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Abstract

Language models have become a core component in modern Natural Language
Processing (NLP) as they constitute a powerful base that is easily adaptable
to many language processing tasks. Part of the strength lies in their ability
to embed associations representing general world knowledge. However, the
associations formed by these models are brittle, even when scaled to huge sizes
and using massive amounts of data. This, in combination with other problems
such as lack of attributability and high costs, motivate us to investigate other
methods to improve on these aspects.

In this thesis, we investigate methods that augment language models with
additional contextual information, for the purpose of simplifying the language
modeling problem and increasing the formation of desirable associations. We
also investigate whether multi-modal data can assist in forming such associ-
ations, that could otherwise be difficult to obtain from textual data only.

In our experiments, we showcase augmentation to be effective toward these
ends, in both a textual and multi-modal case. We also demonstrate that visual
data can assist in forming knowledge-representing associations in a language
model.
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natural language processing, language models, contextual augmentation, mul-
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Chapter 1

Introduction

Language is core to human communication and development. Having an
effective and efficient means of sharing information between individuals and
across generations, has led humanity to the world-dominating position it now
occupies. Language might also be a critical component in the development of
intelligence, as it imposes an abstract structuring of the world that allows for
complex manipulation and reasoning.

Thus far, humans exclusively possess the capability to use complex natural
languages. However, with the recent developments in Artificial Intelligence
(AI) and Machine Learning (ML), rapid progress has been made toward having
systems capable of both meaningful natural language understanding as well as
generation. The field of Natural Language Processing (NLP) studies methods for
computers to perform various tasks involving natural language, typically in the
form of text. Examples include tasks such as question-answering, commonsense
reasoning, and natural language inference. More recently, tasks involving
generation of language are gaining traction, such as machine translation and
automatic summarization.

At the center of today’s state of the art in NLP are so-called language
models. A language model is a general model of language, flexible enough to
adapt to tasks of different shapes and forms. Whereas traditional methods in
NLP are typically very task-tailored, language models can generalize across
many tasks. As we will see, language models can be very powerful when trained
in a self-supervised way on large quantities of data. In fact, a core driver of
progress within NLP in recent years has been to massively scale up the data
and computing power that goes into training these general language models.

Common to most NLP tasks is the problem of extracting the underlying
meaning from some language input, to be able to produce a desired output. For
example, if faced with the question “What is the capital of Sweden?”, a non-
trivial interpretation has to be performed to retrieve the correct answer from
some memory. Foundational to modern language representations are theories
from distributional semantics and the so-called Distributional Hypothesis
(Sabbettai Harris, 1954; Firth, 1957). The distributional hypothesis states that
the meaning of words is characterized by the contexts they occur and are used

3



4 CHAPTER 1. INTRODUCTION

in. All language models build representations that are fundamentally grounded
in context. Depending on how one chooses to quantify context in language
modeling, we should expect different qualitative behaviors in the resulting
model. In this thesis, we will study different types of contexts in language
modeling, and how context affects the resulting language model behavior.

Of particular interest is the relationship between context and memorization.
Many NLP tasks require information not directly available in the input, such as
the name of Sweden’s capital in the question above. For a system to solve such
tasks, the information needs to be available and memorized somewhere. What
information needs to be memorized is very dependent on the task, and in this
thesis, we will use “knowledge” to refer to any information required to solve a
specific task that is not immediately available as input. We are interested in
two research questions related to knowledge representation and memorization:

RQ 1: How should we represent and store knowledge in NLP sys-
tems?

RQ 2: From what data can we acquire knowledge?

Regarding the first research question, it has been shown that language models
are capable of memorizing information through the training process, in which
the model parameters act as storage (Petroni et al., 2019). However, this
parametric memory type has several shortcomings as we will discuss, including
being brittle as well as costly. As an alternative, a proposal is to externalize
memory from the language model parameters, and to equip the model with
an explicit recall mechanism. This mechanism then augments the input (or
context) to the language model with additional information. Such systems
have the potential to address many of the shortcomings of their parametric
counterparts.

The second research question is related to the data from which to acquire
knowledge and learn to perform language tasks. Specifically, we hypothesize
that there is a benefit in learning from not just a textual modality, but also
from a visual modality, e.g. images, in certain NLP tasks. We treat this as
independent of the first question, but will also study contextual augmentation
together with multi-modal learning.

The thesis is structured as follows. In Chapter 2, the relevant technical
background is introduced on language models and specifically related to memory
and context augmentation. In Chapter 3, we relate the included papers to the
overarching research questions and present their specific perspectives. Finally,
in Chapter 4 we discuss the conclusions and potential avenues for future work.



Chapter 2

Background

2.1 Language models and Transformers

In this section, we will introduce language models on a more technical level,
and the different variants that are relevant to this thesis. We will also introduce
the neural network architecture that is most commonly used to implement
language models, the Transformer.

