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Towards practical and provable domain adaptation
Understanding the roles of data and assumptions

Adam Breitholtz

Department of Computer Science and Engineering
Chalmers University of Technology |University of Gothenburg

Abstract

One of the most central questions in statistical modeling is how well a model will
generalize. Absent strong assumptions we find that this question is difficult to
answer in a meaningful way. In this work we seek to increase our understanding
of the domain adaptation setting through two different lenses. First, we
investigate whether tractably computable and tight generalization bounds on
the performance of neural network classifiers exist in the current literature.
The tightest bounds we find use a portion of the input data to tighten the
gap between measured performance and the calculated bound. We present
evaluations of four bounds using this tightening method on classifiers applied
to image classification tasks: Two bounds from the literature in addition to
two of our own construction. Further, we find that for situations lacking
domain overlap, the existing literature lacks the tools to achieve tight, tractably
computable bounds for the neural network models which we use. We conclude
that a new approach might be needed. In the second part we therefore consider
a setting where we change our underlying assumptions to ones which might be
more plausible. This setting, based on learning using privileged information,
is shown to result in consistent learning. We also show empirical gains over
comparable methods when our assumptions are likely to hold, both in terms of
performance and sample efficiency. In summary, the work set out herein has
been a first step towards a better understanding of domain adaptation and
how using data and new assumptions can help us further our knowledge about
this topic.
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Chapter 1

Introduction

The point of fitting most statistical models is actually quite a simple one. We
want the models to be sufficiently good at solving a specific task so we can
deploy them in real-world settings to do this. The underlying goal is to train
these models so that they can perform both during training and in deployment.
We call this concept generalization and it has been extensively studied for all
different kinds of mathematical models which have been produced.

In this work, we will consider a sub-problem of generalization called domain
adaptation (DA). In DA we are considering the case where we are applying
our model on a specific task but the underlying data distribution changes
between training and deployment. The distribution over the input features and
corresponding labels is called a domain, in application this could be represented
by a change in location where the data is collected. For example, we collect
weather data in southern Sweden to predict precipitation but apply the model
in the north, where the underlying data distribution might be different.

DA is often a fairly realistic setting which we can find instantiated in myriad
real-world applications. An example of this is in the healthcare setting when
we are trying to classify pathologies from chest X-ray images. We could train
a model to do this from data collected at Hospital A. We would then want to
apply this model at Hospital B, however, the patient cohort at Hospital B can
be substantially different than the one at A. In this setting it is commonplace
that the labels corresponding to some features might be hard or even impossible
to access, e.g. predicting outcomes which have yet to occur. For example,
we probably do not know if a patient will develop lung cancer one year from
when features are collected. Therefore we will allow ourselves to have access
to features (X-ray images) from hospital B but not the corresponding labels.
This specific setting is called Unsupervised domain adaptation (UDA).

To solve problems in the UDA setting a number of different approaches
and methods have been proposed. Specifically, how to use the available data
from the target is often considered. The approaches here are manifold; learn
a representation which seeks to minimise some distance metric between the
domains (Long et al., 2015), learn an adversarial classifier which tries to tell the
two domains apart (Ganin et al., 2016), re-weight your data to more accurately
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4 CHAPTER 1. INTRODUCTION

fit the target (Shimodaira, 2000), predict and use pseudo-labels on the target
data using a model trained on source data (Saito et al., 2017) etc. However, in
spite of all these advances there still remains a gap in performance compared
to models that has been given access to target labels. This gap is so far not
adequately explained by the theory. In addition, these methods all rely on
assumptions which may or may not be realistic. These two gaps will be our
main concern in this thesis.

