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ABSTRACT

Subsampling is commonly used to overcome computational and economical bottlenecks in the
analysis of finite populations and massive datasets. Existing methods are often limited in scope and
use optimality criteria (e.g., A-optimality) with well-known deficiencies, such as lack of invariance
to the measurement-scale of the data and parameterisation of the model. A unified theory of
optimal subsampling design is still lacking. We present a theory of optimal design for general data
subsampling problems, including finite population inference, parametric density estimation, and
regression modelling. Our theory encompasses and generalises most existing methods in the field of
optimal subdata selection based on unequal probability sampling and inverse probability weighting.
We derive optimality conditions for a general class of optimality criteria, and present corresponding
algorithms for finding optimal sampling schemes under Poisson and multinomial sampling designs.
We present a novel class of transformation- and parameterisation-invariant linear optimality criteria
which enjoy the best of two worlds: the computational tractability of A-optimality and invariance
properties similar to D-optimality. The methodology is illustrated on an application in the traffic
safety domain. In our experiments, the proposed invariant linear optimality criteria achieve 92–99%
D-efficiency with 90–95% lower computational demand. In contrast, the A-optimality criterion has
only 46% and 60% D-efficiency on two of the examples.

Keywords A-optimality · D-optimality · L-optimality · M-estimation · inverse probability weighting · unequal
probability sampling.

1 Introduction

Consider a p-dimensional parameter θ0 defined by

θ0 = arg min
θ∈Ω

`0(θ), (1)

i.e., as the minimiser of some function `0(θ) over some parameter space Ω ⊂ Rp. We assume further that θ0 is unique,
and that `0(θ) is twice differentiable and can be written on the form

`0(θ) =
∑
i∈D

`i(θ), `i(θ) = `(θ;vi), (2)

with summation over some index set D = {1, . . . , N}, where vi is a data vector associated with a member i ∈ D.
Under these assumptions, θ0 may also be defined as the unique solution to the estimation equation∑

i∈D
ψi(θ) = 0, ψi(θ) = ∇θ`(θ;vi). (3)

The data is on the form vi = yi ∈ Y or vi = (xi,yi) ∈ X × Y , where yi is a response vector and xi a vector of
explanatory variables. We will generally not distinguish between the case with and without explanatory variables, and
throughout we write the data as (xi,yi), keeping in mind that the first entry may be null and X the empty set. One
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Optimal subsampling designs

may interpret (1)–(2) as an empirical risk minimisation problem (Vapnik, 1991). Hence, we will refer to `0(θ) as the
(full-data) empirical risk and to θ0 as the (full-data) empirical risk minimiser (ERM).

The setting above covers a broad range of inference problems, models, and estimation methods in statistics, including
maximum likelihood estimation, generalised linear models (Nelder and Wedderburn, 1972; McCullagh and Nelder,
1989), quasi-likelihood methods (Wedderburn, 1974), and certain types of M-estimation (Stefanski and Boos, 2002).
Some specific examples, which will be considered further in the Application and Examples in Section 6, include:

i) Finite population inference: consider a finite population of N individuals, where each individual is associated
with a non-random vector characteristic yi. The vector of finite population means 1

N

∑N
i=1 yi may be written

on the form (1)–(3) with vi = yi and `(θ;vi) = ||yi − θ||22 = (yi − θ)T(yi − θ).

ii) Parametric density estimation: given independent and identically distributed data y1, . . . , yN from a probability
distribution with density function fθ(y), the maximum likelihood estimate of θ may be written on the form
(1)–(3) with vi = yi and `(θ;vi) = − log fθ(yi).

iii) Regression modelling: consider a random sample {(xi, yi)}Ni=1, a vector of regression coefficients θ, a (non-
linear) model fθ(x) for the conditional mean of Y given x, and a differentiable loss-function l : R2 → R+

such that l(ŷ, y) = 0 if and only if ŷ = y. With vi = (xi, yi) and `(θ;vi) = l(fθ(x), yi), the equations
(1)–(3) define an estimate of the vector of regression coefficients θ.

Now consider a situation where inference based on the full data {(xi,yi)}i∈D is prohibited by economic or compu-
tational constraints. For instance, the index set may be so large that complete enumeration to observe the full data
{(xi,yi)}i∈D is practically or economically unfeasible. This is the typical situation in finite population inference (Ney-
man, 1938; Hansen and Hurwitz, 1943; Horvitz and Thompson, 1952). Some variables may be expensive to measure and
hence affordable to observe only for a small number of instances i ∈ D, a situation known as a measurement-constrained
experiment (Wang et al., 2017; Meng et al., 2021; Zhang et al., 2021; Imberg et al., 2022b). Another example is when
the full data {(xi,yi)}i∈D is available, but the size N of the dataset is so large that estimation of θ using (1)–(2) is
computationally unfeasible (Ma et al., 2015; Drovandi et al., 2017; Wang et al., 2018; Deldossi and Tommasi, 2022;
Dai et al., 2022). In either case, we may search for an approximate solution based on a subset S ⊂ D of size n� N .

