned by comparing observed and forward modelled radi-
ances for snow-covered regions as observed by Global Precipitation Measurement (GPM)
Microwave Imager (GMI). The basic idea is to find a set of emissivity estimates that
simultaneously give radiance closest to the measurements. Figure 1 (left) shows a statis-
tical comparison of the polarization differences (166V−166H) simulated and observed at
166GHz for snow-covered land during January. The polarization differences above 20K
are most likely associated with mixed surface types e.g., snow/land boundaries, while the
signals between 0 and 15K are mostly pure surface contribution, but also some impact
from hydrometeor scattering is expected. In spite of being random estimates, the range of
emissivities for snow-covered regions obtained from our model is also comparable to emis-
sivity estimates retrieved from passive microwave instruments. For instance, Munchak
et al. (2020) retrieve emissivities for GMI using optimal estimation method. They define
20 snow-covered surface classes for which the emissivity estimates vary between 0.75 to
0.92 at 166GHz. These values are quite comparable to snow emissivity estimates from
our model. Similar values were also reported by Camplani et al. (2021) for snow-covered
surfaces.

Over snow-covered sea ice regions, we obtained a similar performance with this em-
pirical model. For sea ice, the structure of polarisation differences (PDs) is only slightly
different than snow-cover (Fig. 1 (right)). Here, the flat arch region is a bit narrow and
the concentration of observations along the arm is denser than snow-covered land. The
PDs along the arch region originate from snow-covered sea ice, while the the higher PDs
along the arm arise from sea ice and water mixture. Areas with lower fraction of sea ice
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Figure 2: Surface emissivity over snow covered regions as reported by Haggerty and Curry
(2001).

shall have higher emissivity compared to areas with larger sea ice fraction. A detailed
description of distribution of sea ice and water mixture inside the footprint is required to
model these emissivities correctly.

An extension of such a model to frequencies upto 325GHz will not be straightfor-
ward due to non-availability of satellite based observations. Few studies (Table 3) have
attempted to estimate surface emissivity using data from aircraft campaigns, but it re-
flects only a small part of the global picture. For example, Wang et al. (2017) retrieved
emissivities for sea ice and continental using ISMAR observations over Greenland. For
the former, the emissivities were noisy, due to natural spatial variation in sea ice. How-
ever, for continental ice, the emissivity increases between frequencies 150 and 183GHz,
decreases at higher frequencies. The average emissivity at 243GHz and 325GHz is 0.85
and 0.87, respectively, and compared to 0.9 at 183GHz. These estimates when compared
with TELSEM2 (Wang et al. 2017) gave a very poor match. Further, in another study
during a ship/flight campaign over the Arctic (May to July 1998, Haggerty and Curry
2001), measurements over snow-covered sea ice regions were made for frequencies between
37 to 220GHz. They showed that the emission by snow-cover increases with frequency
(Fig. 2). Another study by Tait et al. (1999) also analysed Tb from same instrument
but flown over American subcontinent, and found that Tbs observed over snow-covered
surfaces increased with frequency. This could be attributed to the increase in emissivities.

Based on the above trends reported in literature for emissivities over snow-covered
regions, we will develop a probabilistic model to calculate the emissivity estimates. It
should be noted that for the retrieval database the input data should match the sim-
ulations in an overall statistical sense. Thus, it is not totally necessary to know the
emissivity of snow-covered surfaces at a given time and position. We can apply a random
snow emissivity, as long as the applied distribution of emissivities follows reality.

2.3 Hydrometeor microphysics

2.3.1 Mixed phase clouds and particles

Implementing mixed phase particles (melting particles) is not possible due to unavailabil-
ity of single scattering data for such particles at sub-mm frequencies. The preliminary
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Table 5: Some commonly used particle size distributions (PSDs)

PSD Comments
McFarquhar and Heymsfield (1997)
(MH97)

Used in limb sounding community,
only tropical settings

Field et al. (2007) (F07)
Tropical and mid-lat versions, Used at
ECMWF

Delanoë et al. (2014) (D14) Used in DARDAR v2.1 product, MGD

Exponential PSD

simple to use with dual or triple
frequency radars, good for
precipitation, but aircraft PSDs not
exponential

Figure 3: Normalised extinction as function of volume equivalent diameter (Dveq) for
three different particle size distributions. Figure from Ekelund et al. (2020).

database already includes the mixed phase clouds.

2.3.2 Particle size distributions

The particle size distribution (PSD) describes how the particle sizes are distributed within
a volume element. Commonly used PSDs by the passive microwave community are de-
scribed in Table 5, for example, the one by McFarquhar and Heymsfield (1997), usually
referred as MH97. MH97 was also used by Rydberg et al. (2009) to retrieve IWPs using
limb microwave measurements. It is mostly valid for anvil cirrus in thes tropics. Another
parametrized PSD is by Field et al. (2007), also known as F07. It is a single-moment PSD
parametrization based on data from multiple measurement campaigns. It has different
settings for the tropics and mid-latitudes. The PSD used by DARDAR v2.1 product
(Delanoë et al. 2014) denoted here as D14 is another parameterized PSD. It is a modi-
fied gamma distribution (MGD) fitted to insitu data. D14 is a 2-moment scheme, and
requires the normalized number concentration (N∗

0 ) and mean volume-weighted diameter
(Dm) as the two inputs. Either of N∗

0 and Dm can be converted to ice water content
(IWC). A 1-moment version of D14 was used by Ekelund et al. (2020). A comparison of
the PSD-weighted extinction cross-section for these three PSDs is shown in Fig. 3. MH97
puts more weight on small particles, thus is less suitable for snow. On the other hand,
both F07 and D14 put higher weight on larger particles with increasing value of IWC.

Out of F07 and D14, the latter emerges as a better choice for this study, due to
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Figure 4: The impact of three parameters: N∗
0 , α and β on the variability of D14.

Figure 5: The distribution of joint IWC and dBZ measurements, as available from Protat
et al. (2016).

various reasons. Firstly, DARDAR is the best satellite based reference available. Also,
D14 is a modified gamma distribution (MGD) and can include continuous variability by
randomising the background moments. However, some prior information should be at
hand to assess the variability of background moments. D14 has four different moments.
The first two moments (α and β) are related to µ and γ coefficients of the MGD, while the
remaining two are related to N∗

0 and Dm. The latter two moments can be set by selecting
two out of the three variables: IWC, N∗

0 and Dm. Figure 4 shows the impact of N∗
0 , α and

β on D14. At IWC of 100mg m−3, decreasing only N∗
0 by 10% leads to +460% change in

the rayleigh scattering effects. Similarly, when only α is decreased from −0.26 to −1.26,
the corresponding change in scattering is only +14%. Changing only β from 1.75 to 0.75,
increases the scattering by 57%. When these three changes are applied together, a 1000%
increase in scattering can be obtained. However, the variability introduced by varying N∗

0

and other moments should also follow the realistic dBZ-IWC variability. For example,
Fig. 5 shows the joint frequency distribution of measured IWC and dBZ from a flight
campaign (Figure from Protat et al. 2016).
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Figure 6: Polarisation difference contours (166V−166H) as a function of 166V GHz bright-
ness temperatures (Tb) for observed GMI data (red) and simulated values (blue) for water
and land. In (a) and (b) the simulations assume hydrometeors to have TRO, while in (c)
and (d) the ARO effects are simulated using a scheme similar to Barlakas et al. (2021).

2.3.3 Oriented hydrometeors

Dual polarised measurements have consistently shown that ice hydrometeors are generally
oriented in nature. However, in retrieval studies, ice hydrometeors have been repeatably
being assumed with Total Random Orientation (TRO) to avoid heavy computations.
With launch of ICI, the need to improve hydrometeor representation will increase mani-
folds.

So far, oriented particles have been ignored in microwave retrievals as such particles re-
quire polarised (vector) radiative transfer that is more computationally intensive than the
standard unpolarised (scalar) calculations. In addition, there are few software packages
available that can handle polarised microwave simulations. The lack of realistic scattering
property data in the Azimuthal Random Orientation (ARO) category has been an even
more significant limiting factor. Some such data were developed and explored by Adams
and Bettenhausen (2012). The first publicly available data were provided by Brath et al.
(2020), but just for two particle shapes (habits). This is in contrast with the main part
of the accompanying scattering database that covers TRO with 36 shapes (Eriksson et al.
2018). The striking difference is explained by the fact that ARO requires much more
resources, both in terms of production and storage of the data.
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Figure 7: The scatter plot showing the PD vs TbV at 660GHz. The light blue dots are
for near global simulations; the gray dots denote simulations in 40◦N - 60◦N/30◦W - 5◦E.
The five alphanumeric codes depict observations from five flight campaigns as described
by Fox (2020).

While it is still too expensive to run a fully polarised radiative transfer, an alternate
schemes to improve physical representation of hydrometeors have emerged. For example,
Galligani et al. (2021) have attempted to parametrize the polarisation signals observed
from GMI at 89 and 166GHz, with good results. However, their method is non-physical
and limited to only these two frequencies as it requires actual dual-polarisation observa-
tions for the frequency to be simulated. For instance, the GMI 183GHz channels are V
polarised and a correction for these channels can not be presented in lack of parallel H
polarised channels. Further, an extension of their approach to sub-mm wavelengths is not
viable today due to a lack of observational data. A more general method to approximate
the polarisation signatures was introduced by Barlakas et al. (2021) for comically scanning
radiometers. Their method mimics the effect of particles with ARO by scaling the optical
properties of particles with TRO. The scheme was tested with RTTOV-SCATT and is
available as an option in the latest RTTOV version.

The preferentially oriented hydrometeors exhibit strong dichroism effects (Davis et al.
2007), which introduces significant differences in Tbs measured at Vertical (V) and Hor-
izontal (H) polarisations by microwave imagers. On the other hand, TRO hydrometeors
have no dichroism effect, hence the polarisation signals are very small and arise only due
to scattering effects (Emde et al. 2004). The overall level of extinction and the degree
of polarization vary with the observation incidence angle at the Earth surface. However,
for an incidence angle of about 55◦, typically used by conically scanning radiometers, the
overall amount of extinction is unaffected by hydrometeor orientation (Brath et al. 2020).
Based on this, Barlakas et al. (2021) introduced a correction factor (α) to approximate
the differences in vertical (V) and horizontal (H) polarisations, as measured by conical
scanning radiometers. The correction factor increases and decreases the layer optical
thickness (τ) in the H and V polarised channels, respectively. The correction mimics the
differences between H and V polarisations caused by ARO, and the ratio of the modified
layer optical thickness gives the polarisation ratio:
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ρ =
τH
τV

=
1 + α

1− α
. (1)

The factor α (>= 0) weakens the extinction at V polarisation and strengthens it at
H polarisation. For TRO, ρ is equal to one, and for a-ARO, ρ > 1. Since this scheme
approximates the ARO behaviour without computing the fully polarised radiative transfer,
henceforth, the oriented particles are referred as ”approximated ARO” or ”aARO”. A
modified version of the scheme has been implemented within ARTS and tested with
the high frequency measurements of GMI. In the modified version, instead of applying a
constant polarisation ratio to entire data, we scale the extinction for H and V polarisations
by a variable polarization ratio. A random selection of ρ from a uniform distribution
between (1, 1.4) is made. The variable selection allows to simulate a wide spectrum of
polarisation signals as observed in reality. Figure 6 shows a comparison of observed and
simulated PDs versus the Tbs at 166GHz (PD-TbV distribution) with TRO and aARO
assumption. The PD-TbV distribution is composed of two main parts. The long arm
with very high PD reaching up to 50K is due to the surface contamination, while the
arch type structure for Tbs below 250K is due to PDs arising from the ice hydrometeor
scattering. With only TRO assumptions, the PDs from hydrometeors are quite flat and the
maximum magnitude that can be simulated is around 5K, which clearly falls short of the
realistic distribution. On the other hand, with aARO, the wide spectrum of polarisation
signals can be reproduced correctly in a statistical sense. In the results shown above, the
performance of the scheme is tested with a simple particle model: large plate aggregate
and the PSD by (Field et al. 2007).

We also investigated the performance of the scheme in sub-mm range using ρ ∈ U(1,
1.4). Figure 7 shows the PD-TbV distribution at 660GHz. The arch shape of PDs is pre-
served at 660GHz and the maximum PD is around 15K which occurs for Tb around 190K.
660GHz is not sensitive to surface (weighting function peaks in the upper troposphere),
hence the high PDs associated with surface contamination are missing. Similar results
were also observed by Gong and Wu (2017) from the Compact Scanning Submillimter-
wave Imaging Radiometer (CoSSIR) 640GHz measurements. Their observations were
mostly over the Pacific Ocean near Central America, and the maximum amplitude of
PDs was observed to be 10K. With an identical range of ρ, the maximum observed PDs
at 166GHz are higher than at 660GHz. This indicates that the upper limit of ρ might
increase with increasing frequencies. This is not unexpected as at 660GHz, the sensitivity
to small oriented hydrometeors is stronger than at 166GHz. Previously, Gong and Wu
(2017) had also concluded a similar behaviour while studying the effect of aspect ratio on
the bell/arch curve (ρ is an indirect representation of aspect ratio). While it is difficult
to predict the range of ρ, which will reproduce the future observations from ICI, selecting
ρ > 1.4 is not ruled out to maintain a buffer zone of variability. One can argue that with
limited observations from flight campaigns it is not feasible to completely solve the entire
variability of PDs.

2.4 Representation of footprint

For the retrieval database, the possible use of simulated antenna patterns (or simplified
Gaussian) will be considered. Representation of antenna patterns will be done as a post-
processing step, however it has to be decided which antenna pattern and incidence angle
to assume. Due to variation in ICI incidence angles, there is still the open point on which
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angle should be considered to simulate footprints. The elevation angle offset is ± 0.9◦

between ICI channels, which is not negligible. It will require investigation if different
angles should be considered. However a consistency between the option used to generate
the database and the RTTOV call used in the operational processor will be probably
maintained in order to avoid biases. Additionally, to represent the antenna footprint,
a number of pencil beam calculations will be required. Ways to manage the additional
computational load are discussed in Sect. 3.2.

3 Other considerations

3.1 Data

Different types of data on vertical and horizontal structures are required to generate
the hydrometeor fields. In this section, a detailed description of the various static and
non-static atmospheric/surface fields in clear-sky and all-sky conditions is presented.

3.1.1 Static clear-sky atmospheric data

Under clear-sky condition, gas absorption effects need to be considered. In addition
to water vapour, oxygen and nitrogen absorption, ozone will also be included. A gas
absorption model is being formulated for RTTOV and ICI inside another EUMETSAT
study being led by UK Met Office. We will apply the same absorption model in the
database generation. Contact with Stuart Fox will be made.

3.1.2 Non-static clear-sky atmospheric data

The vertical temperature profiles and gas profiles for water vapour, nitrogen, oxygen, and
ozone will be taken from ERA5 reanalyses.

3.1.3 Static surface data

Surface elevation, land-sea mask and surface emissivity estimates together form the static
surface data for the synthetic scenes. Surface elevation will be collected from SRTM30,
which is a near-global digital elevation model (DEM). A module to extract elevation
estimates is available as a part of typhon (Lemke et al. 2020). The land-sea mask shall
be sourced from ERA5.

The various options available for surface emissivity are described in Sect. 2.2, but here
we provide a brief outlook. Surface emissivities for water bodies will be taken from the
TESSEM2. For snow-free land surface types, TELSEM2 will be considered but options
to randomise the emissivities for higher frequencies will be included. For snow-covered
surfaces, we shall extend the probabilistic model described in Sect. 2.2 to sub-mm range.

3.1.4 Non-static surface data

Non-static surface data required to generate synthetic scenes are snow depth, sea ice frac-
tions, and skin temperatures. Snow depth and sea ice fraction are necessary to augment
the surface classification, and calculate the associated emissivities. ERA5 reanalyses will
be used for snow depth, sea ice, and skin temperature.
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3.1.5 Static hydrometeor data

Absorption model for liquid water content The liquid water content (LWC) will
be assumed to be totally absorbing and the liquid absorption model by Ellison (2007) is
likely to be used as first choice. However, we might consider using the same absorption
settings as used by RTTOV.

Single scattering data The ARTS single scattering database (SSD, Eriksson et al.
2018) that covers 34 particle habits and frequencies up to 886.4GHz is most suitable
for this study. The only constraint this database has that its scope is limited to TRO.
However, as described in Sect. 2.3.3, the inclusion of hydrometeors with ARO will be done
in an approximate manner, which rules out the requirement of a polarised SSD.

Additionally, for ice hydrometeors, multiple habits will be applied. The selection of
habits can be latitude specific or random. However, some initial testing will be required
to pick out the best combinations.

Particle size distribution As described in Sect. 2.3.2, D14 meets the requirements of
the current study, but it would be important to match the measured IWC-dbZ variability
for consistency.

3.1.6 Non-static hydrometeor data

The non-static hydrometeor data for generating 3D scenarios can be extracted either from
satellite observation or model outputs. Collocated profiles of observations over footprints
are usually not enough to generate a comprehensive database. On the contrary, global
model outputs can overcome this constraint but they are often limited by their own
inherent uncertainties. For example, numerical weather prediction (NWP) models cannot
resolve cloud heterogeneities, typically the small scale cloud structures and are often
associated discrepancies in IWP estimates.

For this study, Cloudsat radar reflectivities, together with multispectral imaging data
fromMODIS, will be used as an input to generate 3D synthetic scenes. The radar reflectiv-
ities will be converted to ice water content (IWC) fields conditioned by the microphysical
assumptions defined for the forward modelling. Further, Cloudsat has operated in daytime
mode since 2011 due to a battery anomaly. To avoid bias due to only daytime coverage,
we shall utilize Cloudsat observations prior to 2011. Due to insensitivity of Cloudsat to
liquid water in the atmosphere, ERA5 reanalyses for liquid water content (LWC) shall be
used to complement the Cloudsat derived IWC. To avoid high LWC outside clouds and
precipitation as detected by Cloudsat, some LWC filtering may be required.

