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Abstract
SMT-based model checkers, especially IC3-style ones, are currently the most effective 
techniques for verification of infinite state systems. They infer global inductive invari-
ants via local reasoning about a single step of the transition relation of a system, while 
employing SMT-based procedures, such as interpolation, to mitigate the limitations of 
local reasoning and allow for better generalization. Unfortunately, these mitigations inter-
twine model checking with heuristics of the underlying SMT-solver, negatively affecting 
stability of model checking. In this paper, we propose to tackle the limitations of locality 
in a systematic manner. We introduce explicit global guidance into the local reasoning per-
formed by IC3-style algorithms. To this end, we extend the SMT-IC3 paradigm with three 
novel rules, designed to mitigate fundamental sources of failure that stem from locality. 
We instantiate these rules for Linear Integer Arithmetic and Linear Rational Aritmetic and 
implement them on top of Spacer solver in Z3. Our empirical results show that GSpacer, 
Spacer extended with global guidance, is significantly more effective than both Spacer and 
sole global reasoning, and, furthermore, is insensitive to interpolation.
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1  Introduction

SMT-based Model Checking algorithms that combine SMT-based search for bounded 
counterexamples with interpolation-based search for inductive invariants are currently the 
most effective techniques for verification of infinite state systems. They are widely appli-
cable, including for verification of synchronous systems, protocols, parameterized systems, 
and software.

The Achilles heel of these approaches is the mismatch between the local reasoning 
used to establish absence of bounded counterexamples and a global reason for absence 
of unbounded counterexamples (i.e., existence of an inductive invariant). This is particu-
larly apparent in IC3-style algorithms [1], such as Spacer [2]. IC3-style algorithms estab-
lish bounded safety by repeatedly computing predecessors of error (or bad) states, blocking 
them by local reasoning about a single step of the transition relation of the system, and, 
later, using the resulting lemmas to construct a candidate inductive invariant for the global 
safety proof. The whole process is driven by the choice of local lemmas. Good lemmas 
lead to quick convergence, bad lemmas make even simple-looking problems difficult to 
solve.

The effect of local reasoning is somewhat mitigated by the use of interpolation in lemma 
construction. In addition to the usual inductive generalization by dropping literals from a 
blocked bad state, interpolation is used to further generalize the blocked state using theory-
aware reasoning. For example, when blocking a bad state x = 1 ∧ y = 1 , inductive gener-
alization would infer a sub-clause of x ≠ 1 ∨ y ≠ 1 as a lemma, while interpolation might 
infer x ≠ y —a predicate that might be required for the inductive invariant. Spacer, that is 
based on this idea, is extremely effective, as demonstrated by its performance in CHC-
COMP competitions [3]. The downside, however, is that the approach leads to a highly 
unstable procedure that is extremely sensitive to syntactic changes in the system descrip-
tion, changes in interpolation algorithms, and any algorithmic changes in the underlying 
SMT-solver.

An alternative approach, often called invariant inference, is to focus on the global safety 
proof, i.e., an inductive invariant. This has long been advocated by such approaches as 
Houdini [4], and, more recently, by a variety of machine-learning inspired techniques, e.g., 
FreqHorn [5], LinearArbitrary [6], and ICE-DT [7]. The key idea is to iteratively gener-
ate positive (i.e., reachable states) and negative (i.e., states that reach an error) examples 
and to compute a candidate invariant that separates these two sets. The reasoning is more 
focused towards the invariant, and, the search is restricted by either predicates, templates, 
grammars, or some combination. Invariant inference approaches are particularly good at 
finding simple inductive invariants. However, they do not generalize well to a wide variety 
of problems. In practice, they are often used to complement other SMT-based techniques.

In this paper, we present a novel approach that extends, what we call, local reason-
ing of IC3-style algorithms with global guidance inspired by the invariant inference algo-
rithms described above. Our main insight is that the set of lemmas maintained by IC3-style 
algorithms hint towards a potential global proof. However, these hints are lost in exist-
ing approaches. We observe that letting the current set of lemmas, that represent candi-
date global invariants, guide local reasoning by introducing new lemmas and states to be 
blocked is often sufficient to direct IC3 towards a better global proof.

We present and implement our results in the context of Spacer–a solver for Constrained 
Horn Clauses (CHC)—implemented in the Z3 SMT-solver [8]. Spacer is used by multiple 
software model checking tools, performed remarkably well in CHC-COMP competitions 
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[3], and is open-sourced. However, our results are fundamental and apply to any other IC3-
style algorithm. While our implementation works with arbitrary CHC instances, we sim-
plify the presentation by focusing on infinite state model checking of transition systems.

We illustrate the pitfalls of local reasoning using three examples shown in Fig. 1. All 
three examples are small, simple, and have simple inductive invariants. All three are chal-
lenging for Spacer. Where these examples are based on Spacer-specific design choices, 
each exhibits a fundamental deficiency that stems from local reasoning. We believe they 
can be adapted for any other IC3-style verification algorithm. The examples assume basic 
familiarity with the IC3 paradigm. Readers who are not familiar with it may find it useful 
to read the examples after reading Sect. 2.

Myopic generalization. Spacer diverges on the example in Fig. 1a by iteratively learn-
ing lemmas of the form (a − c ≤ k) ⇒ (b − d ≤ k) for different values of k, where a, b, c, 
d are the program variables. These lemmas establish that there are no counterexamples 
of longer and longer lengths. However, the process never converges to the desired lemma 
(a − c) ≤ (b − d) , which excludes counterexamples of any length. The lemmas are dis-
covered using interpolation, based on proofs found by the SMT-solver. A close examina-
tion of the corresponding proofs shows that the relationship between (a − c) and (b − d) 
does not appear in the proofs, making it impossible to find the desired lemma by tweak-
ing local interpolation reasoning. On the other hand, looking at the global proof (i.e., the 
set of lemmas discovered to refute a bounded counterexample), it is almost obvious that 
(a − c) ≤ (b − d) is an interesting generalization to try. Amusingly, a small, syntactic, but 
semantic preserving change of swapping Line 2 for Line 3 in Fig. 1a changes the SMT-
solver proofs, affects local interpolation, and makes the instance trivial for Spacer.

Excessive (predecessor) generalization. Spacer diverges on the example in Fig. 1b by 
computing an infinite sequence of lemmas of the form a + k1 × b ≥ k2 , where a and b are 
program variables, and k1 and k2 are integers. The root cause is excessive generalization 
in predecessor computation. The Bad states are a < 0 , and their predecessors are states 
such as (a = 1 ∧ b = −10) , (a = 2 ∧ b = −10) , etc., or, more generally, regions (a + b < 0) , 
(a + 2b < −1) , etc. Spacer always attempts to compute the most general predecessor 
states. This is the best local strategy, but blocking these regions by learning their nega-
tion leads to the aforementioned lemmas. According to the global proof these lemmas 
do not converge to a linear invariant. An alternative strategy that under-approximates the 
problematic regions by (numerically) simpler regions and, as a result, learns simpler lem-
mas is desired (and is effective on this example). For example, region a + 3b ≤ −4 can be 

Fig. 1   Verification tasks to illustrate sources of divergence for Spacer. The call nd() non-deterministically 
returns a Boolean value
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under-approximated by a ≤ 32 ∧ b ≤ −12 , eventually leading to a lemma b ≥ 0 , that is a 
part of the final invariant: (a ≥ 0 ∧ b ≥ 0).

Stuck in a rut. Finally, Spacer converges on the example in Fig. 1b, but only after unroll-
ing the system for 100 iterations. During the first 100 iterations, Spacer learns that pro-
gram states with (a ≥ 100 ∧ b ≠ c) are not reachable because a is bounded by 1 in the first 
iteration, by 2 in the second, and so on. In each iteration, the global proof is updated by 
replacing a lemma of the form a < k by lemma of the form a < (k + 1) for different values 
of k. Again, the strategy is good locally – total number of lemmas does not grow and the 
bounded proof is improved. Yet, globally, it is clear that no progress is made since the 
same set of bad states are blocked again and again in slightly different ways. An alternative 
strategy is to abstract the literal a ≥ 100 from the formula that represents the bad states, 
and, instead, conjecture that no states in b ≠ c are reachable.

Our approach: global guidance. As shown in the examples above, in all the cases that 
Spacer diverges, the missteps are not obvious locally, but are clear when the overall proof is 
considered. We propose three new rules, Subsume, Concretize, and, Conjecture, 
that provide global guidance, by considering existing lemmas, to mitigate the problems 
illustrated above. Subsume introduces a lemma that generalizes existing ones, Concre-
tize under-approximates partially-blocked predecessors to focus on repeatedly unblocked 
regions, and Conjecture over-approximates a predecessor by abstracting away regions 
that are repeatedly blocked. The rules are generic, and apply to arbitrary SMT theories. 
Furthermore, we propose an efficient instantiation of the rules for the theory Linear Integer 
Arithmetic and the theory of Linear Rational Aritmetic.

