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Significant progress has been made with multipartite entanglement of discrete qubits, but continuous
variable systems may provide a more scalable path toward entanglement of large ensembles. We
demonstrate multipartite entanglement in a microwave frequency comb generated by a Josephson
parametric amplifier subject to a bichromatic pump. We find 64 correlated modes in the transmission
line using a multifrequency digital signal processing platform. Full inseparability is verified in a subset of
seven modes. Our method can be expanded to generate even more entangled modes in the near future.
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Superconducting quantum circuits have demonstrated
excellent unitary control and coherence of qubits at a level
sufficient to usher in the era of noisy intermediate-scale
quantum technologies [1]. So far, a vast majority of the
research is focused on the circuit-based approach to
quantum computing [2]. An alternative paradigm is the
measurement-based one-way quantum computer [3–5],
where computation is realized through a sequence of
measurements on so-called cluster states [6,7]. This para-
digm has received significantly more attention in optics,
where the continuous variable (CV) counterpart has
revealed large scale multipartite entanglement in optical
frequency combs involving many thousands of modes
[8–13].
Ever since the pioneering experiments of Yurke et al.

[14,15], single and two-mode squeezing has been observed
in a wide variety of systems, from superconducting [16–27]
to mechanical [28–30]. However, to generate an arbitrary
cluster state, multimodal squeezing [31] beyond two modes
is required. Tripartite squeezing has been demonstrated in
superconducting devices [32–34] and multimode squeezing
has been demonstrated with parametrically coupled surface
acoustic wave modes [35]. But large multipartite entangle-
ment in the microwave spectrum with superconducting
circuits remains elusive.

In this Letter we demonstrate squeezing of multiple
propagating modes in a transmission line connected to a
Josephson parametric amplifier (JPA) with a bichromatic
pump. Our digital signal processing platform enables
measurements of correlations between as many as 64
modes. While genuine multipartite entanglement between
so many modes is nontrivial to establish unequivocally
[36–39], we present compelling evidence of seven fully
inseparable modes. Our method provides a clear path for
scaling to many more modes and perhaps construction of
CV cluster states.
Our JPA is a lumped-element LC circuit (see Fig. 1)

cooled to 10 mK, where the inductor is replaced by a
superconducting quantum interference device (SQUID).
The JPA is overcoupled at the signal port to a circulator
which separates incoming and outgoing modes in two
transmission lines, with the outgoing modes connected
through a double isolator to a cryogenic low-noise ampli-
fier. The second port is inductively coupled to the SQUID
loop, through which we apply a time-varying flux pump to
modulate the circuit inductance. The flux pump together
with the flux bias permit a three-wave mixing process,
known to amplify small signals and generate two-mode
squeezing [40]. The overcoupled linewidth of the JPA
resonance is κtotal ¼ 2π × 124 MHz.
Noise quadrature data are collected by a digital multi-

frequency lock-in that simultaneously demodulates at many
frequencies, each being an integer multiple of the meas-
urement bandwidth. We measure the IQ quadratures of up
to 64 evenly spaced frequencies with no Fourier leakage
between the demodulated frequencies. The measurement is
facilitated by directly digitizing in the second Nyquist zone,
granting access to the 2.5–5 GHz band without analog
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mixers. Analog bandpass filters at the lock-in input reduce
the effect of aliasing. The digital multifrequency lock-in’s
clock is the reference oscillation for our external microwave
generator which supplies the flux pump. For additional
details, see the Supplemental Material [41], which includes
Refs. [42–64].
The frequencies at which we measure and demodulate,

the modes, are determined by the flux pump frequencies. A
bichromatic pump, with frequencies Ω1 and Ω2, is applied
at the flux bias port. The frequencies are approximately
centered at twice the JPA resonance 1

2
ðΩ2 þΩ1Þ ≈ 2ω0

with a detuning Δ smaller than the JPA linewidth,
jΩ2 −Ω1j ¼ Δ ≪ κtotal. Measurement is carried out at a
comb of frequencies fn ¼ 1

4
ðΩ2 þΩ1Þ þ nΔ=4, n ∈ Z,

with spacing Δ=4 [see Fig. 1(c)]. This particular frequency
selection ensures that signal-idler pairs associated with
each pump overlap, giving rise to multimode squeezing. In
our experiments we use Δ ¼ 2π × 9.2 MHz for the pumps
and Δ=4 ¼ 2π × 2.3 MHz for the frequency comb.
To help visualize the correlations induced by pumping,

we first consider the familiar case of a monochromatic
pump, as illustrated in Fig. 1(b). Every frequency in the
comb is labeled by an integer, with 0 signifying the center

frequency ðΩ1 þΩ2Þ=4. In the three-wave mixing process
2ω0 ¼ ωn þ ω−n, correlations arise between signal-idler
pairs labelled n and −n. A graph represents the correla-
tions, where vertices indicate comb frequencies and edges
connect signal-idler pairs satisfying the three-wave mixing
criterion. We find that all vertices (except vertex 0) have
only one incident edge. These vertices are said to be of
degree 1 and correspond to two-mode squeezing. Note that
vertex 0 is unique since it is single-mode squeezed and has
an edge to itself, i.e., self-loop.
Going beyond two-mode squeezing requires vertices of