In this paper we focus on methods based on data subsampling through unequal probability sampling and inverse
probability weighting. Specifically, we consider an estimator of the form

θ̂µ = arg min
θ∈Ω

ˆ̀
µ(θ), (4)

ˆ̀
µ(θ) =

∑
i∈S

Si
µi
`i(θ), (5)

where Si is the number of times an element i ∈ D is selected by the sampling mechanism, µi the corresponding
expected number of selections, and S = {i ∈ D : Si > 0} the random set of selected elements. One may recognise (5)
as the Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943) of the full-data empirical risk function (2). Hence, we
refer to θ̂µ as the Hansen-Hurwitz empirical risk minimiser. For sampling without replacement, (5) coincides with the
also well-known Horvitz-Thompson estimator of `0(θ) (Horvitz and Thompson, 1952). We also note that ˆ̀

µ(θ) is an
unbiased estimator of `0(θ), provided that µi > 0 for all i ∈ D, and θ̂µ a consistent estimator of the full-data parameter
θ0 under general regularity conditions (Binder, 1983).

An important question to ask is how the subset S used for the approximate solution (4) to the problem (1)–(2) should
be selected for optimal performance. The problem of optimal subsampling has a long standing tradition within the
field of survey sampling for inference regarding finite populations; see, e.g., Neyman (1938); Hájek (1959); Cassel
et al. (1976); Brewer (1979) and Bellhouse (1984). Their work, however, is primarily concerned with linear estimators
of scalar finite population characteristics. Stimulated by modern technological developments, the question of optimal
subdata selection has attained renewed attention during the past few years also for more complex inference problems,
as outlined above. Examples include leverage sampling and approximate numerical linear algebra methods for big
data regression (Ma et al., 2015, 2020), optimal subsampling algorithms for binary and multinomial logistic regression
(Wang et al., 2018; Yao and Wang, 2019), generalised linear models (Ai et al., 2021b; Zhang et al., 2021; Yu et al.,
2022), quantile regression (Ai et al., 2021a; Wang and Ma, 2021), and active learning (Imberg et al., 2020; Kossen
et al., 2022; Zhan et al., 2022). However, most of these publications have a highly algorithmic perspective, focusing on
a restricted class of models and optimality criteria. Moreover, many of the proposed methods use optimality criteria
(e.g., A-optimality) with well-known deficiencies, such as lack of invariance to the measurement-scale of the data and
parameterisation of the model. A unified theory of optimal subsampling design is still lacking.
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Optimal subsampling designs

We present a theory of optimal design for general data subsampling problems, including finite population inference,
parametric density estimation, and regression modelling using quasi-likelihood methods. We derive optimality con-
ditions for a broad class of optimality criteria, including A-, D-, E-, L-, and Kiefer’s Φq-optimality criterion (Kiefer,
1974). Algorithms to find optimal sampling schemes are presented for Poisson sampling and multinomial sampling
designs. We also study optimal design from a distance-minimising perspective, and establish equivalence to traditional
optimality criteria. This naturally leads us to a novel class of linear optimality criteria with good theoretical and
practical properties, including computational tractability and invariance under affine transformations of the data and
re-parameterisation of the model. The presented methodology and algorithms are illustrated in an application in the
traffic safety domain.

We start with a brief review of some standard methods in unequal probability sampling and optimal design in Section 2.
A general theory of optimal design for data subsampling problems is presented in Section 3, including algorithms for
finding optimal sampling schemes. We discuss optimal design from a distance-minimising perspective in Section 4, and
present optimal designs for some common statistical distance functions. Comments on the implementation of optimal
subsampling methods in practice are provided in Section 5. Examples and experiments are presented in Section 6. We
refer to Appendix A for proofs.

2 Preliminaries

Consider a class of experiments Ξ and corresponding consistent estimators θ̂ξ, ξ ∈ Ξ, for an unknown parameter θ∗.
The aim of optimal design is to find an experiment ξ ∈ Ξ that minimises some suitable function Φ of the covariance
matrix of the estimator θ̂ξ. For instance, Φ may be the sum or product of the eigenvalues of its matrix argument,
corresponding to A- or D-optimality (Atkinson and Donev, 1992), or some other measure of "size" of a matrix.

In the context of data subsampling, the experiment is determined by the choice of sampling design and sampling
scheme µ = (µ1, . . . , µN ). For the estimation problem outlined in Section 1, we wish to find a sampling scheme µ that
minimises Φ(Cov(θ̂µ)) for some suitable family of sampling designs and objective function Φ : Rp×p → R. Some
common unequal probability sampling designs are presented in Section 2.1. Expressions for the approximate covariance
matrix of the estimator θ̂µ are provided in Section 2.2, and a brief review of optimal design in Section 2.3.