2.1.1 Language model formalization

A language model is a probabilistic model of language, typically in the form
of text. The text is discretized into a sequence of symbols or tokens from a
fixed-size vocabulary, through a process called tokenization. Let’s consider
a sequence of discrete random variables X1, ..., Xn, where each Xi can take
values from a vocabulary xi ∈ V . In the original formulation, a language model
models the joint probability of this sequence of random variables:

P (X1 = x1, ..., Xn = xn)

We will use a simpler notation, P (x1, ..., xn), with the random variables dropped
to mean the same as the above. The joint distribution can then be factorized
using the chain rule of probability:

P (x1, ..., xn) = P (x1)P (x2|x1) · · ·P (xn|x1, ..., xn−1)

= P (x1)

n∏

i=2

P (xi|x1, ..., xi−1)

We can now parameterize and approximate the factors using a neural network
fθ, with some parameters θ.

P (xi|x1, ..., xi−1) ≈ fθ(x1, ..., xi−1)

5



6 CHAPTER 2. BACKGROUND

In this formulation, we get an auto-regressive language model, that learns
to predict the next token in a sequence. This distribution can be sampled
iteratively to generate text from the model.

A similar formulation is the conditional auto-regressive language model.
Here, we also model the distribution of a sequence of tokens x1, ..., xn, but now
conditioned on a separate sequence of tokens y1, ..., ym.

P (x1,..., xn|y1, ..., ym) =

= P (x1|y1, ..., ym)

n∏

i=2

P (xi|x1, ..., xi−1, y1, ..., ym)

Similarly, the factors are approximated by a neural network, gθ.

P (xi|x1, ..., xi−1, y1, ..., ym) ≈ gθ(x1, ..., xi−1, y1, ..., ym)

In a third formulation, we model the distribution of a subset of (l < n) tokens,
conditioned on the others:

P ({xki
}li=1|x1, ..., xn \ {xki

}li=1) ki ∈ {1, ..., n}
≈ hθ(x1, ..., xn \ {xki}li=1)

We will denote the resulting model, hθ, as an auto-encoded language model.
Auto-encoded language models can be used for predicting masked or missing
words in a text, for example, to probe for knowledge in language models.

Training models to predict next or missing tokens, conditional or not,
are all different so-called pre-training tasks, used to create general models
that are more easily adaptable to different downstream tasks. For example,
pre-trained auto-encoded language models are also commonly used to create
general-purpose vector representations of words or texts, useful for e.g. text or
token classification problems. More on this in Section 2.1.3.

2.1.2 The Transformer architecture

The dominating neural network architecture for language models is the Trans-
former (Vaswani et al., 2017). At its core, a Transformer takes as input a
sequence of vector embeddings and processes these through a series of lay-
ers. Each layer consists of so-called attention and feed-forward blocks. Input
tokens are mapped to trainable vector embeddings before being fed as input
to the Transformer. In each attention block, all embeddings are updated with
information from the others, and the network can learn to attend its focus
to only certain others. This inductive bias has proven particularly powerful
for the processing of text. Intuitively, one can imagine this to be useful for
representing co-references within a text, that the network implicitly learns to
resolve through the attention mechanism. The feed-forward block has been
shown to play a central role in parametric memorization (Geva et al., 2021;
Meng et al., 2022a), and can be seen as a linear associative memory (Kohonen,
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Figure 2.1: An illustration of a Transformer, consisting of an encoder and
decoder. The output embeddings are called “contextualized” as they depend
on source tokens and previous target tokens through attention layers.

1972). The output of the Transformer is contextualized embeddings, as the
embedding of each token now depends on the other embeddings via the at-
tention blocks. In a language model, we map the contextualized embeddings
to a probability distribution over vocabulary items, typically through a linear
projection followed by normalization.

A Transformer can consist of an encoder, decoder, or both. In a Transformer
encoder, the attention is unconstrained in the sense that all embeddings can
attend to all other embeddings. Auto-encoded language models are implemented
as Transformer encoders. In a Transformer decoder, the attention is constrained
such that an embedding can only attend to its preceding embeddings. This
makes them suitable for autoregressive language models, as they should only
depend on preceding tokens. In an encoder-decoder Transformer, illustrated in
Figure 2.1, we feed some input sequence y1, ..., ym to the encoder, and x1, ..., xn

to the decoder. To be used as a conditional auto-regressive language model,
the decoder now incorporates an additional attention block in each layer. In
the so-called cross-attention, decoder embeddings are updated by attending to
the contextualized encoder embeddings. This makes the decoder predictions
also be conditioned on the encoder sequence.

Throughout this thesis, we will use the term “language model” interchange-
ably to refer to any of the three presented types, depending on context.
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2.1.3 Large-scale pre-training

In all language model formulations in Section 2.1, we are estimating the
probability of some tokens given other tokens. We can formulate self-supervised
objectives for each formulation, and train corresponding models using only raw
text data. As has been shown in the last couple of years, pre-trained language
models (PLM) transfer easily to many downstream NLP tasks. For example,
fine-tuning a PLM on labeled data for some task typically performs better than
training the same model from scratch. Furthermore, auto-regressive PLMs,
and in particular large Generative Pre-trained Transformers (GPT) (Radford
et al., 2019; Brown et al., 2020), demonstrate strong few-shot and zero-shot
performance on downstream tasks, without any fine-tuning at all.