In this thesis we will investigate ways in which we might achieve successful
domain adaptation while still having useful guarantees on performance. In
Paper I we make an investigation into current generalization bounds with an
eye towards practicality and tightness. We find that the current field has some
fundamental trade-offs and issues which makes it difficult to find performance
guarantees which are both practical to compute and also tight. We conjecture
that a novel approach or alternative sets of assumptions might be needed
to reach these goals. Therefore, in Paper II we propose and evaluate a new
set of assumptions which may be more plausible in real-world settings. We
construct a novel setting by taking inspiration from the privileged information
framework, introduced in Vapnik & Vashist (2009). Here we assume access
to additional information during training and by adding assumptions on this
additional information and how it relates to the labels, these latter assumption
are made for the input features in most other cases. In addition, we show that
our new setting achieves consistent learning as well as empirical results showing
performance increases and sample efficiency gains compared to other methods.



Chapter 2

Background

2.1 Unsupervised Domain adaptation

In unsupervised domain adaptation (UDA), we want to learn how to predict
outcomes, Y ∈ Y, from input features, X ∈ X , and then evaluate that model
on some unseen set of data. We have features and labels/target values which
have been drawn from an underlying distribution D. This distribution over
the product space X × Y is referred to as a domain. In UDA, we assume that
we have access to (X,Y ) ∼ S and X̃ ∼ TX ; where S and T are called the
source and target domains respectively and TX is the marginal distribution
of features in the target. These quantities will be observed through samples
S = {xi, yi}ni=1 ∼ (S)n and S′

x = {x̃i}mi=1 ∼ (Tx)m, where (D)N denotes the
distribution of a sample of N datapoints drawn i.i.d. from the domain D. The
goal of UDA is to learn a mapping, h, such that we minimize the risk of error
when applying h to data from the target domain. More formally, we write the
minimization of the target risk as follows:

min
h∈H

RT (h), RT (h) := EX,Y∼T [ℓ(h(X), Y )] , (2.1)

where ℓ : Y × Y → R is a loss function. The loss function is specified so that it
measures discrepancy between h(X) and the desired label, Y .

The focus of UDA theory is to find assumptions which enable consistent
learning of the mapping, h, or how to upper bound the target risk, RT . (Ben-
David et al., 2007; Mansour et al., 2009; Blitzer et al., 2008; Johansson et al.,
2019; Wu et al., 2019) As we will see there have been many different approaches
tried in this setting.

The UDA problem has been studied for some time, initially it was considered
in natural language processing (Hwa, 1999; Chelba & Acero, 2006; Blitzer et al.,
2006) as the problem was observed to arise naturally in those settings. An early
theoretical treatment of the setting was done in Daumé III & Marcu (2006)
based on maximum entropy models. However, the first general treatment is
due to Ben-David et al. (2007) where they introduced the idea of a discrepancy
metric between the source and target domains. Defining other such metrics
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6 CHAPTER 2. BACKGROUND

has been a prominent focus in several subsequent works such as e.g. Mansour
et al. (2009); Cortes & Mohri (2014) where the authors propose a new such
metric and then show the bounds on the target risk implied by using it.

In the next section, we will detail the general form of generalization bounds
and how they are produced.

2.2 Guarantees and generalization bounds

In many settings, ensuring good performance of a model is critical to successful
deployment. High-stakes settings have this attribute, e.g. autonomous driving
and making treatment decision in healthcare settings. If the aim is to guarantee
a specific level of model performance we need a bound on the target risk as
specified in the previous section. Simply showing acceptable performance on
held-out datasets is not a guarantee that the performance will not degrade
when applied in other settings. Such a degradation in performance has been
observed in e.g. the healthcare setting (Zech et al., 2018), and natural language
processing (Jia & Liang, 2017).

As the quantity in (2.1) is written as an expectation over the a priori
unknown distribution T we will have to estimate the risk somehow. The most
common and intuitive way to do this is by computing an approximation of this
using the sample average which we write as

R̂T (h) =
1

n

n∑

i=1

ℓ(h(x̃i), ỹi) (2.2)

for some sample {x̃i, ỹi}ni=1 ∼ (T )n. However, as we assume that we do not
have access to target labels we have to estimate the target risk with something
that we actually can calculate. Therefore, to deal with this complication we
use theory to connect the expected target risk to the expected source risk.