2.1 Unequal probability sampling designs

We consider the situation where individual elements i ∈ D are selected according to an unequal probability sampling
design, i.e., by a random mechanism where each member i ∈ D has a strictly positive and possibly unique selection
probability. Following the notation in Section 1, we let Si be the number of times an element i ∈ D is selected by the
sampling mechanism, where sampling may be with or without replacement, and µi be the corresponding expected
number of selections. We let n denote the expected size of the subsample, andMn the corresponding domain of
µ = (µ1, . . . , µN ), i.e., the set of feasible values of the sampling scheme µ within a specified family of sampling
designs of (expected) size n. We assume that sampling is conducted according to one of the following families of
sampling designs:

i) Poisson sampling with replacement (PO-WR): S1, . . . , SN are independent with Si ∼ Poisson(µi), µi > 0.
The sample size

∑
i∈D Si is random, with expectation E[

∑
i∈D Si] =

∑
i∈D µi = n. The corresponding

domainMnof µ is given byMn = {µ ∈ RN : µi > 0 for all i ∈ D and
∑
i∈D µi = n}.

ii) Poisson sampling without replacement (PO-WOR): S1, . . . , SN are independent with Si ∼ Bernoulli(µi),
µi ∈ (0, 1]. The sample size

∑
i∈D Si is random, with expectation E[

∑
i∈D Si] =

∑
i∈D µi = n. The

corresponding domainMnof µ is given byMn = {µ ∈ RN : µi ∈ (0, 1] for all i ∈ D and
∑
i∈D µi = n}.

iii) Multinomial sampling (MULTI): (S1, . . . , SN ) ∼ Multinomial(n,µ/n), n ∈ N, µi > 0,
∑
i∈D µi = n.

Sampling is done with replacement and the sample size is fixed, i.e.,
∑
i∈D Si = n. The corresponding domain

Mn of µ is given byMn = {µ ∈ RN : µi > 0 for all i ∈ D and
∑
i∈D µi = n}.

For a given size n, the Poisson and multinomial sampling designs are uniquely determined by the mean vector µ. We
say that such a design, for a given size n, is indexed by the sampling scheme µ.

Methods also exist to select a fixed number of elements without replacement and with fixed selection probabilities, for
instance using conditional Poisson sampling (Hájek, 1981; Tillé, 2006). This method is, however, both computationally
and analytically intractable, and will therefore not be considered in this paper. Additional details may be found in, e.g.,
Tillé (2006) and Fuller (2009).
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Optimal subsampling designs

2.2 Covariance matrix of the Hansen-Hurwitz empirical risk minimiser

Binder (1983) showed that under suitable regularity conditions the distribution of the estimator (4) with respect to the
sampling mechanism is approximately Gaussian with mean

E[θ̂µ] = θ0 + o(n−1/2), (6)

and covariance matrix

Cov(θ̂µ − θ0) = Γ(µ;θ0) + o(n−1), Γ(µ;θ0) = H(θ0)−1V(µ;θ0)H(θ0)−1. (7)

Here o(n−1/2) and o(n−1) are interpreted elementwise and H(θ0) = ∂2`0(θ)

∂θ∂θT

∣∣
θ=θ0

is the Hessian of the full-data
empirical risk function (2) at θ = θ0.

V(µ;θ0) = Cov
(
∇θ ˆ̀

µ(θ)
∣∣
θ=θ0

)
=
∑
i,j∈D

Cov(Si, Sj)

µiµj
ψi(θ0)ψj(θ0)T (8)

is the covariance matrix of the gradient ∇θ ˆ̀
µ(θ) with respect to the sampling mechanism, evaluated at θ = θ0, and

ψi(θ) = ∇θ`i(θ). We refer to Binder (1983) and Fuller (2009) for further details.

It follows from the properties of the sampling designs described in Section 2.1, that the matrix V(µ;θ0) can be
simplified to

V(µ;θ0) =

{∑
i∈D µ

−1
i ψi(θ0)ψi(θ0)T, for PO-WR and MULTI designs, and∑

i∈D(µ−1
i − 1)ψi(θ0)ψi(θ0)T, for PO-WOR.

(9)

See, e.g., Tillé (2006). To obtain the above result for the multinomial sampling design, we have also used (3).

2.3 Optimal design

For an unknown parameter θ∗, consider a class of experiments Ξ and corresponding consistent estimators θ̂ξ, ξ ∈ Ξ,
with unequal covariance matrices Γξ . Ideally, we would like to find an experiment ξ∗ ∈ Ξ such that Γξ−Γξ∗ is positive
semi-definite for all ξ ∈ Ξ. Such universal optimality, however, is not possible to achieve in general. Hence, instead we
consider a function Φ : Sp×p+ → R on the set of real, symmetric, positive semi-definite p × p matrices, for which a
minimiser ξ∗ ∈ Ξ is sought. For Φ to be a meaningful measure of optimality we require the function to be monotone
for Loewner’s ordering, i.e., that

Φ(U) ≥ Φ(V) for all U,V ∈ Sp×p+ such that U ≥ V, (10)

with U ≥ V meaning that U−V is positive semi-definite (Pukelsheim, 1993).