Scaling the PLM by increasing the number of trainable parameters and
training it on more data, also typically increases downstream performance
(Kaplan et al., 2020; Hoffmann et al., 2022). This applies to all types of
language models, but in particular for the GPT family of models (Radford
et al., 2019; Brown et al., 2020; Hoffmann et al., 2022; Rae et al., 2021;
Chowdhery et al., 2022). More recently, instruction finetuning has proven
effective to further increase few and zero-shot performance (Wei et al., 2022).

For auto-encoded language models, the Bidirectional Encoder Representa-
tions from Transformers (BERT) model (Devlin et al., 2019) and others (Liu
et al., 2019; Lan et al., 2020) have become ubiquitous as general language rep-
resentation models for a breadth of applications such as document classification,
textual similarity search, and named entity recognition.

For conditional autoregressive language models, BART (Lewis et al., 2020)
and T5 (Raffel et al., 2020) are examples of pre-trained variants applied for
conditional generative tasks, such as summarization and dialogue response
generation.

All in all, PLMs provide a foundation for progress in NLP today, much due
to their strong transfer-learning properties.

2.2 Knowledge representation and memoriza-
tion in language models

Natural languages are used to communicate ideas, experiences, and knowledge
about the world we live in. Thus, language is necessarily tightly coupled with
the information it carries. For any NLP task, knowledge about the world is
always required to some extent, explicitly or implicitly.

More technically, a language model is trained to associate some input
(tokens) to some output (a masked or next token). Performing this associative
task with high performance requires different types of knowledge. Consider
the sentence: The typical color of a banana is yellow. If we mask the word
“of”, and ask an auto-encoded language model to predict it, the model has to
have some syntactic knowledge to succeed. On the other hand, if we mask the
word “yellow”, it requires more semantic (or factual) knowledge. Knowledge in
general is thus very tightly coupled with the language modeling task.
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Language modeling, as seen from the perspective of learning associations,
is very dependent of the context provided as input. Consider the following
question, taken from the Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016):

Which name is also used to describe the Amazon rainforest in English?

To be able to answer this question, the model has to have a priori formed an
association to the correct answer. However, if we treat this as a reading com-
prehension task (which SQuAD actually is), an extract of a related Wikipedia
page is also provided:

The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia;
Spanish: Selva Amazónica, Amazońıa or usually Amazonia; French: Forêt
amazonienne; Dutch: Amazoneregenwoud), also known in English as
Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers
most of the Amazon basin of South America.

In this setting, the task is reduced to being able to interpret the question, locate
the correct answer in the provided context, and output it. The additional
context reduces the need for associations being formed a priori in the model.
However, while the direct association to “Amazonia” is no longer required to be
pre-existing in the model, the task still requires other pre-existing associations.
For example, to only output English names, the model has to implicitly infer
that other languages distinct from English exist, and that only English names
are valid answers to the question. The point is however that we can reduce the
amount of pre-existing associations required, by providing more informative
context to the model. By engineering a mechanism to “augment” the context
of a language model with relevant information or features, we can effectively
achieve an externalization of certain types of associations. This is also sometimes
referred to as externalizing the memory from a language model (Khandelwal
et al., 2020; Yogatama et al., 2021; Borgeaud et al., 2022).

So what should a language model actually model? Assuming we want a
general NLP system in possession of general knowledge about the world that
is helpful to solve a breadth of tasks, how should we design the system to
incorporate such knowledge? Should we design this system as a language model
monolith, with high parametric capacity to form all kinds of associations, or
should we try to restrict associations formed parametrically?

Seen from a machine-learning perspective, this externalization has significant
implications for the learning problem of the language model. By introducing
additional relevant features, the model will likely learn to use information
provided as context to a greater degree. An interesting question is then
whether externalizing memory can reduce the need for parametric capacity,
such that we can shrink the model size with kept associative performance.

In the following sections, we will try to dissect the pros and cons of having
a fully parametric versus externalized memory in language models. As guiding
principles, we will relate the two alternatives to a set of desirable properties
that we believe are important for many NLP applications.
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1. Generalization Natural languages are highly flexible in that e.g. state-
ments can be paraphrased or expressed in many different ways, depending
on context. Ideally, language models should generalize to output text
of different semantically equivalent forms, and not just verbatim repeat
from the memory.

2. Grounded language model output and attributability A funda-
mental problem with current language models is their tendency to output
text that is false or otherwise unintended, a problem also known as hallu-
cination. In particular for generative tasks, we typically want statements
in the output to consistently adhere to some source. This is related to
attributability, i.e. the ability to trace back a statement or claim to its
source, for reference and contextualization.

3. Memory management and updatability An important property
of factual knowledge is that it is changing over time. For many NLP
applications, it is therefore important to be able to control for this, and
update the system whenever needed. However knowledge is stored, it
should ideally support adding, deleting, and modifying operations.

4. Resource efficiency and costs Current large language models can cost
millions of dollars to train, and several cents for using it to generate a
single piece of text. The high costs inevitably lock out many use cases
and applications. To maximize the applicability of language models, it is
beneficial to optimize their resource efficiency.