Further, we assumed that the distributions of the source and target data were
different from each other. Therefore, we need to account for the discrepancy
between the two distributions. This can be done in several different ways; to
illustrate, we show how this can be done very easily in the following bound:

RT (h) = RT (h) +RS(h)−RS(h) ≤ RS(h) + |RT (h)−RS(h)|.

The last term, |RT (h) − RS(h)|, is measuring the discrepancy between the
source and target domains, this discrepancy we call the domain shift. After this
step, we wish to bound the expected source risk with a sample average like in
(2.2). However, we still need to account for the error between the expected and
empirical risk. This means that a sample generalization term must be added.
A common way to estimate the sample generalization error of a classifier is to
use statistical learning theory which we will detail in the next section.

Thus, if we have the tools to both relate the source risk to the target risk
and connect quantities in expectation to their empirical counterparts, we can
express generalization bounds on the following form:

RT ≤ f(Empirical source risk, Domain shift, Sample generalization error).
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The specific form of f and the terms it depends on is decided by the theoretical
approach taken to the steps detailed above. However, the two main forms are
whether the domain shift and sample generalization terms are related through
addition or multiplication. We will now go into the main theoretical tools used
to solve the two challenges detailed above.

2.2.1 The PAC learning framework

The most prevalent theoretical framework for reasoning about the generalization
performance of stochastic models is statistical learning theory, more specifically,
a theory called Probably Approximately Correct (PAC) learning (Valiant, 1984).
This theory allows us to through assumptions on the model, task and data
show that a certain task is learnable, specifically as understood through the
PAC lens. What this means is that for a certain task it can be shown to be
PAC learnable if we can show that given an algorithm A and a sample of size
n, the algorithm A returns a model from the model class, H, which has a small
average error, ϵ, with high probability, 1− δ. This then amounts to that we
can show that the risk for a specific model on the given data is smaller than
some value ϵ > 0 with confidence level 1− δ, where δ < 1, or more formally,

Pr[E[ℓ(h(x), y)] ≤ ϵ] ≥ 1− δ, ∀h ∈ H. (2.3)

With a formulation on this form we can then use some well known results, often
based on concentration inequalities, such as e.g. Hoeffding’s inequality to move
from an expectation form to an empirical form. This is due to the inequality
providing an upper bound on the probability that the loss deviates from its
expected value by more than a certain amount. Using these kinds of techniques
we can, using application of standard theory (Vapnik, 1998), get bounds like
the following. For an i.i.d sample of size m we have that the following holds
with probability at least 1− δ for every h ∈ H:

RS(h) ≤ R̂S(h) +

√
4

m

(
d log

2em

d
+ log

4

δ

)
. (2.4)

The quantity d in the above expression is the so-called Vapnik-Chervonenkis
(VC) dimension. The VC dimension is a measure of how complex the family of
functions, H, are. An example of a bound on the target risk that is achieved
using this framework is the following one from Ben-David et al. (2007)

RT (h) ≤ R̂S(h)

︸ ︷︷ ︸
Emp. risk

+

√
4(d log 2em

d + log 4
δ )

m︸ ︷︷ ︸
Sample generalization

+ dH(S, T ) + λ

︸ ︷︷ ︸
Domain shift

, (2.5)

where d is the VC dimension of the H, λ is the sum of the errors on both
domains of the best performing classifier h∗ = argminh∈H(RS(h) + RT (h)),
and dH(S, T ) = 2 supA∈{{x:h(x)=1}:h∈H} |PrS [A] − PrT [A]| is the A-distance
for the characteristic sets of hypotheses in H.
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Using this approach we get a bound which holds uniformly over the class of
hypotheses H. This is one of the features of PAC learning, the bounds hold for
all classifiers in the considered class. However, this can also be a weakness as
this produces bounds which must, by definition, hold for the worst classifier
imaginable from the class. Depending on the richness of the class this might
be arbitrarily limiting. In response to this issue, there is an extension to the
PAC framework which does not suffer the same fate which we will detail next.