We have implemented the new strategy, called GSpacer, in Spacer and compared it 
to the original implementation of Spacer. We show that GSpacer outperforms Spacer in 
benchmarks from CHC-COMP 2018, 2019, 2020, and 2021. More significantly, we show 
that the performance is independent of interpolation. While Spacer is highly dependent on 
interpolation parameters, and performs poorly when interpolation is disabled, the results 
of GSpacer are virtually unaffected by interpolation. We also compare GSpacer to Line-
arArbitrary [6], a tool that infers invariants using global reasoning. GSpacer outperforms 
LinearArbitrary on the benchmarks from [6]. These results indicate that global guidance 
mitigates the shortcomings of local reasoning.

The rest of the paper is structured as follows. Section 2 presents the necessary back-
ground. Section 3 introduces our global guidance as a set of abstract inference rules. Sec-
tion 4 describes an instantiation of the rules to Linear Integer Arithmetic (LIA) and Linear 
Rational Arithmetic  (LRA). Section 5 presents our empirical evaluation. Finally, Sect. 7 
describes related work and concludes the paper.

This paper is an extended version of [9]. In comparison to [9], we have added additional 
empirical results on the effectiveness of GSpacer on LRA benchmarks and the effective-
ness of individual global guidance rules. We also evaluate GSpacer on a wider class of 
benchmark problems.

2 � Background

Logic. We consider first order logic modulo theories, and adopt the standard notation and 
terminology. A first-order language modulo theory T  is defined over a signature Σ that 
consists of constant, function and predicate symbols, some of which may be interpreted 
by T  . As always, terms are constant symbols, variables, or function symbols applied to 
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terms; atoms are predicate symbols applied to terms; literals are atoms or their negations; 
cubes are conjunctions of literals; and clauses are disjunctions of literals. Unless otherwise 
stated, we only consider closed formulas (i.e., formulas without any free variables). As 
usual, we use sets of formulas and their conjunctions interchangeably.

MBP. Given a set of constants v⃗ , a formula � and a model M ⊧ 𝜑 , Model Based Projec-
tion (MBP) of � over the constants v⃗ , denoted MBP(v⃗,𝜑,M) , computes a model-preserv-
ing under-approximation of � projected onto Σ ⧵ v⃗ . That is, MBP(v⃗,𝜑,M) is a formula over 
Σ ⧵ v⃗ such that M ⊧ MBP(v⃗,𝜑,M) and any model M� ⊧ MBP(v⃗,𝜑,M) can be extended to a 
model M′′ ⊧ 𝜑 by providing an interpretation for v⃗ . There are polynomial time algorithms 
for computing MBP in Linear Arithmetic [2, 10]. We illustrate MBP in the following 
example:

Example 1  Consider the formula � : a� = a + 1 ∧ b� = b + 1 ∧ a� ≤ 5 ∧ b� > 5 , and its 
model M1 = [a ↦ 4, b ↦ 5, a� ↦ 5, b� ↦ 6] . Possible MBPs of � relative to M1 include:

Note that �1 is equivalent to, and �2 is a proper under-approximation of ∃a�, b� ⋅ � , respec-
tively. The soundness of our algorithms do not depend on the specific choice of MBP.

Interpolation. Given an unsatisfiable formula A ∧ B , an interpolant, denoted ITP(A,B) , 
is a formula I over the shared signature of A and B such that A ⇒ I and I ⇒ ¬B . An inter-
polant need not be unique and may even contain terms that are not present in either A or B.

Example 2  Consider the formula A: a = 0 ∧ b = 0 ∧ a� = a + 1 ∧ b� = b + 1 and B: 
a� < b� ∧ b� = 5 . Clearly, A ∧ B is unsatisfiable. Two possible interpolants for A ∧ B are 
b′ < 2 and a� = b� . Both interpolants contain terms not present in the original formula.

Safety problem. A transition system is a pair ⟨Init,Tr⟩ , where Init is a formula over Σ and 
Tr is a formula over Σ ∪ Σ� , where Σ� = {s� ∣ s ∈ Σ}.1 The states of the system correspond 
to structures over Σ , Init represents the initial states and Tr represents the transition rela-
tion, where Σ is used to represent the pre-state of a transition, and Σ� is used to represent 
the post-state. For a formula � over Σ , we denote by �′ the formula obtained by substituting 
each s ∈ Σ by s� ∈ Σ� . A safety problem is a triple ⟨Init,Tr,Bad⟩ , where ⟨Init,Tr⟩ is a transi-
tion system and Bad is a formula over Σ representing a set of bad states.

The safety problem ⟨Init,Tr,Bad⟩ has a counterexample of length k if the following for-
mula is satisfiable: Init0 ∧

⋀k−1

i=0
Tri ∧ Badk, where �i is defined over Σi = {si ∣ s ∈ Σ} (a 

copy of the signature used to represent the state of the system after the execution of i steps) 
and is obtained from � by substituting each s ∈ Σ by si ∈ Σi , and Tri is obtained from Tr by 
substituting s ∈ Σ by si ∈ Σi and s� ∈ Σ� by si+1 ∈ Σi+1 . The transition system is safe if the 
safety problem has no counterexample, of any length.

Inductive invariants. An inductive invariant is a formula Inv over Σ such that (i) 
Init ⇒ Inv , (ii) Inv ∧ Tr ⇒ Inv� , and (iii) Inv ⇒ ¬Bad . If such an inductive invariant exists, 
then the transition system is safe.

𝜓
1
≡ a ≤ 4 ∧ b > 4 𝜓

2
≡ a < b ∧ b = 5

1  In fact, a primed copy is introduced in Σ� only for the uninterpreted symbols in Σ . Interpreted symbols 
remain the same in Σ�.
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Spacer. The safety problem defined above is an instance of a more general problem, 
CHC-SAT, of satisfiability of Constrained Horn Clauses (CHC). Spacer is a semi-decision 
procedure for CHC-SAT. However, to simplify the presentation, we describe the algorithm 
only for the particular case of the safety problem. We stress that Spacer, as well as the 
developments of this paper, apply to the more general setting of CHCs (both linear and 
non-linear). We assume that the only uninterpreted symbols in Σ are constant symbols, 
which we denote x⃗ . Typically, these represent program variables. Without loss of general-
ity, we assume that Bad is a cube.

We present Spacer in two ways: as a set of guarded commands (or rules)  (Algo-
rithm  1) and as a concrete implementation  (Algorithm  2). We stress that the distinction 
between Algorithms 1 and 2 is in presentation only. Throughout the paper, we use Spacer 
to refer to either algorithm. First, we explain Spacer as a set of rules  (Algorithm  1). It 
maintains the following. Current unrolling depth N at which a counterexample is searched 
(there are no counterexamples with depth less than N). A trace O = (O0,O1,…) of frames, 
such that each frame Oi is a set of lemmas, and each lemma � ∈ Oi is a clause. A queue of 
proof obligations Q, where each proof obligation (pob) in Q is a pair ⟨�, i⟩ of a cube � and a 
level number i, 0 ≤ i ≤ N . An under-approximation U of reachable states. Intuitively, each 
frame Oi is a candidate inductive invariant s.t. Oi over-approximates states reachable up to i 
steps from Init . The latter is ensured since O0 = Init , the trace is monotone, i.e., Oi+1 ⊆ Oi , 
and each frame is inductive relative to its previous one, i.e., Oi ∧ Tr ⇒ O

�
i+1

 . Each pob ⟨�, i⟩ 
in Q corresponds to a suffix of a potential counterexample that has to be blocked in Oi , i.e., 
has to be proven unreachable in i steps.

The Candidate rule adds an initial pob ⟨Bad,N⟩ to the queue. If a pob ⟨�, i⟩ can-
not be blocked because � is reachable from frame (i − 1) , the Predecessor rule 
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generates a predecessor � of � using MBP and adds ⟨� , i − 1⟩ to Q. The Successor 
rule updates the set of reachable states if the pob is reachable. If the pob is blocked, the 
Conflict rule strengthens the trace O by using interpolation to learn a new lemma � 
that blocks the pob, i.e., � implies ¬� . The Induction rule strengthens a lemma by 
inductive generalization and the Propagate rule pushes a lemma to a higher frame. If 
the Bad state has been blocked at N, the Unfold rule increments the depth of unroll-
ing N. In practice, the rules are scheduled to ensure progress towards finding a coun-
terexample. An implementation of the rules is shown in Algorithm  2 Spacer   (Algo-
rithm  2) starts off by adding Bad to the pob queue. Then, in a infinite loop, Spacer 
attempts to block all pobs in the pob queue (Line 4). To block a pob, Spacer first checks 
the precondition for both the Predecessor and Conflict rule (Line 6). If the pob is 
reachable from the previous frame, Spacer adds a predecessor pob to the queue (Line 7). 
Spacer then applies the Unsafe rule to see whether the reachable states intersect with 
Bad (Line 8). On the other hand, if the check at Line 6 fails, the pob is blocked at the 
current frame. In this case, Line  6 applies the Conflict rule to learn a lemma that 
blocks the pob  (Line 10).
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Example 3  As an illustrative example, we will explain how Spacer  (Algorithm 2) checks 
the safety of the program in Fig. 2. For the program in Fig. 2, Init is a = 0 ∧ b = 0 , Tr is 
a� = a + 1 ∧ b� = b + 1 , and Bad states are (a ≤ 5 ∧ b > 5) . Blocking Bad at levels 0 and 
1 is straightforward. To block Bad at level 2, Spacer computes a predecessor using MBP. 
Let us assume MBP produces the pob (a < b ∧ b = 5) (see Example 1). Spacer then checks 
whether the newly created pob (a < b ∧ b = 5) is reachable at level 1. That is, Spacer 
checks ISSAT(Init ∧ Tr ∧ a� < b� ∧ b� = 5)  (Line  6). Since this is unsatisfiable, Spacer 
employs interpolation to learn a lemma. As we saw in Example 2, there are at least 2 pos-
sibilities for the interpolant.

