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Abstract
We present a tri-objective mixed-integer linear programming model of the tacti-
cal resource allocation problem with inventories, called the generalized tactical 
resource allocation problem (GTRAP). We propose a specialized criterion space 
decomposition strategy, in which the projected two-dimensional criterion space is 
partitioned and the corresponding sub-problems are solved in parallel by application 
of the quadrant shrinking method (QSM) (Boland in Eur J Oper Res 260(3):873–
885, 2017) for identifying non-dominated points. To obtain an efficient implemen-
tation of the parallel variant of the QSM we suggest some modifications to reduce 
redundancies. Our approach is tailored for the GTRAP and is shown to have supe-
rior computational performance as compared to using the QSM without paralleliza-
tion when applied to industrial instances.
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1 Introduction

We present the generalized tactical resource allocation problem (GTRAP), which 
is a generalization of a previously introduced tactical resource allocation prob-
lem (TRAP); (Fotedar et al. 2022). The TRAP is a bi-objective multi-item capaci-
tated production planning problem with a medium–to–long-term planning horizon 
defined for a large tier-1 aerospace engine system manufacturer. The bi-objective 
mixed-integer linear programming (MILP) model defined for the TRAP identifies 
routes that a product/part may take through the factory over a long planning hori-
zon. There is a tendency (in our case company GKN Aerospace)1 to utilize a few 
capable machines (w.r.t. tolerances, speed, and functionality) to a higher extent than 
other machines. This results in a resource loading imbalance in the production sys-
tem which may further result in production delays. To relieve loading imbalance we 
consider qualifying alternative machines for a given type of task/job of the TRAP. 
Consequently, in the TRAP tasks/jobs are allocated to machines with the bi-objec-
tive goal to minimize both qualification costs and resource loading imbalance, while 
demand in each time period and various other side constraints are satisfied. The 
GTRAP, on the other hand, allows building some inventories between time periods 
and defines a third objective function, thus resulting in a tri-objective MILP. This 
work facilitates an understanding of the trade-off between the three objectives as 
well as the effect on the two previously defined objectives for the TRAP.

When facing real-world decision problems, decision-makers want to be mind-
ful of the trade-off between different objectives/goals of the stakeholders, which are 
often in conflict. Therefore, various such problems are modeled as multi-objective 
optimization problems (MOOPs), which yield a set of so-called efficient solutions 
(corresponding objective vectors are called non-dominated points (NDPs)). This set 
contains solutions such that none of the objective functions’ values can be improved 
(reduced in a minimization problem) without degrading (increasing for a minimi-
zation problem) one or several objective functions’ value(s). A common method 
to solve MOOPs is the criterion/objective space search method.2 Different crite-
rion space search methods have varying effects on the computational performance 
depending on the problem properties and the instances. In this work, we present 
an approach to enhance the computational performance of the Quadrant shrinking 
method (QSM) (Boland et al. 2017) by means of parallelization.

1.1  Contribution

Our contribution is two-fold. Firstly, we modify the previously defined TRAP (Fot-
edar et al. 2022) to include inventories of both semi-finished and finished products/

1 GKN Aerospace is a leading manufacturer of engine parts, e.g. fans at the front of jet engines or gas 
turbines, rotors, and stators for compressing the air and other turbine inlet and exit structures.
2 For several problem classes decision space search methods have also shown positive results. How-
ever, our focus is on criterion space search methods as they exploit the power of MILP solvers (such as 
Gurobi or CPLEX). Hence, any future computational enhancement of the solver will be replicated for 
the end-user of our approach as well.
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parts. We refer to this model as the GTRAP. We provide a mathematical formulation 
of the problem at hand. Secondly, we present a few propositions for our problem 
which are utilized in the development of a tailored approach to partition the criterion 
space. The resulting sub-problems are solved in parallel using the criterion space 
Quadrant shrinking method (QSM) by Boland et al. (2017). The choice of the QSM 
is due to its utilization of the so-called concept of projection onto the two-dimen-
sional criterion space, which can easily be parallelized due to the properties of the 
GTRAP. This, along with some modifications to reduce redundancies while comput-
ing NDPs, results in an improved computational performance as compared to simply 
using the QSM without parallelization. Computational experiments are performed 
for numerical instances provided by GKN Aerospace.

1.2  Outline

In Sect. 2, we discuss literature concerning both tactical production planning models 
and multi-objective optimization methods. A mathematical model for the GTRAP 
is defined in Sect. 3. In Sect. 4, we present an approach to decompose the projected 
two-dimensional criterion space (see Def. 2) and define sub-problems solved in par-
allel. We also present modifications necessary for the effective implementation of 
the parallel variant of the QSM, the P-QSM. In Sect.  5, we test our approach on 
fifteen industrial instances and compare the computational performance of the QSM 
to that of our proposed parallel variant, the P-QSM. We perform sensitivity analyses 
to assess the performance of P-QSM and QSM by varying the loading threshold (an 
input parameter in our model). We assess the quality of resulting representations of 
the Pareto front using cardinality and coverage gap values.

2  Literature, scope, and the quadrant shrinking method (QSM)

We next present key aspects of tactical planning models, define the scope of the 
GTRAP, and provide some classical results for multi-objective (integer) linear opti-
mization methods (criterion space search methods in particular).

2.1  Tactical planning literature and model scope

Tactical production planning determines material flows, inventory levels, and 
resource utilization; it is usually done 1–4 years in advance (in the Aerospace indus-
try) and acts as an input to operational models, such as machine scheduling. There 
are five main characteristics of tactical planning problems (Díaz-Madroñero et  al. 
2014): (a) number of products/items and structure of bill–of–materials/levels (e.g. 
series, assembly, general, arborescence) (Pochet and Wolsey 2006, Chapter 13); (b) 
uncertainty in demand/processing times/costs; (c) time discretization; (d) capac-
ity constraints; (e) types of objective functions. In any modern production system, 
multiple products are produced, each requiring at least one part/component. Several 
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articles model uncertainty using stochastic programming (Lan et al. 2011; Nourel-
fath 2011), less commonly using fuzzy sets (Chen and Huang 2010; Lan et al. 2011), 
and sometimes by robust approaches  (Wei et al. 2011; Genin et al. 2008). Mainly 
two types of time discretizations are considered: short time buckets, with enough 
time to manufacture only one part/item; long time buckets, in which multiple parts 
or an entire product is produced. Most companies employ a so-called rolling horizon 
and prepare a production schedule only when a customer order has been created in 
their planning system which is generally a few hours/days/weeks (varying between 
companies) before the delivery time/date is fixed. Hence, simultaneous scheduling 
and tactical allocation are not that useful in an industrial setting. Generally, tactical 
planning models have long time buckets which vary between months and quarters of 
a year, depending on the lead times of products. The capacity constraints in tactical 
models are on machines (hours available), man-hours, fixtures, tools, and inventory 
levels. The most common type of objective function minimizes cost/time (process-
ing time, set-up time, and fixture cost (Bradley and Glynn 2002; Mieghem 2003)).

The GTRAP is a multi-item, multi-level (series assembly) tactical production 
planning model. The series product structure is due to each product requiring a 
sequence of (machining) operations such as milling, turning, and grinding. The raw 
material undergoes a series of operations to result in a product. The capacity limi-
tation is on the number of raw materials available, machine capacity (time limita-
tions), availability of technical staff to verify whether an operation can be performed 
in a machine, and an upper limit on the total inventory. The demand is considered 
deterministic due to long-term contracts and the availability of an accurate forecast 
(over a long time bucket). We consider three objective functions: (a) minimizing the 
maximum resource (machine) loading above a given threshold, (b) minimizing the 
qualification cost required to verify that a task can be performed in a machine, and 
(c) minimizing the total inventory (mathematical details in Sect. 3).

2.2  Multi‑objective optimization literature

The two key computational challenges in the effective implementation of a crite-
rion space search method (for discrete MOOPs)3 are the number/type of scalarized 
problems solved to identify all the NDPs, and efficiently update the search region 
(required to identify the region containing yet-unknown NDPs). For the latter 
Dächert et al. (2017) and Klamroth et al. (2015) provide efficient approaches based 
on updating local upper bounds, but neither of them discusses what type of sca-
larization to use. This work focuses on the former since for the GTRAP most of the 
computational effort is spent on solving the scalarized problems. Laumanns et  al. 
(2006) provide a theoretical bound of (|Fndp| + 1)k−1 scalarized problems required 
to find all NDPs of a discrete MOOP, k and |Fndp| being the number of objectives 
and NDPs, respectively. Dächert and Klamroth (2014) are (to the best of our knowl-
edge) the first to provide linear bounds 2|Fndp| − 1 on the number of scalarized prob-
lems required to identify all the NDPs of a tri-objective integer linear programming 

3 a class of MOOPs (can be mixed-integer problems) with a finite number of NDPs.