2.2.1 Parametric memorization in language models

As described in section 2.1.3, language models can be pre-trained using some
type of self-supervised learning. This typically entails learning to “complete” a
text in some way. In autoregressive models, a proceeding token is predicted,
while in auto-encoded models, a masked token at any position can be predicted.
For certain texts, predicting the next or a masked token will require a knowledge
recall. As an example, we can rephrase the question from before as a statement:
“In English, the Amazon rainforest can also be called [MASK]”. For the model
to predict the correct word, the knowledge needs to be memorized somehow.
In conventional language models, the only place where such knowledge can
be “stored” is in the trainable parameters of the model. Therefore, using such
self-supervised objectives incentivizes language models to memorize knowledge
in their parameters, as part of the pre-training. We refer to a language model
as parametric when only its trainable parameters act as implicit memory, and
no contextual augmentation is taking place.

The ability of pre-trained language models to recall factual and commonsense
knowledge can for example be studied using the LAMA benchmark (Petroni
et al., 2019). In Petroni et al. (2019), it is demonstrated that BERT is able
to recall relational knowledge zero-shot, i.e. without any fine-tuning, at a
level competitive with non-neural and supervised alternatives. In another
study, a conditional auto-regressive language model (T5) is fine-tuned to
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answer questions in a “closed-book” setting, i.e. without conditioning on text
containing the answer (Roberts et al., 2020). Also here, it is shown that
parametric memorization is a viable approach to knowledge memorization
and recall. However, the performance on factual recall benchmarks is known
to fluctuate depending on the exact prompting of the model (Jiang et al.,
2020), indicating there is room for improvement in the robustness of knowledge
representations.

The memory capacity also seems to scale with model size. GPT-3, which is
an auto-regressive language model with an order of magnitude more parameters,
significantly outperforms the results from Roberts et al. (2020), despite being
zero-shot (Brown et al., 2020).

Using only a textual prompt, the model can be tasked to perform just
about any NLP task zero-shot, often at competitive performance to a smaller
but fine-tuned baseline. The model can also adhere to the textual format and
style of the prompt, suggesting its language understanding goes beyond pure
lexical memorization of its training data and that more abstract concepts are
implicitly represented and memorized in the parameters.

For many applications, source attribution of generated output is a necessity
to contextualize claims and assess their reliability. However, as we currently
lack good tools for explaining the predictions of parametric language models,
it is hard to know on what grounds the model’s statements are made.

The non-transparency of a parametric memory also makes it difficult to
support modifying operations such as adding, deleting, or replacing. Despite
this, methods for knowledge-editing parametric language models have been
proposed (Mitchell et al., 2022; De Cao et al., 2021; Meng et al., 2022a), and
for example MEMIT (Meng et al., 2022b) display promising results including
few side effects on the rest of the language model’s knowledge.

As the parametric memory is built throughout the training of the language
model, it requires passing all knowledge-containing data through one or several
forward and backward passes. The computational cost for a forward/backward
pass grows with the size of the model, and the model size grows with the size of
the knowledge, as the parametric capacity needs to be adjusted for the amount
of knowledge to be memorized. This becomes very resource intensive with scale.
Methods such as scaling model size without additional compute by sparsely
activating parts of the network have for example been proposed (Fedus et al.,
2022) to reduce compute, but all knowledge-containing data still need to pass
through training.

To summarize, implicit parametric memorization yields language models
with some capacity for generalizing e.g. factual recall to novel prompts not seen
during training, but currently has weaknesses relating to attribution, updatab-
ility, and resource efficiency. In this thesis, we are interested in whether the
same weaknesses can be remedied by means of contextual augmentation, such
that knowledge is to a large extent externalized into a memory representation
better fit for purpose.
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2.2.2 Contextually augmented language models

In contrast to parametric memorization, a contextually augmented language
model has an additional mechanism to dynamically manipulate the input
(or context) to the language model. For example, this augmentation could
be to look up documents related to a question in which the answer might
be found, and append to the input somehow. From the perspective of the
language model, this would reformulate the problem above from a closed-book
setting to a reading comprehension setting. Intuitively, reformulating tasks
that involve knowledge recall into reading comprehension should reduce the
need for parametric memorization capacity in the language model, as relevant
context is explicitly provided as input.

This effectively results in an externalization of memory. However, many
questions arise relating to how this can be realized in practice. Firstly, as
knowledge is tightly connected with language, it is not clear exactly what
should be externalized and what should be parametrically learned. Secondly,
how should the augmentation mechanism be designed to provide the language
model with what it does not know? Thirdly, how should we effectively train a
language model with context augmentation? These are all questions that we
will address in the papers accompanying this thesis.

Context augmentation has several intriguing theoretical properties compared
to parametric language models. For example, if the language model grounds
its output in the information it receives as input, the input can be used
for interpretation and attribution. Secondly, the external memory can in
principle be designed to trivially support adding, deletion, and substitution,
by for example using a database or search engine. Thirdly, as is for example
demonstrated in RETRO (Borgeaud et al., 2022), the number of trainable
parameters can be reduced with kept language modeling performance, by means
of retrieval.