If Spacer learns the lemma a = b , Spacer not only blocks the pob (a < b ∧ b = 5) at 
level 1, it also progpagates the lemma a = b (Line 14) and detects that it is inductive. Since 
a = b is also enough to block Bad , Spacer returns safe  (Line 16).

On the other hand, if Spacer learns the lemma b < 2 , Spacer blocks the pob 
(a < b ∧ b = 5) at level 1 but not at any higher levels. The lemma is not strong enough to 
block Bad at level 2. Therefore, in the next iteration, Spacer computes more predecessors 
of Bad at level 1 and attempts to block them.

Clearly, the lemmas that Spacer learns determine how fast it can prove the safety of the 
program. However, it is interpolation that decides which lemma Spacer learns. And inter-
polation is guided by the (local) heuristics inside the SMT solver.

3 � Global guidance of local proofs

As illustrated by the examples in Fig. 1, while Spacer is generally effective, its local rea-
soning is easily confused. The effectiveness is very dependent on the local computation of 
predecessors using model-based projection, and lemmas using interpolation. In this sec-
tion, we extend Spacer with three additional global reasoning rules. The rules are inspired 

Fig. 2   An example of a simple 
program
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by the deficiencies illustrated by the motivating examples in Fig.  1. In this section, we 
present the rules abstractly, independent of any underlying theory, focusing on pre- and 
post-conditions. In Sect. 4, we specialize the rules for Linear Integer Arithmetic, and show 
how they are scheduled with the other rules of Spacer in an efficient verification algorithm. 
The new global rules are summarized in Algorithm 3. We use the same guarded command 
notation as in description of Spacer in Algorithm 1. Note that the rules supplement, and 
not replace, the ones in Algorithm 1.

Subsume is the most natural rule to explain. It says that if there is a set of lemmas L at 
level i, and there exists a formula � such that (a) � is stronger than every lemma in L , and 
(b) � over-approximates states reachable in at most k steps, where k ≥ i , then � can be 
added to the trace to subsume L . This rule reduces the size of the global proof—that is, the 
number of total not-subsumed lemmas. Note that the rule allows � to be at a level k that is 
higher than i. The choice of � is left open. The details are likely to be specific to the theory 
involved. For example, when instantiated for LIA, Subsume is sufficient to solve example 
in Fig. 1a. Interestingly, Subsume is not likely to be effective for propositional IC3. In that 
case, � is a clause and the only way for it to be stronger than L is for � to be a syntactic 
sub-sequence of every lemma in L , but such � is already explored by local inductive gen-
eralization (rule Induction in Algorithm 1).

Concretize applies to a pob, unlike Subsume. It is motivated by example in Fig. 1b that 
highlights the problem of excessive local generalization. Spacer always computes as gen-
eral predecessors as possible. This is necessary for refutational completeness since in an 
infinite state system there are infinitely many potential predecessors. Computing the most 
general predecessor ensures that Spacer finds a counterexample, if it exists. However, this 
also forces Spacer to discover more general, and sometimes more complex, lemmas than 
might be necessary for an inductive invariant. Without a global view of the overall proof, it 
is hard to determine when the algorithm generalizes too much. The intuition for Concre-
tize is that generalization is excessive when there is a single pob ⟨�, j⟩ that is not blocked, 
yet, there is a set of lemmas L such that every lemma � ∈ L partially blocks � . That is, for 
any � ∈ L , there is a sub-region �� of pob � that is blocked by � (i.e., � ⇒ ¬�� ), and there 
is at least one state s ∈ � that is not blocked by any existing lemma in L (i.e., s ⊧ 𝜑 ∧

⋀
L ). 

In this case, Concretize computes an under-approximation � of � that includes some 
not-yet-blocked state s. The new pob is added to the lowest level at which � is not yet 
blocked. Concretize is useful to solve the example in Fig. 1b.

Conjecture guides the algorithm away from being stuck in the same part of the search 
space. A single pob � might be blocked by a different lemma at each level that � appears 
in. This indicates that the lemmas are too strong, and cannot be propagated successfully 
to a higher level. The goal of the Conjecture rule is to identify such a case to guide 
the algorithm to explore alternative proofs with a better potential for generalization. This 
is done by abstracting away the part of the pob that has been blocked in the past. The pre-
condition for Conjecture is the existence of a pob ⟨�, j⟩ such that � is split into two (not 
necessarily disjoint) sets of literals, � and � . Second, there must be a set of lemmas L , at a 
(typically much lower) level i < j such that every lemma � ∈ L blocks � , and, moreover, 
blocks � by blocking � . Intuitively, this implies that while there are many different lem-
mas (i.e., all lemmas in L ) that block � at different levels, all of them correspond to a local 
generalization of ¬� that could not be propagated to block � at higher levels. In this case, 
Conjecture abstracts the pob � into � , hoping to generate an alternative way to block 
� . Of course, � is conjectured only if it is not already blocked and does not contain any 
known reachable states. Conjecture is necessary for a quick convergence on the exam-
ple in Fig. reffig:examplec. In some respect, Conjecture is akin to widening in Abstract 
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Interpretation [11]—it abstracts a set of states by dropping constraints that appear to pre-
vent further exploration. Of course, it is also quite different since it does not guarantee ter-
mination. While Conjecture is applicable to propositional IC3 as well, it is much more 
significant in SMT-based setting since in many FOL theories a single literal in a pob might 
result in infinitely many distinct lemmas.

Each of the rules can be applied by itself, but they are most effective in combination. 
For example, Concretize creates less general predecessors, that, in the worst case, lead 
to many simple lemmas. At the same time, Subsume combines lemmas together into more 
complex ones. The interaction of the two produces lemmas that neither one can produce 
in isolation. At the same time, Conjecture helps unstuck the algorithm from a single 
unproductive pob, allowing the other rules to take effect.

4 � Global guidance for linear arithmetic

In this section, we present a specialization of our general rules, shown in Algorithm 3, to 
the theory of Linear Integer Arithmetic (LIA) and Liner Rational Aritmetic (LRA). This 
requires solving two problems: identifying subsets of lemmas for pre-conditions of the 
rules (clearly using all possible subsets is too expensive), and applying the rule once its 
pre-condition is met. For lemma selection, we introduce a notion of syntactic clustering 
based on anti-unification. For rule application, we exploit basic properties of linear arith-
metic for an effective algorithm. Our presentation is focused on linear arithmetic exclu-
sively. However, the rules extend to combinations of linear arithmetic with other theories, 
such as the combined theory of LIA and Arrays.

In our presentation, we focus on specializing the rules to LIA. Adapting them to LRA 
is straightforward. The rest of this section is structured as follows. We begin with a brief 
background on LIA in Sect. 4.1. We then present our lemma selection scheme, which is 
common to all the rules, in Sect.  4.2, followed by a description of how the rules Sub-
sume (in Sect.  4.3), Concretize (in Sect.  4.4), and Conjecture (in Sect.  4.5) are 
instantiated for LIA. We then explain an algorithm that integrates all the rules together in 
Sect. 4.6. Finally, we explain how to extend all the rules to LRA in Sect. 4.7.

4.1 � Linear integer arithmetic: background

In the theory of Linear Integer Arithmetic (LIA), formulas are defined over a signature that 
includes interpreted function symbols + , −, × , interpreted predicate symbols <, ≤ , ∣ , inter-
preted constant symbols 0, 1, 2,… , and uninterpreted constant symbols a, b,… , x, y,… . We 
write ℤ for the set of interpreted constant symbols, and call them integers. We use con-
stants to refer exclusively to the uninterpreted constants (these are often called variables in 
LIA literature). Terms (and accordingly formulas) in LIA are restricted to be linear, that is, 
multiplication is never applied to two constants.

We write LIA−div for the fragment of LIA that excludes divisiblity ( d ∣ h ) predicates. A 
literal in LIA−div is a linear inequality; a cube is a conjunction of such inequalities, that is, 
a polytope. We find it convenient to use matrix-based notation for representing cubes in 
LIA

−div . A ground cube c ∈ LIA
−div with p inequalities (literals) over k (uninterpreted) 

constants is written as A ⋅ x⃗ ≤ n⃗ , where A is a p × k matrix of coefficients in ℤp×k , 
x⃗ = (x1 ⋯ xk)

T is a column vector that consists of the (uninterpreted) constants, and 
n⃗ = (n1 ⋯ np)

T is a column vector in ℤp . For example, the cube x ≥ 2 ∧ 2x + y ≤ 3 is 
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written as 
[
−1 0

2 1

]
⋅

[
x

y

]
≤

[
− 2

3

]
. In the sequel, all vectors are column vectors, super-script 

T denotes transpose, dot is used for a dot product and [n⃗1;n⃗2] stands for a matrix of column 
vectors n⃗1 and n⃗2.