higher degree and preferably without self-loops. We
achieve this with a bichromatic pump, as shown in
Fig. 1(c). We partition the entire comb into three infinitely
long subgraphs K0, K1, and K−1. The superscripts indicate
the root vertices, defined as the leftmost vertex in Fig. 1(c).
The edges are color coded to indicate which pump
facilitates the interaction. The graphs for two pumps
suggest that a photon detected in any mode could be
correlated with an idler at another mode via either the red
pump or the blue pump. This ambiguity about exactly
which photons are involved in two-mode squeezing can be
viewed as an absence of which-color information [34,65],
in analogy to the absence of which-path information
required to entangle spatially separated photons [66].
We sample the noise output from the flux pumped JPA to

construct the measured covariance matrix C̃nm ¼ hðAn−
hAniÞðAm − hAmiÞi, where An ∈ fIn; Qng is the measured
quadrature value for mode n. The measured matrix C̃nm

(obtained in units of V2) is scaled according to

Ṽnm ¼ C̃nm
1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
ωnωm

p
ZcℏB

; ð1Þ

where ωn (ωm) denotes the frequency of mode n (m), while
Zc, B and ℏ are the characteristic impedance of the line
(50 Ω), the measurement bandwidth (1 kHz) and Planck
constant, respectively. This scaling permits the covariance
matrix to be stated in units of twice the photon number (2n̄)
and the vacuum state as the identity matrix. Ṽnm is
subsequently compensated for the frequency-dependent
gain and added noise of the amplifier chain using a
procedure documented in the Supplemental Material
[41]. The result is a calibrated covariance matrix V 0

nm.
A physical covariance matrix must be semi-positive

definite and it must not violate the uncertainty principle.
For a general covariance matrix V in our units, we express
these conditions as [67]

V ≥ 0; V − iΩ ≥ 0; ð2Þ

with the symplectic matrix Ω ¼⊗n ð 0
−1

1
0
Þ.

When compensating the measured covariance matrix
Ṽnm for added measurement noise, it may happen that
the calibrated covariance matrix V 0

nm violates Eqs. (2).

(a)

(b) (c)

FIG. 1. (a) The JPA forms a LC circuit with tunable inductance
LJ due to the SQUID. The inductance, and hence its resonance
frequency ω0, is modulated by an external flux field of the
monochromatic or bichromatic kind, labeled b and c, respec-
tively. The pump stimulates incoming vacuum noise scattering off
the JPA resonance to become entangled (right). The incoming and
outgoing noise is separated by a circulator. (b) A monochromatic
flux pump is applied at ωp ≈ 2ω0, which correlates modes
symmetrically around mode 0. We use a graph to indicate the
resulting correlations in the frequency comb. Numbered vertices
correspond to labels on the frequency axis and edges indicate
classical or quantum correlations. (c) A bichromatic flux pump
consists of two different frequencies at roughly 2ω0. We can
illustrate the correlations with graphs K0, K−1, and K1. The
superscript indicates the root vertex. In our Letter, Δ ¼ 2π ×
9.2 MHz and ω0 ≈ 2π × 4.3 GHz.
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Therefore, we constrain this compensation to reconstruct a
physical covariance matrix, within experimental error σnm,
that does satisfy Eqs. (2), by minimizing the objective
function [68]

min
V

�
max
nm

jV 0
nm − Vnmj
σnm

�
: ð3Þ

Ideally the objective function should be less than unity for a
plausible reconstruction (i.e., the reconstructed matrix is
within experimental error of the calibrated matrix). With
this reconstructed covariance matrix, we proceed to analyze
the entanglement properties.
We first test for entanglement generated by a mono-

chromatic flux pump, (−3 dBm output power) well known
to generate pairs of entangled modes, known as two-mode
squeezed states [16–27]. We measure the covariance matrix
of the closest seven modes around the half-pump frequency
with 1 kHz measurement bandwidth, acquiring 6 × 105

data points over 10 min. To minimize the effect of phase
drift in this long-time measurement, we divide the dataset
into six equal segments. Reconstructing a physical covari-
ance matrix in each segment, we find a maximum deviation
4 × 10−5 σ from the calibrated matrix. We present one of
these covariance matrices in Fig. 2(a). The 0 mode is
located at exactly half the pump frequency. Consequently,
all modes symmetric around the 0 mode create two-mode
squeezed states, as indicated by the checkered blue-red
antidiagonal. The three pairs are analyzed for entanglement
using the PPT test [69] and the Duan criterion [70]. The
weighted results for the six matrices are presented in
Fig. 2(b). Analysis indicates the three pairs exhibit bipartite
entanglement. See the Supplemental Material [41] for
details.
As depicted in the graphs of Fig. 1, a monochromatic

