
Wavenumber domain Boundary Element method
In the WBE, the 3D sound field (with the
wavenumber in air ) is expressed as 2D sound
fields (with in-plane wavenumber ) at each
wavenumber along the track to reduces the
computational cost. Numerical efficiency is further
increased by

Pass-by sound pressure via moving Green's
functions
The figure below shows the frequency-
wavenumber domain representation of the surface
velocity of the rail and the sleepers.

Multiplying the velocity of each surface element
with its corresponding acoustic transfer function

and subsequent 2D inverse Fourier transform
generates impulse responses describing the
pressure response to a unit pulse along the track.

Convolution of these impulse responses with a
rolling contact force allows calculating in the
sound pressure in a track-side position in time-
domain.

Sound field radiated by discrete sleepers
The velocity profile of each sleeper along the
track is expressed by Heaviside functions

vn,1vn *d
x

w

0 1 (N - 1)/2i = - 1

K 0

K n

κn

κ0x y

z

α

A time-domain model for railway rolling noise

00

5

10

15

20

−160

−150

−140

−130

−120

−110

v n
(d
B
re

1
m
/s
)

Frequency (Hz)

W
av
en
um

be
r(

ra
d/

m
)

1000 2000 3000 4000 5000 6000 7000

Jannik Theyssen, Astrid Pieringer, Wolfgang Kropp
jannik.theyssen@chalmers.se

Division of Applied Acoustics / CHARMEC
Chalmers University of Technology
Gothenburg, Sweden

Vibration Pass-by noiseRadiation

Vibration Pass-by signalsRadiation

θ

x

r

Curved Waveguide Finite Element method
The curved WFE assumes harmonic oscillation
around the circumference of the wheel. The FE
system of equations

is solved for each discrete wavenumber
corresponding to the number of oscillations. This
produces the eigenfrequencies and mode
shapes of the wheel. and are stiffness-
and mass matrices. The figure below shows two
modes of the wheel:

The velocity field on the wheel due to an force
is obtained by modal superposition,

with the modal amplitude

where

and
.

The surface velocity serves as the input to the
boundary element model and to the wheel/rail
interaction model.

Fourier series Boundary Element method
The FBEM also makes use of the axisymmetry of
the wheel by decomposing the sound field into a
Fourier series. The BE problem reduces from 3D
to 2D, however, now 2D BE problems are solved
at each Fourier order. While FBEM is an efficient

Modal pass-by prediction
Since the wheel is only very lightly damped, it has
decay times of over 20 seconds. Calculating
Green's functions which include the structural
response is therefore not feasible in BEM/SH.
Instead the structural response is separated from
the acoustic radiation:

Convolution of and gives the
modal amplification

Then, acoustic propagation functions
from each mode are evaluated by inverse Fourier
transform, and finally, convolution of and
produces the pass-by pressure of mode

The total pressure is then calculated as the sum
of all modal contributions. The acoustic
propagation functions are smooth in frequency
domain, so they can be evaluated with a broad
frequency spacing.

solution for predicting the sound
field around a vibrating, stationary
wheel, it is not convenient for
simulating the pass-by of a wheel in
time domain. Instead, an equivalent
source model is used:

Spherical Harmonics
Representing the sound field by SH
equivalent sources allows the
efficient calculation of sound
pressure transfer functions

to any receiver
position. SH decompositions are
carried out for each mode . The
figures below show the directivity of
the mode (3,1,a).

FBEM is used to evaluation the
sound field on a sphere, which
serves as input to the SH
decomposition.

FE mesh and
coordinate definition

(2,0,a) (3,1,a)

z
yx

(xs,0,0)
rL

-5
-5
-5

x (m)
0

0

z
(m
)

y (m)
0

5

55

Directivity at 250 Hz Directivity at 1000 Hz

The modal amplitude
consists of the two terms

.
is expressed in time domain by
differentiating and scaling
with . The term describes
the frequency response of an
harmonic oscillator, for which an
analytic expression exists:
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Straight Waveguide Finite Element method
The WFE makes use of the constant cross-section
along the track, assuming propagating, decaying
waves in that dimension, which reduces the FE
problem to 2D. The system of equations

is solved by prescribing . This produces conjugate
complex wavenumbers and cross-sectional
modes of the rail:

The displacement response to the force
is calculated by superposition of all waves,

with
and

The discrete support of the rail is introduced by
assuming that the displacement response is a
superposition of the free rail response and the
response due to the reaction forces,

and with , a system of equations
with the unknown reaction forces can be set up
and solved. The total displacement is then
calculated by summing
the displacements
due to each
force.
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1.precalculating acoustic transfer functions
, i.e. the sound pressure produced at a

set of receiver positions for a unit velocity
at each boundary element:

The total sound pressure is calculated by
scaling and adding these functions.

2.re-using 2D BE solutions for a given at
different combinations of wavenumber
and frequency (and thus )

a b

FE mesh of the rail.
The velocity on the
outer boundary is
input to the radiation
calculation.

Wavenumber relations
in WBEM

of a free rail at 1000 Hz

Sleeper velocity profile along the track.
which is conveniently expressed in wavenumber
domain as
and serves as
the input to
WBEM.

3D non-Hertzian, non-linear contact model
The contact model combines the information
about the surface roughness of the wheel and the
rail with the local geometry to predict shape and
size of the contact area, local displacements and
stresses.

Wheel and rail are locally approximated by an
elastic half space. The potential contact area is
discretised into rectangular elements. Each
element influences each other element and a non-
linear system of equations needs to be solved at
each time step. Kalker's NORM and TANG
algorithm are used to solve the normal and
tangential problem, respectively.

Rail Sleepers
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Wheel pass-by noise in the time domain
The figure below shows a spectrogram of a single
wheel passing by a stationary microphone position.

It is clear that individual modes dominate the
spectrum, and the Doppler shift is visible.
Modelling the pass-by noise radiated by each
mode allows quantifying the contribution of each
mode to the total sound pressure:

Track pass-by noise in the time domain
The figure below shows a spectrogram of force on
the rail passing a stationary microphone position.

The track radiates noise mostly below 1 kHz. As
above, the Doppler shift is visible.

Time-domain interaction: moving Green's functions
The wheel/rail interaction is efficiently solved in
the time domain via moving Green's functions.
The Green's functions are precalculated and
contain the dynamic properties of the wheel,
specifically the receptance at the contact point

and the dynamic properties of the track, i.e. the
receptance at the contact point on the rail

Combining this with the local displacements in the
contact patch at every time step, the rolling
contact forces can be calculated by convolution.
This time-domain formulation allows including
transient and non-linear effects such as wheel flats
and curve squeal. The figure below shows an
example time history of rolling contact forces.
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Total tangential stress
in the contact zone.
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