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Introduction
Transport is one of the main drivers for human-made cli-
mate change. Increasing the share of railway traffic can
contribute to lower carbon emissions from the transport
sector. This will, however, lead to increased noise emis-
sions from railway traffic. A main contributor to these
noise emissions is rolling noise, which is produced by the
interaction between the wheels and the track, which vi-
brate when the wheels roll over the rails because their
contact surfaces are not perfectly smooth. A modular
simulation tool can be used to efficiently optimise track
designs regarding their acoustic performance. A time-
domain model further allows investigating the psychoa-
coustic effects of features in the noise signals.

A model that aims for a physics-based simulation of the
pass-by signals has been developed in a recent doctoral
project at Chalmers University of Technology [1], build-
ing on earlier work [2]. This article summarises the
model. Its modular setup is visualised in Figure 1. In
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Figure 1: Overview of the modules in the simulation tool.

terms of the computational efficiency, it is advantageous
to evaluate parts that can be linearised in the frequency
domain. This is the case for the structural vibration and
the sound radiation of the wheel and the track. Rele-
vant non-linear behaviour can occur in the rolling con-
tact and the wheel/rail interaction, and so these parts are
evaluated in the time domain. The latter modules were
developed in [2]. For the wheel and the track, transfer
functions are evaluated that describe the sound pressure
in a receiver point for a unit force excitation. An in-
verse Fourier transform then produces impulse responses,

which are convolved with the force signal calculated in
the wheel/rail interaction calculation. Each component
is described in the following.

The Interaction
The interaction between the wheel and the track needs
two models, one for solving the contact problem and one
for solving the wheel/rail interaction [2].

The Contact
The contact model combines the information about the
surface roughness of the wheel and the rail with the lo-
cal geometry to predict the shape and size of the contact
area, local displacements and stresses. The input rough-
nesses can be measured or generated based on statistical
properties of the surface roughness. Figure 2 shows ex-
amples of such surface roughness input data. Wheel and
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Figure 2: Example input data for the contact problem.

rail are locally approximated by an elastic half space.
The potential contact area is discretised into rectangu-
lar elements. Each element influences each other element
and a non-linear system of equations needs to be solved
at each time step. Kalker’s NORM and TANG algorithm
are used to solve the normal and tangential problem, re-
spectively [3]. The normal and tangential local displace-
ments in the contact patch at each time-step are, input
to the wheel/rail interaction calculation.

The Wheel/Rail Interaction
The wheel/rail interaction is efficiently solved in the time
domain via moving Green’s functions [3]. The Green’s
functions are precalculated and contain the dynamic
properties of the wheel, specifically the displacement im-
pulse response functions at the contact point, and the
dynamic properties of the track, i.e. the displacement im-
pulse response functions at the contact point on the rail.
Combining this with the local displacements in the con-
tact patch at every time step, the rolling contact forces
are calculated by convolution. This time-domain formu-
lation allows including transient and non-linear effects
such as wheel flats and curve squeal. Figure 3 shows an
example time history of rolling contact forces.
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Figure 3: Example rolling contact forces.

The Wheel
Structural Vibration
The curved Waveguide Finite Element (WFE) method
assumes harmonic oscillation around the circumference
of the wheel [4]. Similar to axi-symmetric FE models,
the 3D vibration of the wheel is calculated by discretising
the cross-section only, cf. Figure 4. The FE system of
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Figure 4: Left: Wheel FE grid and coordinate system. Up-
per right: Axial mode with two nodal diameters. Lower right:
axial mode with three nodal diameters and one nodal circle.

equations[
K2(−jκ)2 +K1(−jκ) +K0 − ω2M

]
Φ = 0 (1)

is solved for each whole number wavenumber κ corre-
sponding to the number of oscillations around the cir-
cumference. This produces the eigenfrequencies ω0 and
mode shapes Φl of the wheel. K and M are stiffness- and
mass matrices. The velocity field v on the wheel due to
a force Fe(ω) is obtained by modal superposition,

v(ω) =
∑
l

Al(ω)Φl (2)

with the modal amplitude Al

Al(ω) = jωbl(ω)Fe(ω)Φl(x0) (3)

where
bl(ω) =

(
Λl(ω

2
l − ω2 + 2jωωlζl)

)−1
(4)

with the modal damping coefficient ζl and the modal
mass

Λl = ΦH
l MΦl . (5)

The velocity field serves as the input to the sound radi-
ation module. Analogously, the receptance at the rolling
contact point on the wheel is evaluated. The displace-
ment impulse response functions are calculated by inverse
Fourier transform and serve as input to the wheel/rail in-
teraction module.

Sound Radiation
The sound radiated by each wheel mode is evaluated in a
Fourier series Boundary Element method (FBEM), which
makes use of the axisymmetry of the wheel by decompos-
ing the sound field into a Fourier series [4]. The BE prob-
lem reduces from 3D to 2D, however, now 2D BE prob-
lems are solved at each Fourier order. While FBEM is an
efficient solution for predicting the sound field around a
vibrating, stationary wheel, it is not convenient for sim-
ulating the pass-by of a wheel in time domain. Therefore
an equivalent source model is introduced for this part.