1 3

A criterion space decomposition approach to generalized… Page 5 of 28    17 

(TOILP) problem using the split criterion space search method. Another method 
specially designed for TOILP problems is the so-called L-shaped method (LSM); the 
number of scalarizations solved by LSM is, however, bounded between 2|Fndp| + 1 
and |Fndp|2 + |Fndp| + 1 (Boland et  al. 2015, Theorem. 14). Theoretically, the split 
method of Dächert and Klamroth (2014) is superior to LSM. There is, however, a 
trade-off between solving fewer scalarized problems (Dächert and Klamroth 2014) 
with increasing difficulty (as more disjunctive constraints are added) and solving 
more scalarized problems of manageable sizes (Boland et al. 2015). One of the ben-
efits of LSM is that it produces high-quality approximate efficient frontiers faster 
than the split method in (Dächert and Klamroth 2014). The computational ben-
efits of LSM are demonstrated by numerical tests on numerous publicly available 
instances; see (Boland et al. 2015).

The main idea behind the split method by Dächert and Klamroth (2014) is the 
following: at an iteration t ≥ 2 , the algorithm searches for a NDP, � t ∉ {�1,… , � t−1} . 
This is done by adding t − 1 binary variables that impose O(t − 1) disjunctive con-
straints, to remove the dominated points from the search space. Consequently, with 
an increasing number of iterations, the scalarized problems grow larger and become 
much harder to solve to (near-)optimality. To avoid adding too many disjunctive 
constraints and binary variables, various methods suggest a decomposition of the 
criterion space using projections onto a two-dimensional criterion space. One such 
method is the recursive method (Özlen et  al. 2013) which searches the projected 
two-dimensional criterion space by restricting the value of the third objective func-
tion. The projected two-dimensional criterion space can be explored using the well-
known �-constraint method. The LSM (Boland et al. 2015, Sect. 4.2) uses both rec-
tangular as well as L-shapes in the projected two-dimensional criterion space. To 
reduce the number of single-objective scalarized problems required to identify all 
the NDPs, the authors developed the so-called quadrant shrinking method (QSM) 
(Boland et al. 2017, Algorithm 1) which requires at most 3|Fndp| + 1 single-objec-
tive ILPs to be solved as opposed to |Fndp|2 + |Fndp| + 1 in the LSM. Boland et al. 
(2017) showed that the QSM has a better computational performance than both the 
LSM and the split method, as well as the enhanced recursive algorithm by Özlen 
et al. (2013) on various publicly available instances.

Parallel methods for discrete MOOPs. Each scalarization of a discrete MOOP 
is generally NP-hard; hence, industry-size instances may require long comput-
ing times, which may discourage end-users from utilizing a decision support tool 
relying on the solution of multiple scalarized problems to near-optimality. On the 
other hand, the rapid growth of technology concerning processors (multi-core), 
networks, and architecture have led to parallelization becoming a subject of inter-
est within the optimization community. Already, there has been an extensive par-
allelization of the branch–and–bound method, which is utilized in all commer-
cial MILP solvers such as Gurobi and CPLEX; (Bixby et  al. 1999). There are 
some frameworks presented for the parallelization of metaheuristics used to solve 
MOOPs (summary in (Talbi et  al. 2008, Ch.  13.2)). Such general frameworks 
do, however, rarely exist for exact criterion space search methods, one reason 
being that most exact criterion space search methods are sequential and require 
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a solution to the previous scalarized problem to adjust the current one appropri-
ately. A few articles parallelize parts of a given criterion space search method. 
For instance, Dhaenens et  al. (2006) solve a bi-objective flow-shop problem by 
parallelizing the weighted sum method using so-called dichotomic search, which 
initiates two new parallel searches once a solution is found. Hence, several pro-
cessors are idle in the first phase of the approach. Lemesre et al. (2007) present 
a parallel approach to solving the bi-objective flow-shop problem in which the 
two-phase method in (Ulungu and Teghem 1994) is parallelized. To the best of 
our knowledge, discrete MOOPs with more than two objectives have not been 
considered for parallelization in the literature.

2.3  Preliminaries, and the QSM

To enable parallel computing, we must first identify an appropriate criterion space 
search method. We choose the QSM (Boland et al. 2017) due to two reasons: (a) as 
indicated in the previous subsection it has a superior computational performance 
(for several benchmarking instances); (b) most importantly, it works on the pro-
jected two-dimensional criterion space, thus facilitating an efficient decomposition 
of the criterion space (discussed in Sect. 4). The QSM is briefly presented, starting 
with some important notations and definitions.

Let k ≥ 2 (we use the notations only for comparing vectors, for scalars regular 
notations are used). For any two vectors u,w ∈ ℝ

k it holds that 

Definition 1 (Efficient solutions) Given a TOILP problem

where the feasible set X ⊂ ℤ
n
+
 is defined by a set of affine constraints in 

the decision space, and the objective functions f1, f2, f3 ∶ ℤ
n
+
↦ ℝ+ are lin-

ear and non-negative on the feasible set. The image F of X, defined as 
F∶=f(X)∶={ f ∈ ℝ

3
+
| f = f(x) for some x ∈ X } , represents the feasible set in the cri-

terion space.
A solution x∗ ∈ X is called weakly efficient in (2) if there exists no feasible solu-

tion x ∈ X such that f(x) < f(x∗).
A solution x∗ ∈ X to (2) is called efficient if there exists no feasible solution 

x ∈ X such that f(x) ≤ f(x∗) . The corresponding point in the criterion space f(x∗) is 
called a non-dominated point (NDP). A set of efficient solutions is denoted as Xeff.

(1a)u ≦ w ⟺ wi ∈ [ui,∞) ∀i ∈ {1,… , k};

(1b)u ≤ w ⟺ wi ∈ [ui,∞) ∀i ∈ {1,… , k} and u ≠ w;

(1c)u < w ⟺ wi ∈ (ui,∞) ∀i ∈ {1,… , k}.

(2)min
x∈X

{
f1(x), f2(x), f3(x)

}
,
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Any two points u1, u2 ∈ ℝ
2
+
 such that u1 ≤ u2 define a rectangle (or a line segment 

if either u1
1
= u2

1
 or u12 = u2

2  ) R(u1, u2)∶={u ∈ ℝ
2
+
| u1

1
≤ u1 ≤ u2

1
, u1

2
≤ u2 ≤ u2

2
} . 

The next definition is used in the QSM and several other methods employing the 
projection of NDPs onto lower-dimensional subspaces.

Definition 2 (Projection onto two-dimensional criterion space) We denote the pro-
jection of a point f∶=(f1, f2, f3)⊤ ∈ ℝ

3
+
 onto the two-dimensional criterion space of 

the two first dimensions as f̂∶=(f1, f2)⊤ ∈ ℝ
2
+  . Subsequently, a projected two-dimen-

sional criterion space is defined as the space that contains the points obtained by 
projecting each objective point corresponding to a feasible solution onto the two-
dimensional criterion space.

The QSM works in a projected two-dimensional criterion space (w.l.o.g.  we 
consider projection onto the first two objective functions). Given an upper bound 
(on the first two objectives) u ∈ ℝ

2
+
 , the main operation is to find yet-unknown 

NDPs in R(0, u) (also referred to as a quadrant with upper bound u ). Consider a 
NDP f∗ = f(x∗) possessing the property that its projection f̂

∗
∈ ℝ

2
+
 satisfies f̂

∗
≦ u 

for a given u in the two-dimensional projected criterion space and that can be 
found by solving two integer programming problems (see Def. 3). The results are 
formally described in a general setting as follows.

Definition 3 (Two-stage scalarization; (Kirlik and Sayın 2014)) For u ∈ ℝ
2
+
 , 

f ∶ ℤ
n
+
→ ℝ

3
+
 (linear and non-negative functions), X ⊂ ℤ

n
+
 and k ∈ {1, 2, 3} the set 

Xk(u) of optimal solutions to the two-stage scalarization of (2) is defined as 

 where 

Theorem 4 (Kirlik and Sayın 2014, Theorem 1) Let k ∈ {1, 2, 3} . For any u ∈ ℝ
2
+
 

any optimal solution xk(u) ∈ Xk(u) to the two-stage scalarization Eqs. (3)–(4) is effi-
cient for the TOILP problem (2).

(3a)Xk(u)∶= argmin x∈X

3∑
j=1

fj(x),

(3b)s.t. fj(x) ≤ uj, j ∈ {1, 2, 3} ⧵ {k},

(3c)fk(x) = f̄k(u),

(4a)f̄k(u)∶= min
x∈X

fk(x),

(4b)s.t. fj(x) ≤ uj, j ∈ {1, 2, 3} ⧵ {k}.
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Theorem  5 (Kirlik and Sayın 2014,  Theorem  2) For any efficient solution x̄ of a 
TOILP (2), there exists an u ∈ ℝ

2
+
 such that for some k ∈ {1, 2, 3} , x̄ ∈ Xk(u) holds, 

i.e. x̄ is optimal in the two-stage scalarization (3)–(4).