4.2 � Lemma selection

A common pre-condition for all of our global rules in Algorithm 3 is the existence of a 
subset of lemmas L of some frame Oi . Attempting to apply the rules for every subset of 
Oi is infeasible. In practice, we use syntactic similarity between lemmas as a predictor that 
one of the global rules is applicable, and restrict L to subsets of syntactically similar lem-
mas. In the rest of this section, we formally define what we mean by syntactic similarity, 
and how syntactically similar subsets of lemmas, called clusters, are maintained efficiently 
throughout the algorithm.

Syntactic similarity. A formula � with free variables is called a pattern. Note that we 
do not require � to be in LIA. Let � be a substitution, i.e., a mapping from variables to 
terms. We write �� for the result of replacing all occurrences of free variables in � with 
their mapping under � . A substitution � is called numeric if it maps every variable to an 
integer, i.e., the range of � is ℤ . We say that a formula � numerically matches a pattern � 
iff there exists a numeric substitution � such that � = �� . Note that, as usual, the equal-
ity is syntactic. For example, consider the pattern � = v0a + v1b ≤ 0 with free variables v0 
and v1 and uninterpreted constants a and b. The formula �1 = 3a + 4b ≤ 0 matches � via a 
numeric substitution �1 = {v0 ↦ 3, v1 ↦ 4} . However, �2 = 4b + 3a ≤ 0 , while semanti-
cally equivalent to �1 , does not match � . �3 = a + b ≤ 0 also does not match � because a 
and b do not have coefficients in �3 , whereas � only matches literals with coefficients for 
both a and b.

Matching is extended to patterns in the usual way by allowing a substitution � to map 
variables to variables. We say that a pattern �1 is more general than a pattern �2 if �2 
matches �1 . A pattern � is a numeric anti-unifier for a pair of formulas �1 and �2 if both 
�1 and �2 match � numerically. We write anti(�1,�2) for a most general numeric anti-
unifier of �1 and �2 . We say that two formulas �1 and �2 are syntactically similar if there 
exists a numeric anti-unifier between them (i.e., anti(�1,�2) is defined). Anti-unification is 
extended to sets of formulas in the usual way.

Clusters. We use anti-unification to define clusters of syntactically similar formulas. Let 
Φ be a fixed set of formulas, and � a pattern. A cluster, CΦ(�) , is a subset of Φ such that 
every formula � ∈ CΦ(�) numerically matches � . That is, � is a numeric anti-unifier for 
CΦ(�) . In the implementation, we restrict the pre-conditions of the global rules so that a 
subset of lemmas L ⊆ Oi is a cluster for some pattern � , i.e., L = COi

(�).
Clustering lemmas. We use the following strategy to efficiently keep track of available 

clusters. Let �new be a new lemma to be added to Oi . Assume there is at least one lemma 
� ∈ Oi that numerically anti-unifies with �new via some pattern � . If such an � does not 
belong to any cluster, a new cluster COi

(�) = {�new,�} is formed, where � = anti(�new,�) . 
Otherwise, for every lemma � ∈ Oi that numerically matches �new and every cluster COi

(𝜋̂) 
containing � , �new is added to COi

(𝜋̂) if �new matches 𝜋̂ , or a new cluster is formed using 
� , �new , and any other lemmas in COi

(𝜋̂) that anti-unify with them. Note that a new lemma 
�new might belong to multiple clusters.
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For example, suppose �new = (a ≤ 6 ∨ b ≤ 6) , and there is already a cluster 
COi

(a ≤ v0 ∨ b ≤ 5) = {(a ≤ 5 ∨ b ≤ 5), (a ≤ 8 ∨ b ≤ 5)} . Since �new anti-unifies with each  
of the lemmas in the cluster, but does not match the pattern a ≤ v0 ∨ b ≤ 5 , a 
new cluster that includes all of them is formed w.r.t. a more general pattern: 
COi

(a ≤ v0 ∨ b ≤ v1) = {(a ≤ 6 ∨ b ≤ 6), (a ≤ 5 ∨ b ≤ 5), (a ≤ 8 ∨ b ≤ 5)}.
In the presentation above, we assumed that anti-unification is completely syntactic. This 

is problematic in practice since it significantly limits the applicability of the global rules. 
Recall, for example, that a + b ≤ 0 and 2a + 2b ≤ 0 do not anti-unify numerically accord-
ing to our definitions, and, therefore, do not cluster together. In practice, we augment syn-
tactic anti-unification with simple rewrite rules that are applied greedily. For example, we 
normalize all LIA terms, take care of implicit multiplication by 1, and of associativity and 
commutativity of addition. In the future, it is interesting to explore how advanced anti-
unification algorithms, such as [12, 13], can be adapted for our purpose.

4.3 � Subsume rule for LIA

Recall that the Subsume rule  (Algorithm  3) takes a cluster of lemmas L = COi
(�) and 

computes a new lemma � that subsumes all the lemmas in L , that is � ⇒
⋀

L . We find 
it convenient to dualize the problem. Let S = {¬� ∣ � ∈ L} be the dual of L , clearly 
� ⇒

⋀
L iff (

⋁
S) ⇒ ¬� . Note that L is a set of clauses, S is a set of cubes, � is a clause, 

and ¬� is a cube. In the case of LIA−div , this means that 
⋁

S represents a union of con-
vex sets, and ¬� represents a convex set that the Subsume rule must find. The strongest 
such ¬� in LIA−div exists, and is the convex closure of S . Thus, applying Subsume in the 
context of LIA−div is reduced to computing a convex closure of a set of (negated) lemmas 
in a cluster. Full LIA extends LIA−div with divisibility constraints. Therefore, Subsume 
obtains a stronger ¬� by adding such constraints.

Example 4  For example, consider the following cluster:

The convex closure of S in LIA−div is 2 ≤ x ≤ 8 ∧ y ≤ x + 1 . However, a stronger over-
approximation exists in LIA: 2 ≤ x ≤ 8 ∧ y ≤ x + 1 ∧ (2 ∣ x).

In the sequel, we describe subsumeCube  (Algorithm 4) which computes a cube � that 
over-approximates (

⋁
S) . Subsume is then implemented by removing from L lemmas that 

are already subsumed by existing lemmas in L , dualizing the result into S , invoking sub-
sumeCube on S and returning ¬� as a lemma that subsumes L.

Recall that Subsume is tried only in the case L = COi
(�) . We further require that the 

negated pattern, ¬� , is of the form A ⋅ x⃗ ≤ v⃗ , where A is a coefficients matrix, x⃗ is a vec-
tor of constants and v⃗ = (v1 ⋯ vp)

T is a vector of p free variables. Under this assumption, 
S (the dual of L ) is of the form {(A ⋅ x⃗ ≤ n⃗i) ∣ 1 ≤ i ≤ q} , where q = |S| , and for each 
1 ≤ i ≤ q , n⃗i is a numeric substitution to v⃗ from which one of the negated lemmas in S is 
obtained. That is, |n⃗i| = |v⃗| . In Example 4, ¬� = x ≤ v1 ∧ −x ≤ v2 ∧ y ≤ v3 and

L = {(x > 2 ∨ x < 2 ∨ y > 3), (x > 4 ∨ x < 4 ∨ y > 5), (x > 8 ∨ x < 8 ∨ y > 9)}

S = {(x ≥ 2 ∧ x ≤ 2 ∧ y ≤ 3), (x ≥ 4 ∧ x ≤ 4 ∧ y ≤ 5), (x ≥ 8 ∧ x ≤ 8 ∧ y ≤ 9)}
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Each cube (A ⋅ x⃗ ≤ n⃗i) ∈ S is equivalent to ∃v⃗.A ⋅ x⃗ ≤ v⃗ ∧ (v⃗ = n⃗i) . Finally, 
(
⋁

S) ≡ ∃v⃗.(A ⋅ x⃗ ≤ v⃗) ∧ (
⋁
(v⃗ = n⃗i)) . Thus, computing the over-approximation of S is reduced 

to (a) computing the convex hull H of a set of points {n⃗i ∣ 1 ≤ i ≤ q} , (b) computing divisibility 
constraints D that are satisfied by all the points, (c) substituting H ∧ D for the disjunction in the 
equation above, and (c) eliminating variables v⃗ . Both the computation of H ∧ D and the elimina-
tion of v⃗ may be prohibitively expensive. We, therefore, over-approximate them. Our approach 
for doing so is presented in Algorithm 4, and explained in detail below.