pump generates only bipartite states which are either
entangled or separable. In contrast, a bichromatic pump
generates a multipartite state which may belong to one of
many possible entanglement and separability classes—
ranging from fully separable to genuinely multipartite
entangled (GME). As a generalization of the bipartite case,
a n-partite (n > 2) mixed state is fully separable if it can be
written as a convex combination of product states.
Furthermore, an n-partite state can be arranged into k ≤ n
partitions. If the state is fully separable with respect to k
partitioning (or expressed as a mixture of k partitions), we
call it k-separable, if not, k-inseparable [71]. We call the
n-partite state fully inseparable if it is not separable with
respect to any partitioning [72]. Additional details are given
in the Supplemental Material [41].
To establish whether an n-mode state is fully inseparable,

it suffices to establish that the state in question is insepa-
rable with respect to any bipartitioning, i.e., it exhibits
bi-inseparability. For pure states, bi-inseparability is a
necessary and sufficient condition for GME, as it implies

entanglement for any other k partitioning of modes.
However for mixed states, bi-inseparability substantiates
only the claim of full inseparability [73]. To establish the
latter we test for entanglement on all possible bipartitions of
the n-mode state; a computationally demanding task that
grows exponentially with the number of modes n (the
number of bipartitions is 2n−1 − 1).

(a)

(b)

FIG. 2. (a) Reconstructed covariance matrix generated by a
monochromatic pump. The mode at the half-pump frequency is
visible at the center where the red diagonal and the red-blue
antidiagonal intersect. The red diagonal contains noise, while the
red-blue antidiagonal indicates pairwise correlations. For clarity,
only the I quadratures are labeled on the x and y axes. The Q
quadratures are interleaved between I columns and rows. The
subscripts label different modes. The covariance matrix is given
in units of twice the photon number 2n̄. (b) Each mode-pair
symmetric around the half-pump frequency 4.3 GHz is analyzed
for entanglement using the PPT test [69], the Duan criterion [70],
and a SvL test [37,68] using optimization; see Eq. (4). With our
convention, non-negative values correspond to separable states.
All three tests return negative results. The bottom x axis indicates
the detuning between mode n ∈ ½�1;�2;�3� and the half-pump
frequency mode. Because of our choice of covariance matrix
normalization, the criteria are consequently given in units of
twice the photon number. The error bars and values are the
weighted mean and uncertainties (1 standard deviation) from an
ensemble of six measurements lasting 10 min each.
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We use a bipartition test developed by Shchukin and van
Loock [37,68], henceforth referred to as the SvL test.
Consider the case of a covariance matrix V with zero IQ
correlations (or, equivalently, zero xp correlations [67]).
This state is equally well characterized by two smaller
matrices VII and VQQ containing only II and QQ corre-
lations respectively, a reduction which is always possible
with local Gaussian transformations such as single mode
phase rotations. Local Gaussian transformations can only
transform entangled states into other entangled states, and
separable states into other separable states [70]. If n modes
are divided into bipartitions I and J , then the SvL
condition for separability between I and J reads [68]

E ¼ Tr½VIIðh ⊗ hÞ� þ Tr½VQQðg ⊗ gÞ�
− 2jhhI ; gIij − 2jhhJ ; gJ ij ≥ 0; ð4Þ

where h and g are arbitrary real valued vectors with lengths
n, and each element is assigned to every mode. Depending
on whether the mode belongs to the I or J partition, we
extract the corresponding elements from h and g to create
vectors hI , gI and hJ , gJ . For example, consider three
modes f1; 2; 3g and the vectors h ¼ ðh1; h2; h3Þ⊺,
g ¼ ðg1; g2; g3Þ⊺. If the bipartition is fI jJ g ¼ f1j2; 3g,
then we have hI ¼ ðh1Þ, gI ¼ ðg1Þ and hJ ¼ ðh2; h3Þ⊺,
gJ ¼ ðg2; g3Þ⊺.

If the bipartition is separable, then the inequality Eq. (4)
holds for all h and g. Thus, bi-inseperability is established if
we find at least one pair of vectors h and g which violates
the inequality, i.e., for which E is negative, in each possible
bipartition. To check for consistency with other entangle-
ment tests we apply the SvL test to the monochromatic
pump data with the result shown in Fig. 2(b). The vectors h
and g are optimized to minimize the ratio E=δE, where δE is
the uncertainty in E. From Fig. 2(b), it is clear that all three
tests agree on the states’ entangled character.
We use the SvL test to demonstrate our main result: the

generation of a fully inseparable multipartite state with a
bichromatic pump. Figure 3 shows the measured covari-
ance matrix of 64 modes generated by a bichromatic
flux-pump each with −7 dBm output power (left). The
measurement is qualitatively well reproduced by our theory
(right) provided in the Supplemental Material [41]. With 64
frequencies the number of possible bipartitions exceeds
9 × 1018. This number is reduced by exploiting the con-
nection topology shown in Fig. 1. We divide the covariance
matrix into the three smaller subsets of modes: K0, K−1,
and K1, analyzing each separately and thereby reducing the
number of modes to 32 for K0 and 16 modes for K�1. But
the number of possible bipartitions remains large, roughly
2 × 109 and 32767 respectively. We therefore analyze an
even smaller subset: the seven center modes in the K0

set (K0 modes ∈ f0;�2;�4;�6g, and four modes in the

FIG. 3. Experimental covariance matrix reconstructed from measurement of 64 modes generated by two pumps (left). The presence of
off-diagonals indicates at least the presence of classical correlations. To determine whether these are quantum correlations requires
further analysis outlined in the main text. Our theory reproduces a qualitatively similar matrix (right). The finite bandwidth of the JPA
weakens correlations among modes at the edges of the frequency comb. For clarity, we omit I and Q labels on the x and y axes. Instead
they are labeled by the mode index, such that mode 0 lies at exactly half of the average pump frequency, cf. Fig. 1(c). Each mode is
spaced by 2.3 MHz. Covariance matrix elements are given in units of twice the photon number (2n̄), making the identity matrix
correspond to the vacuum state.
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K�1-sets (K−1 modes ∈ f−5;−1; 3; 7g and K1 modes
∈ f−7;−3; 1; 5g).
As for the monochromatic pump case, we divide a