To give a brief overview of the QSM we provide an example (for more details, 
see (Boland et al. 2017, Algorithm 1, pp. 875–877)). Let Fndp be the set of NDPs 
identified and U be the set of upper bounds of quadrants that may contain pro-
jections onto the (g1, g2)-criterion space of unidentified NDPs. The set U is ini-
tialized with the pre-defined upper bounds �1 ∈ ℝ

2
+
 on the first two objectives, 

as depicted in Fig. 1a. We apply the two-stage scalarization (see Def. 3) for the 
vector �1 . The resulting solution �1 ∈ X3(�1) corresponds to the NDP �1 ∈ ℝ

3
+
 , 

which is such it has the least value for the third objective. Consequently, the set 
Fndp = {�1} . The projection �̂1 = (f 1

1
, f 1
2
)⊤ is illustrated in Fig. 1b. From (Boland 

et  al. 2017, Prop.  6) follows that the search region { �̂ ∈ ℝ
2 | �̂ ≥ �̂1 } contains 

projections of points that are dominated by the point �1 ∈ ℝ
3
+
 . Hence, the dark 

grey-shaded region does not contain projections of NDPs. Subsequently, the set 
U of upper bounds is updated with the inclusion of �2 and �3 , and the removal of 
�1 . To avoid recomputing �1 , the upper bounds are defined as �2 = (u1

1
, f̂ 1
2
− 𝛿2)

⊤ , 
where 𝛿2 > 0 is an appropriate discretization of f2 ( �2 can equal 1 if f2 is inte-
ger-valued). Analogously, the usage of a discretization parameter 𝛿1 > 0 results 

Fig. 1  In each sub-figure the set Fndp (circles) contains projections of some of the NDPs onto the two-
dimensional criterion space, while the set U (triangles) contains upper bounds on the quadrants used to 
search for NDPs (the upper bound of the explored quadrant is underlined). Shaded areas indicate regions 
without any projection of NDPs (dark) and with no feasible projection (light)
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in �3 = (f̂ 1
1
− 𝛿1, u

1
2
)⊤ . In the next iteration, the quadrant R(0, �2) is searched for 

NDPs; the NDP �2 is found (its projection �̂2 is illustrated in Fig.  1c). The set 
Fndp is updated by the inclusion of �2 , and U by the removal of �2 and the inclu-
sion of �4 and �5 . In the next iteration, R(0, �4) is searched for NDPs, resulting in 
an infeasible model  (4); hence, no objective vector is projected onto this region 
(light grey-shaded in Fig. 1d). A reasoning about the order of removal and inclu-
sion of elements from/into the set U is given in (Boland et al. 2017, Lemma 11).

3  Description of the GTRAP

Definition 6 (Generalized Tactical Resource Allocation Problem (GTRAP)) Given a 
set L of part/product types, for each part/product � ∈ L an ordered sequence 
J
�
∶={1,… , J

�
} of manufacturing operations are performed, starting from raw 

material and ending with a finished part, when all operations in J
�
 are performed. In 

each time period t ∈ T  , orders of task (j,�) ∈ M , must be assigned to one or sev-
eral machines from the set K . Let p�

jk
 be the processing time (including set-up time) 

of task (j,�) when performed in a compatible machine k ∈ K�

j
⊆ K . Each machine 

k ∈ K has the capacity Ckt (time units) in time period t ∈ T  and a (relative) loading 
threshold � ∈ [0, 1] . The demand a�

t
 of part � ∈ L in time period t ∈ T  must be met. 

The number of machines allocated to the same task in each time period may not 
exceed the value of the parameter � ∈ ℤ+ . Any task–to–machine assignment (j,�, k) 
such that k ∈ N�

j
⊆ K�

j
 requires a so-called qualification (or verification), which 

generates the additional one-time cost ��
jk

 , j ∈ J
�
 , � ∈ L . For (pre-qualified) 

machines k ∈ K�

j
⧵N�

j
 the assignment (j,�, k) does not require a qualification. Since 

inventories of semi-finished or finished parts4 can be stored between time periods, 
the production in each time period may exceed or fall short of the demand. The total 
number of qualifications performed per time period t may not exceed the value of 
the parameter � ∈ ℤ+ . Upper limits r̄�

jt
 , j ∈J̃

�
∶=J

�
∪ {0} , t ∈ T  , � ∈ L (0 referring 

to the raw material) are set on the inventories. The total amount of raw material for 
� ∈ L ordered in each time period t may not exceed d a�

t
 , where d > 0 is a user-

defined limiting factor and a�
t
 is the demand of part type � in time period t.   ◻

The three objectives considered are the following: (i) minimize the sum (over time 
periods) of the maximum excess resource loading above the given threshold � ; (ii) 
minimize the total qualification cost; (iii) minimize the total inventory. Since the 
objectives are measured in different units they cannot be combined in a single objec-
tive function, neither they obey any clear priority order but are considered equally 
important. The notations are summarized in Table 1.

4 A part � is finished when its raw material has gone through all operations in J
�
 ; it is semi-finished 

when its raw material has gone through at least one but not all operations in J
�
.
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Table 1  Notations for the GTRAP

Sets Description

L = {1,… ,L} Set of part/product types
J
�
= {1,… , J

�
} Ordered set of indices of operations to produce part � ∈ L ; J

�
 is the index of the final 

operation
M ∶={(j,�) ∶ j ∈ J

�
, � ∈ L} set of pairs (j,�) of task indices

J̃
�
= {0,… , J

�
} Extended ordered set of operations to produce a part type � ∈ L (the fictitious opera-

tion 0 represents raw material)
K Set of machines

K�

j
⊆ K Set of machines feasible for task (j,�) ∈ M

N�

j
⊆ K�

j
Set of machines feasible but not qualified for task (j,�) ∈ M

T = {1,… ,T} Set of time periods (index 0 represents the beginning of time period 1)

Variables Description

x�
jkt

∈ ℤ+ Number of orders of task (j,�) ∈ M performed in machine k ∈ K�

j
 in time period 

t ∈ T

s�
jkt

∈ {0, 1} Equals 1 if an order of task (j,�) is allocated to machine k ∈ K�

j
 in time period t ∈ T  ; 

equals 0 otherwise
z�
jkt

∈ {0, 1} Equals 1 if machine k ∈ N�

j
 is qualified for task (j,�) ∈ M , in time period t ∈ T  ; 

equals 0 otherwise
nt ∈ ℝ+ Maximum resource loading above thresholds � , in time period t ∈ T

r�
jt
∈ ℤ+

Stock/inventory of raw material or (semi-)finished parts resulting from task 
(j,�) ∈ M , at the end of time period t ∈ T ∪ {0}

m�

t
∈ ℤ+

Total amount of raw materials ordered for part � in time period t

Parameters Description

a�
t
∈ ℤ+

Demand/orders of part � ∈ L in time period t ∈ T

p�
jk
∈ ℚ+ Average processing time in machine k ∈ K�

j
 for completing task (j,�) ∈ M

Ckt ∈ ℤ+ Capacity (hours) available in machine k ∈ K in each time period t ∈ T

��
jk
∈ ℤ+ Cost associated with qualifying machine k ∈ N�

j
 for task (j,�) ∈ M

� ∈ ℤ+ Upper limit for the number of qualifications in any given time period
� ∈ ℤ+ Upper limit for the number of machines to which a given task can be assigned in each 

time period
� ∈ [0, 1] Loading threshold for machines
M�

jkt ∶=min

�∑
q∈{t,…,T}a

�

q
;

�
Ckt∕p

�

jk

��
 upper limit for machine k ∈ K�

j
 on the production 

of task (j,�) ∈ M , in time period t ∈ T

r̄�
jt
∈ ℤ+

Upper limit for the inventory of raw material/semi-finished/finished part resulting 
from performing task (j,�) ∈ M in time period t ∈ T

r̄�
j0
∈ ℤ+ Initial inventory ( t = 0 ) of raw material/semi-finished/finished part for j ∈J̃

�
 , � ∈ L

d ∈ ℤ+ Limiting factor for the order of the raw material in any time period
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3.1  Network formulation

Fig. 2 illustrates the underlying network structure of the GTRAP for a single part 
� ∈ L . The three horizontal levels (from top to bottom) correspond to J̃

�
= {0, 1, 2} , 

while the three vertical levels (from left to right) represent T = {1, 2, 3} . Each node 
corresponds to a 2-tuple (j, t), where j ∈J̃

�
 and t ∈ T  . The network should fulfill a 

balanced flow according to the following. Each node labelled (j, t) receives a flow of 
semi-finished ( 0 < j < J

�
 ) or finished ( j = J

�
 ) parts, or raw materials ( j = 0 ) either 

from the inventory (the variable r�
j,t−1

 ; horizontal incoming arcs) or after operation j 
is performed in a compatible machine in the set K�

j
 in time period t (vertical incom-

ing arcs) or raw materials (the variable m�

t
 ). The flow out of node (j,  t) either (if 

j < J
�
 ) undergoes operation j + 1 in one of the compatible machines in K�

j+1
 (verti-

cal outgoing arcs), or (if j = J
�
 ) it is used to meet the demand a�

t
 or results in the 

inventory r�
jt
 (horizontal outgoing arcs). The amount of raw material ordered in each 

time period is represented by m�

t
.