3.2 Radiative transfer

The Atmospheric Radiative Transfer Simulator (ARTS, Buehler et al. 2018) will be used
to simulate the radiative transfer. To represent the antenna footprint, a number of pencil
beam calculations will be required. The input data has a resolution in the order of 1.5 km.
If we want to sample an area of 30 km×30 km at this resolution, that would result in 400
pencil beams to simulate. There is a similar consideration for the inclusion of sideband
passband responses. A single (monochromatic) calculation is not sufficient to correctly
simulate a full passband. As shown in Eriksson et al. (2020), some of the ICI passbands
are affected by ozone and the spectral representation becomes especially important for
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these bands. It is hard to set a general number on the required number of frequencies per
passband. If we assume five frequencies per passband to keep noise low, it would give us
130 frequencies in total (5×2×13). The scattering solvers handle one position and one
frequency at a time. This means that a naive setup would result in about 52000 (400*130)
calls of the scattering solver for each database case to generate. This is a number more
than two orders of magnitude higher than used for the preliminary database and is simply
too high. We will need to investigate manners to perform the simulation using fewer pencil
beam directions and monochromatic frequencies without affecting the calculation accuracy
too much. Potential solutions include using fewer pencil beams outside the main antenna
lobe and using fewer monochromatic frequencies for the all-sky calculation than the clear-
sky one. We will also use the central computing facilities (at Chalmers) to manage the
additional computational load.

3.3 A priori weights

The ICI retrieval database must in practice contain a finite number of cases/states, and
these cases should cover all possible clear and cloudy weather conditions and should ideally
be sampled from the a priori probability density function. In practise this means that
the retrieval database will primarily contain clear sky cases where many of these are close
to identical to each other, and these cases will have an insignificant contribution to the
retrieval for observations over cloudy areas.

The ICI retrieval algorithm is designed to consider a priori weight (the term a in
Eq. 8 of Eriksson et al. (2020)). The idea is to combine database cases that can be
seen as duplicates into a single case in order to allow for using a retrieval database that
is smaller in size but still cover all possible weather conditions and enables the same
retrieval performance as the original database. Or stated differently, the use of a priori
weight/”thinning” allows for using a more complete retrieval database given that the size
of the retrieval database is limited by a computational cost reason.

No algorithm for thinning the retrieval database is readily available, but should be
developed inside this study. It should be possible to at least thin cases matching clear-sky
conditions. This can potentially be done by applying an algorithm that identifies cases
where the simulated brightness temperatures of all ICI channels are close to identical, at
the same time as the underlying state matches (e.g. surface type and temperate matches).

4 Assessments

4.1 Validation of the cloud radiation retrieval database

A true validation of the cloud radiation retrieval database is difficult or even impossible
to accomplish in the absence of actual ICI data. However, the method to generate the
retrieval database can be applied to existing instruments that are similar to ICI to allow for
making some assessments. We judge that the most relevant instruments for this exercise
are the following two:

• The Global Precipitation Measurement (GPM) Microwave Imager (GMI):
is a multi-channel, conical scanning, microwave radiometer (https://gpm.nasa.
gov/missions/GPM/GMI). GMI has thirteen microwave channels operating at fre-
quencies from 10 GHz to 183GHz. The satellite was launched at 2014-02-27 into a
circular, non-sun-synchronous orbit at an altitude of 407 km, and with an inclination
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of 65◦ to the equator. The off-nadir-angle defining the cone swept out by the GMI is
set at 48.565◦ which results in an observation incidence angle of 52.8◦. Observations
are acquired within an angle of ±70◦ in azimuth w.r.t. the for view which gives a
swath of around 900 km at the Earth’s surface. With a 1.2m diameter antenna the
footprint resolution is around 5 km for the highest frequency channels.

• The International Submillimetre Airborne Radiometer (ISMAR):
is an airborne submillimetre radiometer (Fox et al. 2017). ISMAR has been devel-
oped as an airborne demonstrator for the ICI, and thus have channels that overlaps
the mm and sub-mm channels of ICI.

The generation of a retrieval database for GMI allows for testing the simulations for
various climate conditions, while a comparison with ISMAR will be limited to northern
mid-latitudes but involve sub-mm radiances. A first assessment will be to verify that
simulated radiances are consistent to actual radiances in a statistical sense, as done in
Fig. 7 in Eriksson et al. (2020).

A second and higher level of assesment will be to perform retrievals and compare
against existing cloud ice products and verify that the data is sufficiently consistent to
each other. The DARDAR (raDAR/liDAR) project (https://www.icare.univ-lille.
fr/dardar/) provides cloud properties derived from combining the CloudSat radar and
the CALIPSO lidar measurments, and these cloud ice products are to date probably
the most trustable data available. Retrievals from GMI observations will therefore be
compared to DARDAR data.

4.2 Retrieval performance

The ICI retrieval performance can be estimated by picking out one part from the retrieval
database into a reference dataset, and by performing retrieval simulation on this reference
dataset using the remaining part of the retrieval database in the retrieval calculation.
Using this approach will allow for a trustable retrieval performance characterisation only
if the retrieval database states represent real condition and variability closely, as the
reference dataset and retrieval database are not completely independent of each other.
However, the approach described above is considered to be sufficiently accurate given
that the retrieval database was validated according to the description in Sect. 4.1. The
ICI retrieval performance can then, and will, be characterised for various climatological
conditions, i.e. by picking out several reference datasets covering tropical, mid-latitude
and arctic winter and summer conditions.

The reference datasets used for estimating ICI retrieval performance for various clima-
tological conditions will also be used to demonstrate the increased retrieval performance
by using the new cloud radiation retrieval database as compared to using the preliminary
retrieval database developed by the NWCSAF (Rydberg 2018). By performing retrieval
simulations on the reference datasets but using the preliminary retrieval database in the
retrieval calculation we obtain data in such a way that it is straightforward to compare
the associated retrieval performance of the two cloud radiation retrieval databases.
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Appendices

A The Barker 3D cloud-construction algorithm

Barker et al. (2011) presents an algorithm that constructs 3D distributions of cloud from
passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred
synergistically from lidar, cloud radar and imagery data. Effectively, the construction
algorithm widens the active retrieved cross-section (RXS) of cloud properties, by using a
match-and-substitute algorithm that fills in off-nadir pixels/columns with cloud property
profiles from the swath center. For this purpose radiances from a passive multi spectral
imager (MSI) for an off-nadir, recipient, pixel are compared with corresponding values for
a range of pixels along the RXS; close matches are identified as potential donors with the
closest to the recipient pixel being designated as the proxy to literally stand in for the
recipient. This is repeated until all pixels in the required 3D domain are filled.

Required data

The Barker 3D construction algorithm requires the following data:

• a series of profiles (i.e. the nadir RXS) of cloud properties retrieved from either
active instruments alone or in synergy with MSI data

• MSI data at wavelengths typical of conventional imagers at resolutions ideally less
than the coarsest active instrument and extending in the across-track direction on
both sides of the RXS

Main data sources used by Barker et al. (2011):

• MSI data from MODIS onboard Aqua

• retrieved data from the active sensors CALIOP onboard Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) and the cloud profiling radar
onboard CloudSat.

Even though Barker et al. (2011) used retrieved 2D nadir profiles of cloud properties, the
algorithm can alternatively be applied to construct more basic 3D fields, like for example
radar backscatter fields. This is relevant for the present study, as this allows for a full
control of e.g. cloud microphysical assumptions, for further use of the the constructed
3D fields. Anyhow, Aqua, CALIPSO, and CloudSat are all part of NASA’s A-train
constellation, and hence collocated data from the instruments above are available.

The MODIS instrument has a viewing swath width of 2,330 km and views the entire
surface of the Earth every one to two days. Its detectors measure 36 spectral bands
between 0.405 and 14.385 µm, and it acquires data at three spatial resolutions; 250 m,
500 m, and 1000 m. The most relevant MODIS channels for the construction algorithm
as identified by Barker et al. (2011) are the following:

• 0.62 - 0.67 [µm],

• 2.105 - 2.155 [µm],

• 8.4 - 8.7 [µm],
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• and 11.77 - 12.27 [µm],

where it should be clear that data from a channel operating at visible wavelengths are
only relevant for day time observations. CloudSat is an experimental satellite that uses
radar to observe clouds and precipitation from space. The Cloud Profiling Radar (CPR)
is a 94-GHz nadir-looking radar which measures the power backscattered by clouds as
a function of distance from the radar, and the along-track sampling is 2 km (1.4 km x
1.7 km across and along track resolution), with a dynamic range of 70 dB, and 500 m
vertical resolution.

CALIPSO combines an active lidar instrument with passive infrared and visible im-
agers to probe the vertical structure and properties of thin clouds and aerosols over
the globe. CALIOP is a two-wavelength polarization-sensitive lidar that provides high-
resolution vertical profiles of aerosols and clouds. The vertical and horizontal resolution
is 30-60 m and 333 m, respectively.

Identification of donor columns

A main part of the actual 3D construction algorithm is the identification of a suitable
donor column to use for an off-nadir pixel. Barker et al. (2011) came up with the idea to
use a local database consisting of all data points along the subsatellite track and within
a distance closer than 200 km from the current position, and to select one of these points
as the donor. If we assume that a pixel along the RXS is located at position (i, 0), the
intention is to fill all pixels (i, j) with a donor column, and we begin by computing the
following cost function:

F (i, j;m) =
K∑
k=1

wk

(
rk(i, i)− rk(m, 0)

rk(i, j)

)2

: m ∈ [i−m1, i+m2] (2)

where the summation is over the KMSI the channels, wk is a weighting factor, rk(i, j) is
the radiance of channel k at pixel position (i, j) and rk(m, 0) is the radiance of channel k at
pixel position (m, 0) and part of the local candidate database, and m1 can be selected such
that the database only includes data points from within a desired window. Barker et al.
(2011) describes that just considering the radiance match can result in that one selects
an inappropriate donor profile, and to limit this risk it is preferable to also consider the
distance between between a potential donor at (m, 0) and the recipient at (i, j), that can
simply be calculated as:

D(i, j;m) = ∆L
√

(i−m)2 + j2, (3)

where ∆L is the imager resolution. Barker et al. (2011) recommends that one selects the
donor with the closest distance to the recipient from the 3 % of the database states having
the smallest radiance cost function value. It is also recommended that the selection of
candidate donors take into account surface types such that the donor and recipient have
the same surface type.

Testing the algorithm by reconstructing RXS

The 3-D construction algorithm can be tested in various ways. One straightforward test
one can do is to try to reconstruct a piece of RXS but using a ”dead zone” around it,
such that data from this zone is not allowed to be used for the reconstruction. This is
also done in Barker et al. (2011), and it was found that cloud masks were retrieved with
only small errors out to distances to at least 20 km from the local database.
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1 Introduction

The EUMETSAT Polar System (EPS) Second Generation (EPS-SG) will provide conti-
nuity of observations of the current EPS in the timeframe from 2025 onward. The Ice
Cloud Imager (ICI) [RD-1] will be one of the missions of the EPS-SG. ICI is a passive
conical-scanning radiometer observing in the microwave to sub-millimetre wave range of
the spectrum with 13 channels from 183 GHz to 664 GHz. Its primary objective is the
quantification of cloud ice in support of climate monitoring, the validation of ice cloud
models and the parameterization of ice clouds in weather and climate models. The core
geophysical products of ICI will be data characterising the bulk mass of ice particles and
their size. The main retrieval quantities to be produced at the EUMETSAT Central Fa-
cilities are the integrated ice water path (IWP), the mean ice particle size by mass and
mean mass height.

1.1 Purpose of this document

A retrieval algorithm based on Bayesian Monte Carlo integration (BMCI) has been devel-
oped [RD-2, RD-3], providing the inversion as a description of the posterior probability
distribution by utilising a cloud radiation retrieval database. The retrieval database is the
key component of the ICI retrieval algorithm, and consists of pairs of atmospheric/surface
states or scenes along with associated simulated observations.

This report builds upon a literature review report (Kaur, Eriksson and Rydberg 2022)
and aims to detail the work performed within Task 2 of the project: Development of
a cloud radiation database for EPS-SG ICI, in support of ICI Level2 processing at the
EUMETSAT Central Facilities.

1.2 Structure of this document

Section 2 and 3 give a description of the main assumptions, data, algorithms, and models
used for the generation of scenes and for the ICI simulation, respectively. The limitations
and possible future developments of the retrieval database are discussed in Section 4.

1.3 Reference documents

[RD-1] Accadia C. et al. (2020) Microwave and Sub-mm Wave Sensors: A European
Perspective. In: Levizzani V., Kidd C., Kirschbaum D., Kummerow C., Nakamura K.,
Turk F. (eds) Satellite Precipitation Measurement. Advances in Global Change Research,
vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-24568-9_5 .

[RD-2] Rydberg, B.: EPS-SG ICI ice water path product: ATBD. SAF/NWC/LEO-
EPSSG/ATBD/IWP-ICI Issue 2.1, Rev. 2, Tech. rep., EUMETSAT. NWCSAF,
www.nwcsaf.org, -¿ documentation, code: ICI, 2018.

[RD-3] Eriksson, P., Rydberg, B., Mattioli, V., Thoss, A., Accadia, C., Klein, U.,
and Buehler, S. A.: Towards an operational Ice Cloud Imager (ICI) retrieval product,
Atmos. Meas. Tech., 13, 53–71, https://doi.org/10.5194/amt-13-53-2020, 2020.
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2 Generation of scenes

2.1 Main assumptions

Figure 1: Flowchart summarising the input data, processes, and outputs of the scene
generation scheme. The complete algorithm has been implemented within a Python
toolbox denoted as the ARTS Scene Generator.

Atmospheric and surface states (or scenes) of the cloud radiation database must be realis-
tic, include data for all parameters that have a significant impact on the ICI observation,
and cover a wide range of conditions. It is assumed that the Cloud Profiling Radar
(CPR), a 94 GHz near nadir-looking radar, onboard CloudSat, provides the best possible
information on the vertical and horizontal cloud structures with a close to global coverage
(82◦ S – 82◦N). CPR data therefore serves as one of the main data source for the scene
generation. However, the CPR only provides a two dimensional (2D) view of a scene, and
the data must therefore be expanded in the across-track direction to allow for generating
scenes that have a horizontal extension that is greater than the footprint size of ICI, of
about 16 km. This is of importance in order to resolve ‘beam filling issues’ (Barlakas and
Eriksson 2020) that otherwise ultimately can lead to a bias of the ICI level2 product. The
generated scene must also include a description of atmospheric gases and temperature,
and the surface type and state, and it is assumed that ERA5 is the best available source
for this kind of data.

Figure 1 depicts the input data, processes, and output data of the scene generation
scheme developed for the study. The scene generation scheme is responsible for gener-
ating 3D varying scenes, or input to the radiative transfer part of the ICI simulation
that is handled by the Atmospheric Radiative Transfer Simulator (ARTS, Buehler et al.
2018). The scene generation is described in the following parts of this section. Note that
the scene generation scheme is only responsible for generating 3D varying radar reflec-
tivity fields and not underlying microphysical properties like ice and rain water content
fields. ARTS provides functionality for retrieving ice and rain water content from radar
reflectivity profiles, and this is described in more detail in Section 3. However, the main
assumption/strategy is that ice and rain water content fields are constructed to be fully
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consistent to the generated 3D radar reflectivity fields, by making skilled assumptions on
hydrometeor size distributions and scattering properties.

2.2 Construction of 3D varying cloud structure

Figure 2: Example of a generated 3D varying radar reflectivity field.

Cloud structures having a three dimensional variability are generated following an algo-
rithm originally developed by Barker et al. (2011). The details of the algorithm, and
setup for the current study, is decribed in Appendix A. In short, the algorithm combines
collocated 2D stretches of radar reflectivity from the CPR onboard CloudSat and multi-
spectral imaging data from MODIS onboard Aqua, and effectively widens the radar data
by using a match-and-substitute algorithm that fills in off-nadir pixels/columns with radar
reflectivity profiles from the swath center. The algorithm applied for the current study
is set up to generate 3D varying scenes with a horizontal extension of 2000 kmx 50 km
(in the along and across track direction of the CloudSat sub-satellite path), and one such
example is shown in Figure 2. The distance on ground between two adjacent ICI scans
is about 10 km, and the generated scene then covers and allows for simulating the center
position of about 200 ICI scans, if we assume that the platform of ICI is flying within the
CloudSat orbital plane (further described in Section 3).

CloudSat has been in operation since 2006, and was initially placed in a sun-
synchronous orbit with a 13:31 h local time ascending node. Data covering the period
2009-01-01 to 2010-12-31, are used here to generate thousands of scenes like the one dis-
played in Figure 2. This period of time is chosen as the CPR was then operated during
both day and night time part of the orbit, and the period covers both El Niño and La
Niña phases.

2.3 Merging with background atmospheric/surface data

Data from ERA5 reanalysis, available at 0.25◦ resolution, are used to fully describe the
atmospheric structure and surface condition of the 3D scene. The following ERA5 pa-
rameters are used: temperature, humidity, ozone, liquid water content, geopotential, skin
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temperature, 10m wind, snow depth, and sea-ice concentration. Atmospheric data and
10 m wind speed and direction are interpolated onto the grid of the 3D scene. Snow
depth and sea-ice concentration data are used to generate a surface type mask, but prior
to this sea-ice concentration data are preprocessed, as described in Appendix C, to result
in a sea ice mask (no sea-ice or sea-ice). Possible surface type values are: land, ocean,
inland water, snow, and sea-ice. Surface type is classified as snow if the snow-depth (water
equivalent) is more than 3mm.

3 ICI simulation

3.1 Main assumptions

Figure 3: Flowchart summarising the input data, processes, and outputs of the scheme
developed for the ICI simulation.