10 min measurement with 1 kHz bandwidth into six
segments, reconstructing the covariance matrix in each,
with maximum deviation of 1.15σ, 0.95σ, and 0.92σ for
subsets K−1, K0, and K1, respectively. We perform the SvL
test Eq. (4) on each matrix of each subset, with vectors h
and g that are individually optimized to minimize E=δE.
The results are summarized in Fig. 4 as a weighted mean

entanglement significance Σw ¼ Ew=δEw (Ew is the mean
and δEw is the corresponding uncertainty). For example, if
Σw ¼ −5, entanglement is established with a statistical
significance of 5 standard deviations. Since all bipartitions
violate the inequality Eq. (4) by at least 2.5 standard
deviations, we have substantial evidence for full insepa-
rability of seven modes. We probably have full insepa-
rability for four modes in K1, while evidence for K−1 is
weaker.
In conclusion, direct digital modulation and demodula-

tion methods provide a powerful tool for generation of
multipartite entanglement in a microwave frequency comb.
We demonstrated this with 64 modes using a bichromatic
pump and used the SvL test to show full inseparability of a
subset of 7 modes in the comb. A direct extension of our
technique should allow for the creation of multimodal
Gaussian cluster states through precise control of the
amplitude and phase of the multiple pumps [74]. For
example, pumping at 2ω0 in combination with pumping
at the comb spacing Δ=2, should control the scattering
between nearest neighbour modes, as in Ref. [75]. Other

possible applications include quantum simulation [76,77]
and reservoir computing with continuous variable Gaussian
states [78].

We acknowledge fruitful discussions with Giulia Ferrini
and support by the Knut and Alice Wallenberg Foundation
through the Wallenberg Center for Quantum Technology
(WACQT). R. B., M. O. T., and D. B. H. are part owners of
the company Intermodulation Products AB, which produ-
ces the digital microwave platform used in this experiment.

*shan@meetiqm.com
†Present address: IQM Finland Oy, Espoo 02150, Finland.
‡Present address: Quantum Machines Unit, Okinawa
Institute of Science and Technology Graduate University,
Onna-son, Okinawa 904-0495, Japan.

[1] F. Arute et al., Quantum supremacy using a programmable
superconducting processor, Nature (London) 574, 505
(2019).

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[3] R. Raussendorf and H. J. Briegel, A One-Way Quantum
Computer, Phys. Rev. Lett. 86, 5188 (2001).

[4] R. Raussendorf, D. E. Browne, and H. J. Briegel, Measure-
ment-based quantum computation on cluster states, Phys.
Rev. A 68, 022312 (2003).

[5] M. V. Larsen, J. S. Neergaard-Nielsen, and U. L. Andersen,
Architecture and noise analysis of continuous-variable
quantum gates using two-dimensional cluster states, Phys.
Rev. A 102, 042608 (2020).

[6] H. J. Briegel and R. Raussendorf, Persistent Entanglement
in Arrays of Interacting Particles, Phys. Rev. Lett. 86, 910
(2001).

[7] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C.
Ralph, and M. A. Nielsen, Universal Quantum Computation
with Continuous-Variable Cluster States, Phys. Rev. Lett.
97, 110501 (2006).

[8] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N.
Treps, Wavelength-multiplexed quantum networks with
ultrafast frequency combs, Nat. Photonics 8, 109 (2014).

[9] O. Pfister, Continuous-variable quantum computing in the
quantum optical frequency comb, J. Phys. B 53, 012001
(2019).

[10] S. Yokoyama, R. Ukai, S. C. Armstrong, C.
Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H.
Yonezawa, N. C. Menicucci, and A. Furusawa, Ultra-large-
scale continuous-variable cluster states multiplexed in the
time domain, Nat. Photonics 7, 982 (2013).

[11] J.-i. Yoshikawa, S. Yokoyama, T. Kaji, C.
Sornphiphatphong, Y. Shiozawa, K. Makino, and A.
Furusawa, Invited article: Generation of one-million-mode
continuous-variable cluster state by unlimited time-domain
multiplexing, APL Photonics 1, 060801–11 (2016).

[12] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-
Nielsen, and U. L. Andersen, Deterministic generation of
a two-dimensional cluster state, Science 366, 369 (2019).