Augmentation can happen at different levels of granularity and integrate
with the language model in different ways. At the highest level, the context
can be augmented at the prompt level. In question answering for example, the
input is the question which is then augmented to also include some retrieved
documents (Guu et al., 2020). Augmentation can also happen at the token
level (Khandelwal et al., 2020; Yogatama et al., 2021). For example in kNN-LM
(Khandelwal et al., 2020), which is an autoregressive language model, the
contextualized embedding from the Transformer is used to retrieve tokens with
a similar context, and use statistics of their next-tokens to adjust the output
distribution. In this case, the integration is at the top of the network, rather
than at the bottom (input). Finally, in e.g. RETRO (Borgeaud et al., 2022)
retrieved context is augmented at a chunk -level, such that it is shared between
m consecutive tokens.

Context augmentation is not restricted to just retrieval. As we will see, we
can instead use a separately trained model that augments a language model
with “visual knowledge” represented as embeddings. While this separately
trained model is fully parametric, we distinguish this setting from a purely
parametric language model as they are separately trained. Parametric models
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are otherwise commonly distinguished from semi-parametric models. In a semi-
parametric language model, the language model is contextually augmented,
but the augmentation is constrained to be non-parametric. Non-parametric
refers to memory types that are not represented by trainable parameters, i.e. a
relational database or similar. As we are not only interested in non-parametric
memory types, we decline from using the term semi-parametric in this thesis,
and instead focus on the contextual augmentation regardless of memory type.

2.3 Acquiring knowledge from multiple modal-
ities

A second theme in this thesis focuses on the data from which to acquire certain
types of knowledge. Humans learn about the world by perceiving and interacting
with it. Knowledge can for example be formed through communication using
language, either by reading or listening. But knowledge can also be formed by
directly perceiving the world, without any linguistic signal. For example, if you
are asked what is the color of your parent’s house, you can likely respond even
if this was never stated verbally in the family. Humans have the capability to
(verbally or textually) express knowledge that was acquired non-linguistically.

Today’s most popular language models are all trained solely on text, and
thus base all their knowledge on what is described linguistically in this data
modality. Using only text for language learning and as the single ground for
knowledge acquisition has been criticized (Bisk et al., 2020; Bender and Koller,
2020). It is for example claimed “today’s best systems still make mistakes
that arise from a failure to relate language to the physical world it describes
and the social interactions it facilitates”. A proposal is thus to broaden the
types of data and to include other modalities such as images or video, with the
hypothesis to for example reduce hallucination.

Additionally, using solely text may suffer from the problem of reporting bias.
Reporting bias is the bias humans implicitly adhere to when deciding what to
write or report on (Gordon and Van Durme, 2013). For example, humans tend
to only write or report on information that they believe a reader can learn
from. All written documents assume some level of pre-existing knowledge, and
may only focus on parts that are novel, sensational, or surprising in some way.
This has implications for what types of knowledge are to be found in written
form. There is potential in reducing reporting bias by extending sources to
include non-linguistic modalities as well.

In this thesis, we will investigate how knowledge can be acquired from
a visual modality in addition to text, and to what extent this knowledge
is complementary to what can be acquired from just text. We will treat
this as orthogonal to the way of incorporating the knowledge in a language
model, i.e. RQ 1. In the following section, we provide some background on
vision-and-language modeling.
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Multi-modal Language Models

Training models using multiple modalities can be beneficial in several regards.
Models capable of processing multiple modalities are of course applicable
to tasks requiring multiple modalities, but training models using multiple
modalities can also be beneficial towards unimodal tasks. For example, language
can assist in creating high-quality visual representations, such as in CLIP
(Radford et al., 2021). This was for example demonstrated with state-of-the-art
performance in zero-shot image classification tasks. It is however less clear
whether also the opposite holds. Given the success of self-supervised pre-
training of language models using large text corpora, can a visual modality
assist in further improving language representations?

We are interested in multi-modal language modeling to investigate whether
a visual modality can complement the textual to create better language repres-
entations. And specifically for knowledge representation, how does parametric
memorization compare to context augmentation in the multi-modal case?

In multi-modal language modeling, we have text paired with data of an
additional modality, such as an image. Depending on the task, there are
different modeling setups. In image captioning, we have a conditional auto-
regressive language model, where the conditioning is now with respect to an
image instead of discrete tokens. The model is then trained to predict text that
describes the given image. If we flip the modalities, we instead get text-to-image
generation (Ramesh et al., 2021; Wang et al., 2018). In tasks such as visual
question answering, the model takes both a textual question and an image,
and produces an answer based on the image (Antol et al., 2015; Hudson and
Manning, 2019)

The modalities can also be integrated in different ways. In VisualBERT
(Li et al., 2019) for example, a representation of the image is appended to
the input of the Transformer model. CLIP (Radford et al., 2021) instead
consists of a separate textual and visual encoder, such that the text and image
representations are independent.