The Atmospheric Radiative Transfer Simulator (ARTS, Buehler et al. 2018) is used as the
engine for the radiative transfer part of the ICI simulation, and Figure 3 depicts the input
data, processes, and output data of the ICI simulation. In addition to this the simulation
incorporates/takes into account

• state-of-the-art atmospheric absorption models,

• state-of-the-art surface emissivity models with an extension to cover variability over
sea-ice and snow covered surfaces,

• multiple ice particle size distribution and habits (based on state-of-the-art single
scattering property data), where choice of particle model and frequency of selection
are chosen statistically, to represent reality,

• particle orientation is accounted for by mimicing the effect of azimuthally oriented
particles, allowing for polarisation effects to be captured,

• antenna pattern and spectral response function data based on measured ICI data,
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• scattering calculations using ARTS’ interface to the DISORT scattering solver,

• simulation setup and antenna smoothing are applied to be consistent remapped data
onto the field of view of ICI-01V.

Figure 4: The upper panels show antenna temperature for seven of the ICI channels for
a simulation based on the cloud structure displayed in Figure 2. The lower panel shows
the underlying cloud, rain, and water vapour properties of the volume sampled by the
simulated observation.

Thus, data are prepared and ARTS is setup to simulate ICI observation in a pseudo
3D mode, taking into account most or all relevant details, and Figure 4 displays a part of
the final output of the ICI simulation for the scene displayed in Figure 2. The details of
the simulation setup are described in the following parts of this section.

3.2 Surface emissivities

The Tool to Estimate Sea-Surface Emissivity from Microwaves to sub-Millimeter waves
(TESSEM2, Prigent et al. 2017) and the Tool to Estimate Land-Surface Emissivities at
Microwave frequencies (TELSEM2, Wang et al. 2017) are applied for the ICI simulation
for ocean and land surfaces, respectively. For a surface type classified as snow or sea-ice
covered an empirical and stochastic model described in Appendix C is applied.

3.3 Atmospheric absorption model

The absorption/emission of four gases are considered:

Nitrogen The continuum model of Liebe et al. (1993) is applied.

Oxygen The model of Rosenkranz (1993) is used, including both molecular transitions
and a continuum term.

Water vapour Molecular transitions up to 1.65 THz are considered, of both the main
and minor isotopologues. These data originate from the Atmospheric & Environ-
mental Research group (rtweb.aer.com). Parameterisations for both “self” and
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“foreign” continuum are taken from the CKDMT v3.5 model (github.com/AER-RC/
MT_CKD).

Ozone A selection of transitions from the “JPL line catalogue” (spec.jpl.nasa.gov)
are considered.

The choices for water vapour and ozone are based on input and data provided by Stuart
Fox (Met Office), based on experience from an ongoing EUMETSAT founded study. This
study aims at updating and extending the microwave part of RTTOV.

3.4 Hydrometeor model

Particle Model Habit PSD aARO Factor pi

AA1 Large plate aggregate F07 - Tropics 1 - 1.6 0.3
AA2 Large column aggregate F07 - Tropics 1 - 1.6 0.1
AA3 Large block aggregate D14 1 - 1.6 0.13
IWC Six bullet rosette D14 1 - 1.6 0.2
Snow Evans snow aggregate F07 - Midlatitude 1.4 - 1.6 0.1

Graupel Eight column aggregate D14 1 - 1.2 0.17

Table 1: Particle models used within ICI simulations, given alongside habit and particle
size distribution (PSD), where the source for the PSD is given in each case. The approx-
imate azimuthally random orientation (aARO) scaling factor is randomly chosen within
the given range. Also given is the occurrence fraction, or the probability of selection
within a simulation, denoted as pi. A further discussion of pi is given in Appendix B

A set of six particle models representing frozen hydrometeors is used within the ICI
simulations, where a model consists of a choice of particle size distribution (PSD), habit
(shape), a factor for approximating particle orientation and an occurrence fraction. The
six particle models are shown in Table 1. The selection among these six particle models,
for use in a specific simulation, is made through a probability factor. The set of probability
factors directly corresponds to the occurrence fraction, i.e. the fraction of simulations run
with a given particle model, if the total number of simulations is high enough. Testing
was performed to determine the best combination of probability factors, and discussed in
Appendix B.

For rain a fixed particle model is used.

Particle size distribution

The PSD describes how the particle sizes are distributed within a volume element. For
frozen hydrometeors three PSDs are applied. The first two are from Field et al. (2007),
also known as F07, which has different settings for either the tropics or mid-latitudes. The
third PSD used is based on Delanoë et al. (2014), here denoted as D14. A one-moment
version of D14 is applied (with N∗

0 parameterised as a function of temperature). Within
the Literature Study, it was determined that F07 and D14 were the most suitable choices
of PSD for snow, hence their inclusion. For rain a PSD described in Abel and Boutle
(2012) is applied.
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Habit/single scattering data

The single scattering data applied were taken from the ARTS single scattering database
(Eriksson et al. 2018). Six of the database’s ”standard habits” were selected. The names
of these habits are found in Table 1. The habits of the IWC, SWC and GWC particle
models consist of particles with the same basic shape for all sizes. For the three AA
(ARTS aggregate) particle models, the habit name refers to the particles covering sizes
above about 150 m. For these later habits, single crystals are used as a complement to
obtain full coverage of the relevant size span.

Approximation of particle orientation

Particle orientation is approximated following the scheme first developed by Barlakas et al.
(2021) and later extended by Kaur, Eriksson, Barlakas, Pfreundschuh and Fox (2022) to
operate in a random fashion. The basic idea of the scheme is simple, the extinction
obtained assuming totally random orientation (TRO) is scaled differently for V and H
polarisation to approximate azimuthally random orientation (aARO).

The main parameter of the scheme is the polarisation ratio, ρ:

ρ =
τH
τV

(1)

where τH is the optical thickness after scaling (linearly proportional to the extinction)
for polarisation H, and τH defined in the same way for polarisation V. The original TRO
data matches to set ρ = 1, that gives τH = τV .

Observations of GMI at 166GHz have been used to derive ρ. For assimilation a fixed
value is preferred, and Barlakas et al. (2021) selected ρ = 1.4. The distribution of GMI
166GHz data can be replicated even better by making a random selection of ρ, as shown
by Kaur, Eriksson, Barlakas, Pfreundschuh and Fox (2022). A flat distribution between
1.0 and 1.5 was found to work well. The simulation performed here follows the later,
random approach, but ρ is allowed to reach 1.6 as higher polarisation could potentially
occur at the sub-millimetre wavelengths.

To what extent τH and τv deviates from TRO value, for a given ρ, is derived from:

ρ =
τH
τV

=
1 + ra

1− a
. (2)

This expression is applied with r as a fixed parameter, and the value of a is then implied by
ρ. This is an extension of Barlakas et al. (2021), that devised the scheme by just comparing
TRO and ARO extinctions and available data were fitted well without introducing r (then
effectively applied r = 1). However, later full radiative transfer calculations revealed that,
for final brightness temperatures, there is a considerably larger deviation from TRO for
H and V (Barlakas et al. 2022). To mimic this behaviour, the parameter r was added,
and the value r = 5 was eventually selected.

3.5 Radar onion peeling algorithm

An algorithm denoted as the radar onion peeling is used to convert radar reflectivity to
cloud ice and rain water content. The algorithm first generates lookup-tables for ice and
rain water content as function of radar reflectivity and temperature, taking into account
the particle size distribution and single scattering data of the selected particle model. The
ice water content and layer transmission are then retrieved sequentially from the top to

7



bottom layer in an onion peeling approach. The reflectivity is assumed to origin from rain
drop for temperatures above 273.15 K. To avoid surface clutter, reflectivies below 750m
over the ocean and below 1500m above other surfaces, are replaced with the first value
above the defined “clutter zone”.

3.6 Frequency grid setup

Both the spectral response function and contamination by ozone absorption/emission
varies within the passbands of the ICI channels (see Appendix D). The ARTS core ra-
diative transfer simulation is made using a number of monochramatic frequencies and it
is therefore of importance that the frequency grid applied is fine enough to capture these
variations. Table 3 describes the estimated number of frequencies needed to obtain a
clearsky simulation that has an error that is smaller than about 5% of the NE∆T value
associated to the channel (Table 2). The number of frequencies varies between 3 and 25
for each sideband of the ICI channels, and these numbers are also used for the clear sky
simulation, and integrated to obtain channel averaged values as described in Appendix D.

For the ICI database simulation we need to calculate the cloud signal (∆Tb) associated
to each channel, or the difference between an allsky simulation and a reference clear sky
simulation with a fixed relative humidity. To obtain ∆Tb we run four type of simulations:

• Tbas: allsky simulation using DISORT scattering solver of ARTS and only for the
center frequency of the two sidebands

• Tbas−no−hm: allsky simulation with no included hydrometeors using the DISORT
scattering solver of ARTS and only for the center frequency of the two sidebands

• Tbcs: clearsky simulation using the frequency grid setup in Table 3

• Tbcs−fixed−rh: clearsky simulation with fixed relative humidity using the frequency
grid setup in Table 3

and obtain the cloud signal as:

∆Tb = Tbcs + Tbas − Tbas−no−hm − Tbcs−fixed−rh. (3)

The two allsky simulations are performed with the DISORT scattering solver of ARTS.
They are more computational expensive than the ARTS clear sky simulation, and hence
less frequencies are used. The simulation noise of the obtained ∆Tb due to the frequency
grid used is then mainly due to the scattering part of the simulation. The resulting
simulation noise is assumed to be small compared to uncertainties related to the repre-
sentativeness of the assumed microphysical and single scattering properties of the involved
hydrometeors.
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3.7 Geometry setup

Figure 5: Schematic of the geometry setup of the radiative transfer simulation of a scene.

Figure 5 shows a schematic of the geometry setup of the core radiative transfer simulation
covering a scene. The 3D scene is sliced into a number of parallel 2D slices, and a number
of target positions are defined at the surface level along each 2D slice or along tracks. A
number of pencil beam simulations are then performed for these target positions. The
pencil beam simulation is performed using three different incidence angles taking into
account that the viewing angle varies slightly among the ICI channels. The simulations
assume a fixed Earth radius of 6371 km and a platform altitude of 832 km and the applied
incidence angles are:

1. 53.84575349◦ for ICI-01V – ICI-03V and ICI-05V – ICI-10V

2. 51.80202686◦ for ICI-04V and ICI-11V

3. 51.70808917◦ for ICI-04H and ICI-11H

The setting of the number of 2D slices and distance between target positions to include in
the simulation clearly impact the obtained accuracy of antenna weighted data, and more
details around this are found in Section 3.8 and Appendix E.
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3.8 Antenna smoothing

Figure 6: The three panels to the left shows radar reflectivity at three different pressure
levels. The right panel shows simulated brightness temperatures at a frequency of 315
GHz. The simulation was done by dividing the scene into 4 smaller sub-scenes (denoted
by numbers 1 to 4 in the right panel). The red markers around the center position of
each smaller scene indicates the position of a subset of pencil beam simulations, used to
generate the plots found in Figure 7. The red line from the center position of scene 1
points in the direction towards the sensor.

The previous section describes the geometry setup for the pencil beam simulation of
a scene. The antenna smoothing calculation utilizes the pencil beam dataset, and is
performed in order to be consistent to data remapped onto the view of ICI-01V. Let us
then consider a target position along the center track of the scene and that the boresight
of the antenna is directed towards this target point (e.g. consider one of the larger red
markers of scene 4 in Figure 6) The antenna temperature can then be estimated in the
following way:

1. Estimate the sensor position from the sensor azimuth and incidence angle (for that
of ICI-01V) and platform height.

2. Estimate the relative zenith and azimuth angles (dlos in ARTS nomenclature) from
the sensor position and for the surrounding samples of the pencil beam dataset.

3. Regrid brightness temperatures onto all positions of the ICI antenna pattern func-
tion, i.e. a function of relative zenith and azimuth angles. For the regridding we
apply a linear interpolation within the convex hull of the dataset, and a nearest
neighbour interpolation/extrapolation is applied outside the convex hull (see Fig-
ure 7 for example of regridded data)

4. Antenna temperature can then be obtained through integrating the gridded bright-
ness temperature data over the antenna gain function (G) associated to ICI-01V,
i.e:

Ta =

∫
Ω

Tb(Ω)G(Ω)dΩ, (4)

where Ω is the solid angle.
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More details of the track setting and accuracies of antenna smoothed data are given
in Appendix E.

Figure 7: Both panels show brightness temperatures as function of relative zenith and
azimuth angles. The red markers in the left panel are positions of pencil beam simulations,
where the centre marker is the point at which the boresight of the antenna is pointed
towards. A positive zenith and azimuth angle corresponds to a position below and to
the right of the antenna boresight direction. The right panel shows the data re-gridded
onto the positions of the ICI-01V antenna pattern grid through the use of interpolation, as
described in step 3 of the antenna temperature procedure described above. The brightness
temperatures in the left panel, denoted ‘True’, were obtained by running simulations on
each grid point. They are included in the figure to act as a comparison to the interpolated
temperatures.

4 Summary and outlook

A Python simulation environment (around the ARTS software) has been implemented to
allow the simulation of ICI observations in great detail. To the best of our knowledge,
on the overall level these should be the most realistic ICI simulations ever performed.
Compared to the preliminary database, the level of detail of the simulations has been
improved in several ways, including:

• The spectral response functions and interference of ozone are now fully included.

• The azimuthal dimension of the antenna pattern is now considered and the spatial
variation of brightness temperatures is represented on a level corresponding to about
38 pencil beam calculations for each final antenna temperature.

• The set of particle models has been revised. In addition, the particle models now
include an uneven occurrence fraction and an approximation of particle orientation.

For clarity it is stressed that the simulations mimic remapped ICI data (to the footprint
of ICI-1V), and not original data.

Testing of the simulated data is part of Task 3 and details will be reported later,
but the preliminary analysis indicates that both GMI (at 166 and 183GHz) and ISMAR
measurements can be statistically reproduced with the simulation toolbox developed.
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The simulations that will form the retrieval database represent the state-of-the-art, but
there, of course, exists room for improvement. The possible extensions can be divided
into two categories. Useful development of technical nature includes:

• To generate more single scattering data matching the assumption of ARO (az-
imuthally random orientation). In a first step, this would allow to better test the
scheme for approximating particle orientation (aARO), but would also open up for
running the simulations using actual ARO data.

• Melting ice is currently not considered at all, due to lack of single scattering data for
such particles. Models to generate melting particles are at hand, but the calculation
of the single scattering properties appears to be highly computationally demanding
(Kanngießer and Eriksson 2022).

• To make ARTS more computationally efficient, to allow for the generation of larger
databases and a higher degree of flexibility in setting up the simulations. This is
a general remark, but is particularly true for vector radiative transfer, see further
below.

• When single scattering data of ARO type exist for at least three habits, abandon-
ing the aARO scheme should be considered. In practice this means to perform
vector radiative transfer, but inside ARTS such calculations have today two main
“botlenecks”:

– The internal handling of ARO data is unefficient. Work to improve this han-
dling is ongoing.

– DISORT does not handle ARO and the solver of choice should instead be
RT4. However, the later solver is less efficient and is difficult to use with
parallelisation (as only at hand as Fortran code). The RT4 code should be
fully integrated into ARTS.

• The scheme used here to extra- and interpolate pencil beam calculations to the an-
tenna pattern should be integrated into ARTS. This would allow to more efficiently
generate final antenna temperatures inside ARTS, and would make the simulation
toolbox easier to use and extend.

All these improvements could be started today, but they also all represent a considerable
undertaking and could not be performed inside this study.

A second category is to tune the settings of the simulations, to better represent reality.
Further analysis of available ISMAR data should be considered, but that would still only
cover northern mid-latitudes conditions. For this reason, it is here assumed that it is
today very difficult to pinpoint the main weaknesses and a full revision is only possible
after the launch of ICI. A rough plan for the work to be performed when ICI radiances
are at hand is:

• Do there exist any situation where the observations consistently are outside the
range of the database? Possible reasons and associated actions:

– Deviations for “clear-sky” and channels with low surface sensitivity can largely
be compensated with applying the bias terms of the retrieval algorithm, but
should result in a revison of the gas absorption model.
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– Deviations for “clear-sky” and channels with significant surface contribution
more likely depend on poor parameterisation of the surface emissivity. A first
action is to screen out affected channels, and later trying to improve the emis-
sivity model.

– Deviations for data with clear signatures of hydrometeors can be of various
complexity. For example, if higher differences between V and H channels (at
243 and 664GHz) are seen in observations than simulations, the solution is
simply to extend the database with cases having a higher polarisation ratio
(ρ). If the deviations are more broadly observed among the channels, one or
several additional habits should be the first option to consider.

• Reversely, is there any particle model in the database that have a very low match
with observations (such as that the particle model is the best below a rate of e.g.
1%). If that is the case, it could be considered to remove, or replace, that particle
model.

• The size of the database will be of the order 106. This equals roughly the number
of ICI observations per day, and there will be data points outside of the database
range just due to statistical reasons. That is, combinations of channel antenna
temperatures occuring with a rate of e.g. 10−7 can not be expected to be covered
well by the database. It should be investigated where these cases occur and how
the retrieval algorithm handles these cases.

• When the quality of the database is understood on a general level, the next step
should be to investigate it for particular conditions and to possibly start fine tuning
the particle models. This work goes into uncharted territory and strategies for
the analysis need to be formulated. But an example to clarify the type of studies
in mind: Let’s assume that the snow particle model is the one giving best match
with observations in the anvil regions around tropical convection. A consequence
will be that retrieved IWP will be unexpectedly high. As anvils are expected to
contain relatively compact crystals and aggregates, this then indicates that none
of the particle size distributions applied for the later habits is valid for anvils, and
alternative size distributions should be tested. (Please note, just a hypothetical
example).

• Looking further ahead, infrared radiances should be added to the database. That
would allow for the use of geostationary infrared radiances to further constrain the
particle models.