Some popular optimality criteria are defined and summarised in Table 1. These include the D-optimality criterion
(minimise the determinant of the covariance matrix), the E-optimality criterion (minimise the largest eigenvalue of the
covariance matrix) and the L-optimality criterion (minimise the average variance of a collection of linear combinations
LTθ̂ξ). Two important special cases of the L-optimality criterion are the A-optimality criterion (minimise the average
variance) and c-optimality criterion (minimise the variance of a linear combination cTθ̂ξ), obtained with L = Ip×p and
L = c for some p× 1 vector c, respectively (Silvey, 1980; Atkinson and Donev, 1992). Included in Table 1 is also the
Φq- and Φq,A-optimality criteria, which encompass all other optimality criteria in this table. In particular, Φq-optimality
coincides with D-optimality when q = 0, A-optimality when q = 1, and E-optimality when q = ∞ (Kiefer, 1974).
Hence, Φq-optimality can be used to interpolate between A-, D- and E-optimality.

The A-, D- and E- optimality criteria have a simple geometric interpretation as follows. Consider the random set
C(θ̂ξ) := {θ ∈ Rp : (θ − θ̂ξ)TΓ−1

ξ (θ − θ̂ξ) ≤ χ2
p,α}, where χ2

p,α is the α-quantile of a χ2-distribution with p degrees
of freedom. For an (approximately) normally distributed estimator θ̂ξ, this defines an (approximate) 100× (1− α)%
ellipsoidal confidence set for θ∗ in Rp. D-optimality minimises the volume of this confidence ellipsoid over the class of
experiments Ξ. E-optimality minimises the length of its longest axis, and A-optimality the length of the diagonal of the
minimal bounding box (parallelepiped) around the confidence ellipsoid (Pronzato and Pázman, 2013).

Another popular optimality criterion is the V-optimality criterion, which minimises the average prediction variance with
respect to some measure ν(x) on the design space X (Welch, 1984). This is a linear optimality criterion and hence
is covered by the L-optimality criterion for a matrix L such that LLT =

∫
X ϕ(x)ϕ(x)Tdν(x) (Table 1) (Atkinson

and Donev, 1992). A natural choice for the measure ν(x) in data subsampling problems is the empirical measure on
{xi}i∈D.
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A property that is often desirable for an optimal design, is invariance under a non-singular affine transformation of
the data and under a re-parameterisation of the model. That is, the optimal design and the statistical properties of the
resulting estimator should not depend on the choice of parameterisation, nor on the scaling or coding of the data prior to
modelling. The most common example of a transformation- and parameterisation invariant optimality criterion is the
D-optimality criterion. In contrast, the A- and E-optimality criteria are sensitive to changes in the parameterisation
or data, and hence lack such invariance properties (Atkinson and Donev, 1992). An L-optimal design may or may
not be parameterisation- and transformation-invariant, depending on whether or not the coefficient matrix L of the
L-optimality criterion is adapted to the parameterisation of the problem and scaling of the data. Some examples of
transformation- and parameterisation-invariant linear optimality criteria will be discussed in Section 4.3.

For further details, were refer to Silvey (1980), Atkinson and Donev (1992) and Pukelsheim (1993) and Pronzato and
Pázman (2013).

Table 1. Definition of some common optimality criteria in optimal design. Φ is a real-valued function on the set of
real, symmetric, positive semi-definite p× p matrices, Γ the p× p covariance matrix of an estimator θ̂ = (θ̂1, . . . , θ̂p),
λmax(Γ) the largest eigenvalue of Γ, c a non-zero p × 1 vector, A = L a non-zero p × m matrix with columns
a1, . . . ,am, and Ip×p the p× p identity matrix. X is the set of possible values for the predictors x and ϕ : X → Rp a
feature map of the data.

Optimality criterion Description Objective function Φ(Γ)

A-optimality
Minimise average variance,
minimise trace of covariance matrix,
minimise sum of eigenvalues.

1
p

∑p
i=1 Var(θ̂i) = 1

p tr(Γ)

c-optimality Minimise variance of a linear combination
or contrast cTθ̂. Var(cTθ̂) = cTΓc = tr(ΓccT)

D-optimality
Minimise generalised variance,
minimise determinant of covariance matrix,
minimise product of eigenvalues.

det(Γ)1/p or log det(Γ)

DA-optimality
Minimise generalised variance for subset
of parameters, collection of linear combina-
tions, or contrasts ATθ.

det(ATΓA)

E-optimality
Minimise maximal eigenvalue,
minimise variance along the direction of
largest uncertainty.