2.2.2 The PAC-Bayes framework

PAC-Bayes theory is an extension of PAC theory based on using the PAC
framework to understand Bayesian classifiers. This way of analysing classifiers
was initially proposed by Shawe-Taylor & Williamson (1997), with the first
bound being proved by McAllester (1998).

The framework studies generalization of a posterior distribution ρ over
hypotheses in H, learned from data, in the context of a prior distribution over
hypotheses, π. The generalization error in ρ may be bounded using a divergence
between ρ and π as seen in the following classical result due to McAllester (2013).

For a prior π and posterior ρ on H, a bounded loss function ℓ : Y × Y → [0, 1]
and any fixed γ, δ ∈ (0, 1), we have w.p. at least 1 − δ over the draw of m
samples from D, with KL(p∥q) denoting the Kullback-Liebler (KL) divergence
between p and q,

E
h∼ρ

RD(h) ≤
1

γ
E

h∼ρ
R̂D(h) +

KL(ρ∥π) + ln( 1δ )

2γ(1− γ)m
. (2.6)

As we can see in (2.6), we now have an expression which is stated as an
expectation over the posterior distribution ρ. This is in addition to the
expectation over the distribution of the data. Thus the bound holds, on
average, for classifiers drawn from the posterior ρ. We can interpret ρ as a
distribution over the parameters of our trained classifier. The posterior would
then be a distribution around the classifier, effectively covering those classifiers
which are close in parameter space to our trained classifier. A prominent
feature of the framework then, is that we “pay” with another expectation in
order to be able to restrict our prediction to a smaller part of the model space,
the models which are close to the learned classifier. We consider an additional
expectation to be an expense, as it increases computational complexity to a
prospective evaluation of the bound.

However, there are some key things to note with this formulation that are
advantageous if we want to estimate the quantities in the bound. First, the
shape of the prior and posterior distributions are not explicitly stated and
can be chosen freely, the bound will still hold. Further, the distribution ρ is
something which we learn from the training data. We will next detail another
way in which the PAC-Bayes formulation is preferable when the aim is to
achieve tighter bounds.
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S:

X YP (Y |X)

’Atelectasis’

T :

X̃ ỸP (Y |X)

’Pneumonia’

Figure 2.1: A schematic of the general UDA setup. Note that the function from
data to label is the same in both the source and target, thereby instantiating
the covariate shift assumption. The dashed circle around the target labels Ỹ
denotes that they are not an observed quantity.

2.2.3 Data-dependent priors in PAC-Bayes

The KL term in (2.6) grows larger when the prior π and posterior ρ become
more dissimilar. This can be the case when the posterior is sensitive to the
training data or the prior is badly chosen. To counter this we might try to
inform our choice of prior with some of the data we have available. This is
called a data-dependent prior and was developed by the work of Ambroladze
et al. (2007) and Parrado-Hernández et al. (2012), with an extension to neural
networks by Dziugaite et al. (2021).

When we use this type of prior, given that enough data has been used to
inform the prior, we will observe a tightening of the resulting bound. This will
be due to the KL term being smaller since the prior and posterior are now
closer to each other. It is important to note that any data which is used to
learn a prior must be independent of the data used to evaluate the bound. If
this is not ensured the bound will not hold. However, we should also note that
this restriction does not affect which data is used to learn the posterior, ρ.

2.3 Limitations of current UDA theory

In this section, we will talk about the issues in current theoretical work which
limits the ability to guarantee consistent learning under realistic assumptions
on the UDA problem. We have illustrated the general UDA setup in figure 2.1.