Representing the sound field by spherical harmonics (SH)
equivalent sources allows the efficient calculation of sound
pressure transfer functions Hl(xs, y0, z0, ω) to any re-
ceiver position in 3D space. To calculate these transfer
functions, first the FBEM is used to evaluate the sound
field in a spherical grid around the wheel for each mode
l at each frequency. Then, SH decompositions are car-
ried out for each such sound field. Figure 5 shows the
directivity of the axial mode (3,1,a) for two different fre-
quencies. The radius of the lobes indicates the magnitude
of the radiation, while the colour indicates the phase. At
the higher frequency, the radiation is more directed and
larger phase variation is visible. Note also that this axial
mode has large radial components at 250 Hz.

Figure 5: Directivity of the mode (3,1,a) shown in Figure 4
at 250 Hz (left) and 1000 Hz (right). The red line indicates
the track direction.

Pass-by Signals
The sound pressure produced when one wheel passes by
a stationary observer position is evaluated for each mode
individually [1]. This has computational advantages:
Since the wheel is typically only very lightly damped,
it can have decay times of over 20 seconds. Calculating
Green’s functions that include the structural response is
therefore not feasible in the proposed BEM/SH method.
By following a modal approach in the pass-by predic-
tion, the structural response can be separated from the
acoustic radiation: The modal amplitude Al(ω) consists
of the two terms Al(ω) = FA,lbl(ω). FA,l(ω) is expressed
in time domain by differentiating Fe(ω) and scaling with
Φl. The term bl(vω) describes the frequency response of
an harmonic oscillator, for which an analytic expression
exists:

bl =
e=2ωlζlt

Λlω′
l

sinω′
ltH(t) (6)

with the Heaviside function H(t).

The coordinates of the moving wheel and the stationary
receiver are introduced in Figure 6. Convolution of bl(t)
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Figure 6: Coordinates of the moving wheel and the station-
ary receiver.

and FA,l(xs, t) produces a quantity q′S,l

q′S,l(xS, xS/v) =

∫ xS/v

−∞
FA,l(xS, τ)bl(xS/v − τ)dτ (7)

which describes the amplification of each mode at each
time step, taking into account the history of all contact
forces and the dynamic response of the mode. Then,
acoustic propagation functions hl(xS, t) are evaluated by
inverse Fourier transform for each mode, and finally, con-
volution of q′S,l and hl produces the pass-by pressure of
mode l

pl(t) =

∫ ∞

−∞
q′S,l(xS, xS/v)hl(xS, t− xS/v)dxS (8)

The computational advantage of this modal approach is
that the acoustic propagation functions Hl(ω) are rather
smooth, so they can be evaluated with a broad frequency
spacing.

The total pressure is then calculated as the sum of all
modal contributions. Figure 7 shows a spectrogram of
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Figure 7: Spectrogram of the sound pressure level during
pass-by of wheel.

the sound pressure in a stationary point during the pass-
by of the wheel. The Doppler shift is clearly visible,
and a few dominant modes can be identified. The largest
sound pressure levels are produced in the frequency range
between about 1.7 kHz and 4.5 kHz.

The Track
Structural Vibration
The WFE method can also be used for straight waveg-
uides such as the rail [5, 1]. Making use of the constant
cross-section along the track and assuming propagating,
decaying waves in that dimension, the FE problem is
again reduced to 2D (cf. Figure 8). However, in this
straight case, complex wavenumbers exists at each fre-
quency ω. Prescribing ω, the quadratic FE system of
equations[

K2(−jκ)2 +K1(−jκ) +K0 − ω2M
]
Φ = 0 (9)

a b c

d e f

Figure 8: Left: FE mesh of the free rail cross-section. Right:
Cross-sectional modes for wavenumber 5 rad/m.

is solved. This produces conjugate complex wavenumbers
κi and corresponding eigenvectors Φl, which describe the
cross-sectional motion of each wave (cf. Figure 8). The
displacement response u(x, ω) to the force F0(κ, ω) is
calculated by superposition of all waves,

u(x, ω) =
∑
i

AiΦi,Re
−jκix for ≥ 0 (10)

with

Ai =
jΦiLF0(κ, ω)

ΦiLD(κi)ΦiR
(11)

and D(κi) = −2κiK2 − jK1.

Rail

Rail pad

Ballast
Sleeper

Figure 9: Components in the discrete support of the rail.