λmax(Γ)

L-optimality

Minimise average variance of a collection
of linear combinations or contrasts LTθ.
L = c ⇔ c-optimality
L = Ip×p ⇔ A-optimality

1
m

∑m
i=1 Var(aTi θ̂) = 1

m tr(ΓLLT)

V-optimality
Minimise average prediction variance with
respect to a measure dν(x) on X , assuming
a linear model ŷ = ϕ(x)Tθ̂.

∫
X Var(ϕ(x)Tθ̂)dν(x) =

tr
(
Γ
∫
X ϕ(x)ϕ(x)Tdν(x)

)
Φq,A-optimality
q ∈ [0,∞]

Φ0 ⇔ D-optimality
Φ0,A ⇔ DA-optimality
Φ1 ⇔ A-optimality
Φ1,L ⇔ L-optimality
Φ∞ ⇔ E-optimality

Φq,A(Γ) = 1
m tr[(ATΓA)q]1/q, q ∈ (0,∞)

Φ0,A(Γ) = limq↓0 Φq,A(Γ)
Φ∞,A(Γ) = limq↑∞ Φq,A(Γ)
Φq(Γ) = Φq,A(Γ),A = Ip×p

3 Optimal subsampling designs

In this section we present optimal sampling schemes for a general class of optimality criteria, under an assumption of
differentiability. Φ-optimality is defined in Section 3.1, where we also present three important lemmas. Optimality
criteria for Poisson and multinomial sampling designs are presented in Section 3.2, and algorithms for finding optimal
sampling schemes in Section 3.3.

First we note that the approximate covariance matrix Γ(µ;θ0) of the estimator θ̂µ, as given in (7), generally depends on
the full data {(xi,yi)}i∈D and full-data parameter θ0. Clearly, subsampling would not be needed if such information
were available at the design stage. This is a general problem in optimal design, however, and not specific to our setup,
and hence not a major limitation of the theory we present. We will proceed in this section and Section 4 as if such
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information is available, keeping in mind that the resulting theoretically optimal designs can generally not be found in
practice. We refer to Section 5 for a discussion on the implementation of optimal subsampling designs in practice.

Throughout we assume regularity conditions such that (7) holds, and that H(θ0) is of full rank. All vectors are assumed
to be column vectors, unless otherwise stated. We let ||u||22 = uTu denote the Euclidean norm of a vector u. Also
recall that ψi(θ) = ∇θ`i(θ).

3.1 Optimality criteria

By an optimal sampling scheme µ∗, we mean the following:

Definition 1 (Φ-optimality). Consider a function Φ : Sp×p+ → R that is monotone for Loewner’s ordering, i.e.,
such that (10) holds. Also consider a family of unequal probability sampling designs (e.g., PO-WR, PO-WOR or
MULTI) indexed by the sampling scheme µ. Let the expected size E[

∑
i∈D Si] = n be fixed, and letMn denote the

corresponding domain of µ. We say that a sampling scheme µ∗ is Φ-optimal if

µ∗ = arg min
µ∈Mn

Φ(Γ(µ;θ0)),

where Γ(µ;θ0) is the approximate covariance matrix of θ̂µ, as given in (7).

Finding a Φ-optimal sampling scheme reduces to a non-linear, possibly non-convex, restricted optimisation problem
over an (N − 1)-dimensional hyperplane in RN . While this problem may be addressed by numerical optimisation
methods when N is small, this is generally not a viable option for large datasets. We therefore need a theory of optimal
design that can be used to devise efficient algorithms for finding optimal sampling schemes when N is large. To make
the problem tractable, we will restrict ourselves to optimality criteria Φ(Γ(µ;θ0)) that are differentiable with respect to
µ in a neighbourhood of its optimum µ∗. Three important lemmas are provided below.

Lemma 1 (The chain rule). Consider a function Φ : Sp×p+ → Rp, and assume that Φ(Γ(µ;θ0)) is differentiable with
respect to µ in a neighbourhood of some point µ∗. The partial derivative of Φ(Γ(µ;θ0)) with respect to µi is then
given by

∂Φ(Γ(µ;θ0))

∂µi
= tr

(
φ(Γ(µ;θ0))

∂Γ(µ;θ0)

∂µi

)
, (11)

where φ(U) = ∂Φ(U)
∂U is the p × p matrix derivative of Φ with respect to its matrix argument, and ∂Γ(µ;θ0)

∂µi
is the

elementwise derivative of Γ(µ;θ0) with respect to µi.

Assume further that

i) Γ(µ;θ0) decreases monotonically with µ1, . . . , µN in the Loewner order sense, i.e., Γ(µ1;θ0)− Γ(µ2;θ0)
is positive semi-definite for every pair of vectors µ1,µ2 ∈ RN>0 such that µ1 ≤ µ2 (elementwise), and

ii) Φ is monotone for Loewner’s ordering, i.e., that (10) holds.