Computing the convex hull of  {n⃗i ∣ 1 ≤ i ≤ q} . Lines 3 to 8 compute the convex hull 
of {n⃗i ∣ 1 ≤ i ≤ q} as a formula over v⃗ , where variable vj , for 1 ≤ j ≤ p , represents the jth 
coordinates in the vectors (points) n⃗i . Some of the coordinates, vj , in these vectors may 
be linearly dependent upon others. To simplify the problem, we first identify such 
dependencies and compute a set of linear equalities that expresses them (L in line 4). To 
do so, we consider a matrix Nq×p , where the ith row consists of n⃗T

i
 . The jth column in N, 

denoted N∗j , corresponds to the jth coordinate, vj . The rank of N is the number of line-
arly independent columns (and rows). The other columns (coordinates) can be expressed 
by linear combinations of the linearly independent ones. To compute these linear com-
binations we use the kernel of [N;1⃗] (N appended with a column vector of 1’s), which is 
the set of all vectors y⃗ such that [N;1⃗] ⋅ y⃗ = 0⃗ , where 0⃗ is the zero vector. Let 
B = kernel ([N;1⃗]) be a basis for the kernel of [N;1⃗] . Then |B| = p − rank (N) , and for 
each vector y⃗ ∈ B , the linear equality [v1 ⋯ vp 1] ⋅ y⃗ = 0 holds in all the rows of N (i.e., 
all the given vectors satisfy it). We accumulate these equalities, which capture the linear 
dependencies between the coordinates, in L. Further, the equalities are used to compute 
rank (N) coordinates (columns in N) that are linearly independent and, modulo L, 
uniquely determine the remaining coordinates. We denote by v⃗L↓ the subset of v⃗  
that consists of the linearly independent coordinates. We further denote by n⃗L↓

i
  

the projection of n⃗i to these coordinates and by NL↓ the projection of N to the  
corresponding columns. We have that (

⋁
(v⃗ = n⃗i)) ≡ L ∧ (

⋁
(v⃗L↓ = n⃗

L↓

i
) . In Example 4, the 

numeral matrix is N =

⎡⎢⎢⎣

2 −2 3

4 −4 5

8 −8 9

⎤⎥⎥⎦
 , for which kernel ([N;1⃗]) = {1 1 0 0T , 1 0 −1 1T} . 

Therefore, L is the conjunction of equalities v1 + v2 = 0 ∧ v1 − v3 + 1 = 0 , or, equivalently 
v3 = v1 + 1 ∧ v2 = −v1 , v⃗L↓ =

(
v1
)T , and

Next, we compute the convex closure of 
⋁
(v⃗L↓ = n⃗

L↓

i
) , and conjoin it with L to obtain H, 

the convex closure of (
⋁
(v⃗ = n⃗i)).

If the dimension of v⃗L↓ is one, as is the case in the example above, convex closure, C, 
of 

⋁
(v⃗L↓ = n⃗

L↓

i
) is obtained by bounding the sole element of v⃗L↓ based on its values in 

NL↓ (line 6). In Example 4, we obtain C = 2 ≤ v1 ≤ 8.

A =

⎡
⎢⎢⎣

1 0

−1 0

0 1

⎤
⎥⎥⎦

x⃗ =

�
x

y

�
v⃗ =

⎡
⎢⎢⎣

v1
v2
v3

⎤
⎥⎥⎦
n⃗1 =

⎡
⎢⎢⎣

2

−2

3

⎤
⎥⎥⎦
n⃗2 =

⎡
⎢⎢⎣

4

−4

5

⎤
⎥⎥⎦
n⃗3 =

⎡
⎢⎢⎣

8

−8

9

⎤
⎥⎥⎦

n⃗
L↓

1
=
�
2
�

n⃗
L↓

2
=
�
4
�

n⃗
L↓

3
=
�
8
�

NL↓ =

⎡
⎢⎢⎣

2

4

8

⎤⎥⎥⎦
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If the dimension of v⃗L↓ is greater than one, just computing the bounds of one of the 
constants is not sufficient. Instead, we use the concept of syntactic convex closure 
from [14] to compute the convex closure of 

⋁
(v⃗L↓ = n⃗

L↓

i
) as ∃𝛼⃗.C where 𝛼⃗ is a vec-

tor that consists of q fresh rational variables and C is defined as follows (line  8): 
C = 𝛼⃗ ≥ 0 ∧ Σ𝛼⃗ = 1 ∧ 𝛼⃗T ⋅ NL↓ = (v⃗L↓ )T . C states that (v⃗L↓ )T is a convex combination of the 
rows of NL↓ , or, in other words, v⃗L↓ is a convex combination of {n⃗L↓

i
∣ 1 ≤ i ≤ q}.

To illustrate the syntactic convex closure, consider a second example with a set of 
cubes: S = {(x ≤ 0 ∧ y ≤ 6), (x ≤ 6 ∧ y ≤ 0), (x ≤ 5 ∧ y ≤ 5)} . The coefficient matrix A, 

and the numeral matrix N are then: A =

[
1 0

0 1

]
 and N =

⎡⎢⎢⎣

0 6

6 0

5 5

⎤⎥⎥⎦
 . Here, kernel ([N;1⃗]) is 

empty – all the columns are linearly independent, hence, L = true and v⃗L↓ = v⃗ . Therefore, 
syntactic convex closure is applied to the full matrix N, resulting in

The convex closure of 
⋁
(v⃗ = n⃗i) is then L ∧ ∃𝛼⃗.C , which is ∃𝛼⃗.C here.

Divisibility constraints. Inductive invariants for verification problems often require divisibility 
constraints. We, therefore, use such constraints, denoted D, to obtain a stronger over-approxima-
tion of 

⋁
(v⃗ = n⃗i) than the convex closure. To add a divisibility constraint for vj ∈ v⃗L↓ , we con-

sider the column NL↓

∗j
 that corresponds to vj in NL↓ . We find the largest positive integer d such that 

each integer in NL↓

∗j
 leaves the same remainder when divided by d; namely, there exists 0 ≤ r < d 

such that n mod d = r for every n ∈ N
L↓

∗j
 . This means that d ∣ (vj − r) is satisfied by all the 

points n⃗i . Note that such r always exists for d = 1 . To avoid this trivial case, we add the constraint 
d ∣ (vj − r) only if d ≠ 1 (Line 4). We repeat this process for each vj ∈ v⃗L↓.

In Example  4, all the elements in the (only) column of the matrix NL↓ , which corre-
sponds to v1 , are divisible by 2, and no larger d has a corresponding r. Thus, Line 12 of 
Algorithm 4 adds the divisibility condition (2 ∣ v1) to D.

Eliminating existentially quantified variables using MBP. By combining the lin-
ear equalities exhibited by N, the convex closure of NL↓ and the divisibility con-
straints on v⃗ , we obtain ∃𝛼⃗.L ∧ C ∧ D as an over-approximation of 

⋁
(v⃗ = n⃗i) . Accord-

ingly, ∃v⃗.∃𝛼⃗.𝜓 , where 𝜓 = (A ⋅ x⃗ ≤ v⃗) ∧ L ∧ C ∧ D , is an over-approximation of 
(
⋁

S) ≡ ∃v⃗.(A ⋅ x⃗ ≤ v⃗) ∧ (
⋁
(v⃗ = n⃗i)) (Line 13). In order to get a LIA cube that overapprox-

imates 
⋁

S , it remains to eliminate the existential quantifiers. Since quantifier elimination 
is expensive, and does not necessarily generate convex formulas (cubes), we approximate 
it using MBP. Namely, we obtain a cube � that under-approximates ∃v⃗.∃𝛼⃗.𝜓 by applying 
MBP on � and a model M0 ⊧ 𝜓 . We then use an SMT solver to drop literals from � until it 
over-approximates ∃v⃗.∃𝛼⃗.𝜓 , and hence also 

⋁
S (lines 16 to 19). The result is returned by 

Subsume as an over-approximation of 
⋁

S.
Models M0 that satisfy � and do not satisfy any of the cubes in S are preferred when comput-

ing MBP (line 14) as they ensure that the result of MBP is not subsumed by any of the cubes in S.
Note that our final step is to do an MBP over the formula ∃v⃗.𝛼⃗.(A ⋅ x⃗ ≤ v⃗) ∧ L ∧ D ∧ C . 

This requires MBP to support a mixture of integer and rational variables. To achieve 
this, we first push the quantifier over the rational variables inside; the formula becomes 
∃v⃗.(A ⋅ x⃗ ≤ v⃗) ∧ L ∧ D ∧ ∃𝛼⃗.C ). Then, we relax all constants in the constraints C to be rational 
and do an MBP over LRA to eliminate 𝛼⃗ . We then adjust the resulting formula back to integer 
arithmetic by multiplying each atom by the least common multiple of the denominators of the 
coefficients in it. Finally, we apply MBP over the integers to eliminate v⃗.