As self-supervised pre-training is a successful approach to creating general-
purpose language models, the same can be applied to multi-modal ones. Visual-
BERT is for example pre-trained using a masked multimodal language modeling
objective, in which the model learns to utilize also the visual context to pre-
dict masked tokens. In CLIP however, a contrastive loss is used to align
representations of the text and image into a joint vector space.



Chapter 3

Summary of Included
Papers

3.1 Paper I

In this work, we train a large auto-regressive language model in the Swedish
language, using data from the online forum Flashback. We use this paper to
exemplify a typical parametric language model.

Flashback data is used for the purpose of obtaining a conversational system,
that can respond to questions and take part in discussion. The resulting model
is called Flashback-GPT.

We perform a human evaluation to assess the general quality of the gener-
ated output. The evaluation tries to asses the general conversational abilities
of the model, in which the model often has to demonstrate factual as well
as linguistic knowledge obtained from its pre-training. For this purpose, we
specifically seek to two investigate two dimensions, that we call humanlikeness
and informativeness. These are similar to sensibleness and specificity, as evalu-
ated by Adiwardana et al. (2020). In humanlikeness, we want to understand to
what extent a generated response is indistinguishable from a human response.
Anything in a response that signals a human is unlikely to have written it, be
it a commonsense error, lack of coherence etc. would flag a response as not
humanlike.

Responses can be humanlike but less interesting. Often we would like a
conversational system to produce more exhaustive responses than for example
“Yes”, “No” or “I don’t know”. We therefore also evaluate informativeness,
where we ask whether a generated response adds information to the discussion.
This is more directly targeting the model’s ability to recall and output relevant
knowledge.

As for our results, responses were deemed humanlike in 68% of the cases,
and should be compared to human-written responses of 95%. 48% of generated
responses were deemed informative compared to 83% of human responses.
While the human evaluation is small scale, the results suggest a non-trivial

15



16 CHAPTER 3. SUMMARY OF INCLUDED PAPERS

ability to converse informatively in Swedish across a wide range of topics.
In the context of our research questions, informative responses by the

model suggest a capability to memorize, recall and express for example factual
knowledge from the pre-training. However, as only 48% of the responses were
deemed humanlike and informative, there is a large room for improvement. As
has been shown in for example LaMDA (Cohen et al., 2022), fine-tuning the
model to assess itself on sensibleness and specificity can be an effective method
to improve performance further. While it was not investigated in this paper,
they also show that adding a contextual augmentation mechanism improves
groundedness, a measure of attributability that is also interesting from the
perspective of our research questions.

Contributions TN came up with the idea of training a conversational
language model on Flashback. He also performed the data collection, model
training, designed the human evaluation and wrote the main parts of the paper.

AS contributed with ethical perspectives on the potential use and misuse
of large language models, and wrote that corresponding section of the paper.
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3.2 Paper II

In Paper I, we developed a parametric auto-regressive language model and
evaluated some qualitative properties of its generated output. In this work, we
target both RQ 1 and RQ 2, and propose a novel knowledge-centric language
benchmark, that allows us to systematically investigate cross-modal transfer.

Most studies on the ability of language models to recall factual knowledge
focus on learning from a textual modality only. But what if this information is
more accessible in a different data modality than text? In this work, we ask
whether we can improve factual associations of a language model – using images
instead of text. Specifically, we investigate the extent to which a multi-modal
language model can textually express knowledge originating from visual data.
We denote this as the language model is “transferring” knowledge from a visual
to textual modality.

Toward this end, we create a text-only cloze-style knowledge probing task
that we denote Memory Colors. In Memory Colors, the task is to predict
the prototypical color of objects such as bananas, snow or coal, without any
image in context. The language model is asked to predict the masked word
in constructed sentences like “The typical color of a banana is [MASK]”. We
only include objects for which there is a strong human consensus on their
prototypical color. We chose to probe for memory colors as it is a type of
knowledge that a visual modality is likely to embed, which means it constitutes
a good testbed for our purpose.

We train a multi-modal auto-encoded language model that we denote CLIP-
BERT. CLIP-BERT is fundamentally a BERT model but trained on a large
parallel corpus of images and captions. The images are encoded using the
image encoder of CLIP (Radford et al., 2021) and are concatenated with the
token embeddings to form the input to the BERT model.

We evaluate CLIP-BERT in two variants. In the first variant, we evaluate to
which extent the model has learned to associate each object with its prototypical
color implicitly through the multi-modal pre-training. We can think of this
variant as the model parametrically memorizes this information through pre-
training, similar to how other factual associations are formed through textual
pre-training.

In the second variant, we encode the masked sentence through the CLIP
text encoder, and concatenate it with the input to the model, in the same way
as representations of paired images are concatenated during training. This
can be seen as a contextual augmentation, as we explicitly add additional
information to the BERT model based on the input. Since CLIP is trained to
align the representational spaces of the text and image encoder, this can be
thought of as a representation of an “imagined” matching image. To be able
to attribute correct predictions to images rather than text, careful filtering
of the multi-modal training data is performed to remove examples where the
memory color knowledge is expressed in text. For the model to achieve high
performance, it needs to have implicitly memorized the prototypical colors
from the training images. We find that for this type of visual knowledge, the
contextual augmentation worked much better than the parametric variant, with
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performance close to perfect on Memory Colors.
To summarize, in this work we investigate both RQ 1 and RQ 2:

1. RQ 1: We augment the language model with representations from a sep-
arately trained model (CLIP text encoder). Since CLIP’s representational
space clearly discriminates memory colors, the encoder effectively acts
as a memory from which this information can be retrieved. This work
shows that the text encoder of CLIP can work as an external memory
module to a language model, and that using it can improve performance
on Memory Colors substantially.