Then the matrix φ(Γ(µ;θ0)) is positive semi-definite and there exists a real matrix L(µ;θ0) such that
L(µ;θ0)L(µ;θ0)T = φ(Γ(µ;θ0)).

The first part of Lemma 1 follows by the chain rule in matrix differential calculus and the symmetry of Γ(µ;θ0),
and the second by the monotonicity assumptions on Γ(µ;θ0) and Φ. The matrix L(µ;θ0) may, e.g., be obtained as
the matrix square root of φ(Γ(µ;θ0)), or by the Cholesky decomposition when φ(Γ(µ;θ0)) is of full rank. Some
examples are provided in Lemma 2.
Lemma 2 (µ-differentiable Φ-optimality criteria). Consider a PO-WR, PO-WOR or MULTI design, and assume that
H(θ0) is of full rank. Let c be a non-zero p × 1 vector, L a non-zero p ×m matrix, λmax(Γ(µ;θ0)) the maximal
eigenvalue of Γ(µ;θ0), and vµ a corresponding eigenvector. Let φ(Γ(µ;θ0)) be defined as in Lemma 1. Then the
following holds:

a) Γ(µ;θ0) is differentiable with respect to µ and ∂Γ(µ;θ0)
∂µi

= −µ−2
i H(θ0)−1ψi(θ0)ψi(θ0)TH(θ0)−1, pro-

vided that µi > 0.

b) The D-optimality objective function Φ(Γ(µ;θ0)) = log det(Γ(µ;θ0)) is differentiable with respect to µ and
φ(Γ(µ;θ0)) = Γ(µ;θ0)−1, provided that Γ(µ;θ0) is of full rank.

c) The E-optimality objective function Φ(Γ(µ;θ0)) = λmax(Γ(µ;θ0)) is differentiable with respect to µ and
φ(Γ(µ;θ0)) = vµv

T
µ, provided that λmax(Γ(µ;θ0)) has multiplicity 1.
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d) The L-optimality objective function Φ(Γ(µ;θ0)) = tr(Γ(µ;θ0)LLT) is differentiable with respect to µ, and
φ(Γ(µ;θ0)) = LLT. In particular, this holds for A-optimality with L = Ip×p and c-optimality with L = c.

e) The Φq-optimality objective function Φ(Γ(µ;θ0)) = tr(Γ(µ;θ0)q)1/q is differentiable with respect to µ for
q ∈ (0,∞) and φ(Γ(µ;θ0)) = tr(Γ(µ;θ0)q)1/q−1Γ(µ;θ0)q−1, provided that Γ(µ;θ0) is of full rank.

Combining the results of Lemma 1 and 2, we obtain the following:

Lemma 3 (Partial derivatives of Φ(Γ(µ;θ0))). Consider a PO-WR, PO-WOR or MULTI design. Also consider a
function Φ : Sp×p+ → R such that Φ is monotone for Loewner’s ordering. Assume that H(θ0) is of full rank, and that
Φ(Γ(µ;θ0)) is differentiable with respect to µ in a neighbourhood of some point µ∗. Let L(µ;θ0) be defined as in
Lemma 1. Then

∂Φ(Γ(µ;θ0))

∂µi
= −µ−2

i

∣∣∣∣L(µ;θ0)TH(θ0)−1ψi(θ0)
∣∣∣∣2

2
.

3.2 Optimality conditions

Using results of Lemma 1–3, in Proposition 1 we present optimality conditions for Poisson and multinomial sampling
designs with respect to a Φ-optimality criterion under an assumption of differentiability.

Proposition 1 (Φ-optimality conditions). Consider the family of PO-WR, PO-WOR or MULTI designs of (expected)
size n. Also consider a function Φ : Sp×p+ → R such that Φ is monotone for Loewner’s ordering. Assume that H(θ0)
is of full rank, and that Φ(Γ(µ;θ0)) is differentiable with respect to µ in a neighbourhood of some point µ∗. Let
L(µ;θ0) be defined according to Lemma 1, and

ci =
∣∣∣∣L(µ∗;θ0)TH(θ0)−1ψi(θ0)

∣∣∣∣2
2
. (12)

Then the following holds:

a) µ∗ is a stationary point of Φ(Γ(µ;θ0)) for a PO-WR or MULTI design of size n if

µ∗i = n

√
ci∑

j∈D
√
cj

for all i ∈ D. (13)

b) µ∗ is a stationary point of Φ(Γ(µ;θ0)) for a PO-WOR design of size n if

µ∗i ≤ 1 for all i ∈ D, (14a)

µ∗i = (n− nE)
√
ci∑

j∈D\E
√
cj

for all i ∈ D \ E , (14b)

√
ci ≥

√
cj/µ

∗
j for all i ∈ E and j ∈ D \ E , (14c)

where E = {i ∈ D : µ∗i = 1} and nE = |E|.