• Besides improving absorption, particle and surface emissivity models, it should be
considered to simulate scenes of ICI antenna temperatures, at native observation
geometry. That would allow the retrieval to make optional use of the overlap be-
tween footprints, but would require replacing the BMCI algorithm with machine
learning (as well as a much faster ARTS).
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Appendices

A The Barker 3D cloud-construction algorithm

Barker et al. (2011) presents an algorithm that constructs 3D distributions of cloud from
passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred
synergistically from lidar, cloud radar and imagery data. Effectively, the construction
algorithm widens the active retrieved cross-section (RXS) of cloud properties, by using a
match-and-substitute algorithm that fills in off-nadir pixels/columns with cloud property
profiles from the swath center. For this purpose radiances from a passive multi spectral
imager (MSI) for an off-nadir, recipient, pixel are compared with corresponding values
for a range of pixels along the RXS; close matches are identified as potential donors with
the closest to the recipient pixel being designated as the proxy to literally stand in for
the recipient. This is repeated until all pixels in the required 3D domain are filled.

The Barker construction algorithm is based on the assumption that two closely spaced
cloudy pixels have only small differences in a number of spectral top of atmosphere radi-
ances and will have similar cloud property profiles. This is clearly an assumption that is
not always valid, and it can not be guaranteed that a good MSI match can be found at
all if only pixels closely spaced in space and time are considered. To take the latter into
account the Barker methodology is here extended to include a fallback global database
when no close matches are found in the local database.

Data

The modified version of the Barker 3D construction algorithm uses the following data:

• A series of radar reflectivity profiles from the cloud profiling radar onboard CloudSat.

• MSI data from MODIS onboard Aqua.

• Topography from the GTOPO30 dataset.

Aqua and CloudSat are both part of NASA’s A-train constellation, and hence a large
amount of collocated data from these instruments are available.

The MODIS instrument has a viewing swath width of 2,330 km and views the entire
surface of the Earth every one to two days. Its detectors measure 36 spectral bands
between 0.405µm and 14.385µm, and it acquires data at three spatial resolutions; 250 m,
500 m, and 1000 m. The most relevant MODIS channels for the construction algorithm
as identified by Barker et al. (2011) are the following:

• 0.62 - 0.67 µm,

• 2.105 - 2.155 µm,

• 8.4 - 8.7 µm,

• and 11.77 - 12.27 µm,
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It should be clear that data from a channel operating at visible wavelengths are only
relevant for day time observations. The ICI retrieval database should cover both day
time and night time observations and no channel at visible wavelengths is used.

CloudSat is an experimental satellite that uses radar to observe clouds and precipita-
tion from space. The Cloud Profiling Radar (CPR) is a 94 GHz nadir-looking radar which
measures the power backscattered by clouds as a function of distance from the radar, and
the along-track sampling is 2 km (1.4 km × 1.7 km across and along track resolution),
with a dynamic range of 70 dB, and 500 m vertical resolution.

Identification of donor columns

A central part of the 3-D construction algorithm is the identification of a suitable donor
column to use for an off-nadir pixel. Barker et al. (2011) used a local database consisting
of all data points along the subsatellite track and within a distance closer than 200 km
from the current position, and selected one of these points as the donor. The choice of
200 km seems to have been chosen a bit arbitrarily, but it was found that the majority of
samples will be selected from donor columns within a distance of 30 km, so the choice of
the size of the local database is not critical. If we assume that a pixel along the RXS is
located at position (i, 0), the intention is to fill all pixels (i, j) with a donor column, and
we begin by computing the cost function, defined as

F (i, j) =
K∑
k=1

(
rk(i, j)− rk(m, 0)

rk(i, j)

)2

, (5)

: m ∈ [i−m1, i+m2] (6)

where the summation is over the K MSI channels, rk(i, j) is the radiance of channel k at
pixel position (i, j) and rk(m, 0) is the radiance of channel k at pixel position (m, 0) and
part of the local candidate database. Barker et al. (2011) describes that just considering
the radiance match can result in the selection of an inappropriate donor profile, and to
limit this risk it is preferable to also consider the distance between between a potential
donor at (m, 0) and the recipient at (i, j). Barker suggests that the profile with closest
geographical distance shoud be selected from a set containing the 3% best MSI matches,
and that results in that the selection is made from around 10 samples.

The Barker algorithm is here extended in the following way:

• Disallow donor column with greater surface altitude than that of the recipient by
using topography data

• Disallow donor column with poor MSI match (mean differences greater than 2 %)

1. Use points within 200 km from recipient.

2. If not any match above, use points within 2000 km from recipient.

3. If not any match above, use a fallback global database holding data from
hundreds of scenes.

An example of constructed 3D radar reflectivity structure is shown in Figures 8, 9,
and 10, for data covering the hurricane Nicole in the Gulf of Mexico around 2016-10-
12T17:50Z.
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Figure 8: Modis band 29 data covering the hurricane Nicole in the Gulf of Mexico 2016-10-
12T17:50Z, where the subsatellite path of CloudSat passes through the eye of the storm.
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Figure 9: ‘Barkerized’ data for the scene shown in Figure 8. The left panels show Modis
band 29 and 32 data extending ± 50 km in the across-track direction of CloudSat sub-
satellite path. The right panels show constructed 2-D cross-sections of radar reflectivity
at three different altitudes.
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Figure 10: Continued from Figure 9, showing ‘Barkerized’ data for the scene in Figure 8.
The figure shows constructed 2-D cross-sections of radar reflectivity along the western-
most, center, and easternmost path of the scene.
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B Particle model occurence fraction

For each set of pencil beam simulations within a 3-D atmospheric scene, a random
particle model is chosen. The particle model consists of a particle habit and a particle
size distribution. A true random selection requires that each particle model has an equal
probability of being selected. However, a random selection does not necessarily lead to a
final dataset that statistically represents reality. The aim of this section is to determine
an optimal set of probability factors for the selection of particle model. This set of
probability factors directly corresponds to the occurrence fraction, i.e. the fraction of sim-
ulations run with a given particle model, if the total number of simulations is high enough.

To do so, simulations were run for a large set of atmospheric scenes, for four ICI
channels at frequencies 183.31 GHz and 325.15 GHz at vertical polarisation and 243.2
GHz and 664 GHz at horizontal polarisation. The particle model was randomly chosen
with equal probabilities for all models. Ice water content (IWC) values across the altitude
grid were extracted following the onion peeling algorithm. Figure 11 shows the mean IWC
values obtained across the range of altitudes, separated according to the particle model
was used within the simulation. Also plotted are mean IWC values across the same
altitude grid, extracted from the DARDAR-CLOUD product (Delanoë et al. 2014).

Figure 11: Mean IWC values obtained across the altitude grid. The mean was calculated
over ∼ 1000 simulations per particle model. DARDAR IWC values shown are mean IWC
values for global, year-round (2010) data.

Figure 11 shows only mean IWC values. However, the distribution of IWC is not
Gaussian. Therefore, to determine a set of probability factors, the distribution of IWC
for a given altitude was computed. An example of the IWC distribution at an altitude of
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8 km is shown in Figure 12. A combination of the simulated IWC distributions, weighted
with an optimal set of probability factors, should match the distribution obtained from the
DARDAR product. However, it is noted that none of the simulated distributions achieve
the higher IWC values seen in the DARDAR distribution. A perfect match will therefore
not be achieved, although this can be partially attributed to the high uncertainties present
in the DARDAR product.

Figure 12: Distribution of IWC at an altitude of 8km. The plot on the right hand side
shows the same distributions as the plot on the left, but with the probability density given
on a log scale.

To compare the weighted distribution and the DARDAR distribution, the Kullback-
Leibler divergence is implemented. The Kullback-Leibler divergence is defined as

DKL(Q||Q(0)) =
∑
x∈X

P (x)log

(
P (x)

Q(x)

)
, (7)

where P and Q are discrete probability distributions defined over X . For our purposes, Q
represents the distribution of IWC given by DARDAR data. P represents a distribution of
IWC weighted by a set of probability factors. In a simplified sense, DKL(P ||Q) can be seen
as a quantification of how much the distribution P differs from Q. Therefore, a weighted
distribution generated with an optimal set of probability factors will minimise DKL(P ||Q).

In order to ensure that all six particle models are represented in the retrieval database,
lower limits were placed on the probabilities to avoid any probability falling too low
as a result of the numerical minimisation. The limits were: pAA1 > 0.3, pother > 0.1.
The choice of pAA1 > 0.3 was motivated by the fact that this particle model has been
tested extensively and has been shown to perform particularly well (Eriksson et al. 2018,
Ekelund et al. 2020).

A set of N ≈ 3 ∗ 104 probability factor samples were generated according to these
boundary conditions and the resulting weighted distributions are shown in Figure 13.
Also shown is the distribution obtained using equal probability factors for all particle
models, and the distribution receiving the lowest DKL(P ||Q). The set of probability
factors is defined as as

p = {pAA1, pAA2, pAA3, pIWC, pSWC, pGWC}, (8)
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where we note that the set of probabilities, or occurrence fractions, p is not the same as
the probability distribution P over IWC. The optimal set of probability factors was found
to be

p = {0.3, 0.1, 0.13, 0.2, 0.1, 0.17}. (9)

Figure 13: Distribution of IWC at an altitude of 8 km. ∼ 105 distributions were tested.
The distribution shown in green was obtained using all pi = 1/6, which was the default
setting before improvements were implemented. The ‘best’ distribution, shown in pink,
fails to perfectly match the DARDAR distribution at high IWC values due to lower limits
currently set on the probability factors. However, the DARDAR distribution also contains
relatively high levels of uncertainty and must not be taken as the truth. It must also be
noted that this discrepancy occurs at low probability density values.
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C Generation of random sea ice distributions

Figure 14: Sea ice concentrations up-scaled to 5 minute (∼8 km) resolution.

The sea ice distribution is taken from ERA5 reanalysis surface variable known as ‘sea
ice cover’. This parameter describes the fraction of a grid box which is covered by sea
ice at a resolution of 25 km. The land water mask used in the database scenes is around
8 km resolution, which necessitates the mapping of sea ice cover from a lower to a higher
resolution. We refer this mapping as up-scaling of sea-ice cover.

For mapping the sea ice distribution, a simple three-step algorithm is implemented.
Firstly, the 25 km ERA5 sea ice cover is interpolated to a 10 km grid. This intermediate
resolution can effectively represent sea ice concentration in steps of 0.17. In the next step,
a random selection of the sea ice and open water is made according to the sea ice fraction.
And finally, the sea ice and open water classification at 10 km resolution is interpolated to
the final 8 km resolution in a nearest fashion. An example scene is shown in Figure 14.
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Surface emissivities for snow and sea ice

In radiative transfer, it is crucial to model the surface contribution correctly. In prepara-
tion towards ICI, an updated version of The Tool to Estimate Land Surface Emissivity
from Microwave to Submillimeter Waves (TELSEM), known as TELSEM2, was developed
to also include parameterization of emissivities over continental snow and sea ice up to
700GHz. However, for both surface types, the emissivities were fully parametrised only
up to 85GHz. For instance, emissivities for snow-covered land are assumed to be constant
above 85GHz. For sea ice, the emissivities are parametrised (up to 183GHz) only for new
ice or first year ice. For multi-year ice, constant emissivities above 85GHz were assumed.
However, in another study, Harlow and Essery (2012) studied the variability of snow
emissivity over different snow-packs. They observed that the snow emissivities increase
monotonically with increasing frequency for stratified snow. For fresh snow, the emissivity
estimates follow a decreasing trend. Additionally, Wang et al. (2017) found that the com-
parisons of TELSEM2 with International SubMillimeter Airborne Radiometer (ISMAR,
Fox et al. 2017) measurements at 325GHz were inconclusive.

Previously, motivated by the above reason, we had developed a probabilistic snow-
emissivity model that provided polarised emissivities for snow-covered surface types (both
over land and sea ice) at frequencies between 150 and 190GHz. This model gave a
random estimate of the snow emissivity from a standard normal distribution depicting
the valid range of emissivity values. The valid range was decided through emissivity
values reported in literature (Hewison et al. 2002, Harlow 2009, Harlow and Essery 2012)
and the model was fine-tuned by comparing observed and forward modelled radiances for
snow-covered regions as observed by Global Precipitation Measurement (GPM) Microwave
Imager (GMI). The basic idea is to find a set of emissivity estimates that simultaneously
give radiance closest to the measurements. With this model, it was possible to provide a
fair representation of polarisation differences observed over snow-covered surfaces.

However, an extension of the mentioned empirical model to frequencies up to 325GHz
is not straightforward due to non-availability of satellite based observations at frequencies
above 183GHz. In this study, we extend the existing emissivity model to cover frequencies
from 10 to 1000GHz using existing studies in literature. Two main studies which have
been used as reference and the methodology are described in the sections below.

Data

Two main studies available in literature are used as a reference for the emissivity model:
The study by Munchak et al. (2020) (referred as Munchak20) and the Master’s thesis
from Nils Risse (Risse 2021) (referred as Risse21). A brief summary of both studies is
given below.

Munchak20

This study uses optimal estimation to retrieve the emissivity vector covering the frequen-
cies between 10 to 166GHz. They apply the algorithm to five years of global precipitation
measurement (GPM) microwave imager (GMI) data over land, snow-covered land and sea
ice regions. This retrieval dataset is used to estimate the mean and standard deviation of
snow-cover and sea ice emissivities within a frequency range of 10 to 166GHz.
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Risse21

Only Risse (2021) have made detailed retrievals of sea ice emissivities in the sub-mm range
by using measurements from an aircraft campaign. They retrieve emissivity for sea ice
regions and snow-covered sea ice regions for 89, 183, 243, and 340 GHz by using passive
microwave observations from Microwave Radar/radiometer for Arctic Clouds (MiRAC)
for nadir viewing angle. They calculate the emissivities using radiative transfer model
PAMTRA, by assuming both specular and lambertian reflection. The results from this
study are only used to as a guidance to estimate the emissivities above 183GHz.

Methodology

The range of the previous empirical model is extended to include all frequencies between 10
and 1000GHz. The model generates emissivities at both V and H polarisations through a
multivariate normal distribution. For an n dimensional random vector Y⃗ , the multivariate
normal distribution is defined as:

Y⃗ = N (µ,KYY), (10)

where µ is the n-dimensional mean vector and KY Y is the covariance matrix of dimension
n× n. If σX is the standard deviation of X⃗, then

KY Y = σX ∗ σX ∗ CY Y , (11)

where CY Y is the corresponding correlation matrix. For generating a multivariate normal
distribution between V and H frequencies, the correlation matrix CY Y is defined as:∣∣∣∣ CV CVH

CVH CH

∣∣∣∣ (12)

Here, CV and CH are the correlation matrices for V and H polarised channels, while
CVH is the correlation matrix between V and H channels. CV is set up using the defined
correlation lengths and an exponential correlation function. An identical correlation ma-
trix is chosen for H polarised channels. The correlation matrix CVH is defined as c ∗ CV,
where c is a constant which defines the correlation between V and H polarised channels.
For this study, we have selected c = 0.9.

Results

Figure 15 shows the mean and standard deviation of the randomly generated emissivity
estimates. The corresponding correlation matrix is also shown. The snow-cover emissivi-
ties at low microwave frequencies are higher than as compared to higher frequencies. The
emissivities at higher frequencies are lower due to strong scattering in the snow, while
at lower frequencies, the microwave penetration depths and insulating properties of the
snow-packs contribute to higher emissivities. The trend in emissivities above 183GHz
follow the results reported by Risse (2021). They found that above 183 GHz the emissiv-
ities remain constant under specular reflection, while under lambertian reflection, a slight
decrease with frequency is observed.

Similar statistics for sea ice emissivities are shown in Figure 16. For sea ice, the
emissivities show an increasing trend over low microwave frequencies and up to 166GHz.
Risse (2021) have shown that the gradient between 89 and 183 GHz has a high variability
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Figure 15: (left) The correlation matrix for snow-covered surface type, and (right) the
mean emissivities and standard deviation.

Figure 16: (left) The correlation matrix for sea ice surface type, and (right) the mean
emissivities and standard deviation.
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and is mostly positive. Above 183GHz, the emissivity gradient is comparatively lower
and slightly negative between 183 to 243GHz. From 243 to 340GHz, under lambertian
reflection, slight negative gradients were reported and the vice-versa for specular reflection.
Due to the contrasting behaviour for the two assumptions, we have assumed constant
emissivities beyond 243GHz.
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D Spectral response function

The ICI radiometer consists of seven double sideband front ends, operating with local
oscillator (LO) frequencies of 183.31, 243.20, 325.15, 448.0, and 664.0 GHz, and ICI will
have 13 channels as described in Table 2. The spectral response function associated to
each channel is shown in Figure 17. Simulated brightness temperature as function of
frequency, covering the frequency range of the upper and lower sideband of each channel,
is shown in Figure 18 for one scene of the ERESMAA dataset. The fine structure
brightness temperature variation is due to ozone absorption/emission, and the strongest
lines are found within the ICI-07V and both ICI-11 channels.

The aim of this section is to find out how important it is to include the spectral
response function to simulate band average brightness temperature. The reference channel
averaged spectral radiance, for channel i, is calculated as:

Ri =

∫ γ1
γ0

1
γ2R(γ)Hi(γ)dγ∫ γ1
γ0

1
γ2Hi(γ)dγ

, (13)

where γ is the wavenumber, R(γ) is the spectral radiance, and Hi(γ) is the channel i
spectral response function displayed in Figure 17, and frequency grid used for the simula-
tion includes all frequencies of the spectral response function data associated to the ICI
channels (resolution of 10MHz).

The brightness temperature is then obtained from

Tbi =
B−1(γcentre, Ri)− bi

ai
(14)

where B−1 is the inverse planck function, γcentre is the nominal centre wavenumber, and
ai and bi are channel specific band corrections coefficients.

The channel averaged brightness temperature for a constant spectral response function,
for channel i, is calculated as

Tbic = 0.5 ·

(∫ γ1
γ0

Tb(γ)dγ∫ γ1
γ0

dγ
+

∫ γ3
γ2

Tb(γ)dγ∫ γ3
γ2

dγ

)
, (15)

where the integration limits are the outer limits of the lower and upper sideband for
channel i according to Table 2. Histograms of the difference

∆Tbi = Tbic − Tbi (16)

are displayed in Figure 19 for each ICI channel and for a simulation based on 1000 scenes
from the ERESMAA dataset. The mean and standard deviation of this difference is
displayed in the right column of Table 2. The greatest difference is found for ICI-09V
(−0.446 ± 0.124K). No particular strong ozone line is located within the frequency range
assocated to ICI-09V, but the reason for the difference is probably explained by the fact
that the slope of the spectral response function is greater for this channel than for all
the other channels. The response is increasing for frequencies towards the outer part of
the upper and lower sideband as measured from the LO frequency. Thus, applying a
constant spectral response function will introduce a bias. Differences for other channels
are significantly smaller than for ICI-09V. The second greatest difference is found for ICI-
06V (−0.128 ± 0.056K), that also has some features within the spectral response function
that are greater than for other channels.
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Figure 17: Spectral response function of the 13 ICI channels.