2. RQ 2: The standard BERT model performed very badly on Memory
Colors, suggesting this type of knowledge is not well represented in the
textual corpuses BERT is trained on. While this type of knowledge of
course can be learned from an appropriate textual corpus as well, this
work showcases that multi-modal data can positively complement the
knowledge of a textually trained language model.

Contributions TN mainly contributed to the design of the study, and
implemented the CLIP-BERT model and code for evaluating it. He also made
major contributions to the writing of the paper.

LH mainly contributed to the design of the study and developed the Memory
Colors dataset. She also made major contributions to the writing of the paper.

RJ provided supervision on the work and writing for the paper.
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3.3 Paper III

In Paper II, we investigated methods for transferring knowledge from vision to
language. In this work, we are also interested in cross-modal transfer, but now
in a classification setting. We focus on the task of protest detection, which
is a type of socio-political event detection. Protests can be detected in both
text and images. In text, we are typically interested in reports or mentions of
specific protests, and in images, protests are typically depicted by large crowds
on streets with placards.

We treat protest detection as a binary classification problem, using either a
textual sentence or an image, and formulate two research questions:

1. To what extent can the performance of a unimodal protest detection
model transfer from one modality to another?

2. Can unimodal detection of protests be improved by using a multi-modal
protest detection model?

To investigate this, we pool two existing protest detection datasets, for textual
and visual detection respectively. We also use representations from the visual-
and-language alignment model CLIP, and train a linear classification layer on
top of the respective encoders. If we train the classifier on protest text data,
we can obtain a visual protest detection model by swapping the CLIP text
encoder for the image encoder. This is because CLIP’s representational space
is trained to be aligned for text and images. This also works the other way
around, e.g. train on protest images, and swap the image encoder for the text
encoder. We can use this method to evaluate the ability to transfer unimodal
protest detection performance from one modality to another.

To investigate whether unimodal protest detection can be improved by using
multi-modal data, we train the same model on both datasets simultaneously.
In this setting, a data point is processed through its respective CLIP encoder
and classified using the same joint layer.

Our results show protest detection performance can be transferred across
modalities with high performance, in particular from text to image. On
the contrary, the multi-modal training does not yield better results than
the unimodal baseline, suggesting little complementary effects between the
modalities.

Contributions This work was an extension of KA and RR’s Master’s Thesis
project, which TN, RL, and RJ co-supervised. KA and RR implemented the
code and ran the experiments, and made major contributions to the paper.
The main ideas underlying this work were formed by TN, in conversation with
AL. TN also made major contributions to the paper, specifically the abstract,
introduction, and ethical statement. RJ also contributed to the paper by
reviewing and providing feedback.
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3.4 Paper IV

In paper II, we investigated contextual augmentation of an auto-encoded lan-
guage model and showed its viability on a knowledge probing task. Recently, it
has been shown that augmenting auto-regressive language models with retrieval
can be effective to improve language modeling performance (Khandelwal et al.,
2020; Yogatama et al., 2021; Borgeaud et al., 2022; Pan et al., 2023).

In all previous works, retrieval has been shown to reduce the perplexity (or
similar metrics) of language models. This is an interesting finding and spurs
questions to what degree language modeling is just a matter of memorizing
training data (Tänzer et al., 2022). If a big portion of the parametric capacity
of language models is used for verbatim memorization of training data, there
is a potential for retrieval-augmented models to be downsized with kept per-
plexity. Retrieval augmentation is also intriguing from a memory management
perspective as the retrieval database can trivially support addition, deletion
and modifying operations. Furthermore, there is also potential to reduce hal-
lucination if the output is more grounded and attributable to the retrieved
context.

With these potential benefits relating to reduced footprint, grounding
and updatability, an important question is what effect retrieval has on their
generalization. The “soft” nature of parametric memorization makes language
models very powerful in this regard. In contrast, with a retrieval augmentation,
recall of information is “harder” in that only a fixed set of documents are
retrieved to condition the generation.

In this work we take a focused look at generalization in one of the most
recent retrieval augmented autoregressive language models, RETRO (Borgeaud
et al., 2022). RETRO, with 7.5B parameters and a 2T token database for
retrieval, achieves perplexity matching a 175B parameter GPT-3 model on the
Pile. Specifically, we seek to better understand how this can be, and what
tokens benefit from retrieval.

RETRO is a conditional auto-regressive language model, in which retrieval
takes place at regular token intervals during generation. Using chunked cross-
attention, the decoder can attend and incorporate information from retrieved
context in the encoder. This way, if retrieval is removed, the model is reduced
to a standard decoder-only autoregressive language model.