Consistent learning means that we will learn to solve our task in the limit
of infinite samples and that we will do so every time. That is, as the sample
size n increases the estimates converge in probability to the value that the
estimator is designed to estimate. To ensure this, a large swathe of works make
assumptions that are quite similar. First, you assume that the underlying
function which generates the labels is the same between the domains. This
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is called the covariate shift assumption (Shimodaira, 2000), meaning that the
data is allowed to change, but not the function labeling the data. We write
this as follows:

Assumption 1 (Covariate shift) For domains S, T on X × Y, we say that
covariate shift holds with respect to X if

∃x : T (x) ̸= S(x) and ∀x : T (Y | x) = S(Y | x) .

This assumption is often made and can hold in many different settings, we
often have little reason to believe that the underlying labeling function will
change just because the domain has done so.

One might be tempted to think that this assumption is enough, however,
this is unfortunately not the case. As shown in Ben-David et al. (2010b) we
also need a assumption of coverage of the target domain to have a guarantee of
consistent learning. Therefore, we also need the overlapping support assumption
to be able to guarantee consistent learning.

Assumption 2 (Domain overlap) A domain S overlaps another domain T
with respect to a variable Z on Z if

∀z ∈ Z : T (Z = z) > 0 =⇒ S(Z = z) > 0 .

This assumption states that if some datapoint is possible to observe in the
target domain we also have a non-zero probability to observe it in the source
domain. As should be quite evident, this is quite a strong assumption. We are
saying that the target has a probability of already being seen before we apply
our model to it. We illustrate this phenomenon in figure 2.2.

To exemplify how assumptions result in limitations on theory we will present
some examples from the literature. We start with the following bound due to
Cortes et al. (2010)

RT ≤ R̂w
S + 25/4

√
d2(T ∥S) 3/8

√
d log 2ne

d + log 4
δ

n
.

This bound is an example of an importance weighting bound which bounds the
target risk using a weighted empirical source risk, R̂w

S . In this term we re-weight

the loss function according to the density ratio w(x) = T (x)
S(x) of each sample.

For this style of bound we run into issues when the overlap assumption does
not hold. Consider the density ratio above; if there is a lack of overlap we may
have a data point which only has non-zero density in the target domain. This
leads to a division by zero in w and the bound immediately becomes vacuous.
The issue is that it is very simple to violate overlap in practice, e.g. learning
from black and white images and applying to color images. This inability to
handle the non-overlapping case is a weakness we would like to avoid.

So we might come to the conclusion that we should avoid the importance
weighting type bounds but still keep the assumptions. This often yields
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something akin to the bound we stated in (2.5). We will state a similar bound
here due to Ben-David et al. (2010a):

RT (h) ≤ RS(h) + 4

√
2(d log 2m+ log 2

δ )

m
+

1

2
d̂H∆H(S, T ) + λ, (2.7)

where

d̂H∆H(S, T ) = 2


1− min

h,h′∈H



1

m

∑

x∼(TX)m:
h(x)̸=h′(x)

1[x]− 1

m

∑

x∼(SX)m:
h(x)̸=h′(x)

1[x]





 .

This bound has some qualities that we might take issue with; these are mainly
related to the way domain shift is measured. First, the d̂H∆H term measures
the discrepancy between how much two distinct hypotheses will disagree on
the source and target. Intuitively this accounts for the difference between the
source and target, but this quantity is not easy to calculate as it requires a
minimization over the hypothesis class, H. This is difficult to evaluate as the
class can be very large, which is the case for neural network classifiers. This
type of of quantity figures in many other works. (Ben-David et al., 2007; Blitzer
et al., 2008; Ben-David et al., 2010a; Morvant et al., 2012; Mansour et al., 2009;
Redko et al., 2019; Cortes & Mohri, 2014; Cortes et al., 2015).

Second, the λ term, which accounts for the joint optimal error of the best
classifier, is not possible to observe with the data available. So if we want a
bound that is tight we have to assume that this quantity is small. This non-
observable quantity or ones like it is quite common in the literature. (Kuroki
et al., 2019; Redko, 2015; Long et al., 2015; Redko et al., 2017; Johansson et al.,
2019; Zhang et al., 2019; Dhouib et al., 2020; Shen et al., 2018; Courty et al.,
2017; Germain et al., 2013; Dhouib & Redko, 2018; Acuna et al., 2021) As
we have seen in this section, the limitations of the current literature are not
insubstantial. We therefore see a need to develop theoretical results which do
not suffer from these limitations.