Figure 18: Simulated brightness temperature as function of frequency for one scene of the
ERESMAA dataset.
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Figure 19: Histogram of brightness temperature differences due to neglecting the spectral
response function for 1000 scenes of the ERESMAA dataset.
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Table 2: ICI channel specification.

Channel
Frequencies
[GHz]

Bandwidth
[GHz]

NE∆T
[K]

Elevation
offset [°]

Response
impact [K]

ICI-01V 183.31 ± 7.0 2.0 0.8 −0.780 −0.028 ± 0.035
ICI-02V 183.31 ± 3.4 1.5 0.8 −0.780 −0.046 ± 0.022
ICI-03V 183.31 ± 2.0 1.5 0.8 −0.780 0.079 ± 0.041
ICI-04V 243.2 ± 2.5 3.0 0.7 0.711 −0.020 ± 0.011
ICI-04H 243.2 ± 2.5 3.0 0.7 0.731 −0.026 ± 0.013
ICI-05V 325.15 ± 9.5 3.0 1.2 −0.822 0.109 ± 0.051
ICI-06V 325.15 ± 3.5 2.4 1.3 −0.822 −0.128 ± 0.056
ICI-07V 325.15 ± 1.5 1.6 1.5 −0.822 −0.032 ± 0.065
ICI-08V 448.0 ± 7.2 3.0 1.4 −0.822 −0.032 ± 0.024
ICI-09V 448.0 ± 3.0 2.0 1.6 −0.822 −0.446±0.124
ICI-10V 448.0 ± 1.4 1.2 2.0 −0.822 0.031±0.113
ICI-11V 664.0 ± 4.2 5.0 1.6 0.752 0.027±0.022
ICI-11H 664.0 ± 4.2 5.0 1.6 0.875 0.091 ± 0.054

Frequency grid setup for the ICI database simulation

The simulation in the previous section was performed using a fine resolution frequency
grid. We here test the use of a much coarser frequency grid for the actual radiative transfer
calculation, but then interpolate the obtained spectral radiance onto a high resolution
(10MHz) frequency grid. The interpolation is done individually for the upper and lower
side band. Then we take into account the spectral response function, and obtain channel
averaged spectral radiance as

Ri =

∫ γ1
γ0

1
γ2R(γ)Hi(γ)dγ +

∫ γ2
γ1

1
γ2R(γ)Hi(γ)dγ∫ γ1

γ0

1
γ2Hi(γ)dγ +

∫ γ2
γ1

1
γ2Hi(γ)dγ

, (17)

where the integration limits cover the lower and upper sideband, and then we apply Eq. 14
to obtain the brightness temperature. The result of this exercise is summarised in Table 3.
Table 3 describes the number of frequencies per sideband needed to be included in the
radiative transfer calculation to obtain errors that have a magnitude smaller than about
5% of the NE∆T value of the channel as described in Table 2.

Table 3 includes results for using both linear and quadratic interpolation. The most
demanding channels are the ICI-7 and the two ICI-11 channels, that are the channels that
are most contaminated by ozone. Better results are obtained using quadratic interpolation
for most channels.

Table 4 describes the frequency ranges of the lower and upper sideband for each
channel according to specification and to the actual spectral response function data, here
defined as the smallest and greatest frequency below (or above) the LO frequency where
the relative spectral response function value is greather than 0.5. Using this definition
gives that the width of the upper and lower sideband of the actual data is about 150 to
500MHz smaller than that of the specification (500MHz for the 664 GHz channel with
5GHz bandwidth).

32



Table 3: Performance using a reduced resolution frequency grid.

Channel
Nr. of frequencies
per sideband

Linear
interpolation,
Difference [K]

Quadratic
interpolation,
Difference [K]

ICI-01V 3 −0.030 ± 0.033 0.005 ± 0.007
ICI-02V 3 −0.052 ± 0.033 0.013 ± 0.011
ICI-03V 3 −0.154 ± 0.066 −0.011 ± 0.011
ICI-04V 10 −0.028 ± 0.019 −0.006 ± 0.003
ICI-04H 10 −0.035 ± 0.017 −0.012 ± 0.010
ICI-05V 5 0.004 ± 0.035 −0.040 ± 0.031
ICI-06V 4 −0.031 ± 0.023 0.033 ± 0.017
ICI-07V 15 −0.023 ± 0.007 −0.020 ± 0.007
ICI-08V 10 0.023 ± 0.023 0.036 ± 0.025
ICI-09V 10 0.012 ± 0.031 0.018 ± 0.032
ICI-10V 10 −0.023 ± 0.016 −0.017 ± 0.014
ICI-11V 25 −0.052 ± 0.082 −0.046 ± 0.078
ICI-11H 25 −0.047±0.083 −0.043 ± 0.081
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Table 4: Limits of upper and lower sideband, according to specification and actual data
(relative gain > 0.5 is used for actual data).

Channel
Lower sideband
(spec / data)
[GHz]

Lower
width
[GHz]

Upper sideband
(spec / data)
[GHz]

Upper
width
[GHz]

ICI-01V 175.31 − 177.31 2 189.31 - 191.31 2
175.4306 - 177.1906 1.76 189.4306 - 191.1906 1.76

ICI-02V 179.16 - 180.66 1.5 185.96 - 187.46 1.5
179.2406 - 180.5706 1.33 186.0506 - 187.380666 1.33

ICI-03V 180.56 - 182.06 1.5 184.56 - 186.06 1.5
180.6206 - 181.9906 1.37 184.6406 - 186.0006 1.36

ICI-04V 239.2 - 242.2 3.0 244.2 - 247.2 3.0
239.3234 - 242.1334 2.81 244.2834 - 247.0834 2.8

ICI-04H 239.2 - 242.2 3.0 244.2 - 247.2 3.0
239.3534 - 242.1134 2.76 244.2934 - 247.0734 2.78

ICI-05V 314.15 - 317.15 3.0 333.15 - 336.15 3.0
314.3805 - 316.9905 2.61 333.3805 - 335.8205 2.44

ICI-06V 320.45 - 322.85 2.4 327.45 - 329.85 2.4
320.5805 - 322.7305 2.15 327.6205 - 329.7605 2.14

ICI-07V 322.85 - 324.45 1.6 325.85 - 327.45 1.6
323.0205 - 324.3305 1.31 326.0105 - 327.3205 1.31

ICI-08V 439.3 - 442.3 3.0 453.7 - 456.7 3.0
439.4522 - 442.1522 2.70 453.8622 - 456.5422 2.68

ICI-09V 444.0 - 446.0 2.0 450.0 - 452.0 2.0
444.1122 - 445.7822 1.67 450.2622 - 451.8922 1.63

ICI-10V 446.0 - 447.2 1.2 448.8 - 450.0 1.2
446.1322 - 447.0722 0.94 448.9322 - 449.8622 0.94

ICI-11V 657.3 - 662.3 5.0 665.7 - 670.7 5.0
657.5381 - 662.1181 4.58 665.9181 - 670.4181 4.50

ICI-11H 657.3 - 662.3 5.0 665.7 - 670.7 5.0
657.5581 - 662.0181 4.46 665.9781 - 670.4381 4.46
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E Track Settings

Prior to running pencil beam simulations and performing antenna smoothing, track
settings must be configured. The settings include a choice of track positions on which to
perform pencil beam simulations, where the track is relative to the centre track. There
must also be a choice of step size between each simulation along a track. In this section,
we refer to a chosen track setting configuration as a pattern, and each pencil beam
simulation as a point within the pattern.

The positioning of points can have a significant effect on the success of the in-
terpolation of brightness temperatures and subsequent integration to obtain antenna
temperature. The goal of the tests performed in this section is to evaluate both the
amount of pencil beam simulations and the configuration of such simulations that are
needed to simulate an ICI observation with an acceptable accuracy. The final choice of
pattern must be chosen with care since there will be a trade-off between accuracy and
computational cost.

Three categories of patterns were tested:

• Uniform - The centre track is always chosen. An even number of tracks on either
side of the centre track are also chosen. The step size is constant for all tracks.
Number of tracks and chosen step size were varied between patterns.

• Non-uniform - Patterns were chosen such that the centre track contains the highest
density of simulations, i.e, the smallest step size. The further a track is from the
centre, the larger the step size is chosen to be. Number of tracks and chosen step
size were varied methodically between patterns.

• Pseudo-random - Three of the non-uniform patterns were selected, and the choice
of step size in the pattern was randomised.

In total, 29 different patterns were tested. In order to compare patterns, antenna
temperatures Ta were calculated for a set of chosen sensor positions within a scene.
In the absence of observational data for Ta, simulations were also run for a full scene,
where a full scene is defined as pencil beam simulations on every track, and with a
step size of 0.02 ◦. The resulting temperatures act as true observational data and
are denoted by Ta,true. Then, prior to applying the antenna smoothing, the full set
of simulations was filtered according to each of the patterns. An interpolation was
performed between datapoints, providing predicted Ta values with which to compare to
Ta,true. The reader can refer to Figure 7 to see a comparison of true and interpolated data.

The difference between predicted and true values is denoted by Ta,pred−Ta,true = ∆Ta.
The mean ∆Ta, standard deviation σ∆Ta , and 99th percentile P99(∆Ta) were calculated
for a dataset consisting of 100 atmospheric scenes, with three sensor positions per scene.
Simulations were run for four ICI channels at frequencies 183.31 GHz and 325.15 GHz
(vertical polarisation) and 243.2 GHz and 664 GHz (horizontal polarisation). Results
are shown in Figure 20, in which the statistics are plotted as a function of the number of
points in a pattern, given as a percentage of the number of points present in the full scene.

The patterns resulting in the lowest standard deviations are, as expected, those
with the highest number of points. Due to the presence of a close to Gaussian antenna
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Figure 20: The mean, standard deviation, and 99th percentile of ∆Ta, defined as the
difference between values of Ta computed using reduced track settings and full track
settings. Each numbered point refers to a pattern, defined as a track setting configuration.
Statistics were computed over 100 atmospheric scenes, 3 sensor positions, and 4 channels,
producing 1200 samples in total for each pattern. The standard deviation appears to
exponentially increase with a decrease in number of points in a pattern.
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pattern, it was expected that the non-uniform patterns would perform better than
uniform patterns. The results quantitatively confirm our expectations. There is no
improvement seen in the case of the random patterns, but this is not surprising when the
statistics were computed across a large set of samples.

It was found that the standard deviation decreases exponentially with the number
of points. However, it must be stressed that the database should be sufficiently large
such that it contains all relevant atmospheric states and all geographical regions and
seasons. In turn, this will allow for a successful retrieval algorithm. This implies that
achieving satisfactory computational times is an important consideration, so that enough
simulations can be performed. Patterns 1 and 5 can be seen to give the lowest standard
deviation and 99th percentile. However, the use of Pattern 2 or 6 would half the number
of pencil beam simulations, and therefore thought to achieve a preferable balance between
computational cost and accuracy. Patterns 1 and 2 are shown in Figure 21. There are
other patterns that demonstrate similarly low standard deviations at a similar total
number of points. However, patterns 2 and 6 perform notably well in the case of the 99th
percentile, and as such may decrease the risk of outliers.

In order to validate the choice further, further simulations were run with the aim of
comparing patterns 1, 2, 5, and 6 to the pattern implemented in the preliminary database,
i.e. only points along the centre track. Results are shown in Figure 22, where the statistics
are taken across N = 100 scenes, 3 sensor positions, and the same four ICI channels. Both
patterns 2 and 6 perform better than just the central track in all cases. The differences
between pattern 2 and pattern 6 are minimal. The same results were also seen upon
investigation of separate channels.

Figure 21: Patterns 1 and 2. Both patterns consist of the same tracks, but pattern 2 has
double the amount of spacing between points as pattern 1. Patterns 5 and 6 differ from
patterns 1 and 2, respectively, by the removal of the two outermost tracks.

Finally, ∆Ta was plotted as a function of Ta,true in order to visualise how errors are
distributed according to temperature. The result can be found in Figure 23. The higher
the temperature, the more successful all patterns appear to be at predicting the true value.
At low temperatures, the patterns appear to produce datapoints further from the true
value than the ‘centre’ pattern does, explaining the higher 99th percentiles calculated in
Figure 22. However, all patterns appear to perform better than the ‘centre’ pattern, i.e.
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the case used in the preliminary database, at high temperatures, thus explaining the lower
standard deviation seen in Figure 22. Patterns 2 and 6 differ slightly from one another
at low temperature values, but appear to perform equally well at higher temperatures.
However, pattern 2 displays a small improvement in standard deviation in comparison to
pattern 6, and visually produces less extreme outliers in Figure 23. Therefore, pattern 2
is chosen to represent the track settings in the final database.

Figure 22: Comparison of mean ∆Ta, standard deviation σ, and 99th percentile P99,
of ∆Ta obtained through the use of patterns 1, 2, 5, and 6, and a pattern in which
only the central track is used (denoted ‘centre’). Statistics were computed over 100
atmospheric scenes, 3 sensor positions, and 4 channels, producing 1200 samples in total
for each pattern.
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1 Introduction

1.1 Purpose of this document

Previously, a retrieval algorithm based on Bayesian Monte Carlo integration (BMCI) was
developed [RD-2, RD-3] with the aim of providing global retrievals of ice water path
(IWP) from ICI observations. The retrieval database is an integral part of the algorithm,
providing simulated ICI observations corresponding to pairs of atmospheric and surface
states.

The purpose of this document is to present a validation of the retrieval database and
subsequently assess the retrieval performance of the database. This work is part of Task
3 of the project: Development of a cloud radiation database for EPS-SG ICI. The report
builds upon both a literature review report (Kaur, Eriksson and Rydberg 2022) and a
report detailing the development of the retrieval database.

1.2 Structure of this document

Section 2 of this document gives an overview of the cloud radiation retrieval database,
including distributions of the data contained in the database. In Section 3, a validation of
the database is presented. Firstly, a statistical comparison to DARDAR is made. Then,
a further comparison is made between simulated and actual measurements using two test
databases simulating GMI and MARSS/ISMAR observations. In Section 4, the retrieval
algorithm is tested using the new database.

1.3 Reference documents

[RD-1] Accadia C. et al. (2020) Microwave and Sub-mm Wave Sensors: A European
Perspective. In: Levizzani V., Kidd C., Kirschbaum D., Kummerow C., Nakamura K.,
Turk F. (eds) Satellite Precipitation Measurement. Advances in Global Change Research,
vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-24568-9_5 .

[RD-2] Rydberg, B.: EPS-SG ICI ice water path product: ATBD. SAF/NWC/LEO-
EPSSG/ATBD/IWP-ICI Issue 2.1, Rev. 2, Tech. rep., EUMETSAT. NWCSAF,
www.nwcsaf.org, -¿ documentation, code: ICI, 2018.

[RD-3] Eriksson, P., Rydberg, B., Mattioli, V., Thoss, A., Accadia, C., Klein, U.,
and Buehler, S. A.: Towards an operational Ice Cloud Imager (ICI) retrieval prod-
uct, Atmos. Meas. Tech., 13, 53–71, https://doi.org/10.5194/amt-13-53-2020, 2020.

[RD-4] EPS-SG End User Requirement Document (EURD) EUM/PEPS/REQ/09/01515
01/11/2019
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2 Overview of database simulations

The final database contains ∼ 9.5 × 106 cases, where each individual case consists of a
simulated ICI measurement and a corresponding set of atmospheric and surface states.

The primary quantities of interest are the integrated ice water path (IWP), the mean
mass height Zm, and the mean mass diameter Dm. The liquid water path (LWP), rain
water path (RWP), and water vapour (WV) are also included in the database. Further
details on the format and content of the cloud radiation retrieval database are detailed
in the Data Format Specification Document (DFSD) [RD-2]. Distributions of the afore-
mentioned quantities were calculated from all cases in the database, and are shown in
Figures 1 and 2.

Distributions of brightness temperatures Tb present in the database are shown in Fig-
ure 5, split according to ICI channel. Both one- and two-dimensional probability density
functions are shown. Although there are presently no ICI observations to compare with
simulations, there is still value in performing a qualitative check of simulated measure-
ments.
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Figure 1: Probability density functions (PDF) of all ice water path (IWP), liquid water
path (LWP), rain water path (RWP), and water vapour (WV) values present in the
database.
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Figure 2: Probability density functions (PDF) of Dm and Zm values present in the
database. The peaks in probability density arising at Dm = 0 µm and Zm = 0 km
corresponds to cases in which IWP = 0 kg m−2.

2.1 Developments from previous database

A major improvement to the new retrieval database is the inclusion of vertically and hor-
izontally polarised channels 04V, 04H (243 GHz), 11V, and 11H (664 GHz). In contrast,
the previous database [RD-3] contained only the intensity simulation for such channels,
calculated as the mean of V and H. As shown in Figure 3, there exists a notable difference
between simulated Tbs for 4V and 4H. A strong correlation between V and H remains, but
slightly lower Tb values are now present at horizontal polarisation due to the introduction
of azimuthally randomly oriented hydrometeors within the simulations. When comparing
the one-dimensional distributions, the general shape of the distributions differs between
the old and new databases. The largest difference occurs at medium to high Tb values,
many of which generally correspond to clear-sky cases. The new database has been im-
proved in regards to the handling of surfaces and the inclusion of more high latitude cases,
both of which could contribute to the change in Tb distribution. However, the handling
of surface emissivities may still lead to a failure to reproduce the very highest Tb val-
ues, although these would occur with a low probability density. A further investigation
and discussion of this issue is made upon comparison of a test GMI database with GMI
observations, and can be found in Section 3.2.3

In Figure 4, Tb from channels 04V and 04H from the new database are plotted against
channel 04 from the old database. The two-dimensional distribution between 04V and
04H is also included to demonstrate the difference between the polarised channels, where
the vertically polarised channel is shown to have slightly higher Tb than the horizontally
polarised channel. Such a difference was not present in the old database due to the
existence of only one non-polarised channel. A comparable plot is shown in Figure 3 for
channels 11V and 11H from the new database, and 11 from the old database. In this
case, distributions from the new database show a small shift towards colder temperatures
for higher Tb values. Cases demonstrating high Tb generally correspond to clear-sky cases
and so this shift could potentially be attributed to the full inclusion of the interference of
ozone within the new database.