C =(�1 ≥ 0) ∧ (�2 ≥ 0) ∧ (�3 ≥ 0) ∧ (�1 + �2 + �3 = 1)

∧ (6�2 + 5�3 = v1) ∧ (6�1 + 5�3 = v2)
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Considering Example  4 again, we get that � = (x ≤ v
1
) ∧ (−x ≤ v

2
) ∧ (y ≤ v

3
)

∧(v
3
= 1 + v

1
) ∧ (v

2
= −v

1
) ∧ (2 ≤ v

1
≤ 8) ∧ (2 ∣ v

1
) (the first three conjuncts correspond 

to (A ⋅ (x y)T ≤ (v1 v2 v3)
T ) ). Note that in this case we do not have rational variables 𝛼⃗ since 

|v⃗L↓ | = 1 . Depending on the model, the result of MBP can be one of

However, we prefer a model that does not satisfy any cube in S = {(x ≥ 2 ∧ x ≤ 2 ∧ y ≤ 3),

(x ≤ 4 ∧ x ≥ 4 ∧ y ≤ 5), (x ≤ 8 ∧ x ≥ 8 ∧ y ≤ 9)} , rules off the two possibilities on the right. 
None of these cubes cover � , hence generalization is used.

If the first cube is obtained by MBP, it is generalized into y ≤ x + 1 ∧ x ≥ 2 ∧ x ≤ 8 ∧ (2 ∣ x) ; 
the second cube is already an over-approximation; the third cube is generalized into 
y ≤ x + 1 ∧ y ≤ 9 . Indeed, each of these cubes over-approximates 

⋁
S.

y ≤ x + 1 ∧ 2 ≤ x ≤ 8 ∧ (2 ∣ y − 1) ∧ (2 ∣ x) x ≥ 2 ∧ x ≤ 2 ∧ y ≤ 3

y ≤ x + 1 ∧ 2 ≤ x ≤ 8 ∧ (2 ∣ x) x ≥ 8 ∧ x ≤ 8 ∧ y ≤ 9

y ≥ x + 1 ∧ y ≤ x + 1 ∧ 3 ≤ y ≤ 9 ∧ (2 ∣ y − 1)
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4.4 � Concretize rule for LIA

The Concretize rule  (Algorithm  3) takes a cluster of lemmas L = COi
(�) and a pob 

⟨�, j⟩ such that each lemma in L partially blocks � , and creates a new pob � that is still 
not blocked by L , but � is more concrete, i.e., � ⇒ � . In our implementation, this rule is 
applied when � is in LIA−div . We further require that the pattern, � , of L is non-linear, i.e., 
some of the constants appear in � with free variables as their coefficients. We denote these 
constants by U. An example is the pattern � = v0x + v1y + z ≤ 0 , where U = {x, y} . Having 
such a cluster is an indication that attempting to block � in full with a single lemma may 
require to track non-linear correlations between the constants, which is impossible to do 
in LIA. In such cases, we identify the coupling of the constants in U in pobs (and hence in 
lemmas) as the potential source of non-linearity. Hence, we concretize (strengthen) � into a 
pob � where the constants in U are no longer coupled to any other constant.

Coupling. Formally, constants u and v are coupled in a cube c, denoted u ⋈c v , if there 
exists a literal lit in c such that both u and v appear in lit (i.e., their coefficients in lit are non-
zero). For example, x and y are coupled in x + y ≤ 0 ∧ z ≤ 0 whereas neither of them are 
coupled with z. A constant u is said to be isolated in a cube c, denoted ISO(u, c) , if it appears 
in c but it is not coupled with any other constant in c. In the above cube, z is isolated.

Concretization by decoupling. Given a pob � (a cube) and a cluster L , Algorithm 5 pre-
sents our approach for concretizing � by decoupling the constants in U — those that have 
variables as coefficients in the pattern of L (line 2). Concretization is guided by a model 
M ⊧ 𝜑 ∧

⋀
L , representing a part of � that is not yet blocked by the lemmas in L (line 3). 

Given such M, we concretize � into a model-preserving under-approximation that isolates 
all the constants in U and preserves all other couplings. That is, we find a cube � , such that

Note that � is not blocked by L since M satisfies both 
⋀

L and � . For example, if 
� = (x + y ≤ 0) ∧ (x − y ≤ 0) ∧ (x + z ≥ 0) and M = [x = 0, y = 0, z = 1] , then � = 0 ≤ y

≤ 0 ∧ x ≤ 0 ∧ x + z ≥ 1 is a model preserving under-approximation that isolates U = {y}.
Algorithm 5 computes such a cube � by a point-wise concretization of the literals of � 

followed by the removal of subsumed literals. Literals that do not contain constants from 
U remain unchanged. A literal of the form lit = t ≤ b , where t =

∑
i nixi (recall that every 

literal in LIA−div can be normalized to this form), that includes constants from U is con-
cretized into a cube by (1) isolating each of the summands nixi in t that include U from 
the rest, and (2)  for each of the resulting sub-expressions creating a literal that uses its 
value in M as a bound. Formally, t is decomposed to s +

∑
xi∈U

nixi , where s =
∑

xi∉U
nixi . 

The concretization of lit is the cube � lit = s ≤ M[s] ∧
⋀

xi∈U
nixi ≤ M[nixi] , where M[t�] 

denotes the interpretation of t′ in M. Note that � lit ⇒ lit since the bounds are stronger than 
the original bound on t: M[s] +

∑
xi∈U

M[nixi] = M[t] ≤ b . This ensures that � , obtained 

(1)𝛾 ⇒ 𝜑 M ⊧ 𝛾 ∀u ∈ U.ISO(u, 𝛾) ∀u, v ∉ U.(u ⋈𝜑 v) ⇒ (u ⋈𝛾 v)
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by the conjunction of literal concretizations, implies � . It trivially satisfies the other con-
ditions of Eq. (1).

For example, the concretization of the literal (x + y ≤ 0) with respect to U = {y} and 
M = [x = 0, y = 0, z = 1] is the cube x ≤ 0 ∧ y ≤ 0 . Applying concretization in a similar 
manner to all the literals of the cube � = (x + y ≤ 0) ∧ (x − y ≤ 0) ∧ (x + z ≥ 0) from the 
previous example, we obtain the concretization x ≤ 0 ∧ 0 ≤ y ≤ 0 ∧ x + z ≥ 0 . Note that 
the last literal is not concretized as it does not include y.

4.5 � Conjecture rule for LIA

The Conjecture rule (see Algorithm 3) takes a set of lemmas L and a pob � ≡ � ∧ � 
such that all lemmas in L block � , but none of them blocks � , where � does not include any 
known reachable states. It returns � as a new pob.

For LIA, Conjecture is applied when the following conditions are met: 

(1)	 the pob � is of the form �1 ∧ �2 ∧ �3 , where 𝜑3 = (n⃗T ⋅ x⃗ ≤ b) , and �1 and �2 are 
any cubes. The sub-cube �1 ∧ �2 acts as � , while the sub-cube �2 ∧ �3 acts as 
� .

(2)	 The cluster L consists of {bg ∨ (n⃗T ⋅ x⃗ ≥ bi) ∣ 1 ≤ i ≤ q} , where bi > b and bg ⇒ ¬�2 . 
This means that each of the lemmas in L blocks � = �2 ∧ �3 , and they may be ordered 
as a sequence of increasingly stronger lemmas, indicating that they were created by 
trying to block the pob at different levels, leading to too strong lemmas that failed to 
propagate to higher levels.

(3)	 The formula (bg ∨ (n⃗T ⋅ x⃗ ≥ bi)) ∧ 𝜑1 ∧ 𝜑2 is satisfiable, that is, none of the lemmas in 
L block � = �1 ∧ �2 , and

(4)	 U ⇒ ¬(�1 ∧ �2) , that is, no state in �1 ∧ �2 is known to be reachable.

If all four conditions are met, we conjecture � = �1 ∧ �2 . This is implemented by conjec-
ture, that returns � (or ⊥ when the pre-conditions are not met).

For example, consider the pob � = x ≥ 10 ∧ (x + y ≥ 10) ∧ y ≤ 10 and a clus-
ter of lemmas L = {(x + y ≤ 0 ∨ y ≥ 101), (x + y ≤ 0 ∨ y ≥ 102)} . In this case, 
�1 = x ≥ 10 , �2 = (x + y ≥ 10) , �3 = y ≤ 10 , and bg = x + y ≤ 0 . Each of the lemmas 
in L block �2 ∧ �3 but none of them block �1 ∧ �2 . Therefore, we conjecture �1 ∧ �2 : 
x ≥ 10 ∧ (x + y ≥ 10).

4.6 � Putting it all together

Having explained the implementation of the new rules for LIA, we now put all the ingre-
dients together into an algorithm, GSpacer. In particular, we present our choices as to 
when to apply the new rules, and on which clusters of lemmas and pobs. As can be seen in 
Sect. 5, this implementation works very well on a wide range of benchmarks.
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Algorithm  6 presents GSpacer. The comments to the right side of a line refer to the 
abstract rules in Algorithms 1 and 3. Just like Spacer, GSpacer iteratively computes prede-
cessors (Line 10) and blocks them (Line 14) in an infinite loop. Whenever a pob is proven 
to be reachable, the reachable states are updated (line 38). If Bad intersects with a reach-
able state, GSpacer terminates and returns unsafe   (line  12). If one of the frames is an 
inductive invariant, GSpacer terminates with safe  (line 20).