We next present a mathematical model defining the set of feasible solutions to the 
GTRAP. The constraints (5a) model the flow balance of the raw materials for each 
part. The constraints (5b) model the flow balance for all semi-finished parts (when 
the raw material has gone through operations j ∈ J

�
⧵ {J

�
} ), for which there is no 

external demand. The constraints (5c) model the flow balance for (J
�
,�, t) , i.e. for 

the final operation to obtain a part � ∈ L . The constraints (5d) set the initial inven-
tory of semi-finished/finished parts to their respective input values. The constraints 
(5e) set the variables s�

jkt
 to one if x�

jkt
> 0 ; see Table 1 for the coefficients M�

jkt
 . The 

constraints (5f) restrict the number of machines for a given type of task in each time 
period to a user-defined value � . The constraints (5g) set the upper limit on the total 
number of hours available in a given machine in each time period, and establish the 

Fig. 2  Network illustration for a given � ∈ L , where J
�
= 2 (the upper index � being omitted in the fig-

ure notations). The node labels denote for j ∈J̃
�
 and t ∈ T
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variables nt , t ∈ T  , used in the first objective function. The constraints (5h) set the 
value of the variable z�

jkt
 to 1 if a task (j,�) is to be qualified for a machine k ∈ N�

j
 in 

time period t. These constraints imply that if s�
jkq

= 1 , where k ∈ N�

j
 , q ∈ T  , then a 

qualification of machine k for task (j,�) must be done once during the time periods 
{1,… , q} . The constraints (5i) define an upper limit on the total number of qualifica-
tions performed during each time period, due to a limited availability of technical 
staff. The constraints (5j) set upper limits for the inventories. Similarly, (5k) sets an 
upper limit on the maximum amount of raw materials ordered in each time period, 
which is due to the reluctance of the manufacturer to increase the tied-up working 
capital. The constraints (5l)–(5q) state that the variables s and z are binary, r , x , and 
m are non-negative integers, and n ≥ 0 are continuous. 

(5a)m�

t
+ r�

0,t−1
= r�

0t
+

∑
k∈K�

1

x�
1kt
, � ∈ L, t ∈ T,

(5b)
∑
k∈K�

j

x�
jkt
+ r�

j,t−1
= r�

jt
+
∑

k∈K�

j+1

x�
j+1,k,t

, j ∈ J
�
⧵ J

�
, � ∈ L, t ∈ T,

(5c)
∑
k∈K�

J�

x�
J�kt

+ r�
J� ,t−1

= r�
J� t

+ a�
t
, � ∈ L, t ∈ T,

(5d)r�
j0
= r̄�

j0
, j ∈ �J

�
, � ∈ L,

(5e)x�
jkt

≤ M�

jkt
s�
jkt
, k ∈ K�

j
, j ∈ J

�
, � ∈ L, t ∈ T,

(5f)
∑
k∈K�

j

s�
jkt

≤ �, j ∈ J
�
, � ∈ L, t ∈ T,

(5g)
1

Ckt

∑
�∈L

∑
j∈J

�

p�
jk
x�
jkt

≤ nt + � ≤ 1, k ∈ K, t ∈ T,

(5h)
∑

t∈T∶t≤q

z�
jkt

≥ s�
jkq
, k ∈ N�

j
, j ∈ J

�
,� ∈ L, q ∈ T,

(5i)
∑
�∈L

∑
j∈J

∑
k∈N�

j

z�
jkt

≤ � , t ∈ T,

(5j)r�
jt
≤ r̄�

jt
, j ∈ �J

�
, � ∈ L, t ∈ T,
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 We consider three objective functions possessing equal priority, namely  
the excess resource loading, defined as g1∶=

∑
t∈T nt , the sum of all  

qualification costs g2∶=
∑

t∈T

∑
�∈L

∑
j∈J

�

∑
k∈N�

j
��
jk
z�
jkt

 , and the total inventory,5  
expressed as g3∶=

∑
t∈T

∑
�∈L

∑
j∈̃J

�

r�
jt
 . The feasible set for the GTRAP is 

B∶={(y, r) | (y, r) satisfy (5)} , where � ∶= (�, �, �, �,�) and r are vectors of varia-
bles. The objective functions are defined as g1 ∶ projy(B) ↦ ℝ+ , 
g2 ∶ projy(B) ↦ ℤ+ , and g3 ∶ projr(B) ↦ ℤ+ . All the variables except n take inte-
ger/binary values; hence, n will take only discrete values. Consequently, the GTRAP 
is a (discrete) tri-objective optimization problem such that it has a finite number of 
NDPs. The projection of each NDP onto the (g1, g2)-criterion space must be in 
R(0, ĝub) , where ĝub ∈ ℝ

2
+
 is a vector of upper bounds on g1 and g2 over the feasible 

set B. The set of efficient solutions to the GTRAP is denoted as Beff and the corre-
sponding NDPs are denoted as g(Beff ).

4  Decomposing the projected two‑dimensional criterion space

The QSM as well as several other discrete tri-objective criterion space search meth-
ods include solving a sequence of single-objective (i.e. scalarized) optimization 
problems. One way to reduce the solution time is to solve these single-objective sub-
problems simultaneously on separate computers in a cluster. However, all criterion 
space search methods (including the QSM) generate NDPs sequentially and they are 
non-trivial to parallelize. We exploit the structure of the GTRAP to enable a parallel 
computing approach. The following definitions and propositions are used when pre-
senting our proposed approach.

(5k)m𝓁

t
≤ d ⋅ a𝓁

t
, 𝓁 ∈ L, t ∈ T,

(5l)x�
jkt

∈ ℤ+, k ∈ K�

j
, j ∈ J

�
, � ∈ L, t ∈ T,

(5m)s�
jkt

∈ �, k ∈ K�

j
, j ∈ J

�
,� ∈ L, t ∈ T,

(5n)z�
jkt

∈ �, k ∈ N�

j
, j ∈ J

�
,� ∈ L, t ∈ T,

(5o)m�

t
∈ ℤ+, � ∈ L, t ∈ T,

(5p)nt ≥ 0, t ∈ T,

(5q)r�
jt
∈ ℤ+, j ∈J̃

�
, � ∈ L, t ∈ T ∪ {0}.

5 Since the initial inventory is assumed to be available at no additional cost at the start of the planning 
period, the summations are made over T  , thus excluding time step 0.
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Definition 7 (Orthogonal projection) The orthogonal projection of a set S ⊂ ℝ
n+m 

onto the linear space ℝn × {0}m is projy(S)∶={y ∈ ℝ
n ∶ ∃ z ∈ ℝ

m s.t. (y, z) ∈ S}.

Definition 8 (�-constrained subset of S w.r.t. g and � ) Let k > 0 , S ⊂ ℝ
n+m , the func-

tion g ∶ S ↦ ℝ
k
+
 , and � ∈ ℝ

k
+
 . An �-constrained subset of S w.r.t. g and � is defined 

as Sg(�)∶={(y, z) ∈ S | g(y,z) ≤ �} ⊆ S , where y ∈ ℝ
n and z ∈ ℝ

m.

We observe that if Bg3
eff
(0) = { (y,r) ∈ Beff | g3(r) ≤ 0 } ≠ � holds (cf. Def. 8 with 

S∶=Beff , k∶=1 , g∶=g3 , and �∶=0 ). Then, since g3 equals the sum of inventories, the 
constraints r = 0 (no inventory) must hold. Consequently, it results in a bi-objective 
optimization model (with the objectives g1 and g2 ). A point (g∗

1
, g∗

2
) ∈ ℝ

2
+
 is a NDP 

in the resulting bi-objective optimization problem exactly when (g∗
1
, g∗

2
, 0) is a NDP 

corresponding to the tri-objective GTRAP. Next, we formally prove this in a more 
general setting.

Proposition 9 Consider a discrete tri-objective optimization problem with 
a feasible set S ⊂ ℝ

n1
+ × ℤ

n2
+ × ℤ

m
+
 , being a mixed-integer polyhedral set 

of the variables y ∈ ℝ
n1
+ × ℤ

n2
+  and z ∈ ℤ

m
+
 , where n1 + n2 = n ≥ 2 and 

m ≥ 2 . The objective functions are g1 ∶ projy(S) ↦ ℝ+ , g2 ∶ projy(S) ↦ ℝ+ , 
and g3 ∶ projz(S) ↦ ℝ+ , where gi(y) = c⊤

i
y , i = 1, 2 , g3(z) = c⊤

3
z , and 

ci ≥ 0 , i = 1, 2, 3 . Let D and D̂ denote the non-empty and finite sets of 
NDPs of the MOOPs miny,z{(g1(y), g2(y), g3(z)) ∶ (y, z) ∈ Sg3(0)} and 
miny{(g1(y), g2(y)) ∶ y ∈ projy(S

g3(0))} , respectively. Then, it holds that 
D = {(u, 0) | u ∈ D̂ }.