Consequently, if µ∗ satisfies the optimality conditions according to a) or b), and Φ(Γ(µ;θ0)) is convex in µ, then µ∗
is the global minimiser of Φ(Γ(µ;θ0)).

We note that the matrix L(µ∗;θ0) in Proposition 1 exists by Lemma 1 whenever the objective function is differentiable
at µ∗. It need not be unique, however, and may depend on both µ∗ and θ0. Some examples can be found in Lemma 2.
For linear optimality criteria, the matrix L(µ∗;θ0) does not depend on µ∗ but may depend on the full-data parameter
θ0; see Section 4.3 for further discussion and examples.

The result of Proposition 1 follows from Lemma 3 by the Lagrange multiplier method in a) and the Karush-Kuhn-Tucker
conditions in b). We show in Proposition 2 that the D- and L-optimality criteria are convex in µ and hence that global
optimality can be deduced.

Proposition 2 (Convexity of the D- and L-optimality criteria). Consider the family of PO-WR, PO-WOR or multinomial
sampling designs of (expected) size n. Assume that H(θ0) is of full rank. Then

a) the L-optimality criterion is convex in µ.

Assume further that V(µ;θ0), defined in (8), is positive definite for every µ ∈Mn. Then
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b) the D-optimality criterion is (log) convex in µ.

The first assumption in Proposition 2 is needed to ensure that the inverse of H(θ0) exists, and that the approximate
covariance matrix Γ(µ;θ0) is well-defined. For the D-optimality criterion we also need that Γ(µ;θ0) is of full rank,
which follows if the additional assumption on V(µ;θ0) is fulfilled. We note that this is rather an assumption on the
model and data than on the sampling design. Moreover, both of the assumptions in Proposition 2 hold in most situations.
One example where these assumptions are violated, however, is encountered in (multivariate) regression analysis when
the model matrix X or response matrix Y (i.e., the matrices with rows xTi and yTi ) has linearly dependent columns.
Another example is logistic regression with complete separation, i.e., when the outcome is linearly separable by the
predictors. It is also possible that H(θ0) is of full rank while V(µ;θ0) is rank-deficient onMn. In this case the
L-optimality criterion is still well-defined, whereas the D-optimality criterion is not. There are various solutions to
such problems, e.g, removing redundant columns from the data, using a ridge penalty to avoid rank-deficiency of the
Hessian matrix (Hastie, 2020), or by restricting the D-optimality criterion to a subset of the parameters using so called
DA-optimality (Table 1) (Sibson, 1974). Most of these situations may be avoided by a careful construction of the model,
however.

Even with a convex objective function, it is possible that no feasible global optimum exist since the domainMn is
not closed. For the L-optimality criterion this happens if ci in (12) is equals zero for some i ∈ D. In this case the
objective function does not depend on the corresponding µi and the partial derivative with respect to µi is equal to
zero. The optimal choice would be to correspondingly set µi = 0, but this is an unfeasible solution. For any choice of
µi > 0, it is always possible to improve the value of the objective function by reducing µi and distribute the regained
probability mass optimally on the remaining elements in D. The existence of a feasible global optimum can be ensured
by imposing the additional restriction that µi ≥ µmin for all i ∈ D, and some µmin ∈ (0, n/N). An alternative solution
that does not require explicit specification of a lower bound µmin, but that still ensures a feasible solution with µi > 0,
is proposed in Section 5.

3.3 Optimal sampling schemes

In this subsection we present algorithms for finding optimal sampling schemes. First consider a linear optimality
criterion with respect to a p×m matrix L. In this case a closed solution for the optimal sampling scheme is available for
the PO-WR and MULTI designs, and given by (12)–(13) with L(µ∗;θ0) = L, provided that the corresponding ci > 0
for all i ∈ D. In particular, A-optimality is obtained with L(µ∗;θ0) = Ip×p, and c-optimality with L(µ∗;θ0) = c. For
PO-WOR, a simple adjustment may be needed to ensure that a feasible solution with µi ≤ 1 is obtained (Algorithm 1).

Algorithm 1. L-optimal sampling schemes for Poisson and multinomial sampling designs.
INPUT: Index setD, (expected) sample size n, non-zero p×mmatrix L, Hessian matrix H(θ0), gradients {ψi(θ0)}i∈D,
family of sampling designs (PO-WR, PO-WOR or MULTI).

1: Let ci = ||LTH(θ0)−1ψi(θ0)||22 for all i ∈ D.
2: if any ci = 0 then
3: STOP. Feasible solution does not exist.
4: else
5: Let µ∗i = n

√
ci∑

j∈D
√
cj

for all i ∈ D.
6: if PO-WOR then
7: while any µ∗i > 1 do
8: Let E = {i ∈ D : µ∗i ≥ 1} and nE = |E|.