When a pob ⟨�, i⟩ is handled, we first apply the Concretize rule, if possible (Line 7). 
Recall that Concretize  (Algorithm 5) takes as input a cluster that partially blocks � and 
has a non-linear pattern. To obtain such a cluster, we first find, using Cpob(⟨�, i⟩) , a cluster 
⟨�1,L1⟩ = COk

(�1) , where k ≤ i , that includes some lemma (from frame k) that blocks � ; 
if none exists, L1 = � . We then filter out from L1 lemmas that completely block � as well 
as lemmas that are irrelevant to � , i.e., we obtain L2 by keeping only lemmas that partially 
block � . We apply Concretize on ⟨�1,L2⟩ to obtain a new pob that under-approximates � 
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if (1) the remaining sub-cluster, L2 , is non-empty, (2) the pattern, �1 , is non-linear, and (3) ⋀
L2 ∧ � is satisfiable, i.e., a part of � is not blocked by any lemma in L2.
Once a pob is blocked, and a new lemma that blocks it, � , is added to the frames, an 

attempt is made to apply the Subsume and Conjecture rules on a cluster that includes 
� . To that end, the function Clemma(�) finds a cluster ⟨�3,L3⟩ = COi

(�3) to which � 
belongs  (Sect. 4.2). Note that the choice of cluster is arbitrary. The rules are applied on 
⟨�3,L3⟩ if the required pre-conditions are met (Line 49 and Line 53, respectively). When 
applicable, Subsume returns a new lemma that is added to the frames, while Conjecture 
returns a new pob that is added to the queue. Note that the latter is a may pob, in the sense 
that some of the states it represents may not lead to safety violation.

Ensuring progress. Spacer always makes progress: as its search continues, it estab-
lishes absence of counterexamples of deeper and deeper depths. However, GSpacer does 
not ensure progress. Specifically, unrestricted application of the Concretize and Con-
jecture rules can make GSpacer diverge even on executions of a fixed bound. In our 
implementation, we ensure progress by allotting a fixed amount of gas to each pattern, 
� , that forms a cluster. Each time Concretize or Conjecture is applied to a cluster 
with � as the pattern, � loses some gas. Whenever � runs out of gas, the rules are no longer 
applied to any cluster with � as the pattern. There are finitely many patterns (assuming LIA 
terms are normalized). Thus, in each bounded execution of GSpacer, the Concretize 
and Conjecture rules are applied only a finite number of times, thereby, ensuring pro-
gress. Since the Subsume rule does not hinder progress, it is applied without any restric-
tion on gas.

4.7 � Global guidance for linear rational aritmetic

So far, we have described our implementation of global guidance rules for LIA. The 
implementation for LRA is very similar. In fact, procedure for clustering lemmas, the pre-
conditions for applying the three global guidance rules, and the procedures to conjecture 
and concretize pobs carry over without any modifications. The only difference is in the 
implementation of the Subsume rule (Algorithm 4). For LIA, the procedure involves three 
main steps: computing convex hull (Line 8), adding divisibility constraints (Line 16), and 
eliminating auxiliary variables (Line 12). Since we cannot have divisibility constraints for 
rational variables, we skip this step when implementing Subsume for LRA. The rest of 
the algorithm remains the same.

5 � Evaluation

We have implemented2 GSpacer  (Algorithm 6) as an extension to Spacer. To reduce the 
dimension of a matrix (in subsume, Sect. 4.3), we compute pairwise linear dependencies 
between all pairs of columns instead of computing the full kernel. This does not necessar-
ily reduce the dimension of the matrix to its rank, but, is sufficient for our benchmarks. We 
have experimented with computing the full kernel using SageMath [15], but the overall 
performance did not improve. Clustering is implemented by anti-unification. LIA and LRA 
terms are normalized using default Z3 simplifications.

2  https://​github.​com/​hgvk94/​z3/​tree/​ggbra​nch.

https://github.com/hgvk94/z3/tree/ggbranch


	 Formal Methods in System Design

1 3

We used 3 sets of benchmarks for our evaluation: LIA and LRA instances from CHC-
COMP 2018–21 [3] and benchmarks used in the evaluation of [6]. The CHC-COMP bench-
marks have been curated from a variety of applications including Linux driver verification, 
synthesis and higher order program verification. The LIA benchmarks contain linear and 
non-linear CHCs whereas the LRA benchmarks only contain linear CHCs. We removed all 
duplicates from the benchmark suite. Since the LRA benchmarks in CHC-COMP 2021 are 
the same as those in CHC-COMP 2020, we omit them in our evaluation. The numbers of 
instances in each category, after removing duplicates, are shown in Tables 1 and 2.

To evaluate our implementation, we have conducted 3 sets of experiments. All experi-
ments were run on Intel E5-2690 V2 CPU at 3GHz with 128GB memory with a timeout 
of 10 minutes. The first set of experiments  (Sect. 5.1) evaluate the performance of local 
reasoning with global guidance against pure local reasoning. The second set of experi-
ments  (Sect.  5.2) compare the performance of local reasoning with global guidance to 
solely global reasoning. The third set of experiments (Sect. 5.3) compare the effectiveness 
of each of the global guidance rules.

We use Spacer as a baseline for pure local reasoning because it dominated CHC-COMP 
by solving 85% of the LIA benchmarks in CHC-COMP 2019 ( 20% more than the runner 
up) and 60% of the LIA benchmarks in CHC-COMP 2018 ( 10% more than runner up). 
In CHC-COMP 2020 and CHC-COMP 2021, GSpacer participated instead of Spacer and 
won all LIA tracks. Our evaluation shows that GSpacer outperforms Spacer both in terms 
of number of solved instances and, more importantly, in overall robustness.

5.1 � Comparison with Spacer

Comparison on LIA  instances Table 3 summarizes the comparison between Spacer and 
GSpacer on LIA instances from CHC-COMP. Since both tools can use a variety of interpo-
lation strategies during lemma generalization (Line 45 in Algorithm 6), we compare three 
different configurations of each: bw and fw stand for two interpolation strategies, back-
ward and forward, respectively, already implemented in Spacer, and sc stands for turning 

Table 1   Number of LIA 
benchmarks in each category 
after removing duplicates

Category # Benchmarks

CHC-COMP18-LIA 438
CHC-COMP19-LIA-LIN 325
CHC-COMP19-LIA-nonLIN 283
CHC-COMP20-LIA-LIN 428
CHC-COMP20-LIA-nonLIN 416
CHC-COMP21-LIA-LIN 417
CHC-COMP21-LIA-nonLIN 432

Table 2   Number of LRA 
benchmarks in each category 
after removing duplicates

Category # Benchmarks

CHC-COMP18 132
CHC-COMP19 244
CHC-COMP20 499
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interpolation off and generalizing lemmas only by subset clauses computed by inductive 
generalization. VBS stands for the Virtual Best Solver.

Any configuration of GSpacer solves significantly more instances than even the best 
configuration of Spacer. Figure 3 provides a more detailed comparison between the best 
configurations of both tools in terms of running time and depth of convergence. There is no 
clear trend in terms of running time on instances solved by both tools. This is not surpris-
ing—SMT-solving run time is highly non-deterministic and any change in strategy has a 
significant impact on performance of SMT queries involved. In terms of depth, it is clear 
that GSpacer converges at the same or lower depth. The depth is significantly lower for 
instances solved only by GSpacer.

Moreover, the performance of GSpacer is not significantly affected by the interpolation 
strategy used. In fact, the configuration sc in which interpolation is disabled performs the 
best in non-linear instances from CHC-COMP 2019, and only slightly worse in other cat-
egories. In comparison, disabling interpolation hurts Spacer significantly.

Comparison on LRA  benchmarks To see how well the global guidance rules scale 
across theories, we compared GSpacer with Spacer on LRA benchmarks from CHC-
COMP. The results are summarized in Table 4. The meanings of the columns are the same 
as in Table 3.

Most significantly, we find that global guidance is robust. While Spacer has a noticeable 
drop in performance when interpolation is turned off, GSpacer does not. Second, while 
the number of instances solved by GSpacer is similar to the number of instances solved by 
Spacer, the instances solved are different. In particular, the VBS significantly outperforms 
both solvers. Finally, the improvement in GSpacer on LRA benchmarks is not as signifi-
cant as on LIA benchmarks. We believe this is a property of the benchmark set rather than 
the intrinsic difference between LIA and LRA. We conjecture that additional global guid-
ance rules, specifically ones taking advantage of symmetry in the lemmas, will boost the 
performance of GSpacer.