FIG. 4. Bipartition test for the seven center modes in the K0 set
and four center modes from K�1. For K0, all tests violate the
requirement for separability by at least 2.5 standard deviations,
indicating that we have strong evidence for full inseparability. For
K1, we have full inseparability with a significance of 2 standard
deviations. However evidence for full inseparability for the K−1

set is significantly weaker.

PHYSICAL REVIEW LETTERS 130, 120601 (2023)

120601-5

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.102.042608
https://doi.org/10.1103/PhysRevA.102.042608
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1038/nphoton.2013.340
https://doi.org/10.1088/1361-6455/ab526f
https://doi.org/10.1088/1361-6455/ab526f
https://doi.org/10.1038/nphoton.2013.287
https://doi.org/10.1063/1.4962732
https://doi.org/10.1126/science.aay4354


[13] W. Asavanant, Y. Shiozawa, S. Yokoyama, B.
Charoensombutamon, H. Emura, R. N. Alexander, S.
Takeda, J. ichi Yoshikawa, N. C. Menicucci, H. Yonezawa,
and A. Furusawa, Generation of time-domain-multiplexed
two-dimensional cluster state, Science 366, 373 (2019).

[14] B. Yurke, P. G. Kaminsky, R. E. Miller, E. A. Whittaker,
A. D. Smith, A. H. Silver, and R.W. Simon, Observation of
4.2-k Equilibrium-Noise Squeezing via a Josephson-
Parametric Amplifier, Phys. Rev. Lett. 60, 764 (1988).

[15] R. Movshovich, B. Yurke, P. G. Kaminsky, A. D. Smith,
A. H. Silver, R. W. Simon, and M. V. Schneider, Observa-
tion of Zero-Point Noise Squeezing via a Josephson-
Parametric Amplifier, Phys. Rev. Lett. 65, 1419 (1990).

[16] E. A. Tholén, A. Ergül, K. Stannigel, C. Hutter, and D. B.
Haviland, Parametric amplification with weak-link non-
linearity in superconducting microresonators, Phys. Scr.
2009, 014019 (2009).

[17] C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen, J. M.
Fink, S. Filipp, and A. Wallraff, Observation of Two-Mode
Squeezing in the Microwave Frequency Domain, Phys. Rev.
Lett. 107, 113601 (2011).

[18] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R.
Vale, and K.W. Lehnert, Amplification and squeezing of
quantum noise with a tunable Josephson metamaterial, Nat.
Phys. 4, 929 (2008).

[19] E. Flurin, N. Roch, F. Mallet, M. H. Devoret, and B. Huard,
Generating Entangled Microwave Radiation Over Two
Transmission Lines, Phys. Rev. Lett. 109, 183901
(2012).

[20] C. Eichler, Y. Salathe, J. Mlynek, S. Schmidt, and A.
Wallraff, Quantum-Limited Amplification and Entangle-
ment in Coupled Nonlinear Resonators, Phys. Rev. Lett.
113, 110502 (2014).

[21] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen,
J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Observa-
tion of the dynamical casimir effect in a superconducting
circuit, Nature (London) 479, 376 (2011).

[22] E. P. Menzel, R. Di Candia, F. Deppe, P. Eder, L. Zhong, M.
Ihmig, M. Haeberlein, A. Baust, E. Hoffmann, D. Ballester,
K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, A.
Marx, and R. Gross, Path Entanglement of Continuous-
Variable Quantum Microwaves, Phys. Rev. Lett. 109,
250502 (2012).

[23] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J.
Hakonen, Dynamical casimir effect in a Josephson meta-
material, Proc. Natl. Acad. Sci. U.S.A. 110, 4234 (2013).

[24] B. H. Schneider, A. Bengtsson, I. M. Svensson, T. Aref, G.
Johansson, J. Bylander, and P. Delsing, Observation of
Broadband Entanglement in Microwave Radiation from a
Single Time-Varying Boundary Condition, Phys. Rev. Lett.
124, 140503 (2020).

[25] M. Perelshtein, K. Petrovnin, V. Vesterinen, S. H. Raja, I.
Lilja, M. Will, A. Savin, S. Simbierowicz, R. Jabdaraghi, J.
Lehtinen, L. Grönberg, J. Hassel, M. Prunnila, J. Govenius,
S. Paraoanu, and P. Hakonen, Broadband continuous var-
iable entanglement generation using kerr-free Josephson
metamaterial, arXiv:2111.06145.

[26] M. Esposito, A. Ranadive, L. Planat, S. Leger, D. Fraudet,
V. Jouanny, O. Buisson, W. Guichard, C. Naud, J.
Aumentado, F. Lecocq, and N. Roch, Observation of

Two-Mode Squeezing in a Traveling Wave Parametric
Amplifier, Phys. Rev. Lett. 128, 153603 (2022).

[27] J. Y. Qiu, A. Grimsmo, K. Peng, B. Kannan, B. Lienhard, Y.
Sung, P. Krantz, V. Bolkhovsky, G. Calusine, D. Kim, A.
Melville, B. M. Niedzielski, J. Yoder, M. E. Schwartz, T. P.
Orlando, I. Siddiqi, S. Gustavsson, K. P. O’Brien, and W. D.
Oliver, Broadband squeezed microwaves and amplification
with a Josephson traveling-wave parametric amplifier, Nat.
Phys. (2023).