Improvements to the new database have also been made in regards to the surface
emissivity model, the particle model (including some random variation), and the antenna
footprint. Simulations for all channels benefit from these changes.
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Figure 3: A comparison of the 243 GHz channel Tb distributions from the previous
database and the new database (left). The old database contains only one channel at
243 GHz, denoted as 04. The new database contains two channels at 243 GHz, denoted
as the vertically and horizontally polarised channels 04V and 04H, respectively. It is there-
fore possible to construct two-dimensional distributions in the case of the new database,
illustrating that the difference between polarisations can now be captured using the new
database. Samples in the two-dimensional distribution (right) that occur with a proba-
bility density less than 10−6 K−2 are represented by blue markers.

Figure 4: A comparison of the 664 GHz channel Tb distributions from the previous
database and the new database (left). Only one distribution is available from the old
database. This is denoted as 11 in the plot and denotes the intensity simulation com-
puted as the mean of 11V and 11H. 11H and 11V are available from the new database and
both are plotted in comparison to the old database. The two-dimensional distribution
between 11V and 11H is also shown (right), where the blue markers indicate samples that
occur with a probability density less than 10−6 K−2.
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Figure 5: PDFs of simulated antenna-weighted brightness temperatures Tb in a version
of the retrieval database consisting of ∼ 8.9× 106 cases. On the diagonal, 1-dimensional
PDFs are shown. Two-dimensional joint distributions are shown off-diagonal. Contour
lines correspond to [10−1, 10−2, 10−3, 10−4, 10−5, 10−6] K−2, with 10−5 K−2 corresponding
to the outermost contour line. Samples that occur with a probability density less than
10−6 K−2 are represented by blue markers.
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3 Database validation

In the absence of ICI data, validation of the cloud radiation retrieval database is not
immediately straightforward. However, there are several methods that allow for validation
to a certain degree. Firstly, one can verify that the cloud ice products in the database
are consistent to existing data in a statistical sense. For this purpose, data from the
DARDAR product (Delanoë et al. 2014) are used.

A further assessment of the database can be made through an application of the
database-generation method to existing instruments with sufficient similarity to ICI. For
this purpose, retrieval databases are generated for the Global Precipitation Measurement
(GPM) Microwave Imager (GMI) and for the International Submillimetre Airborne Ra-
diometer (ISMAR) (Fox et al. 2017). It is then possible to verify that the simulated
radiances from the test databases are sufficiently statistically similar to observed radi-
ances.

3.1 Comparison to DARDAR

As discussed, one validation approach is the statistical comparison of cloud ice products
in the database, such as ice water path (IWP), to pre-existing products. The DARDAR
product (Delanoë et al. 2014) provides the most suitable satellite-based reference data
available for this purpose. However, it must be noted that there are uncertainties present
in the DARDAR product. The retrieval uncertainty in Cloudsat IWC is estimated at
around ±40% (Heymsfield et al. 2008, Eliasson et al. 2011), and the same uncertainty is
assumed for the DARDAR IWP in this analysis.

Comparisons of the probability density function (PDF) of IWP and the zonal means
of IWP are shown in Figure 6. Also included are the same statistics computed on a
preliminary version of the database [RD-3]. The current database produces a PDF which
agrees more closely with DARDAR for lower IWP values. Although the previous database
appears to agree better with DARDAR at higher IWP values, it must be noted that
the probability density is given on a logarithmic scale and thus the difference between
distributions at the higher end of the IWP scale is significantly smaller than differences
at the lower end. Both the current and previous database contain more high IWP values
than DARDAR, which is desirable when performing retrievals. In the case of the zonal
mean, the new database is very consistent with DARDAR. It performs notably better
than the old database, since there are a significant number of zonal means from the old
database that fall outside of the (relatively large) DARDAR uncertainty range.

Global mean IWP maps for the new retrieval database, the old database, and the
DARDAR product are shown in Figure 7. All three datasets agree in their representation
of regions commonly associated with high IWP, such as the intertropical convergence zone
(ITCZ). Similarly, all datasets show low average IWP in regions such as the Sahara desert
and in regions generally associated with high amounts of statocumulus clouds. The new
retrieval database shows a ‘smoother’ distribution of IWP than the old database, and
agrees more closely with DARDAR in this sense.
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Figure 6: A comparison of (left) PDFs and (right) the zonal means of IWP values from the
current cloud radiation retrieval database, the previous database, and IWP values from
the DARDAR product. The shaded region shown for the zonal means (right) represents
the ±40% uncertainty in DARDAR IWP. DARDAR data are taken for all months in
2010. Distributions were calculated across all latitudes and surface types available.

Figure 7: Global mean IWP from the new cloud radiation retrieval database (upper), the
old database (middle), and the DARDAR product (lower). DARDAR data are taken for
all months in 2010. Grid boxes span 2 degrees longitude by 2 degrees latitude.
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3.2 GMI forward model simulations

A retrieval database with simulations of the high-frequency channels of GMI, listed in
Table 1, was created for validation purposes. The GMI retrieval database consists of
roughly 1.3 million cases covering the period January to April in 2009 and 2010.

First, simulated brightness temperatures and polarisation differences from the GMI
database were compared to actual observations from GMI. These results are presented in
Sec.3.2.1. Gaussian noise, with standard deviation according to NE∆T of Table 1, was
added to the simulated brightness temperatures in the database to account for instrumen-
tal measurement errors when comparing to GMI observations. Then, retrievals based on
the GMI database was compared to DARDAR products to further assess the database.
These results are discussed in Sec.3.3

Channel Polarisation NE∆T [K]
166 GHz V 0.70
166 GHz H 0.65

183 ± 3GHz V 0.56
183 ± 7 GHz V 0.47

Table 1: The four high-frequency channels in GMI, simulated using the framework de-
veloped for generation of a cloud retrieval database for GMI. The channels are shown
alongside their polarisation and the standard deviation of measurement noise. Noise val-
ues are taken from Kaur, Eriksson, Barlakas, Pfreundschuh and Fox (2022).

The simulated brightness temperatures (Tb) and polarisation differences (PD) in the
GMI database were compared to actual observations from GMI during the same period
of the year (January to April) but since GMI started to operate in 2014, data were taken
from the year 2020 instead. The simulations do not correspond to individual observations
but should rather agree with the observations in a statistical sense. The geographical
sampling of observed GMI data is non-uniform with more data at the turning points
of the satellite swath (between 60 and 70 degrees). To reduce the effect of this uneven
sampling, the results in this section consider latitudes from -60 degrees to 60 degrees.
All surface types are included in this section. To see the impact of different surface
types, results where the data have been filtered on ’ocean’, ’land’, ’snow’ and ’sea-ice’ are
presented in Appendix C where the surface classification for observations was taken from
the GPROF retrieval product. Results from different latitude regions can also be seen
there.

3.2.1 Brightness temperature distributions

Probability distributions for simulated and observed Tb are seen in Figure 8 for each
of the high-frequency channels of GMI. For the 183GHz channels, Tb distributions for
corresponding ICI channels from the old (preliminary) database are also included. The
fit to actual observations are generally quite good for clear-sky cases (the peak at high
Tb values) although significantly higher Tb values, above 300 K for the 166V and 166H
channels, are present in the observations. This difference has been identified with cases
over land and is discussed in Sec. 3.2.3.

Figure 8 also shows that GMI simulations for cases with cloud impact agrees well with
observations for 183±3V and quite well for 183±7V down to about 120 K. Cases below
120 K are very rare and are therefore not sufficiently well represented in the limited size
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Figure 8: Brightness temperature (Tb) probability distributions for each of the high-
frequency channels of GMI. Data from all surface types are used and from latitudes in
the range -60 degrees to 60 degrees. Distributions for observations (blue) and simulations
(orange) are seen for each channel and for the 183GHz channels, ICI Tb distributions for
the old (preliminary) database are also included in green.

of the GMI database. This is in line with our expectations since it is not expected that
the distributions should agree for probability densities below 10−6 as cases with such low
occurrence frequency are not expected to appear in the simulated database. A larger GMI
database would be required to fairly compare the occurrence of low Tb values.

For the 166GHz channels in Figure 8, the distribution for GMI simulations deviates
more from the observations. Especially for Tb values slightly lower than 200 K where
there is a bump in the observations that is not captured by simulated Tb. The 166GHz
channels are more sensitive to surface radiation and this suggests that the observation
data contain a larger fraction of snow and ice covered surfaces (cold surfaces). Looking
at the latitude distribution of the observed data in Figure 28 in App. B, there are still
considerably more data at latitudes around 50-60 degrees for the observations compared
to in the GMI simulation database. The fit is improved when disregarding high latitudes
as seen in Figure 29 in App. C.1 where only tropical latitudes are included. From the
latitude distribution it is also seen that the simulation database contains relatively more
cases at tropical latitudes where there are deep convection clouds. This could explain
why there are more cases with really low Tb, around 150 K, in the simulations than in
the observations as seen in Figure 8.
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The joint probability distribution of simulated and observed Tb for the different chan-
nels is seen in Figure 9. The figure shows that the correlations between the simulated Tb

for the different channels generally agrees well with the correlations between observed Tb.
The simulated data are thus confirmed to cover the observed measurement space by GMI
which is crucial for the retrieval algorithm since the database defines the prior knowledge
of the atmospheric state.

Depending on surface type and hydrometeor impact there is a difference between mea-
sured Tb for the different polarisations of the 166GHz channel as seen in the distribution
between 166H and 166V in Figure 9. Surface impact results in relatively large variability
of the distribution at higher Tb values seen as the arm towards lower Tb for 166H in the
interval 200 K to 300 K for 166V. The variability that is seen for lower Tb (below 200 K
identity point) in Figure 9 is due to hydrometeor impact. From the figure it is clear that
the simulation database covers both these variabilities. The limited size of the simulation
database is again the reason why rare cases at low Tb values are not captured by the
distribution for simulations but as discussed above, it is not expected to do so.

3.2.2 Polarisation difference distributions

Polarisation difference (PD) distributions of database simulations and actual observations
were also compared to see how well the simulation database captures variations in Tb for V
and H polarisation. In this study, azimuthally random orientation (ARO) of hydrometeors
is assumed to include this variation from cloud structures. The method for how ARO is
approximated for this study is described in (Kaur, Eriksson, Barlakas, Pfreundschuh and
Fox 2022). PD is defined as the difference between Tb for the 166V and 166H channels,
i.e. as PD = Tb,166V − Tb,166H .

In Figure 10, the joint probability distribution between PD and Tb,166V is seen. The
arc-shape seen between Tb,166V of 100 K and about 230 K are as discussed above due
to hydrometeor impact. Atmospheric states with aligned hydrometeors result in PD of
about 20 K in this region as seen by the observed PD distribution. Low PD values in this
region correspond to turbulent atmospheric states (such as deep convection) where the
PD signal is reduced due to totally random orientation of the hydrometeors and multiple
scattering. The distribution for the simulations in Figure 10 is seen to capture this arc-
shape but is a bit broader towards larger PD. This is on purpose since the upper limit of
the randomly chosen aARO factor (that scales the extinction of the two polarisations to
approximate ARO of hydrometeors) have been intentionally increased compared to (Kaur,
Eriksson, Barlakas, Pfreundschuh and Fox 2022). This is to ensure that the effect of ARO
of hydrometeors on the other channels is also captured by the approximated ARO. The
database can later be resampled to adjust this if needed. Negative PD values are likely
due to thermal noise, where the lower number of negative values at low Tb,166V correspond
to the fact that there is very little data in this region. Negative PD values could also
arise due to surface impact, but such a conclusion cannot be drawn from this figure alone.
Horizontally aligned particles can also lead to negative PD values, but no evidence of this
can be found in this figure.

The strong arm at Tb,166V of about 250 K in Figure 10 is due to different radiative
properties of different surface types. The largest PD values in the arm correspond to dry
clear-sky cases where the PD signal is not attenuated by interaction with water vapor. For
humid atmospheric conditions, the PD signal from the surface is attenuated corresponding
to cases with low PD and high Tb,166V in the lower right corner of the plot. It is seen that
this arm is well represented in the distribution for the simulations in Figure 10 although
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Figure 9: Brightness temperature (Tb) channel correlations for GMI observations (blue)
and GMI simulations (orange). Joint probability distributions between each of the chan-
nels are seen where data from all surface types and from latitudes in the range -60 degrees
to 60 degrees are used. Simulations are plotted on top of observations below the diagonal
and above the diagonal, observations are plotted on top of simulations. The contour lines
are at levels 10−6 K−2, 10−5 K−2, 10−4 K−2 and 10−3 K−2 and data points outside the
10−6 K−2 contour are plotted as dots. Marginal distributions are seen at the diagonal.

there seem to be a lack of cases for high Tb,166V which again have been attributed to
problem with surface modelling of land, see discussion in Sec. 3.2.3.

It is expected that the PD distributions for land should show smaller PD values for
clear-sky cases than water surfaces. This is seen for the distribution for the simulations in
Figure 36 and Figure 37 in Sec.C.2 where the PD distributions are plotted for ocean and
land separately. The probability for large PD values is indeed smaller in the clear-sky arm
for observations over land as well in these figures but there is a considerable amount of
high PD values that are not present in the simulations in Figure 36. These are probably
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cases that have been misclassified by GPROF. For mid-latitudes (Figure 37) there are
less really cold cases from deep convection clouds which is seen for both observations and
simulations.

PD distributions where also plotted for snow covered land and sea-ice at northern
latitudes, seen in Figure 38 but there are too few cases (snow about 42k and sea-ice about
5k) in the simulation database to properly compare the distributions to observations.
Roughly the same set of PD values are seen for simulations and observations but there
seem to be some problem for low Tb,166V below 200 K for both snow and sea-ice.

Figure 10: Joint probability distributions of polarisation difference (PD) and brightness
temperature for the 166V channel (Tb,166V ) are plotted for all surface types and latitudes
in the range -60 degrees to 60 degrees. PD is defined as Tb,166V−Tb,166H and details of the
modelling of hydrometeors in the simulations can be seen in Sec. 3.4 in the Task2 report.
Contour lines of the probability distributions for observations (blue) and simulations (or-
ange) are seen at levels 10−6 K−2, 10−5 K−2, 10−4 K−2 and 10−3 K−2. A random sample
of 1% of the simulated data points with lower probability than 10−6 K−2 are plotted as
blue dots. For the simulations all point with lower probability than 10−6 K−2 are plotted
as orange dots.

3.2.3 Surface emissivity

In the distributions shown in Sec. 3.2.1 and Sec. 3.2.2 there have been significant dif-
ferences between simulations and observations for really high Tb values. The problem
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is most significant in the 166GHz channels where contributions from surface radiation
have larger impact. Considering Tb distributions where only data from land have been
included, as in Figure 30 and Figure 32 in App. C.1 where simulated values are less than
300 K while observed values clearly exceeds 300 K for 166H and 166V, this suggests that
the difference could be due to problems in the modelling of surface radiative properties
for land. The problem is significantly reduced when looking at Tb distributions where
land is not included, e.g. Figure 31 in App. C.1.

The geographical locations for observations with Tb > 300 K for the 166V channel are
seen in Figure 11. It is seen that most of these observations are in desert regions. Such
high values are not obtained in the simulations. A first possible reason for this is too
low emissivities for the regions of concern. Empirical values from TELSEM (Aires et al.
2011) are used to estimate the emissivities for land surfaces. These values are derived
for 85GHz and the validity for 166GHz is not known. Another possible reason why the
simulations do not include cases with Tb > 300 K is that the ERA5 skin temperatures
are too low for arid and desert regions.

Figure 11: Geographical location of GMI observations with measured Tb > 300 K for the
166V channel. The GPROF surface classifications of the observations are indicated by
the colorbar. Decreasing vegetation 3-7 are the classifications used for surface type ’land’.

3.2.4 Summary of forward model validation

Brightness temperature distributions for the simulation database agree very well with
distributions for observations for the 183GHz channels and quite well for the 166GHz
channels. Deviations were mainly attributed to problems in the modelling of surface
radiative properties for land and differences in geographical sampling of observations
and simulations. It was also noticed that a large database, with the number of samples
approaching 10 million, is needed to represent rare cases with low Tb values.

The joint Tb distributions between the different channels of GMI in Figure 9 confirmed
that the observed measurement space is covered by the simulation database. It was also
shown that variability in Tb between the 166H and 166V channels due to both surface
and cloud impact is captured by the simulations.
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From the PD distributions in Figure 10 we conclude that the database captures the
overall observed PD signature of GMI. Both clear-sky cases and cases with cloud impact
agreed well with observations. A slightly broader distribution for simulations was seen
for cloudy cases because the aARO factor has been intentionally increased. This is not
a problem since the simulation database can be resampled to adjust this. However, PD
distributions for snow and sea-ice were not completely satisfactory although more cases
are needed to really compare the distributions to observations.
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3.3 GMI retrievals

A test of the retrieval performance of the test GMI database is performed through the
comparison of the test retrievals to DARDAR. For this purpose, quantile regression neural
networks (QRNN) were used. Similarly to BMCI, QRNNs allow retrievals to be obtained
alongside non-Gaussian retrieval errors. For a further discussion of QRNN and a compar-
ison with BMCI, the reader can refer to Pfreundschuh et al. (2018).