Comparison on unsafe instances Spacer consistently solves more unsafe instances than 
GSpacer. This is an expected side effect of the global guidance rules. GSpacer explores dif-
ferent ways to find an inductive invariant and, on unsafe instances, this exploration is com-
pletely wasteful. This exploration comes at a cost. Each pob that global guidance generates 
is checked for reachability and, if blocked, generalized using inductive generalization. Both 
these are one or more queries to an SMT solver. The cost of exploration is checked using 

Fig. 3   Best configurations on LIA benchmarks: GSpacer versus Spacer 
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gas (Sect. 4.6). For each cluster, gas is initially set to a constant value and decreased each 
time a global guidance rule is applied. Once a cluster runs out of gas, global guidance rules 
are not applied to the cluster. While this heuristic reduces exploration, it does not reduce it 
to zero, hence the deterioration in performance.Figure 4 provides a detailed comparison of 
GSpacer with and without interpolation. Interpolation makes no difference to the depth of 
convergence. This implies that lemmas that are discovered by interpolation are discovered 
as efficiently by the global rules of GSpacer. On the other hand, interpolation significantly 
increases the running time. Interestingly, the time spent in interpolation itself is insignifi-
cant. However, the lemmas produced by interpolation tend to slow down other aspects of 
the algorithm. Most of the slow down is in increased time for inductive generalization and 
in computation of predecessors. The comparison between the other interpolation-enabled 
strategy and GSpacer-sc shows a similar trend.We used the ML-based data-driven invari-
ant inference tool LinearArbitrary [6] as a baseline for purely global reasoning. Com-
pared to other similar approaches, LinearArbitrary stands out by supporting invariants 
with arbitrary Boolean structure over arbitrary linear predicates. It is completely automated 
and does not require user-provided predicates, grammars, or any other guidance. For the 
comparison with LinearArbitrary, we have used both the CHC-COMP benchmarks, 
as well as the benchmarks from the artifact evaluation of [6]. The machine and timeout 
remain the same. Our evaluation shows that GSpacer is superior in this case as well. 

5.2 � Comparison with LinearArbitrary

In [6], the authors show that LinearArbitrary, to which we refer as LArb for short, sig-
nificantly outperforms Spacer on a curated subset of benchmarks from SV-COMP [16] 
competition.

We first compare LArb against GSpacer on CHC-COMP instances. Table 5 shows the 
number of instances solved by both solvers. We see that LArb solves way fewer instances 
than even baseline Spacer.

For a more meaningful comparison, we compared Spacer, LArb, and GSpacer on the 
benchmarks from the artifact evaluation of [6]. The results are summarized in Table 6. As 
expected, LArb outperforms the baseline Spacer on the safe benchmarks. On unsafe bench-
marks, Spacer is significantly better than LArb. In both categories, GSpacer dominates 
solving more safe benchmarks than either Spacer or LArb, while matching performance of 
Spacer on unsafe instances. Furthermore, GSpacer remains orders of magnitude faster than 
LArb on benchmarks that are solved by both. This comparison shows that incorporating 
local reasoning with global guidance not only mitigates its shortcomings but also surpasses 
global data-driven reasoning.

5.3 � Effectiveness of individual global guidance rules

Table  7 summarizes the effectiveness of individual global guidance rules on CHC-COMP 
LIA benchmarks. Each column in Table 7 corresponds to running GSpacer with just one 
of the three global guidance rules enabled. We see that the Subsume configuration  (that 
is, running GSpacer with just the Subsume rule) solves many more instances than either 
of the other configurations. However, even the Subsume rule individually does not solve 
merely as many instances as GSpacer with all three rules combined. Figure 5 compares the 
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Table 5   Comparison with LArb 
using CHC-COMP benchmarks

The bold numbers denote the best performing tool in each category

Bench Spacer LArb GSpacer

Safe Unsafe Safe Unsafe Safe Unsafe

CHC-18-LIA 149 64 64 8 210 55
CHC-19-LIA-LIN 162 81 131 18 169 77

Table 6   Comparison with LArb 

The bold numbers denote the best performing tool in each category

Bench Spacer LArb GSpacer VBS

Safe Unsafe Safe Unsafe Safe Unsafe Safe Unsafe

PLDI18 215 68 270 65 280 67 286 68

Table 7   Effectiveness of individual rules of GSpacer on CHC-COMP LIA instances

The bold numbers denote the best performing tool in each category

Bench Conjecture Concretize Subsume VBS

Safe Unsafe Safe Unsafe Safe Unsafe Safe Unsafe

CHC18-Lia 146 52 149 54 191 51 208 56
CHC19-Lia-Lin 160 77 161 76 165 79 168 79
CHC19-Lia-NonLin 144 114 144 115 152 114 154 115
CHC20-Lia-Lin 209 132 212 133 222 134 226 134
CHC20-Lia-NonLin 201 201 201 200 204 202 205 202
CHC21-Lia-Lin 172 88 174 87 193 88 200 89
CHC21-Lia-NonLin 234 132 233 132 250 130 254 132
Total 1266 796 1274 797 1377 798 1415 807

Fig. 4   Comparing GSpacer with different interpolation tactics on LIA benchmarks
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running time and depth of convergence of Subsume configuration  (x-axis) against those 
of the full GSpacer  (y-axis). Clearly, there are many instances in which GSpacer with all 
three rules converges at a significantly lower depth than the GSpacer with just the Sub-
sume rule.

6 � Related work

The limitations of local reasoning in SMT-based infinite state model checking are well 
known. Most commonly, they are addressed with either (a)  different strategies for local 
generalization in interpolation (e.g., [17–20]), or (b) shifting the focus to global invariant 
inference by learning an invariant of a restricted shape (e.g., [4–7, 21]).

Interpolation strategies. Albarghouthi and McMillan [18] suggest to minimize the num-
ber of literals in an interpolant, arguing that simpler (i.e., fewer half-spaces) interpolants 
are more likely to generalize. This helps with myopic generalizations (Fig.  1a), but not 
with excessive generalizations (Fig.  1b). On the contrary, Blicha et  al. [19] decompose 
interpolants to be numerically simpler (but with more literals), which helps with excessive, 
but not with myopic, generalizations. Deciding locally between these two techniques or 
on their combination (i.e., some parts of an interpolant might need to be split while oth-
ers combined) seems impossible. Schindler and Jovanovic [20] propose local interpolation 
that bounds the number of lemmas generated from a single pob (which helps with Fig. 1c), 
but only if inductive generalization is disabled. Finally, [17] suggests using external guid-
ance, in a form of predicates or terms, to guide interpolation. In contrast, GSpacer uses 
global guidance, based on the current proof, to direct different local generalization strate-
gies. Thus, the guidance is automatically tuned to the specific instance at hand rather than 
to a domain of problems.

Global invariant inference. An alternative to inferring lemmas for the inductive invari-
ant by blocking counterexamples is to enumerate the space of potential candidate invariants 
[4–7, 21]. This does not suffer from the pitfall of local reasoning. However, it is only effec-
tive when the search space is constrained. While these approaches perform well on their 

Fig. 5   Comparing GSpacer with just the Subsume rule  (x-axis) against GSpacer with all three rules 
together (y-axis)
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target domain, they do not generalize well to a diverse set of benchmarks, as illustrated by 
results of CHC-COMP and our empirical evaluation in Sect. 5.

Locality in SMT and IMC . Local reasoning is also a known issue in SMT, and, in par-
ticular, in DPLL(T) (e.g., [22]). However, we are not aware of global guidance techniques for 
SMT solvers. Interpolation-based Model Checking (IMC) [23, 24] that uses interpolants from 
proofs, inherits the problem. Compared to IMC, the propagation phase and inductive gener-
alization of IC3 [1], can be seen as providing global guidance using lemmas found in other 
parts of the search-space. In contrast, GSpacer magnifies such global guidance by exploiting 
patterns within the lemmas themselves.

IC3-SMT-based Model Checkers. There are a number of IC3-style SMT-based infinite state 
model checkers, including [2, 25, 26]. To our knowledge, none extend the IC3-SMT frame-
work with a global guidance. A rule similar to Subsume is suggested in [27] for the theory 
of bit-vectors and in [28] for LRA, but in both cases without global guidance. In [28], it is 
implemented via a combination of syntactic closure with interpolation, whereas we use MBP 
instead of interpolation. Refinement State Mining in [29] uses similar insights to our Sub-
sume rule to refine predicate abstraction.

7 � Conclusion and future work

This paper introduces global guidance to mitigate the limitations of the local reasoning per-
formed by SMT-based IC3-style model checking algorithms. Global guidance is necessary 
to redirect such algorithms from divergence due to persistent local reasoning. To this end, we 
present three general rules that introduce new lemmas and pobs by taking a global view of the 
lemmas learned so far. The new rules are not theory-specific, and, as demonstrated by Algo-
rithm 6, can be incorporated to IC3-style solvers without modifying existing architecture. We 
instantiate, and implement, the rules for LIA and LRA in GSpacer, which extends Spacer.

Our evaluation shows that global guidance brings significant improvements to local rea-
soning, and surpasses invariant inference based solely on global reasoning. More importantly, 
global guidance decouples Spacer ’s dependency on interpolation strategy and performs 
almost equally well under all three interpolation schemes we consider. As such, using global 
guidance in the context of theories for which no good interpolation procedure exists arises 
as a promising direction for future research. For example, [30] proposes global guidance for 
bit-vectors. Other theories that could benefit from global guidance include algebraic datatypes 
and arrays.
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