Proof Since D ≠ ∅ , it holds that Sg3(0) ≠ � . Let (y, z) ∈ Sg3(0) ; then g3(z) ≤ 0 . Fur-
ther, since c3 ≥ 0m and z ∈ ℤ

m
+
 , it holds that g3(z) ≥ 0 . It follows that g3(z) = 0 and 

z = 0m.
We first show that the inclusion {(u, 0) | u ∈ �D } ⊆ D holds; then that the inclu-

sion D ⊆ {(u, 0) | u ∈ �D } holds.
Consider a NDP ub∶=(g1(yb), g2(yb))⊤ ∈ �D (i.e.  for the bi-objective MOOP) 

and assume the contradiction, that (ub, 0) ∉ D . This implies there exists a 
NDP (u∗, 0) ∈ D (with corresponding solution (y∗, 0) ∈ Sg3(0) ) such that 
(u∗, 0) ≤ (ub, 0) (see (1) for vector comparison) which implies that u∗

1
≤ ub

1
 , 

u∗
2
≤ ub

2
 , and u∗ ≠ ub . Hence, it holds that gi(y∗) ≤ gi(y

b) , for i = 1, 2 , and 
(g1(y

∗), g2(y
∗)) ≠ (g1(y

b), g2(y
b)) . We know that if (y∗, 0) ∈ Sg3(0) , by Def. 7

the inclusion y∗ ∈ projy(S
g3 (0)) holds. Hence, yb is not an efficient solution in the 

bi-objective MOOP, which is a contradiction. The inclusion follows.
Now, consider (ut , 0) ∈ D , where ut

i
= gi(y

t), i = 1, 2 , and g3(0
m) = 0 . Assume 

that ut ∉ D̂ ; then ∃ a NDP u∗ ∈ D̂ such that u∗
1
≤ ut

1
 , u∗

2
≤ ut

2
 , and u∗ ≠ ut . The cor-

responding solution fulfills y∗ ∈ projy(S
g3 (0)) (Def. 7); hence, (y∗, 0) ∈ Sg3(0) holds, 

which implies (ut , 0) ∉ D , i.e. a contradiction. The proposition follows.   ◻
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Note that if g∗ ∈ ℝ
3
+
 is a NDP of the GTRAP, the projection of g∗ onto 

the ( g1, g2)-criterion space is not dominated by the projection of any NDP 
satisfying g3 = 0 . Fig.  3 illustrates this for the upper bounds gub

1
= 2.5 

and gub
2

= 70 , along with the projections of the four elements in the set 
g(B

g3
eff
(0))∶={g(y, r) | (y, r) ∈ B

g3
eff
(0)} = {g1, g2, g3, g4} . The dark grey-shaded 

region contains no projections of NDPs onto the (g1, g2)-criterion space.
We next show this formally.

Proposition 10 Consider a discrete tri-objective optimization problem with objec-
tive functions g1 ∶ projy(S) ↦ ℝ+ , g2 ∶ projy(S) ↦ ℝ+ , and g3 ∶ projz(S) ↦ ℝ+ , 
where S ⊂ ℝ

n1
+ × ℤ

n2
+ × ℤ

m
+
 is a mixed-integer polyhedral set of the variable vectors 

y ∈ ℝ
n1
+ × ℤ

n2
+  and z ∈ ℤ

m
+
 , i.e. (y, z) ∈ S . Further, gi(y) = c⊤

i
y , i = 1, 2 , g3(z) = c⊤

3
z , 

ci ≥ 0 , i = 1, 2, 3 ( n1 + n2 ≥ 2 , m ≥ 2 ). We denote the set of efficient solutions by 
Seff . Then, the projections of the (finite number of) NDPs onto the two-dimensional 
(g1, g2)-criterion space are in the set (see the white region in Fig. 3):

where gub
1

 and gub
2

 denote the upper bounds on the values of the objective functions 
g1 and g2 , respectively, Sg3

eff
(0)∶={(y;z) ∈ Seff | g3(z) ≤ 0} ) (see Def. 8), and the cor-

responding NDPs are denoted as g(Sg3
eff
(0)) ⊂ ℝ

3
+
.

Proof Let g∗ ∈ g(Seff ) be a NDP of the given tri-objective problem. We will show 
that (g∗

1
, g∗

2
) ∈ N(S

g3
eff
(0)) by considering the two cases Sg3

eff
(0) = � and Sg3

eff
(0) ≠ �.

Suppose S
g3
eff
(0) = � . Then, g(S

g3
eff
(0)) = � and N(S

g3
eff
(0)) = {(g1, g2) ∈

ℝ
2
+
|gi ≤ gub

i
, i = 1, 2} . It is obvious that if g∗ is a NDP (i.e.  it has a corresponding 

feasible solution) then (g∗
1
, g∗

2
) ≦ (gub

1
, gub

2
) ; hence, (g∗

1
, g∗

2
) ∈ N(S

g3
eff
(0)).

Suppose the opposite, i.e. Sg3
eff
(0) ≠ � . We assume contradictory that g∗ ∈ g(Seff ) 

is such that (g∗
1
, g∗

2
) ∉ N(S

g3
eff
(0)) . Since g∗ ∈ ℝ

3
+
 is a feasible objective vector, the 

inequalities g∗
i
≤ gub

i
 , i = 1, 2 , hold. Consequently, there exists a point g� ∈ g(S

g3
eff
(0)) 

fulfilling the inequality (g∗
1
, g∗

2
) ≥ (g�

1
, g�

2
) . Since the least value of the third function 

is 0 and g�
3
= 0 , we have that (g∗

1
, g∗

2
, g∗

3
) ≥ (g�

1
, g�

2
, 0) . Since g∗ is dominated (at least 

N(S
g3
eff
(0))∶=

{(
g1
g2

)
∈ ℝ

2
+

|||| gi ≤ gub
i
, i = 1, 2;

(
g1
g2

)
≱

(
g�
1

g�
2

)
,∀g� ∈ g(S

g3
eff
(0))

}
,

Fig. 3  The region of the pro-
jected two-dimensional criterion 
space that does not contain 
projections of NDPs is shaded 
in dark grey
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weakly) by g′ , it is not a NDP. Hence, the assumption that g∗ ∈ g(Seff ) cannot hold. 
The proposition follows.   ◻

We summarize some of the set notations presented hitherto in Table 2. 

4.1  Outline of the Algorithm

Consider Bg3
eff
(0) ≠ � . We need to compute the NDPs of the tri-objective problem 

min {(g1(�), g2(�), g3(�)) ∶ (�, �) ∈ Bg3(0)} . These NDPs can be obtained by solving 
a corresponding discrete bi-objective optimization problem (cf. Prop. 9):

We use the solution approach proposed by Fotedar et al. (2022) to solve the above 
bi-objective optimization problem (also known as the TRAP).

4.2  Defining the sub‑problems

Once we identify the set Bg3
eff
(0) ≠ � , the search region N(Bg3

eff
(0)) ⊂ ℝ

2 (as defined 
in Prop. 10, replacing S by B)6 can be split into smaller regions such that their union 
covers the total search region. Let us consider U(B

g3
eff
(0)) ⊂ ℝ

2
+
 as the set of upper 

min
y∈projy(B

g3 (0))
{g1(y), g2(y)}.

Table 2  Summary of set notations

Set Description

B := {(y, r) | (y, r) satisfies (5)}
Beff := {(y∗, r∗) ∈ B | ∄ g(y, r) ≤ g(y∗, r∗), (y, r) ∈ B}

g(Beff ) := {g(y, r) ∈ ℝ
3
+
| (y, r) ∈ Beff }

ĝ(Beff ) := {(g1(y), g2(y)) ∈ ℝ
2
+
| g(y, r) ∈ g(Beff )}                                            (Note: ĝ = (g1, g2))

Bg3 (0) := {(y, r) ∈ B | g3(r) ≤ 0}                                                       (Note: g3(r) = 0 ⟺ r = 0)
B
g3
eff
(0) := {(y, r) ∈ Beff | g3(r) ≤ 0}

Bĝ(u) := {(y, r) ∈ B | gi(y) ≤ ui, i = 1, 2}                                          (Note: u ∈ ℝ
2
+
 , ĝ = (g1, g2))

B
ĝ

eff
(u) := {(y, r) ∈ Beff | gi(y) ≤ ui, i = 1, 2}                                      (Note: u ∈ ℝ

2
+
 , ĝ = (g1, g2))

g(B
g3
eff
(0)) := {g(y, r) ∈ ℝ

3
+
| (y, r) ∈ B

g3
eff
(0)}

R(0,uk) := {u ∈ ℝ
2
+
| 0 ≤ u1 ≤ uk

1
, 0 ≤ u2 ≤ uk

2
}

N(B
g3
eff
(0)) := {(g1, g2) ∈ ℝ

2
+
|gi ≤ gub

i
, i = 1, 2;(g1, g2) ≱ (g�

1
, g�

2
),∀g ∈ g(B

g3
eff
(0))},

     where gub
1

 ( gub
2

 ) is an upper bound on the first (second) objective

6 Note that GTRAP is a discrete MOOP, as TRAP is proved to be a discrete bi-objective optimization 
problem in (Fotedar et al. 2022, Prop. 3).
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bounds corresponding to the NDPs g(Bg3
eff
(0)) ⊂ ℝ

3
+
 . The following two conditions 

must hold for a set of upper bounds;7

1. The inclusion N(Bg3
eff
(0)) ⊆

⋃
u∈U(B

g3
eff

(0))

R(0, u) holds;

2. For any two u1, u2 ∈ U(B
g3
eff
(0)) it holds that R(0, u1) ⊄ R(0, u2).

The first condition ensures that the region N(Bg3
eff
(0)) is covered by the rectangles 

while the second ensures that none of the rectangles strictly contains other rectan-
gles as that would lead to redundancies. Consequently, a sub-problem is defined 
for each quadrant R(0, u) , with upper bounds u ∈ U(B

g3
eff
(0)) . Now, consider 

K = |Bg3
eff
(0)| and define K + 1 sub-problems. The set of objective vectors Hk ⊂ ℝ

3
+
 

are obtained after solving the kth sub-problem using the QSM method on the set 
Bĝ(uk)∶={(y, r) ∈ B | gi(y) ≤ uk

i
, i = 1, 2} . Then, the equality 

⋃K+1

k=1
Hk = g(Beff ) 

will be satisfied, as stated in Prop. 11, below.
We create an ordered list of the NDPs corresponding to g(Bg3

eff
(0)) such that they 

are sorted in an increasing order of the first objective function’s value.8 We define a 
local upper bound uk as

where (gub
1
, gub

2
) are upper bounds on the first two objective functions. Fig. 4 illus-

trates an example with |Bg3
eff
(0)| = 4 satisfying the aforementioned conditions. The 

following proposition ensures that all the NDPs of the GTRAP are identified (see 
Sect. 1 (appendix) for a proof of the following proposition).