3.3.1 Retrieval architecture

The input data for the QRNN consist of radiances for the four highest frequency GMI
channels, as shown in Section 3.2. Surface type and surface temperature were included
as additional inputs.

Simulations are noise-free. To imitate measurement uncertainty, noise was added to
each measurement. The added noise was Gaussian and followed the channel-dependent
standard deviations given in Table 1. To account for potential error when performing the
surface classification, 2% of the surface type data were randomly selected and randomised.
Both of these approaches were conducted with the aim of preventing overfitting on the
dataset and therefore poor retrieval results. Therefore, the addition of randomly generated
noise and the surface-randomisation was performed for each batch and each epoch during
training of the QRNN.

The outputs of the QRNN are quantiles of IWP, which can be used to form a cumu-
lative distribution function (CDF). To account for the fact that IWP values can differ by
several orders of magnitude, a log-linear transformation was applied to all IWP values
prior to training. An inverse transformation was applied to the retrieved values prior to
plotting the results.

The database was split such that 80% of the datapoints were used for training, 10% for
validation, and 10% for testing. This gave a training set containing 1.2×106 samples and
validation and test sets both containing 1.5× 105 samples. The test set was not seen by
the neural net at any point during training, allowing for the performance of the retrievals
to be fairly assessed. The training, validation, and test datasets were constructed through
random selection of data and therefore follow the same underlying distribution.

3.3.2 Retrieval performance on simulated observations

To evaluate the performance of the retrievals, retrievals were made on the test set and
compared statistically to DARDAR through the calculation of PDFs and zonal means.
The results are shown in Figure 12. The deviation of retrieved values from reference values
is shown in Figure 13. In order to compute a PDF of retrieved IWP, point estimates
of IWP needed to be chosen from the quantiles outputted by the QRNN. Two PDFs
were constructed. The first uses the mean as the point estimate of IWP, where the
mean is computed as the first moment of the predicted CDF. The second PDF takes
a random sample from the a posteriori distribution as the point estimate, where the
posterior distribution is computed through an interpolation of the inverse CDF. This is
henceforth referred to as ‘posterior sampling’. However, it is stressed that this ‘posterior
sampling’ is not equivalent to the method of repeated sampling of a posterior distribution
to obtain an expectation value, since only a single sample is taken from each distribution
in this case.

The test GMI database consisted of simulations of atmospheric scenes based on Cloud-
sat data from January to April. For a fair comparison, the DARDAR distributions were
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recomputed to be only over data from January to April.
The QRNN has not seen the test dataset during training. To be successful, the dis-

tribution of retrievals from the test dataset should follow the same distribution as IWP
from the training dataset. A significant deviation from the training set would indicate
issues with the retrievals, but no such deviation was present.

Sampling from the posterior distribution allows for the occasional sampling of higher
IWP values that are not captured when taking the mean as a point estimate. Therefore,
it is expected that the distribution given by the mean will not extend as high as the
distribution given by posterior sampling. The posterior sampled distribution shown in
Figure 12 is therefore a better representation of the capabilities of the database and
retrievals. We note that it is also probable that the mean suffers as a result of quantile
crossing, a phenomenon sometimes present in QRNNs where the estimated quantiles are
not monotonic. For this study, any quantile crossing present was corrected with isotonic
regression on the quantiles post-estimation.

The posterior sampled symmetric error distribution shows no clear bias towards over-
or under-estimation. The larger error values likely correspond to IWP values comparable
in magnitude. Since larger IWP values occur at very low probability densities, the lower
accuracy of these retrievals is attributed to an under-representation of high IWP in this
test GMI dataset.
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Figure 12: A comparison of (left) PDFs and (right) the zonal means of retrieved IWP
using the test GMI database.
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Figure 13: PDF of retrieval error. Distributions are shown using mean as the point
estimate of IWP and using samples from the a posteriori distribution as the point estimate.

16



3.3.3 Retrieval performance on real observations

The QRNN was trained on simulations of GMI observations. To further test the retrieval
performance, the same QRNN was used to retrieve IWP from actual GMI observations.
For input to the QRNN, GMI brightness temperatures were paired with surface tem-
peratures and surface type classifications taken from the Goddard Profiling Algorithm
(GPROF). Due to differences in surface classifications used in this study and in GPROF,
some datapoints were forced to be classed with an unknown surface type. This was
expected to slightly decrease the performance of the retrievals.

As before, the PDF and zonal mean of retrievals of IWP are computed. Results are
shown in Figure 14. Retrievals were performed on ∼ 106 observations from GMI in 2019.
Observations were randomly selected from the entire year and across all latitudes and
longitudes with the aim of obtaining a comprehensive distribution of IWP values.

The distribution of IWP retrievals agrees well with DARDAR in a statistical sense. It
must be noted that the database was not specifically designed to match with DARDAR
and therefore this is a welcome result. The IWP PDF obtained through posterior sam-
pling is slightly more skewed towards higher IWP values than DARDAR. Also shown is
IWP given by GPROF for the same observations used for the retrievals. Although DAR-
DAR cannot be claimed to be the ‘truth’, GPROF retrievals are based upon a database
focused on hydrometeor precipitation and are thus generally regarded as less accurate
than DARDAR. Therefore, the fact that our IWP retrievals from the same dataset agree
more closely with DARDAR than GPROF does indicates a significant improvement in
the realm of cloud ice retrievals.
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Figure 14: A comparison of (left) PDFs and (right) the zonal means of retrieved IWP
from actual GMI observations.

3.4 ISMAR and MARSS

The Microwave Airborne Radiometer Scanning System, MARSS (McGrath and Hewison
2001), and the International Submillimetre Airborne Radiometer, ISMAR (Fox et al.
2017), is a microwave and submillimetre radiometer, respectively. ISMAR was developed
as an airborne demonstrator for ICI, and has been flown, together with MARSS and
other sensors, on the FAAM BAe-146 research aircraft. The first flight with ISMAR was
succeeded in 2014 and since then a number of flights were realized, primarily covering
the region around UK. Figure 15 displays tracks from 15 flights performed during 2015
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to 2019 and where the altitude was above 9 km, and the observations from these parts of
the flights are here compared to simulated observations.

Our simulations are not performed to match each flight individually. Instead, the
MARSS/ISMAR simulation is performed for the scenes generated for the ICI database,
but using a flight altitude of 9.4 km, an observation zenith angle of 140 ◦, and channel
specification matching the MARSS and ISMAR ones. Figure 16 shows scatter plots of
simulated and actual ISMAR and MARSS observations for data from ten channels. The
simulated data include scenes covering the region of 45 ◦N – 75 ◦N and 40 ◦W – 5 ◦E.
The aim with this comparison is to verify that the simulated data cover the measurement
space as observed by ISMAR and MARSS. That is, the aim is that each ISMAR/MARSS
sample is found within the cluster of simulated samples, and in general Figure 16 confirms
that this is the case.

It can further be noted that most of the data points are found along two ”arms” for
some of the scatter plots, and that both for the actual observation and the simulated data.
The explanation to this is due to two different effects. First, for channels that have little
or no sensitivity to the surface, like for example the 183.25±3.0 and 325.15±3.5GHz
channels, one arm is aligned close to the one-to-one line, while the other arm contain
points where data from the 325.15±3.5GHz channel is colder than that of the 183.25±3.0
channel. The points close to the one-to-one line are associated to clear sky conditions,
while the points along the other arm are affected by cloud ice scattering. The scattering
strength increases with frequency, and hence, the data from the 325.15±3.5GHz channel
is colder than that of the 183.25±3.0 channel. The clustering of data points along two
arms are not that noticeable in the plots for channel pairs that are more close in frequency
(e.g. the 325.15±1.5GHz and 325.15±3.5GHz channels).

A second effect that can give rise to clustering of data points along an arm is due to
the surface contribution to the observation. This is most obvious in the plot showing data
associated to the 243.20±2.5GHz V and H channel, where some data from the V channel
are up to 50 K warmer than that of the H channel in the simulated data, although not
at all that high in the observed data. This high polarisation difference is associated to
dry condition over an ocean surface, and this type of condition is over-represented in the
simulated data compared to the observation dataset. This is not a big issue here, as the
aim primarily is to verify that the simulation cover the observed measurement space.

The scatter plot for data associated to the 183.25±7.0 and 325.35±3.5GHz channels
looks distinctly different from the previously discussed plots, but also here the simulated
data cover the observed data. It can be noted that for high and low temperatures data
associated to the 183.25±7.0 GHz channel, are mainly warmer and colder, respectively,
than that of the 325.35±3.5GHz channel. This is explained by the fact that the atmo-
spheric transmission is higher at 183.25±7.0 GHz than at 325.35±3.5GHz, and hence,
the influence of cloud ice can be greater at the lower frequency channel since the cloud
ice may effectively not be seen at the higher frequency channel.

It can be noted that some ISMAR data from the 664GHz channels are found a bit
outside the simulated data. This is most likely explained by the fact that these channels
sometimes are a bit more noisy than assumed in the simulation (noise in the form of NE∆T
values according to Table 3 in Fox et al. (2017) was added to the simulation). Overall,
the agreement between the observed and simulated data are judged to be satisfying and
we conclude that the simulation setup is consistent to MARSS/ISMAR observation.
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Figure 15: Flight tracks of the FAAM BAe-146 research aircraft where ISMAR and
MARSS observations are available and flight altitude is above 9 km.

Figure 16: Scatter plots of simulated (blue dots) and actual ISMAR and MARSS obser-
vations (orange dots) for data from ten channels, and for a flight altitude around 9.4 km,
and an observation zenith angle of 140 ◦. The simulation is not performed to match each
actual observation individually. See text for more details.
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Figure 17: Contour plots comparing distribution of simulated observations associated
to the previous and current database for the ICI-04, ICI-05, and ICI-11 channels. The
current database contains data for both the V and H channels for ICI-04 and ICI-11,
while the previous database only contains intensity simulation (mean of V and H). Three
contour lines (0.0001 , 0.001, 0.01) are displayed.

Improvement with respect to the previous database

Data from the previous database can not directly be compared to the actual IS-
MAR/MARSS observation, as the allsky simulation is done for the ICI observation geom-
etry. Anyhow, we here attempt to identify some improvements of the current database
with respect to the previous database for some of the ICI channels and for data cover-
ing the region used in the previous section, where we found a good agreement betwen
simulated and actual ISMAR observations for the simulation setup used for the current
database.

Figure 17 shows a comparison of distribution of simulated observations associated
to the previous and current database for the ICI-04 (243GHz), ICI-05 (325±9.5GHz),
and ICI-11 (664GHz) channels. The agreement of the Tb distributions associated to the
current and previous database is relatively high on a general level, but there are a few
differences. A main difference is that the current database contains data for both the V
and H channels for ICI-04 and ICI-11, while the previous database only contains intensity
simulation (mean of V and H). The outer contour lines do not deviate significantly for
the current and previous database. The agreement is not perfect, but the contour line
associated to the previous database is at least partly found between the H and V contour
lines of the current database. The outer contour lines of the H and V data differ by up
to ∼ 20 and 4K for the ICI-04 and ICI-11 data. The polarisation difference is due to the
impact of both the surface and hydrometeors impact on the ”observation” for the ICI-4
channels, and primarily only due to hydrometeors for ICI-11 as atmospheric transmission
is close to 0. Both the surface and hydrometeor contribution are modelled using state-of-
the-art models /data as described in the Task2 report, and the inclusion of H and V data
in the current database is a main improvement of the current database.
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The 0.01 contour lines (the thickest lines) are shifted by a few K, indicating a bias
between clearsky Tbs of the current and previous database. The simulation of the current
database is more detailed w.r.t. channel response functions, and spectroscopy than the
previous one, and hence considered to be a second main improvement of the current
database.

21



4 ICI Retrieval Performance

The retrieval performance simulation is done by randomly picking out one million
states from the extended current retrieval database with a true and known IWP above
0.0001 kg/m2, adding noise to the simulated observation according to the NE∆T speci-
fication of the ICI channels, and then applying the BMCI retrieval algorithm.

4.1 Comparison with previous database

The previous database lacks separated simulations for the dual polarised ICI-04 and ICI-
11 channels, and the mean of the H and V data was then used for the retrieval using the
previous database. Figure 18 shows the retrieved IWP as function of the true IWP, and
Figure 19 shows the true and retrieved probability density function (PDF) of IWP, for
mixed climatic conditions, and for the retrieval based on both the current and previous
database. It is noted that the retrieval performance varies with climatic condition, but
here we focus on the ”average” performance, and more details is given in Section 4.2.
The difference between the retrieved posterior median values and the true IWP is smaller
than 50% for an IWP greater than about 0.02 kg/m2 for the retrieval based on the
current database. The retrieval based on the current database provides a significant lower
uncertainty estimate than the one based on the previous database above this value and
up to about 1 kg/m2. For example, the upper percentile is about 60% lower for an IWP
above 0.03 kg/m2 and the lower percentile is more close to the true IWP, for the retrieval
based on the current database compared to the one using the previous database.

The median retrieval is biased low compared to the true IWP at IWPs above about
3 kg/m2 and for both of the two retrievals. The difference between the upper and lower
percentiles is somewhat smaller for the retrieval based on the previous database. At high
IWPs the retrieval can be significantly influenced by the a priori IWP distribution and
the previous database contains more cases with high IWP than the current database (see
Figure 6), that effectively results in a lower retrieval uncertainty at high IWP for the
retrieval based on the previous database. The number of cases with high IWPs in the
previous database is probably overestimated with respect the true distribution, and the
retrieval works relatively well for cases with high IWPs, but the ”cost” of this is likely
also a higher retrieval uncertainty for cases with relatively low IWP values.

It is kind of expected that the retrieval based on the current database provides a better
retrieval performance, since the test data are selected from this database, and the purpose
of this test is mainly to confirm that this is actually the case. In addition to this, the
current database is an improved version of the previous database and contains both more
information (H and V data) and more realistic data such as the IWP apriori distribution
that matches DARDAR data (Section 3.1). The latter was achieved by including a revised
set of hydrometeor models compared to what was used for the previous database. The
accuracy and uncertainty estimate depends to a large extent on the variability of the
hydrometeor models included in the databases, and also on the ability of the retrieval
to discriminate between the models. The previous database contains a somewhat higher
hydrometeor model spread than the current database. In addition, the current database
contains H and V information, and it is likely that the retrieval can use this information,
particularly for cases with low and moderate high IWPs, to identify some particle model
as likely or unlikely given the observation, and hence decrease the retrieval uncertainty
compared to that of the previous database.

22



Figure 18: Estimated retrieval performance for IWP using the current and previous
database and for mixed climatic conditions. The solid lines show the median of the
retrieved posterior median values, the colored dashed lines show the median of the re-
trieved 5th and 95th percentile.

Figure 19: Retrieved (posterior median value) and true probability density function of
IWP, for the data displayed in Figure 18.

23



4.2 Test retrievals with new database

We here consider statistics derived from the retrieved 5th, 50th, and 95th percentile of
IWP, Dmean, and Zmean, and only considering the current database, and for five climatic
regions, defined as:

• low-latitude: latitude within 30 ◦S – 30 ◦N

• warm mid-latitude: latitude within 60 ◦S – 30 ◦S or 30 ◦N – 60 ◦N and surface
temperature above 10 ◦C

• cold mid-latitude: latitude within 60 ◦S – 30 ◦S or 30 ◦N – 60 ◦N and surface tem-
perature below 0 ◦C

• temperate mid-latitude: latitude within 60 ◦S – 30 ◦S or 30 ◦N – 60 ◦N and surface
temperature between 0 ◦C – 10 ◦C

• high-latitude: latitude greater than 60 ◦S or 60 ◦N

4.2.1 IWP detection limit

Figure 20 shows estimated retrieval performance for IWP and five ”climatic regions”. The
lower (5th percentile) and upper (95th percentile) dashed lines can be interpreted as the
level where it is a 95 and 5% probability, respectively, that the IWP is above this level.
For low true IWP values (i.e. below 0.001 kg/m2) the gradient of the log-log plot of these
levels as function of true IWP is low, and the values reflect the IWP a priori distribution
as the sensitivity is low. For high true IWP values (i.e. above 0.3 kg/m2) the gradient of
the percentiles curves is close to unity and this indicates a high sensitivity to IWP. The
detection limit is clearly located within the range of 0.001 to 0.3 kg/m2, and one way to
define this limit/threshold is to identify where the gradient of the 5th percentile curve
(lower curve) is at a maximum, and this varies with ”climatic region” according to:

• low-latitude: ∼ 0.015 kg/m2,

• warm mid-latitude: ∼ 0.02 kg/m2,

• temperate mid-latitude: ∼ 0.045 kg/m2,

• cold mid-latitude: ∼ 0.055 kg/m2,

• high-latitude: ∼ 0.09 kg/m2.
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Figure 20: Estimated retrieval performance for IWP and five climatic regions. The solid
lines show the median of the retrieved posterior median values, and the dashed lines show
the median of the retrieved 5th and 95th percentile.

Figure 21: As Figure 20, but showing the data for a somewhat different IWP range.
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Figure 22: As Figure 21 but showing the performance in terms of a relative error and the
dashed lines show data associated to the retrieved 16th and 84th percentile.

4.2.2 IWP retrieval performance

Figure 21 shows estimated retrieval performance for IWP and five ”climatic regions”. It
can clearly be noted that the retrieval accuracy or performance vary with climatic region.
Best performance is found for the tropics and warm mid-latitudes, and worst performance
is found for the high-latitudes and cold mid-latitudes. The obtained performance is in
line with results reported in Eriksson et al. (2020) for the tropics and mid-latitudes, but
we here also include estimated performance at high-latitudes for the first time (as far as
we know). The performance is summarised below:

• low-latitude and warm mid-latitude: High accuracy in retrieved median values for
IWP above ∼ 0.02 kg/m2. The median of the retrieved 5th and 95th percentiles is
located within 0.5 and 2 times the retrieved or true IWP value, and hence the upper
uncertainty is on average greater than the lower uncertainty level in absolute terms.