2.4 Privileged information

Learning using privileged information (LUPI) is a framework that was first
introduced by Vapnik & Vashist (2009). In this setting we use auxiliary
information, which we assume we have access to, when training our model.
This auxiliary data is in addition to the data and labels available in the regular
supervised learning case. In particular, we only have access to this information
at the training stage and not when performing inference.

This additional information is called privileged information (PI) and can be
many different things: residuals, object segmentations, bounding boxes, depth
etc. The main goal in this framework is to accelerate the pace of learning.
The motivation for why this would be achieved is that in real-world learning
we often have students being taught by a teacher. This teacher has better
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Target
Sourcea) b)

c)

Three most common settings which are
considered in machine learning:
a) Regular supervised learning
b) Domain adaptation w/o overlap
c) Domain adaptation w/ overlap

Figure 2.2: Illustration of the different situations regarding common support
of data which we might encounter.

X YW

’Atelectasis’

X

Figure 2.3: An illustration of the PI setting and what data is available. At
training time we have access to input features, X, privileged information, W ,
and labels, Y . At test time we only have the input features, X. Note, that W
in this case would be the bounding box.

knowledge about what material, and how it should be presented to the students
in order for them to learn the concepts faster. This may be specific explanations,
analogies and similar interjections; it is this process that the framework seeks to
imitate. So, using this analogy further there would be data (x, y) generated by
nature and the privileged information would then be generated by the teacher
using the conditional distribution P (w|x) which is assumed to be unknown.

Formally, we assume the existence of some PI, W ∈ W, which is related
to the data through P (w|x). Thus the problem is the following: Given tuples
{(xi, wi, yi)}Ni=1 we seek to learn a function f which predicts the outcomes yi
given the data xi. However, in contrast to regular supervised learning, we only
have access to the PI wi during training. Since we do not assume that we have
access to this data at test time, the resulting f cannot explicitly depend on w
as an input. Note that we do not assume any specific form or other properties
of the PI. An overview of the setting is illustrated in figure 2.3.
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The use of PI was initially investigated for use with support vector machines
(SVMs), and the framework was later extended to empirical risk minimiza-
tion (Pechyony & Vapnik, 2010). Methods using PI, which is sometimes called
hidden information or side information, has since been applied in many diverse
settings such as healthcare (Shaikh et al., 2020), finance (Silva et al., 2010),
clustering (Feyereisl & Aickelin, 2012) and image recognition (Vu et al., 2019;
Hoffman et al., 2016).
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Chapter 3

Summary of Included
Papers

We posited in Chapter 1 that we search for ways in which we might achieve
successful domain adaptation while still having useful guarantees on perform-
ance. Both of these goals are attainable in some form for modern neural
network models, but rarely together. We have shown in section 2.3 that there
are limitations of the current theory that inhibit us from achieving this goal
at present. Our first paper deals with illustrating the issue with achieving
tractably computable and tight generalization bounds for neural network clas-
sifiers. It is quite common that we can find a neural network classifier that
performs fairly well on a UDA task, however, there are no realistic guarantees
on performance. The second paper proposes a novel set of assumptions, based
on privileged information, which we show lead to consistent learning.

3.1 Paper I - Practicality of generalization guar-
antees for unsupervised domain adaptation
with neural networks

In high-stakes scenarios, like the healthcare setting, we would like to have
some guarantees on how well our models are going to perform. The most
straightforward way of achieving this is through upper bounding the error on
the target domain. This can be achieved theoretically in many different ways
with varying degrees of usefulness. We can, for instance, trivially state that
the error is less than or equal to 1, you cannot be more wrong than all of the
time. However, this bound is not so informative so we would like to find better
ways of doing this. In Paper I we search the domain adaptation literature for
existing bounds which have three properties.