By comparing the token-wise perplexity with and without retrieval, we can
better understand in what contexts retrieval is most helpful. We find that
perplexity is reduced predominantely for tokens that overlap verbatim with
retrieved context. The model effectively learns to exploit this by learning to
copy in such cases. While verbatim overlap was found to be a core contributor
to reduced perplexity in Borgeaud et al. (2022), their results were suggestive
of some non-trivial generalization as well. In our analysis however, perplexity
reduction can almost exclusively be attributed to overlap, which would suggest
less of such non-trivial or semantic generalization. This is in line with the
result of a similar analysis of the kNN-LM model (Drozdov et al., 2022).

This insight is important to guide further research within retrieval augmen-
ted language modeling, and highlights the need for careful leakage analysis to
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assess generalization capabilities.

Contributions TN implementated the RETRO model, and was a major
contributor to ideating on and executing the experiments. He also wrote the
first draft of the paper.

ED contributed by preparing the data used for training and retrieval, as
well as to ideation and discussions throughout the project.

RJ and MK provided supervision and guidance throughout the project, and
made significant contributions to the general formalization and storytelling of
the final paper.



22 CHAPTER 3. SUMMARY OF INCLUDED PAPERS



Chapter 4

Discussion and Future
Work

We will now summarize and discuss our research questions with regards to the
learnings from the accompanying papers.

RQ 1: How should we represent and store knowledge in NLP systems?

In the accompanying works, we are only scratching the surface on the topic of
knowledge representation and memory in language modeling. Large parametric
language models (like Flashback-GPT in Paper I), have shown a high degree of
generalization, and can produce novel texts of high quality both lexically as well
as semantically. They do suffer from problems such as lack of attributability
in the output, updatability and low resource efficiency. If we contextually
augment the model through e.g. retrieval, we have the potential to improve on
all three. However, as we argue in Paper IV, this might also have consequences
for the generalization.

One can imagine having both a large parametric as well as an external
memory. Can we get the strong generalization from a large parametric language
model, together with the attributability and updatability benefits of non-
parametric external memory? One way to realize this idea would be to start
from a large pre-trained parametric language model, and post-hoc augment it
using e.g. retrieval, similar to LaMDA (Cohen et al., 2022), WebGPT (Nakano
et al., 2021) and GopherCite (Menick et al., 2022). In this case, however,
we would still inherit the high costs of training and running the parametric
memory.

Independently of the generalization, we show context augmentation can
be more effective for memorizing and recalling visual information, compared
to parametric memorization. We use memory colors to demonstrate a case
where a textually trained language model’s knowledge is poor, and where the
information can be found in visual data.

As future work, it would be interesting to further explore how large language
models trade off parametric knowledge and augmented knowledge. As an
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example, if a model parametrically associates the text “The current president
of the US is”, with “Donald Trump”, how does the model handle a conflicting
contextual prompt stating the current president is Joe Biden? Can we develop
methods to explicitly trade contextual vs parametric knowledge? This would
be very useful for improved grounding and attributable output of language
models.

RQ 2: From what data can we acquire knowledge?

The knowledge language models possess originates from data. Text is a very
information-dense modality, which is also available in vast amounts. It is
however likely that certain types of information are better represented in other
modalities. In this thesis, we have investigated this for a visual modality in
addition to text. We observe memory colors to be a knowledge gap in BERT,
and show that we can enrich the language model with this knowledge, using
visual data. We also investigate whether visual data can complement textual
(and vice versa) during training of a protest detection classifier, but find this
to not be the case in our experiment. We do however observe some degree
of substitutability between the modalities, indicating there at least is some
information overlap.

It has been argued true natural language understanding cannot be passively
acquired from only text (Bisk et al., 2020; Bender and Koller, 2020). Language
and words are grounded in their use and contexts. Inspired by this, multi-modal
language modeling has been encouraged, where the contextual distribution is
widened and words can be tied to e.g. visual perception. In practice, however,
large quantities of high-quality multi-modal data is more difficult to collect
than unimodal, which is a limiting factor in this direction. Recently, significant
progress has been observed in several different vision-and-language problem
formulations including image-to-text (Alayrac et al., 2022), text-to-image (Wang
et al., 2018; Ramesh et al., 2022) and text-image-alignment (Radford et al.,
2021; Jia et al., 2021). Our formulation is different from these, in that we
primarily focus on whether multi-modal training is helpful in a text-only setting.
We show this to be the case in the specific case of memory colors together with
a contextual augmentation, but deem this to be relevant more broadly as well,
for example in question-answering tasks such as WebQA (Chang et al., 2022)
and MultimodalQA (Talmor et al., 2021).

As our experiments are all small-scale, it is interesting to consider the effect
of increasing the scale to more data and modalities. One such example is GATO
(Reed et al., 2022), in which a single model is trained on a multitude of tasks
involving different modalities, including text and images but also interactive
tasks such as playing games. It would be interesting to better understand the
extent to which transfer is occurring across these modalities, and in particular
transfer into the textual modality.
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