(6)uk∶=

⎧
⎪⎨⎪⎩

(g1
1
, gub

2
), if k = 1,

(gk
1
, gk−1

2
), if 2 ≤ k ≤ K,�

gub
1
, gK

2

�
, if k = K + 1,

Fig. 4  Decomposing the pro-
jected (g1, g2)-criterion space. 
Circles represent projections of 
NDPs corresponding to Bg3

eff
(0) 

onto this space; triangles repre-
sent upper bounds for the five 
sub-problems

7 Cf. the conditions for a set of upper bounds corresponding to a stable set in (Klamroth et  al. 2015, 
Def. 2.3).
8 The ordered set {g1,… , gK} of NDPs fulfills g1

1
< … < gK

1
.
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Proposition 11 Let uk be defined by (6) and let Hk be the set of objective vectors 
obtained by applying the QSM to the GTRAP (5) with the additional constraints 
g1(y) ≤ uk

1
 and g2(y) ≤ uk

2
 . If Bg3

eff
(0) ≠ � , then the equality 

⋃K+1

k=1
Hk = g(Beff ) holds, 

where K = |Bg3
eff
(0)|.

4.3  Parallel QSM

We next present a brief overview of our approach, referred to as the Parallel QSM 
(P-QSM) and outlined in Algorithm 1. The first step initializes an empty set of effi-
cient solutions to the GTRAP, i.e. Beff . The discretization parameters �1 and �2 are 
used.9 Next, the set Bg3

eff
(0) is computed by first solving a bi-objective optimization 

model called the TRAP (without the variables r ) and applying Prop. 9. The algo-
rithm includes three modifications to avoid several redundancies.

4.3.1  Modifications

First modification. As the sub-problems are solved simultaneously, it is possible that 
some of the NDPs corresponding to Bg3

eff
(0) are recomputed. For instance, in Fig. 4 

while solving the third sub-problem we apply the QSM on Bĝ(u3) . It is obvious that 
we will recompute both g2 and g3 . Note that both of these NDPs are also recomputed 

9 The second objective, g2 is integer-valued; typically, �2 = 1 and �1 ∈ {0.05, 0.1} are used.
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while solving the second, and the fourth sub-problems, respectively. To avoid this 
redundancy we simply modify the values of the upper bounds for each sub-problem.

Since the second objective function g2 is integer-valued we define a new 
(adjusted) upper bound10 ũk

1
∶=uk

1
 , ũk

2
∶=uk

2
− 1 , for k = 2,… , |Bg3

eff
(0)| + 1 and 

ũ1 = u1 . Consequently, each quadrant R(0, �̃�k) , for k = 1,… , |Bg3
eff
(0)| + 1 contains 

the projection of at most one NDP from the set g(Bg3
eff
(0)) . In the example in Fig. 5 

each adjusted quadrant R(0, ũk) is shown and the positions of the upper bounds are 
adjusted. We need to show that 

⋃K+1

k=1
R(0, ũk) , where K = |Bg3

eff
(0)| , contains pro-

jections of all the NDPs of the GTRAP onto the two-dimensional (g1, g2)-criterion 
space. It is formally stated as follows (see 1 (appendix) for the proof):

Proposition 12 If Bg3
eff
(0) ≠ � then the projection of a NDP onto the (g1, g2)-criterion 

space of the GTRAP is contained in the set 
⋃K+1

k=1
R(0, ũk) , where K = |Bg3

eff
(0)|.

Second modification. A NDP gk ∈ g(B
g3
eff
(0)) is pre-computed for each sub-prob-

lem k = 1,… , |Bg3
eff
(0)| , and by construction gk

3
= 0 holds. We will again generate gk 

first while applying the QSM for Bĝ(uk) (see Table 2), i.e. the kth sub-problem. Con-
sequently, each sub-problem k = 1,… , |Bg3

eff
(0)| is initialized with the two upper 

bounds (ũk
1
, gk

2
− 1) and (gk

1
− 𝛿1, ũ

k
2
) instead of the pre-defined upper bound ũk used 

in the QSM. This avoids recomputing gk, k = 1,… , |Bg3
eff
(0)| . For instance, in Fig. 5 

for the second sub-problem, instead of exploring the quadrant R(0, ũ2) , we search 
R(0, (ũ2

1
, g2

2
− 1)) and R(0, (g2

1
− 𝛿1, ũ

2
2
)) (see line 15 in Algorithm 1). 

Third modification. Let K∶=|Bg3
eff
(0)| . If gK

1
= gub

1
 , then uK∶=(gub

1
, gK−1

2
) follows 

from (6), and the modified upper bound is ũK = (gub
1
, gK−1

2
− 1) . By construction, 

uK
2
= gK−1

2
> gK

2
= uK+1

2
 (see (6)), and in this case uK

1
= gub

1
= uK+1

1
 . Consequently, 

R(0, ũK+1) ⊂ R(0, ũK) holds. Hence, the (K + 1)’th sub-problem needs not be solved 
(lines 4–5 in Algorithm 1). Similarly, if g1

1
= 0 (which is common in our instances) 

then u1 = (g1
1
, gub

2
) (see (6)), which implies u1 = ũ1 = (g1

1
, gub

2
) , and g1

1
= 0 , which 

implies ũ1 = (0, gub
2
) . Now R(0, ũ1) is actually a line segment between ũ1 and the ori-

gin. Hence, the only region that may contain projections of NDPs not identified by 

Fig. 5  First modification. 
Circles represent projections of 
NDPs corresponding to Bg3

eff
(0) 

onto the (g1, g2)-criterion space; 
triangles represent modified 
upper bounds for each sub-
problem

10 When uk
2
= 0 , the kth sub-problem need not be solved.



 S. Fotedar et al.

1 3

   17  Page 20 of 28

solving the second sub-problem is {ĝ ∈ ℝ
2
+
| g1

2
≤ ĝ2 ≤ gub

2
, ĝ1 = 0} . Any point with 

projection on this line segment is, however, at least weakly dominated by g1 . Conse-
quently, there is no need to solve the first sub-problem (lines 9–11 in Algorithm 1).

5  Computational experiments, and conclusion

This section provides an overview of the input data, the computational set-up, and the 
experiment design. We present the different performance indicators used to bench-
mark P-QSM with QSM. Further, we investigate the sensitivity of the performance 
of algorithms by varying the discretization parameter �1 and the threshold value 
� ∈ {0.70, 0.75, 0.8}.

All algorithms are written using Spyder IDE for Windows system(s) with a 1.70 
GHz processor, 16 GB RAM, and 4 cores. We use Python 3.7 as the interpreter 
and Gurobi 9 as the solver. The sub-problems are simulated and solved on paral-
lel identical computers in a cluster. Each computer solves a sub-problem and its full 
processor capacity and all CPU cores are available to Gurobi when solving a sub-
problem. For each scalarized problem we use two stopping criteria: (a) MIP duality gap 
of 10−4 ; (b) a time limit of 1500 seconds (for sensitivity analyses it is increased to 2500 
seconds); hence, the solutions found are approximately efficient. Further, the discretiza-
tion parameter �1 is selected as either 0.1 or 0.05, while �2 = 1 , yielding two different 
representations of the Pareto front for each algorithm.