[28] T. Palomaki, J. Teufel, R. Simmonds, and K. Lehnert,
Entangling mechanical motion with microwave fields,
Science 342, 710 (2013).

[29] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen,
T. T. Heikkilä, F. Massel, and M. A. Sillanpää, Noiseless
Quantum Measurement and Squeezing of Microwave Fields
Utilizing Mechanical Vibrations, Phys. Rev. Lett. 118,
103601 (2017).

[30] S. Kotler, G. A. Peterson, E. Shojaee, F. Lecocq, K. Cicak,
A. Kwiatkowski, S. Geller, S. Glancy, E. Knill, R. W.
Simmonds, J. Aumentado, and J. D. Teufel, Direct obser-
vation of deterministic macroscopic entanglement, Science
372, 622 (2021).

[31] S. Zippilli and D. Vitali, Possibility to generate any gaussian
cluster state by a multimode squeezing transformation,
Phys. Rev. A 102, 052424 (2020).

[32] C. W. Sandbo Chang, M. Simoen, J. Aumentado, C. Sabín,
P. Forn-Díaz, A. M. Vadiraj, F. Quijandría, G. Johansson, I.
Fuentes, and C. M. Wilson, Generating Multimode En-
tangled Microwaves with a Superconducting Parametric
Cavity, Phys. Rev. Appl. 10, 044019 (2018).

[33] A. Agustí, C. W. Sandbo Chang, F. Quijandría, G.
Johansson, C. M. Wilson, and C. Sabín, Tripartite Genuine
Non-Gaussian Entanglement in Three-Mode Spontaneous
Parametric Down-Conversion, Phys. Rev. Lett. 125, 020502
(2020).

[34] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J.
Hakonen, Coherence and multimode correlations from
vacuum fluctuations in a microwave superconducting cav-
ity, Nat. Commun. 7, 1 (2016).

[35] G. Andersson, S. W. Jolin, M. Scigliuzzo, R. Borgani, M. O.
Tholén, J. C. Rivera Hernández, V. Shumeiko, D. B.
Haviland, and P. Delsing, Squeezing and multimode en-
tanglement of surface acoustic wave phonons, PRX Quan-
tum 3, 010312 (2022).

[36] J. Sperling and W. Vogel, Multipartite Entanglement
Witnesses, Phys. Rev. Lett. 111, 110503 (2013).

[37] E. Shchukin and P. van Loock, Generalized conditions for
genuine multipartite continuous-variable entanglement,
Phys. Rev. A 92, 042328 (2015).

[38] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps,
and C. Fabre, Full Multipartite Entanglement of Frequency-
Comb Gaussian States, Phys. Rev. Lett. 114, 050501
(2015).

[39] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund,
N. Treps, and C. Fabre, Multipartite Entanglement of
a Two-Separable State, Phys. Rev. Lett. 117, 110502
(2016).

[40] A. Roy and M. Devoret, Introduction to parametric ampli-
fication of quantum signals with Josephson circuits, C. R.
Phys. 17, 740 (2016).

PHYSICAL REVIEW LETTERS 130, 120601 (2023)

120601-6

https://doi.org/10.1126/science.aay2645
https://doi.org/10.1103/PhysRevLett.60.764
https://doi.org/10.1103/PhysRevLett.65.1419
https://doi.org/10.1088/0031-8949/2009/T137/014019
https://doi.org/10.1088/0031-8949/2009/T137/014019
https://doi.org/10.1103/PhysRevLett.107.113601
https://doi.org/10.1103/PhysRevLett.107.113601
https://doi.org/10.1038/nphys1090
https://doi.org/10.1038/nphys1090
https://doi.org/10.1103/PhysRevLett.109.183901
https://doi.org/10.1103/PhysRevLett.109.183901
https://doi.org/10.1103/PhysRevLett.113.110502
https://doi.org/10.1103/PhysRevLett.113.110502
https://doi.org/10.1038/nature10561
https://doi.org/10.1103/PhysRevLett.109.250502
https://doi.org/10.1103/PhysRevLett.109.250502
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1103/PhysRevLett.124.140503
https://doi.org/10.1103/PhysRevLett.124.140503
https://arXiv.org/abs/2111.06145
https://doi.org/10.1103/PhysRevLett.128.153603
https://doi.org/10.1038/s41567-022-01929-w
https://doi.org/10.1038/s41567-022-01929-w
https://doi.org/10.1126/science.1244563
https://doi.org/10.1103/PhysRevLett.118.103601
https://doi.org/10.1103/PhysRevLett.118.103601
https://doi.org/10.1126/science.abf2998
https://doi.org/10.1126/science.abf2998
https://doi.org/10.1103/PhysRevA.102.052424
https://doi.org/10.1103/PhysRevApplied.10.044019
https://doi.org/10.1103/PhysRevLett.125.020502
https://doi.org/10.1103/PhysRevLett.125.020502
https://doi.org/10.1038/ncomms12548
https://doi.org/10.1103/PRXQuantum.3.010312
https://doi.org/10.1103/PRXQuantum.3.010312
https://doi.org/10.1103/PhysRevLett.111.110503
https://doi.org/10.1103/PhysRevA.92.042328
https://doi.org/10.1103/PhysRevLett.114.050501
https://doi.org/10.1103/PhysRevLett.114.050501
https://doi.org/10.1103/PhysRevLett.117.110502
https://doi.org/10.1103/PhysRevLett.117.110502
https://doi.org/10.1016/j.crhy.2016.07.012
https://doi.org/10.1016/j.crhy.2016.07.012


[41] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.120601 for further
details regarding the measurement setup, sample design,
data analysis and theoretical model.