1. Tightness – Is the term a poor approximation? Is it likely to lead to a
loose bound?
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2. Estimability – Is the term something which we can estimate from observed
data?

3. Computability – Can we tractably compute it for real-world data sets
and hypothesis classes?

After an extensive literature search we arrive at the conclusion that most
available bounds have issues fulfilling these desiderata. Our final selection
contains three types of bounds: importance weighting (IW) bounds, bounds
containing integral probability metrics (IPM) and PAC-Bayesian bounds. To
enable easier comparison we adapt the IW and IPM methods to the PAC-
Bayesian framework, thereby creating two novel corollaries to a theorem due to
McAllester (2013). These bounds, along with two existing ones due to Germain
et al. (2020), are the ones we choose to compute. One of them requires access
to target labels to compute and is included for comparison.

We find that without further modification our evaluation results in vacuous
bounds due to the sample generalization terms being too large. To remedy this
we apply the practice of learning data-dependent priors which entails sacrificing
a part of the sample to inform the choice of prior. This tightens the bounds
as the sample generalization term, which measures the difference between the
prior and posterior distributions, is smaller using this.

We then compute the four different bounds for two image classification
tasks, one based on digit classification and one based on X-ray classification.
We find that the bound which requires target labels is the tightest, followed
by our IW bound which is computable without such information. The other
bounds struggle to remain tight even for the simpler digit classification task.
We conclude that in cases where our assumptions hold, an importance weighting
strategy works well for bounding the error tightly. Further, we conjecture that
changing current assumptions will be a way towards a more complete theory
explaining out-of-distribution generalization.

Contribution

A. Breitholtz performed the main implementation work, contributed to the
writing of the paper and F.D. Johansson supervised the project and contributed
to the writing of the paper.
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X ∼ S, X ∼ T Y ∼ SW ∼ S, W ∼ T

’Atelectasis’

X ∼ T

Figure 3.1: An illustration of the data available in the domain adaptation by
learning using privileged information (DALUPI) setting. During training, input
samples X and privileged information W are available from both source and
target domains. Labels Y are only available for inputs from the source domain.
At test time, a target sample X is observed.

3.2 Paper II - Unsupervised domain adaptation
by learning using privileged information

Taking inspiration from the concept of privileged information (PI), in this paper
we propose some changes to the standard set of assumptions. We put forward
a version of UDA where we assume access to some privileged information.
This privileged information is assumed to be available in both the source and
target domains during training time, while at inference we only have access
to target features as in regular UDA. We call this setup Domain Adaptation
using Learning Using Privileged Information (DALUPI). The general structure
of our setting is illustrated in 3.1. We set out to construct theory based on this
new structure which ensures consistent learning without the reliance on the
overlapping support assumption in the input space. The overlap assumption is
often violated in practice and as such it is not ideal to build UDA theory using
it.

This new setting enables a very natural way of transferring the model from
the source to the target. We simply learn two separate mappings, one from
input features to privileged information and one from privileged information to
the outcome. This also gives us a simple way to make theory which conforms
to this structure, we just learn one mapping after the other. To avoid the
overlap assumption in the input space we instead assume overlap w.r.t the
PI. Additionally, we assume covariate shift w.r.t the PI similar to what is
used in the regular setting. If we add the additional assumption that PI
is sufficient for predicting the outcome we show that will have consistent
learning. We also propose a bound on the target risk for this setting. We
conduct experiments on three different tasks; a synthetic experiment where
we investigate how well a model, which is the composition of two separate
mappings learned independently, performs when the amount of overlap is varied.
The dataset is constructed by inserting a digit in a larger image and having
the bounding box around the digit as PI. It shows that a model based on
our framework outperforms all other models. We then perform two other
experiments, one entity classification task based on the MS-COCO dataset
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and pathology classification from chest X-rays. For these experiments we also
propose an end-to-end model, based on the Faster R-CNN architecture (Ren
et al., 2015). Throughout, the PI we consider are bounding boxes around the
region(s) which are informative for the labeling.