5.1  Industrial instances

We use data provided by GKN Aerospace for most of the parameters and sets indi-
cated in Table 1. However, the processing times p�

jk
 and qualification cost parameters 

��
jk

 for product type � ∈ L , operation j ∈ J
�
 in machine k ∈ N�

j
 (qualification 

required) were not available. We have uploaded fifteen public instances along with 
details about the distributions used to generate each instance at https:// bit. ly/ 3B4uL 
es. The demand is from quarterly forecasts provided by GKN Aerospace in January 
2015 for the period 2016–2017. There are L = 85 part types, |M| = 517 tasks, and 
|K| = 125 machines. The minimum, maximum, and median values of the demand 
are 1, 149, and 12, respectively (we consider only non-zero values for the calcula-
tion of minimum, maximum, and median). For the processing times p�

jk
 , k ∈ K�

j
 , 

j ∈ J
�
 , � ∈ L the minimum, maximum, and median are 0.1, 80, and 5.0 hours, 

respectively. Each machine has a yearly capacity of 5000 hours which can be equally 
divided among four quarters in a year. The planning period of two years with quar-
terly time buckets yields T = 8 time periods. The parameter values � = 3 , � = 4 , and 
� = 0.70 (although for sensitivity analyses we also investigate for � ∈ {0.75, 0.80} ) 
apply to all fifteen instances. The limiting factor for ordering raw materials is 
d = 1.5 . The initial values and upper limits on inventories are r̄�

j0
= 0 and 

r̄�
jt
= ⌈0.5 at

�
⌉ , t ∈ T  , respectively, j ∈ J

�
 , � ∈ L.

https://bit.ly/3B4uLes
https://bit.ly/3B4uLes
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5.2  Design of experiments

To assess the performance of the two algorithms QSM and P-QSM we use solution 
times11 and two different representation measures. Due to the discretization of g1 
and the limited solution time set for the scalarized problems, only a subset of the set 
of (approximately) efficient solutions is known, and the exact Pareto front is not 
available. Therefore, we need to investigate the quality of representation of the 
Pareto front obtained by each of the two methods. We denote by Bi

eff
 the set of effi-

cient solutions to the ith instance, while the representative set of approximately effi-
cient solutions to the ith instance obtained by an algorithm j ∈ A∶={QSM,P-QSM} 
is denoted as Bi

ẽf f
(j) . We then denote by Bi

ẽf f
(A) the set of solutions that are effi-

cient12 with respect to the set 
⋃

j∈AB
i

ẽf f
(j) . Then, for the ith instance and algorithm 

j ∈ A , we define the cardinality (of NDPs) ratio measure13 
�i(j)∶=��Bi

ẽf f
(A)

⋂
Bi

ẽf f
(j)��∕��Bi

ẽf f
(A)��.

5.3  Results

In Table 3 the columns #NDPs refer to ��Bi

ẽf f
(A)

⋂
Bi

ẽf f
(j)�� for the respective instance 

i and algorithm j. With the discretization �1 = 0.1 , P-QSM found all the NDPs in 
Bi

ẽf f
(A) for nine out of the fifteen instances, i.e. �i(P-QSM) = 1 ; for the other six 

instances, it found more (or equal) NDPs than QSM, i.e. �i(P-QSM) ≥ �i(QSM) . 
For thirteen out of the fifteen instances P-QSM had a significantly shorter comput-
ing time than QSM; only for instances 7 and 12 the solution time of P-QSM was 
longer than that of QSM, but then P-QSM identified two and seven additional NDPs, 
respectively. With �1 = 0.05 we obtained, as expected, more NDPs. Fourteen out of 
the fifteen instances (i.e. all for except instance 10) satisfy �i(P-QSM) ≥ �i(QSM) . 
For twelve out of the fifteen instances, the solution time of P-QSM was shorter than 
that of QSM.

Visualization. Pareto fronts of TOILP problems are much more complicated to 
visualize than for BOILP problems. A scatter plot matrix is a simple technique adept 
at representing a pair-wise relationship of objectives. The drawback is, however, that 
one has to study three separate plots. Heatmap plots (as shown in Fig. 6) represent 
objective values by different shades of grey. In a heatmap each column corresponds 
to a NDP (there are 19 NDPs in Fig.  6), and each row corresponds to an objec-
tive function to which an intensity of greyness is assigned that reflects its value. 
The lighter the grey-shade, the higher the value. To define the color gradient we 

11 The solution time of P-QSM is measured as the sum of the time used to obtain Bg3
eff
(0) (solve TRAP) 

and the maximum of the solution times for the sub-problems, which are (simulated to be) solved in paral-
lel.
12 Bi

ẽf f
(A) is the best known representation of the set Bi

eff
 , which is approximated.

13 Here, the numerator equals the number of approximately efficient solutions obtained by algorithm 
j ∈ A , while the denominator equals the number of (non-dominated) approximately efficient solutions 
identified by either of the algorithms in A.
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normalized each objective function’s values. From the heatmap the decision makers 
can identify some interesting NDPs, for instance, the NDPs 4 and 5 have (almost) 
the same values for the first (second) objective function, but for the third objective 
function the former is significantly better, by 299 units.

5.4  Sensitivity analysis

We perform sensitivity analyses to investigate the effect of varying the threshold ( � ) 
and discretization ( �1 ) parameters on the solution times and representation measures, 
such as cardinality and coverage gap (Ceyhan et al. 2019, Def. 6) for P-QSM and 
QSM. In these experiments, we increase the time limit to 2500 seconds per scalar-
ized problem.

Table 3  Comparison of QSM and P-QSM for � = 0.70 and two discretizations. The time ti(j) is in sec-
onds

Discretization: �1 = 0.1 ; �2 = 1 Discretization: �1 = 0.05 ; �2 = 1

j = QSM j = P-QSM j = QSM j = P-QSM

i #NDPs �i(j) ti(j)   #NDPs �i(j) ti(j)   #NDPs �i(j) ti(j)   #NDPs �i(j) ti(j)  

1 15 0.88 4185 15 0.88 2587 25 0.89 6833 26 0.93 4682
2 13 0.76 4737 17 1.00 3159 25 0.89 6804 26 0.93 5003
3 15 0.88 4007 17 1.00 3089 25 0.89 7257 26 0.93 6395
4 25 0.51 10744 28 0.55 8885 44 0.47 27763 50 0.54 16566
5 15 0.88 5430 16 0.94 3827 23 0.82 11856 25 0.89 3778
6 6 1.00 7610 6 1.00 1856 6 1.00 5100 6 1.00 2539
7 15 0.88 2373 17 1.00 5562 25 0.89 7482 26 0.93 4772
8 15 0.80 6330 17 1.00 4684 25 0.89 11547 26 0.93 9039
9 15 0.88 3139 17 1.00 2456 25 0.89 3428 26 0.93 4804
10 14 0.87 7418 15 0.93 5849 26 0.90 12930 25 0.86 8599
11 15 0.88 3448 17 1.00 3112 25 0.89 6531 26 0.93 6660
12 20 0.72 4640 27 0.96 5673 34 0.72 7748 46 0.98 6916
13 18 0.72 6650 20 0.80 2861 24 0.54 24296 37 0.84 5551
14 15 0.79 3881 19 1.00 2615 26 0.86 4907 27 0.90 2858
15 14 0.87 4123 16 1.00 4001 26 0.90 6919 27 0.93 6944

Fig. 6  Heatmap for the instance i = 14 , algorithm j = P-QSM , �1 = 0.1 , �2 = 1 , and #NDPs = 19
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In Fig. 7a and b we employ the discretization �1 = 0.05 . Figure 7a presents the 
distribution (over all fifteen instances i) of percentage increase in the cardinality ratio 
measure using P-QSM as opposed to QSM, i.e. �̄�i(P-QSM)∶=

𝜇i(P-QSM)−𝜇i(QSM)

𝜇i(QSM)
⋅ 100% ; 

for the three values of the loading threshold for machines ( � ), there is an increased 
cardinality ratio (values above 0% ) using P-QSM. For � = 0.70 ( � = 0.75, � = 0.8 ) 
the median is 4.49% ( 10.38%, 27% ). Figure 7b illustrates the effect on solution time 
of using P-QSM. For the threshold, � = 0.70 all the instances require less time when 
P-QSM is applied (values < 1 ). For � = 0.8 , P-QSM requires more computational 
time than QSM for several instances. It should be noted that–-as indicated in 
Fig. 7a—P-QSM identifies more NDPs than QSM for � = 0.8 . For � = 0.75 the ratio 
of the solution time is < 1 for most of the instances. For � = 0.70 ( � = 0.75, � = 0.8 ) 
the median values of the ratio of solution time of P-QSM to QSM is 0.75 
(0.625,  1.15). Figure  8a illustrates the difference of solution times for QSM and 
P-QSM; the median value of the difference is 1410 ( 1351,−207 ) seconds for the 
threshold 0.70 (0.75, 0.8).

Figures  7c and  7d employ the discretization �1 = 0.1 , �2 = 1 . For � = 0.70 
( � = 0.75, � = 0.80 ) the median value of the ratio of solution time of P-QSM to 
QSM is 0.787 (1.02, 1.408). However, as indicated in Fig.  7c, with an increasing 
threshold, the number of NDPs found by P-QSM is significantly larger than by the 
QSM. For � = 0.70 ( � = 0.75, � = 0.80 ) the median value of the cardinality ratio is 

Fig. 7  Sensitivity plots: distributions of two performance indicators over the fifteen instances, separated 
for two levels of the discretization parameter �1 , and grouped by three values of the threshold � . A red 
plus sign denotes an outlier outside 1.5 times the inter-quartile range
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0% ( 17%, 66.66% ). The median values for the difference (in seconds) of computing 
times of QSM and P-QSM (see Fig. 8b) are 650,−33 , and −360 seconds for thresh-
olds 0.70, 0.75, and 0.8, respectively.