[42] Intermodulation products, https://intermodulation-products
.com/, Accessed: 2021-10-19.

[43] E. A. Tholén, D. Platz, D. Forchheimer, V. Schuler, M. O.
Tholén, C. Hutter, and D. B. Haviland, Note: The inter-
modulation lockin analyzer, Rev. Sci. Instrum. 82, 026109
(2011).

[44] Multifrequency lockin basics, https://www.intermod.pro/
manuals/IMP-MLA_user_manual/lockin.html, Accessed:
2022-11-13.

[45] S.W. Jolin, R. Borgani, M. O. Tholén, D. Forchheimer, and
D. B. Haviland, Calibration of mixer amplitude and phase
imbalance in superconducting circuits, Rev. Sci. Instrum.
91, 124707 (2020).

[46] M. Mariantoni, E. P. Menzel, F. Deppe, M. A. Araque
Caballero, A. Baust, T. Niemczyk, E. Hoffmann, E.
Solano, A. Marx, and R. Gross, Planck Spectroscopy and
Quantum Noise of Microwave Beam Splitters, Phys. Rev.
Lett. 105, 133601 (2010).

[47] E. Tholén, Intermodulation in microresonators for
microwave amplification and nanoscale surface analysis,
Ph.D. thesis, KTH, Sweden, 2009.

[48] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R. J. Schoelkopf, Introduction to quantum noise, measure-
ment, and amplification, Rev. Mod. Phys. 82, 1155
(2010).

[49] C. M. Caves, Quantum limits on noise in linear amplifiers,
Phys. Rev. D 26, 1817 (1982).

[50] A. Pastore, An introduction to bootstrap for nuclear physics,
J. Phys. G 46, 052001 (2019).

[51] S. Diamond and S. Boyd, CVXPY: A Python-embedded
modeling language for convex optimization, J. Mach. Learn.
Res. 17, 1 (2016), http://jmlr.org/papers/v17/15-408.html.

[52] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd,
A rewriting system for convex optimization problems,
J. Control Decision 5, 42 (2018).

[53] scipy.optimize.differential_evolution, https://docs.scipy.org/
doc/scipy/reference/generated/scipy.optimize.differential_
evolution.html, Accessed: 2022-09-11.

[54] scipy.stats.kurtosistest, https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.kurtosistest.html, Accessed:
2022-07-19.

[55] scipy.stats.skewtest, https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.skewtest.html, Accessed: 2022-07-19.

[56] C. W. Gardiner and M. J. Collett, Input and output in
damped quantum systems: Quantum stochastic differential
equations and the master equation, Phys. Rev. A 31, 3761
(1985).

[57] Y. Hong and S. Luo, Detecting k-nonseparability via local
uncertainty relations, Phys. Rev. A 93, 042310 (2016).

[58] M. Huber, F. Mintert, A. Gabriel, and B. C. Hiesmayr,
Detection of High-Dimensional Genuine Multipartite
Entanglement of Mixed States, Phys. Rev. Lett. 104,
210501 (2010).

[59] L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch,
and T. Jennewein, Three-photon energy–time entanglement
—Nature Physics, Nat. Phys. 9, 19 (2013).

[60] R. Y. Teh and M. D. Reid, Criteria for genuine N-partite
continuous-variable entanglement and Einstein-Podolsky-
Rosen steering, Phys. Rev. A 90, 062337 (2014).

[61] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep.
474, 1 (2009).

[62] T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A.
Furusawa, and P. van Loock, Experimental Creation of a
Fully Inseparable Tripartite Continuous-Variable State,
Phys. Rev. Lett. 91, 080404 (2003).

[63] A. Serafini, Quantum Continuous Variables: A Primer of
Theoretical Methods (Taylor & Francis, Andover, England,
UK, 2017).

[64] P. Hyllus and J. Eisert, Optimal entanglement witnesses
for continuous-variable systems, New J. Phys. 8, 51
(2006).

[65] L.-Y. Qu, J. Cotler, F. Ma, J.-Y. Guan, M.-Y. Zheng, X. Xie,
Y.-A. Chen, Q. Zhang, F. Wilczek, and J.-W. Pan, Color
Erasure Detectors Enable Chromatic Interferometry, Phys.
Rev. Lett. 123, 243601 (2019).

[66] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C.
Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu,
X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu,
and J.-W. Pan, Experimental Ten-Photon Entanglement,
Phys. Rev. Lett. 117, 210502 (2016).

[67] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[68] E. Shchukin and P. van Loock, Recovering Quantum
Properties of Continuous-Variable States in the Presence
of Measurement Errors, Phys. Rev. Lett. 117, 140504
(2016).