From the entity classification task we learn that our method outperforms
both the UDA baseline well as performs on par with the model which has
been given access to target labels. From the X-ray classification task we learn
that the use of PI can yield increased sample efficiency, in line with previous
observations. However, the sufficiency of the PI in this task is not obvious, nor
guaranteed. We conclude therefore that the DALUPI setting can be beneficial,
even when our assumptions are unlikely to hold. In addition, we note that a
domain expert will likely be able to judge the sufficiency of PI for tasks like
the X-ray classification task we considered.

Contribution

A. Matsson contributed with the implementation of the RCNN model and
the COCO and chest X-ray experiments. He also made major contributions
to the writing of the paper. A. Breitholtz contributed with the design and
implementation of the Synthetic experiment as well as part of the theoretical
work. He also made major contributions to the writing of the paper. F.D.
Johansson supervised the project and contributed to the theoretical work as
well as to the writing of the paper.



Chapter 4

Discussion

In this thesis we have explored approaches to the unsupervised domain ad-
aptation problem; especially as it relates to the connection between what
assumptions are made and the resulting guarantees. In Paper I we sought to
find tractably computable generalization bounds which are also tight. Through
this search we found that the current theory seems to be insufficient to ex-
plain model performance without assuming domain overlap. In Paper II, we
introduce the notion of using privileged information as a means of achieving
provable domain adaptation. Assuming access to this data at training time
and that it is sufficient for predicting the label allows us to show that we can
achieve consistent learning. In addition, we also find our model performance
improves on other methods in cases where our assumptions are likely to hold.
Further, we observe increased sample efficiency in our experiments, even in
cases where our assumptions are less likely to hold. A limiting factor of Paper
II is that it introduces a sufficiency assumption that is not easy to reason about
in all cases. The concept of something being sufficient for a prediction would
need to be anchored in real-world domain knowledge. However, we argue that
the question of sufficiency is, if not easier to answer, more interpretable than
other common assumptions. In addition, the experimental evaluation focused
on only one form of PI, bounding boxes. The framework proposed is applicable
to any form of information and further investigation of other forms of PI would
be interesting.

The findings from these papers suggest that there is indeed still a gap in
the theory of UDA that needs to be filled. We see introducing new kinds of
assumptions as a key way forward for a more rich theory. There are many ways
in which this could be instantiated and we will now point out some possible
future directions for continuing our work. In most tasks there is a lot of structure
inherent to the problem. This originates from the problem formulation, there
we define what outcomes we are interested in, what type of data is used and so
on. These components often have some sort of overarching way in which their
properties relate to human thinking and the way in which we process data. For
example, there is often a natural form of hierarchy present in images. Objects
like cars, humans and paintings all have component features, the presence of
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which are generally needed for identification by a human observer. A human
has two eyes, two arms, one torso etc. This part-whole type of hierarchy is
inherent to how we understand the composition of objects and often we point
to these when classifying objects. A formalization of this type of structure and
to what extent we need the parts of an object to be able to classify them could
be a way forward.

Another interesting direction for future work is to consider making theory
that is more specific than the current literature. While we ideally want a theory
to be general enough to capture the behaviour we observe for most situations;
one could imagine that our specification is too broad. Perhaps constraining
ourselves to reasoning about specific domains or tasks would enable us to find
the conditions for consistent generalization within this more specified setting.
An example of such a constraint could be to only use images produced by a
single type of sensor. This is generally a part of what makes up the domain as
it partly influences the generation of the input features. Naturally, our overlap
and covariate shift assumptions would likely not hold for arbitrary choices of
sensor. However, considering this part as fixed might help further disentangle
which parts of the input features are invariant under the remaining domain
shift.
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Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotoma-
monjy. Joint Distribution Optimal Transportation for Domain Adaptation.
arXiv:1705.08848 [cs, stat], October 2017. arXiv: 1705.08848.
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