It is known (Ceyhan et al. 2019) that finding more NDPs does not always result in 
the corresponding representation becoming significantly better. Hence, coverage 
gap values can be used. We adjust (Ceyhan et  al. 2019, Def.  6) for minimization 
problems and normalize the three objectives, as they have different dimensions, to 
calculate the coverage gap values. The coverage gap, �i(j) , of algorithm j for instance 
i, measures the distance to the worst represented point in the set Bi

ẽf f
(A) (i.e. the best 

known representation of the efficient set Bi
eff

 ) from the obtained representative set of 
approximately efficient solutions, i.e. Bi

ẽf f
(j) . Figures 9a–9b present on the right axis 

the ratio of the difference of the coverage gap values of QSM and P-QSM to the cov-
erage gap value of QSM (i.e. �̄�i(P-QSM)∶=

𝛼i(QSM)−𝛼i(P-QSM)

𝛼i(QSM)
 ), referred to as coverage 

gap ratio. As it is desired to have a lower coverage gap value; for P-QSM to outper-
form QSM, the ratio needs to be greater than zero. Table 4 summarizes the results 
from the fifteen instances and over all three threshold values. Hence, there are 45 
values reported for both �1 = 0.05 and �1 = 0.1 . For �1 = 0.1 , there are 30 occur-
rences when both the cardinality ratio and coverage gap ratio are positive. In only 
one occurrence both of them are less than or equal to zero. The results for �1 = 0.05 
are analogously presented. There is no occurrence where both coverage and cardi-
nality ratios are less than or equal to zero.

Table 4  Summary of sensitivity analyses

Cardinality ratio Coverage gap ratio

�1 = 0.1 �1 = 0.05

�̄�i(P-QSM) > 0 �̄�i(P-QSM) ≤ 0 �̄�i(P-QSM) > 0 �̄�i(P-QSM) ≤ 0

�̄�i(P-QSM) > 0 30 6 35 9
�̄�i(P-QSM) ≤ 0 8 1 1 0

Fig. 8  Difference of solution time for QSM and P-QSM [s] for threshold values � ∈ {0.70, 0.75, 0.80}
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Discussion: The reduction in solution time can be attributed to the parallelization 
used in P-QSM, although there is a significant improvement in the coverage gap that 
is not due to the parallelization. In most of our computations, the time limit of 2500 
seconds per scalarized problem is not reached, but still, the approximation of the 
Pareto front provided by QSM is much inferior to that of P-QSM in almost all of the 
instances (over variation of threshold and discretization parameters). As an explana-
tion, consider the following example, which is illustrated in Fig. 10. Assume there 
are four NDPs and three of them, g1, g2 , and g3 , correspond to the efficient solutions 
in Bg3

eff
(0) , i.e. g1

3
= g2

3
= g3

3
= 0 . In P-QSM, four sub-problems are initialized cor-

responding to the upper bounds ũ1, ũ2, ũ3 , and ũ4 . QSM, however, starts with the 
upper bound l̃1 . The first application of the two-stage scalarizations will result in one 
of the NDPs corresponding to Bg3

eff
(0) , w.l.o.g. assume the NDP g3 is identified.14 For 

�1 = 0.5 , the subsequent upper bounds will be l̃2 and l̃3 . Due to the discretization, 
the NDPs g2 and g4 will be overlooked by the QSM, but not by the P-QSM as both 
points are identified while solving the second sub-problem, i.e. for R(0, ũ2) . Hence, 
both the parallelization and the solving of the bi-objective TRAP first give P-QSM a 
computational advantage over QSM.

Fig. 9  Sensitivity plots. Left 
axis: grey-bars with correspond-
ing cardinality ratio. Right axis: 
black-rhombuses representing 
coverage gap ratios. Each group 
of three bars corresponds to 
the threshold values 0.7, 0.75, 
and 0.8

14 Either of g1 , g2 , and g3 can be identified, as all of them are in Bg3
eff
(0).
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5.5  Conclusion

We present a modified version, P-QSM, of the quadrant shrinking method (QSM) 
for identifying a representative set of approximately efficient solutions to a general-
ized tri-objective tactical resource allocation problem. The computational benefits of 
the P-QSM are due to solving sub-problems in parallel/simultaneously on different 
computers and to initiating the algorithm with a subset of the NDPs. For most of 
the instances, the P-QSM identifies more NDPs than the QSM; it also results in a 
smaller coverage gap. Future work may consider providing tighter formulations of 
the scalarization of the sub-problems in P-QSM.

Appendix

Proof of Proposition 11 We will first show that g(Beff ) ⊆
⋃K+1

k=1
Hk . Con-

sider an efficient solution (y∗, r∗) ∈ Beff and the corresponding objective vec-
tor g(y∗, r∗) ∈ g(Beff ) . Assume the contradiction, that g(y∗, r∗) ∉

⋃�Bg3
eff

(0)�+1
k=1

Hk . 
We know from Prop.  10 that the projection of any NDP onto the (g1, g2)-cri-
terion space lies in N(Bg3

eff
(0)) , and by the construction of upper bounds, it holds 

that N(B
g3
eff
(0)) ⊆

⋃�Bg3
eff

(0)�+1
k=1

R(0, uk) . This implies g(y∗, r∗) has a projection 

�g(y∗, r∗) = (g1(y
∗), g2(y

∗))⊤ ∈ R(0, uk) for at least one sub-problem k. Note that 
g(y∗, r∗) is a NDP corresponding to a feasible set B, which implies that it must be 
a NDP for any (feasible) subset B�g(uk)∶={ (y, r) ∈ B | g1(y) ≤ uk

1
, g2(y) ≤ uk

2
} ⊆ B . 

Since applying the QSM algorithm to the feasible set Bĝ(uk) results in all the NDPs 
(denoted as Hk ), it must identify g(y∗, r∗) as well. Hence, we have a contradiction, 
i.e. g(y∗, r∗) ∈

⋃�Bg3
eff

(0)�+1
k=1

Hk .
Next, we show that 

⋃K+1

k=1
Hk ⊆ g(Beff ) . We assume the converse, i.e. g∗ ∉ g(Beff ) 

and g∗ ∈ Hk (for one of the sub-problems k). Consequently, ∃ ḡ ∈ g(Beff ) such that 
ḡ ≤ g∗ . However, by the property of the QSM we know g∗ is a NDP of the GTRAP 
with additional constraints gi(y) ≤ uk

i
 , i = 1, 2 . Hence, at least one of the constraints 

Fig. 10  Illustration of the 
reason for P-QSM yielding 
a better representation. For 
QSM and P-QSM the upper 
bounds used are {l̃1, l̃2, l̃3} and 
{ũ1, ũ2, ũ3, ũ4} , respectively
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ḡ1 > uk
1
 and ḡ2 > uk

2
 must hold. Consequently, at least one of the constraints 

g∗
1
≤ uk

1
< ḡ1 and g∗

2
≤ uk

2
< ḡ2 holds, which implies that ḡ does not dominate g∗ . The 

proposition follows by contradiction.

Proof of Proposition 12 Let K∶=|Bg3
eff
(0)| . The projections onto the two-dimensional 

criterion space of all the NDPs are in the set 
⋃K+1

k=1
R(0, uk) (as stated in Prop. 11). If 

we prove A∶=
�⋃K+1

k=1
R(0, uk) ⧵

⋃K+1

k=1
R(0, ũk)

�⋂
�g(Beff ) = � (see Table 2 for nota-

tions) then the proposition follows. Let us assume a feasible solution (ȳ, r̄) ∈ Beff 
and (g1(ȳ), g2(ȳ)) ∈ A . This implies the inequalities ũk

2
< g2(ȳ) ≤ uk

2
 for at least 

one k ∈ {2,… ,K + 1} ( k = 1 is not included since u1 = ũ1 ). Since g2 is integer-
valued function and ũk

2
= uk

2
− 1 , it follows that g2(ȳ) = uk

2
 . Moreover, the inequali-

ties 0 ≤ g1(ȳ) ≤ uk
1
 hold. Let us first consider the case when 0 ≤ g1(ȳ) < uk−1

1
 . This 

implies that g2(ȳ) = uk
2
< uk−1

2
 (the latter strict inequality follows from (6)). This can 

be equivalently stated as g2(ȳ) < ũk−1
2

+ 1 ⟺ g2(ȳ) ≤ ũk−1
2

 . Hence, it holds that 
(g1(ȳ), g2(ȳ)) ∈ R(0, ũk−1) which, from the assumption that (g1(ȳ), g2(ȳ)) ∈ A , is 
obviously a contradiction.

Hence, we consider the case when g1(ȳ) ∈ [uk−1
1

, uk
1
] . From (6) we know that 

uk
2
= gk−1

2
 , k = 2,… ,K + 1 , such that g2(ȳ) = uk

2
= gk−1

2
 holds. Subsequently, from 

(6) we know that uk
1
= gk

1
 , k = 2,… ,K  , such that uk−1

1
= gk−1

1
 holds. Thus, we have 

that the inequalities gk−1
1

≤ g1(ȳ) ≤ uk
1
 hold. Therefore, it holds that gk−1

1
≤ g1(ȳ) , 

gk−1
2

= g2(ȳ) , and by definition gk−1
3

= 0 . Moreover, since (gk−1
1

, gk−1
2

) ∈ R(0, ũk−1) 
we have that gk−1 ≠ g(ȳ) , because g(ȳ) ∈ A . Consequently, gk−1 must dominate 
g(ȳ) , which is a contradiction as the latter is assumed to be a NDP.   ◻
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