• temperate mid-latitude: High accuracy in retrieved median values for IWP within
the range of ∼ 0.05 to 1 kg/m2. The median of the retrieved 5th and 95th percentiles
is here mainly located within 0.5 and 2 times the retrieved or true IWP value. For
IWP values above 1 kg/m2 the retrieved median values are on average a bit lower
than the true IWP, i.e. the sensitivity drops off and the lower and upper uncer-
tainty levels increases and decreases, respectively, and hence the retrieval becomes
significantly influenced by the a priori distribution.

• cold mid-latitude and high-latitude: The accuracy in retrieved median values is
within 50% for IWP values above ∼ 0.06 to 0.1 kg/m2 for the cold mid-latitudes
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and high-latitudes, respectively. The median of the retrieved median values is sys-
tematically a bit underestimated compared to the true IWP. The lower uncertainty
level is significantly greater for these climatic regions compared to the others. The
median of the retrieved 5th and 95th percentiles is located within about 0.3 and 2
times the retrieved or true IWP value for true IWP above 0.3 kg/m2.

The end-user requirement for IWP is a 50% accuracy, according to Section 6.1 in
RD-4 (EURD), and without any further description about how the accuracy is defined.
The estimated retrieval bias is below 50% for an IWP above 0.01 kg/m2 and 0.1 kg/m2

for low and high latitudes, respectively. On the other hand, the retrieval uncertainty
presented in Figure 21 is in general greater than 50% and for all conditions and for the
full IWP range. However, it is reminded that the uncertainty is reported as the posterior
5th and 95th percentiles, and the distance between these roughly corresponds to a ± two
standard deviations uncertainty estimate and for a normal distribution. Figure 22 shows
the estimated retrieval performance as a relative measure, and for the retrieved 16th
and 84th percentiles, corresponding to ± 1 standard deviations. The estimated retrieval
performance is then close to be in compliance with the end-user requirement, except for
high-latitudes and cold mid-latitudes conditions and high IWP cases in general, where
the lower percentile tends to be found at a level that is more than 50% lower than the
true IWP value.

The main reason for the poorer performance at high-latitudes and cold mid-latitudes
is that the cloud ice mass is here located closer to the surface, resulting in that the cloud
ice impact on the observation is relatively low and the cloud ice is potentially not even
sensed by some of channels at high frequency (≥ 448GHz) and the inner 183 and 325GHz
channels. The channels that actually have sensitivity to the complete cloud ice column
will consequently also be sensitive to the surface, and the surface contribution to the
observation varies with frequency and is not perfectly known, and effectively adds an
extra retrieval uncertainty compared to retrieval at e.g. low latitudes. Figure 23 shows
estimated retrieval performance for IWP and for cold surface temperature and for five
different surface types. The best performance is clearly obtained over the ocean, where
the lower percentile is significantly closer to the true IWP than for the other surface types.
For example, an IWP of 0.5 kg/m2 is clearly detected over all surface types, but the lower
percentile is located around 0.25 kg/m2 and 0.1 kg/m2 for ocean and the snow/ice/mixed
surface types, respectively.
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Figure 23: Estimated retrieval performance for IWP and for a surface temperature lower
than 0 ◦C and for different surface types. The performance for snow ice, and mixed surface
types were similar and combined to result in a less noisy plot. The solid lines show the
median of the retrieved posterior median values, and the dashed lines show the median
of the retrieved 5th and 95th percentile.

Figure 24: Estimated retrieval performance for Dmean and five climatic regions. The
solid lines show the median of the retrieved posterior median values, and the dashed lines
show the median of the retrieved 5th and 95th percentile. Only data with a true IWP
above 0.02 kg/m2 are used for low-latitude and warm mid-latitude, above 0.05 kg/m2

for intermediate warm mid-latitude, above 0.06 kg/m2 for cold mid-latitude, and above
0.1 kg/m2 for high-latitude.
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4.2.3 Dmean retrieval performance

Figure 24 shows estimated retrieval performance for Dmean and five ”climatic regions”.
The accuracy of the retrieved median Dmean as function of the true Dmean is mainly
better than 20µm, and the upper and lower percentiles are found within 150µm from the
true Dmean, within the Dmean range of 100 – 550µm, and for all ”climatic regions”. For
a Dmean greater than 550µm the median Dmean retrieval is biased low compared to the
true Dmean.

For e.g. the low-latitudes, the difference between the upper and lower percentiles is
significantly smaller for small Dmean than for large Dmean values (i.e 100 and 250µm
around Dmean values of 100 and 250µm, respectively). The lower and upper percentiles
are naturally bounded by the a priori distribution, for low and high Dmean values, respec-
tively, but the upper percentile at low Dmean values is located closer to the true Dmean
value than the lower percentile at high Dmean values. Low and high Dmean values are
generally associated to cloud ice mass at high and low altitudes, respectively. ICI provide
a more complete observation for cloud ice mass at high altitude than at low altitude as all
channels can then be sensitive to the cloud ice mass. Thus, the ICI observation provides
more information at the same time as the Dmean a priori distribution is more narrow
for cloud ice mass at high altitudes, and consequently the Dmean retrieval uncertainty is
lower at low Dmean than at high Dmean values.

However, it can be noted that the difference between the upper and lower percentiles
around small and large Dmean values is similiar to each other (200–250µm) for the cold
mid-latitudes and high-latitudes. The Dmean retrieval performance is poorer for the cold
mid-latitudes and high-latitudes than for the low-latitudes and for small Dmean values.
At the higher latitudes the cloud ice mass is located at a lower altitude than at low
latitudes, and the cloud ice mass is consequently not ”sensed” by all channels of ICI,
and the information in the observation is less complete. However, the Dmean retrieval
uncertainty is lower for large Dmean values and for high latitudes compared to that of
low latitudes. This can be explained by a more narrow Dmean a priori distribution at
the higher latitudes, compared to that of lower latitudes.
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4.2.4 Zmean retrieval performance

Figure 25 shows estimated retrieval performance for Zmean and five ”climatic regions”.
The retrieval performance clearly varies with climatic region as the cloud ice mass ap-
pears at different altitudes. The accuracy of the retrieved median values are within 500m
within the altitude range of 0.5 –12 km for all regions. The lower and upper percentiles
are naturally bounded by the a priori distribution, for low and high Zmean values, re-
spectively. The retrieved 5th and 95th percentiles are found within ± 2 km from the true
Zmean for most altitudes and regions, but with some variations and deviations.

• low-latitude and warm mid-latitude: The retrieved 5th and 95th percentiles are
primarily found within ± 1 km from the true Zmean, except for the lowermost and
uppermost 1.5 km where cloud ice mass occur, where the upper and lower level,
respectively increases to about 2 km.

• cold mid-latitude, and high-latitude: The difference between the upper and lower
percentile is about 2.5 km within the altitude range of 2 –6 km, and the slope of the
percentile is here lower than the one-to-one line.

Figure 25: Estimated retrieval performance for Zmean and five climatic regions. The
solid lines show the median of the retrieved posterior median values, and the dashed lines
show the median of the retrieved 5th and 95th percentile. Only data with a true IWP
above 0.02 kg/m2 are used for low-latitude and warm mid-latitude, above 0.05 kg/m2

for intermediate warm mid-latitude, above 0.06 kg/m2 for cold mid-latitude, and above
0.1 kg/m2 for high-latitude.
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5 Summary

A retrieval database to be applied for the ICI level2 product processing at the EUMET-
SAT Central Facilities has been developed, validated against available observations, and
compared to a preliminary database.

The database produced contains 9.5 million cases, where each individual case consists
of a simulated ICI measurement and a corresponding set of atmospheric and surface
states. The methodology applied for generating the database is inspired by the one used
for developing the preliminary database [RD-2, RD-3], but resolves some of the main
shortcomings of the previous database. The improvements include incorporation of full
spectral response functions, interference of ozone, two-dimensional variation of brightness
temperatures within the footprint, and orientation of ice hydrometeors (Kaur, Eriksson,
Rydberg, May and Hallborn 2022).

The most important aspect of the database is that it shall statistically represent reality.
The clear-sky atmospheric state and dynamic surface data are taken from ERA5, while
the spatial distribution of clouds and precipitation are based on CloudSat reflectivities.
The ERA5 and CloudSat inputs ensure that the database on an overall level follow reality,
but do not fully constrain the radiative transfer needed to simulate ICI radiances. For
example, several microphysical quantities need to be added, such as particle shape (habit)
and sizes (i.e. particle size distribution. PSD). Already the preliminary database operated
with multiple particle models, to represent the variability in ice hydrometeor microphysics.
The particle models were for the new database version fully revised and an occurrence
fraction has been introduced. These changes gave a better agreement in mean IWP to
DARDAR retrievals, especially for tropical latitudes (Sec. 3.1). Accordingly, the IWP
implied by the database constitutes now a better a priori distribution for the retrievals.

A completely new feature is to consider particle orientation, following Barlakas et al.
(2021). In lack of constraint from CloudSat, the factor describing degree of orientation is
selected randomly (Kaur, Eriksson, Barlakas, Pfreundschuh and Fox 2022). As a comple-
ment, dedicated calculations for V and H polarisation have been performed. The effect of
including polarisation is obvious for the dual polarisation channels (4V/H and 11V/H),
but it is stressed that this signifies an improvement also for the single polarisation chan-
nels. Also the surface generates polarisation and a rough polarised emissivity model for
sea ice and snow was developed, in lack of any existing model to use.

For validation purposes, also ISMAR/MARSS and GMI observations were simulated.
It was found that simulated data cover the measurement space as observed by ISMAR
and MARSS, including data from the dual polarised 243 and 664GHz channels, that were
missing in the previous database. This gives confidence in that the ICI database has good
quality at least for northern mid-latitude conditions.

GMI observations are limited to frequencies below 200GHz, but have close to global
coverage. The simulated GMI data match the real observations relatively closely for
all four channels considered. The main exception is measurements over snow and sea
ice. The surface classification involving sea ice and snow is uncertain and there are
relatively few simulations including these surface types so the interpretation of the noted
deviations is not straightforward but it could be the case that the emissivity models
created should be revised. In any case, the simulated polarisation differences above ocean
and land agree well with observations. As remarked above, the preliminary database
did not represent polarisation differences at all. Another improvement compared to the
preliminary database was noted for 183±3GHz. This a channel with very low surface
influence and the improved fit with GMI for antenna temperatures around 150K (Fig. 8)
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gives further confirmation on that the new set of particle model is more realistic.
Inversion of real GMI observations was performed as a full scale test of the database

generation. These retrievals gave realistic spatial distributions and zonal mean IWP in
good agreement with the DARDAR dataset.

Retrieval simulations for ICI show that the performance vary quite significantly with
climatological condition. Best performance is obtained when the surface temperature is
warm (> 10◦C) or the cloud ice mass is found well above the surface. The IWP detection
limit is then around 0.02 kg/m2, and the retrieved 5th and 95th percentile is located about
50% and 100% below and above, respectively, the 50th percentile (median) or the true
value. The accuracy in retrieved Dmean and Zmean values are high within the range
of 100 – 550µm and 2 – 12 km, respectively, and with uncertainties of about 150µm
and 1 km, respectively. These performance estimates are in line with result reported in
Eriksson et al. (2020).

The performance for high-latitudes is estimated for the first time, and the performance
is effectively decreasing with decreasing surface temperature or cloud ice mass height. For
surface temperature well below 0◦C the IWP detection limit is almost five times greater
(0.1 kg/m2) than that at warm temperatures, and the retrieved 5th percentile is further
away from the median value than at warmer temperatures.
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Appendices

A Retrieval Database Size

Figure 26: Estimated retrieval performance for IWP using a retrieval database consisting
of around 10 and 5 million states. The solid lines show the median of the retrieved
posterior median values, and the dashed lines show the median of the retrived 5th and
95th percentile.
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Figure 27: Retrieved (posterior median value) and true probability density function of
IWP, for the data displayed in Figure 26.

The computational cost for generating a database of many millions of states is high, and
here we make a test to check the difference in retrieval performance by using a retrieval
database of 5 and 10 million states. For this exercise we use the preliminary ICI retrieval
database, and pick out 500 000 states with an IWP greater than 0.001 kg/m2 and run
the BMCI retrieval algorithm for the two databases (the smaller database is a subset of
the larger one).

Figure 26 shows the retrieved IWP as function of the true IWP, and Figure 27 shows
the true and retrieved probability density function (PDF) of IWP. The retrieval perfor-
mance is found to be very similar for the two databases. The retrieved PDFs are more or
less located on top of each other (Figure 27), and for both cases the occurrence frequency
of low IWP values are underestimated, as the sensitivity is low for low IWP values. This
is also clearly seen in the retrieved vs. true IWP plot (Figure 26). The accuracy of the
median retrieved IWP seems to be a bit better for IWP greater than 5kg/m2 for the 10
million database, but uncertainties are of quite similar magnitude, so no big difference.

Thus, the result presented here indicates that the retrieval performance will, in prac-
tise, be close to identical for a database of 5 and 10 million states, and a database size of
5 million should therefore be sufficient to use.
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B Latitude distribution of GMI simulation database

and GMI observations

The latitude distributions of observed and simulated data are plotted as probability dis-
tributions in Figure 28.

Figure 28: Latitude probability distributions for all surface types and latitudes in the
range -60 degrees to 60 degrees.

C Division of GMI distributions according to lati-

tude region and surface type

This section provides complementary figures for the assessment of the GMI validation
database discussed in Sec. 3.2. Brightness temperature distributions for different surface
types and different latitude regions are presented in Sec. C.1 and polarisation difference
distributions for different surface types and different latitude regions are presented in
Sec. C.2. The surface type classifications that were used are listed in Table 2.

Surface type GPROF classifications Simulation clssifications
land Decreasing vegetation 3-7 LAND
ocean Ocean OCEAN
snow Decreasing snow cover 8-11 SNOW,

OCEAN AND SNOW,
LAND AND SNOW

sea-ice Sea-ice SEAICE,
OCEAN ADN SEAICE,
LAND AND SEAICE,

SEAICE MIXED

Table 2: Surface classifications
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C.1 Brightness temperature distributions for different surface
types and latitude regions

Figure 29 shows the Tb distribution for all surface types at tropical latitudes where only
data from latitudes -30 to 30 are included. The Tb distributions for land at tropical
latitudes is seen in Figure 30 and for ocean at tropical latitudes is seen in Figure 31.
Figure 32 and Figure 33 shows the Tb distributions for land and ocean respectively at
mid-latitudes between -60 to -30 and 30 to 60 degrees. Figure 34 shows Tb distributions
for snow covered land surfaces and Figure 35 shows Tb distributions for sea-ice. Both
these figures are for northern latitudes between 50 and 70 degrees.

Figure 29: Brightness temperature (Tb) probability distributions for each of the high-
frequency channels of GMI for all surface types at tropical latitudes, i.e. only data from
latitudes -30 to 30 are included.
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Figure 30: Brightness temperature (Tb) probability distributions for each of the high-
frequency channels of GMI for land at tropical latitudes, i.e. only data from latitudes -30
to 30 are included.

Figure 31: Brightness temperature (Tb) probability distributions for each of the high-
frequency channels of GMI for ocean at tropical latitudes, i.e. only data from latitudes
-30 to 30 are included.

38



Figure 32: Brightness temperature (Tb) probability distributions for each of the high-
frequency channels of GMI for land at mid-latitudes i.e. only data from latitudes -60 to
-30 and 30 to 60 are included.

Figure 33: Brightness temperature (Tb) probability distributions for each of the high-
frequency channels of GMI for ocean at mid-latitudes i.e. only data from latitudes -60 to
-30 and 30 to 60 are included.
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Figure 34: Brightness temperature (Tb) probability distributions for each of the high-
frequency channels of GMI for snow at northern latitudes i.e. only data from latitudes 50
to 60 are included. There are only about 42 000 cases in the simulation dataset.

Figure 35: Brightness temperature (Tb) probability distributions for each of the high-
frequency channels of GMI for sea-ice at northern latitudes i.e. only data from latitudes
50 to 60 are included. There are only about 5000 cases in the simulation dataset.

40



C.2 Polarisation difference distributions for different surface
types and latitude regions.

PD distributions for land and ocean are seen in Figure 36 for tropical latitudes and in
Figure 37 for mid-latitudes. Figure 38 shows PD distributions for snow covered land and
sea-ice at northern latitudes.

Figure 36: Joint probability distributions of polarisation difference (PD) and brightness
temperature for the 166V channel (Tb,166V ) for ocean (left) and land (right) at tropical
latitudes in the range -30 degrees to 30 degrees. Contour lines of the probability dis-
tributions for observations (blue) and simulations (orange) are seen at levels 10−6 K−2,
10−5 K−2, 10−4 K−2 and 10−3 K−2. A random sample of 1% of the simulated data points
with lower probability than 10−6 K−2 are plotted as blue dots. For the simulations all
points with lower probability than 10−6 K−2 are plotted as orange dots.
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Figure 37: Joint probability distributions of polarisation difference (PD) and brightness
temperature for the 166V channel (Tb,166V ) for ocean (left) and land (right) at mid-
latitudes in the range -60 to -30 and 30 to 60 degrees. Contour lines of the probability
distributions for observations (blue) and simulations (orange) are seen at levels 10−6 K−2,
10−5 K−2, 10−4 K−2 and 10−3 K−2. A random sample of 1% of the simulated data points
with lower probability than 10−6 K−2 are plotted as blue dots. For the simulations all
points with lower probability than 10−6 K−2 are plotted as orange dots.

Figure 38: Joint probability distributions of polarisation difference (PD) and brightness
temperature for the 166V channel (Tb,166V ) for snow (left) and sea-ice (right) at northern-
latitudes in the range 50 to 70 degrees. Contour lines of the probability distributions for
observations (blue) and simulations (orange) are seen at levels 10−5 K−2, 10−4 K−2 and
10−3 K−2. A random sample of 1% of the simulated data points with lower probability
than 10−5 K−2 are plotted as blue dots. For the simulations all points with lower prob-
ability than 10−5 K−2 are plotted as orange dots. There are only about 42 000 cases in
the simulation dataset for snow and only about 5000 cases in the simulation dataset for
sea-ice.
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