In reality, the rail is coupled to the rest of the track at
each rail seat via the elastic rail pad, cf. Figure 9. A
discrete support is introduced by assuming that the dis-
placement response of the coupled system is a superposi-
tion of the free rail response and the response due to the
reaction forces,

ur,i = αr,ieFe −
N∑
l=1

αr,ilFa,l (12)

where the transfer receptances αr are evaluated using
the WFE model above. Modelling each rail seat re-
ceptance αa as lumped elements produces one equation
ur,i = αa,iFa,i for each rail seat. A system of equations
is set up and solved for the unknown reaction forces Fa.
The total displacement of the rail is then calculated by
summing the displacements due to each force acting on
the rail. Figure 10 shows the vertical velocity of one FE
node at the top of the rail head, for a vertical unit har-
monic excitation of the rail mid-span, in the wavenumber
and frequency domain. Up to about 4 kHz, the vertical
bending wave dominates the response. At higher frequen-
cies, other wave types cut in.
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Figure 10: Surface normal velocity of the rail head in the
frequency-wavenumber domain.

Sound Radiation
The radiation from railway track is calculated using
the Wavenumber domain Boundary Element method
(WBEM), which assumes a constant cross-section along
the track [6]. In the WBEM, the 3D sound field (with
the wavenumber in air K) is expressed as 2D sound fields
(with in-plane wavenumber α) at each wavenumber κ
along the track. The reduction in dimensionality in the
BE problem reduces the computational cost. To fur-
ther increase the numerical efficiency, acoustic transfer
functions Ha(κ, ω) are precalculated. These describe the
sound pressure produced at a set of receiver positions
for a unit velocity at each BE node. This allows the to-
tal radiated sound pressure from a vibrating structure to
be evaluated by scaling each transfer function with the
surface velocity at the corresponding node and summing
their contributions. A second way to increase the numer-
ical efficiency is to reuse 2D BE solutions across different
combinations of wavenumber κ [6, 1].

vn,1vn *d
x

w

0 1 (N - 1)/2i = - 1

Figure 11: Velocity profile of several sleepers along the track
direction x.

The radiation from each sleeper is included in the WBEM
by introducing a velocity profile vn,i (cf. Figure 11).
Each velocity profile is expressed as a rectangular func-
tion defined by the position id and the width w of the
sleeper, scaled to the sleeper’s vertical velocity v∗n,i

vn,i(x, ω) = v∗n,i(ω)
(
H
(
x− id+

w

2

)
−H

(
x− id− w

2

))
(13)

which are expressed in wavenumber domain as
vn,i(κ, ω) = v∗n,i w sinc(κw)e−jκid and serves as the input
to the WBEM calculation.

Pass-by Signals
Multiplying the velocity of one surface element for a unit
harmonic force input (cf. Figure 10) with its correspond-
ing transfer functionHa(κ, ω), and subsequent 2D inverse
Fourier transform generates impulse responses describing
the pressure response to a unit force pulse. Convolution
of these impulse responses with a rolling contact force al-
lows calculating the sound pressure in a stationary track-

side position. An example pass-by on the rail is visualised
in the spectrogram in Figure 12. The largest levels are
observed in the frequency range below 1 kHz, however,
some tonal components are visible at higher frequencies,
likely due to the structural interaction between the com-
ponents.

10
20
30
40
50
603

2

1

0
0 2 4 6 71 3 5

Frequency (kHz)

Ti
m
e
(s
)

Figure 12: Spectrogram of the sound pressure level during
pass-by of a force on the rail.

Summary
This article gives a brief overview of the time-domain
rolling noise model WERAN developed in two PhD
projects at Chalmers University [1, 2]. The interaction
between the wheel and the rail, their vibroacoustic be-
haviour and the sound pressure level during the pass-by
of a wheel on a rail are evaluated in a modular approach
incorporating various numerical models.

Acknowledgements
The current study is part of the ongoing activities in
CHARMEC (Chalmers Railway Mechanics). Parts of
the study have been funded from the European Union’s
Horizon 2020 research and innovation programme in the
In2Track3 project under grant agreements No 101012456.

References
[1] Theyssen J. Simulating Rolling Noise on Ballasted

and Slab Tracks: Vibration, Radiation, and Pass-
by Signals. Doctoral Thesis. Chalmers University of
Technology; 2022.

[2] Pieringer A. Time-Domain Modelling of High-
Frequency Wheel/Rail Interaction. Doctoral Thesis.
Chalmers University of Technology; 2011.

[3] Pieringer A, Kropp W, Thompson DJ. Investiga-
tion of the dynamic contact filter effect in vertical
wheel/rail interaction using a 2D and a 3D non-
Hertzian contact model. Wear. 2011;271(1):328-338.

[4] Fabre F, Theyssen JS, Pieringer A, Kropp W. Sound
radiation from railway wheels including ground reflec-
tions: A half-space formulation for the fourier bound-
ary element method. JSV. 2021;493:115822.

[5] Nilsson CM, Jones CJC, Thompson DJ, Ryue J. A
waveguide finite element and boundary element ap-
proach to calculating the sound radiated by railway
and tram rails. JSV. 2009;321(3-5):813-836.

[6] Theyssen J, Pieringer A, Kropp W. Efficient
calculation of the three-dimensional sound
pressure field around a railway track. Pub-
lished online 2022. Accessed June 28, 2022.
https://research.chalmers.se/en/publication/530940

DAGA 2023 Hamburg

4