[69] R. Simon, Peres-Horodecki Separability Criterion for
Continuous Variable Systems, Phys. Rev. Lett. 84, 2726
(2000).

[70] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Insepa-
rability Criterion for Continuous Variable Systems, Phys.
Rev. Lett. 84, 2722 (2000).

[71] M. Seevinck and J. Uffink, Partial separability and entan-
glement criteria for multiqubit quantum states, Phys. Rev. A
78, 032101 (2008).

[72] W. Dür and J. I. Cirac, Classification of multiqubit mixed
states: Separability and distillability properties, Phys. Rev.
A 61, 042314 (2000).

[73] R. Y. Teh and M. D. Reid, Criteria to detect genuine
multipartite entanglement using spin measurements, Phys.
Rev. A 100, 022126 (2019).

[74] F. Arzani, C. Fabre, and N. Treps, Versatile engineering of
multimode squeezed states by optimizing the pump spectral
profile in spontaneous parametric down-conversion, Phys.
Rev. A 97, 033808 (2018).

[75] F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W.
Simmonds, J. D. Teufel, and J. Aumentado, Nonreciprocal
Microwave Signal Processing with a Field-Programmable
Josephson Amplifier, Phys. Rev. Appl. 7, 024028
(2017).

[76] J. S. Hung, J. Busnaina, C. S. Chang, A. Vadiraj, I.
Nsanzineza, E. Solano, H. Alaeian, E. Rico, and C.
Wilson, Quantum Simulation of the Bosonic Creutz Ladder
with a Parametric Cavity, Phys. Rev. Lett. 127, 100503
(2021).

PHYSICAL REVIEW LETTERS 130, 120601 (2023)

120601-7

http://link.aps.org/supplemental/10.1103/PhysRevLett.130.120601
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.120601
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.120601
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.120601
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.120601
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.120601
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.120601
https://intermodulation-products.com/
https://intermodulation-products.com/
https://doi.org/10.1063/1.3541791
https://doi.org/10.1063/1.3541791
https://www.intermod.pro/manuals/IMP-MLA_user_manual/lockin.html
https://www.intermod.pro/manuals/IMP-MLA_user_manual/lockin.html
https://www.intermod.pro/manuals/IMP-MLA_user_manual/lockin.html
https://www.intermod.pro/manuals/IMP-MLA_user_manual/lockin.html
https://www.intermod.pro/manuals/IMP-MLA_user_manual/lockin.html
https://doi.org/10.1063/5.0025836
https://doi.org/10.1063/5.0025836
https://doi.org/10.1103/PhysRevLett.105.133601
https://doi.org/10.1103/PhysRevLett.105.133601
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/PhysRevD.26.1817
https://doi.org/10.1088/1361-6471/ab00ad
http://jmlr.org/papers/v17/15-408.html
http://jmlr.org/papers/v17/15-408.html
http://jmlr.org/papers/v17/15-408.html
https://doi.org/10.1080/23307706.2017.1397554
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.93.042310
https://doi.org/10.1103/PhysRevLett.104.210501
https://doi.org/10.1103/PhysRevLett.104.210501
https://doi.org/10.1038/nphys2492
https://doi.org/10.1103/PhysRevA.90.062337
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/PhysRevLett.91.080404
https://doi.org/10.1088/1367-2630/8/4/051
https://doi.org/10.1088/1367-2630/8/4/051
https://doi.org/10.1103/PhysRevLett.123.243601
https://doi.org/10.1103/PhysRevLett.123.243601
https://doi.org/10.1103/PhysRevLett.117.210502
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevLett.117.140504
https://doi.org/10.1103/PhysRevLett.117.140504
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevA.78.032101
https://doi.org/10.1103/PhysRevA.78.032101
https://doi.org/10.1103/PhysRevA.61.042314
https://doi.org/10.1103/PhysRevA.61.042314
https://doi.org/10.1103/PhysRevA.100.022126
https://doi.org/10.1103/PhysRevA.100.022126
https://doi.org/10.1103/PhysRevA.97.033808
https://doi.org/10.1103/PhysRevA.97.033808
https://doi.org/10.1103/PhysRevApplied.7.024028
https://doi.org/10.1103/PhysRevApplied.7.024028
https://doi.org/10.1103/PhysRevLett.127.100503
https://doi.org/10.1103/PhysRevLett.127.100503


[77] A. McDonald, T. Pereg-Barnea, and A. A. Clerk, Phase-
Dependent Chiral Transport and Effective Non-Hermitian
Dynamics in a Bosonic Kitaev-Majorana Chain, Phys. Rev.
X 8, 041031 (2018).

[78] J. Nokkala, R. Martínez-Peña, G. L. Giorgi, V. Parigi, M. C.
Soriano, and R. Zambrini, Gaussian states of continuous-
variable quantum systems provide universal and versatile
reservoir computing, Commun. Phys. 4, 53 (2021).

PHYSICAL REVIEW LETTERS 130, 120601 (2023)

120601-8

https://doi.org/10.1103/PhysRevX.8.041031
https://doi.org/10.1103/PhysRevX.8.041031
https://doi.org/10.1038/s42005-021-00556-w