9: Let µ∗i =

{
1 if i ∈ E ,
(n− nE)

√
ci∑

j∈D\E
√
cj

if i ∈ D \ E .
10: end while
11: end if
12: RETURN optimal sampling scheme µ∗ = (µ∗1, . . . , µ

∗
N ).

13: end if

Using the result of Proposition 1 and Algorithm 1, in Algorithm 2 we present an iterative algorithm to find optimal
sampling schemes for non-linear optimality criteria. The algorithm takes an initial sampling scheme as input and
solves a series of convex optimisation problems by a local approximation of the objective function as linear optimality
criterion. The algorithm is terminated for convergence when the relative improvement of the objective function between
two consecutive iterations is less than some pre-specified tolerance level ε (e.g., ε = 10−3). The algorithm may also
be terminated for divergence if the value of the objective function increases between the iterations. If the algorithm
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converges, it converges to a fixed-point of the function h(u) : RN → RN defined by Algorithm 1 with L = L(µ;θ0),
which by Proposition 1 is a stationary point of Φ(Γ(µ;θ0)). For L-optimality, the method is exact and terminates
within a single iteration. Beyond L-optimality, the algorithm need not converge, and even if it does, it need not converge
to a global optimum unless the problem is convex. The performance of this algorithm for non-linear optimality criteria
will be evaluated in Section 6.

Algorithm 2. Fixed-point iteration.
INPUT: Index set D, (expected) sample size n, optimality criterion Φ, Hessian matrix H(θ0), gradients {ψi(θ0)}i∈D,
initial sampling scheme µ0, family of sampling designs (PO-WR, PO-WOR or MULTI), maximal number of iterations
T , tolerance parameter ε > 0.

1: for t = 1, . . . , T do
2: Let Lt be a matrix such that LtL

T
t = φ(Γ(µt−1;θ0)).

3: Let ci = ||LT
tH(θ0)−1ψi(θ0)||22 for all i ∈ D.

4: if any ci = 0 then
5: STOP. Unfeasible solution encountered during iteration.
6: else
7: Find L-optimal sampling scheme µt with respect to L = Lt according to Algorithm 1.
8: if value of objective function increased then
9: STOP. Algorithm diverged.

10: else if relative improvement of the objective function < ε then
11: Algorithm converged. RETURN µ∗ = µt.
12: end if
13: end if
14: end for

4 A distance-minimising perspective on optimal subsampling designs

Recall the overall aim of data subsampling as introduced in Section 1; to find an approximate solution to the originally
intractable problem (1)–(2). A natural target for optimal design in this context is therefore to minimise the expected
distance E[d(θ̂µ)] of the estimator θ̂µ from the full-data parameter θ0, for some suitable statistical distance function
d : Ω→ R+. In Section 4.1 we define a class of optimality criteria for minimising the expected distance, and discuss
their relation to traditional optimality criteria. Some specific examples are presented in Section 4.2, and invariance
properties discussed in Section 4.3.

4.1 d-optimality

Consider a statistical distance function d(θ) such that d(θ) ≥ 0 for all θ ∈ Ω, with equality only for θ = θ0. For
analytical and computational tractability we also require the distance function to be twice differentiable, and let
Hd(θ) = ∂2d(θ)

∂θ∂θT denote the Hessian matrix of d(θ). We have the following result:

Lemma 4 (Taylor expansion of d(θ)). Let θ0 and θ̂µ be defined according to (1)–(2) and (4)–(5). Assume that (6)–(7)
hold, and that θ̂µ has bounded 2 + δ moments for some δ > 0. Consider a function d : Ω→ R+ such that d(θ) = 0 if
and only if θ = θ0. Assume that d(θ) is twice differentiable in a neighbourhood of θ0, and that Hd(θ0) is non-zero.
Then

E[d(θ̂µ)] =
1

2
tr (Γ(µ;θ0)Hd(θ0)) + o(n−1).

The result of Lemma 4 follows from a Taylor expansion of d(θ) at θ = θ0 and properties of quadratic forms. Based on
this result, we define a class of expected-distance-minimising optimality criteria as follows:

Definition 2 (d-optimality). Consider a function d : Ω→ R+ satisfying the conditions of Lemma 4. Also consider a
family of unequal probability sampling designs (e.g., PO-WR, PO-WOR or MULTI) indexed by the sampling scheme
µ. Let the expected size E[

∑
i∈D Si] = n be fixed, and letMn denote the corresponding domain of µ. We say that a

sampling scheme µ∗ is d-optimal with respect to the statistical distance function d(θ) if

µ∗ = arg min
µ∈Mn

tr (Γ(µ;θ0)Hd(θ0)) .
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We denote this optimality criterion as d-optimality for distance, which should not be confused with the D-optimality
criterion introduced in Section 2.3. We recognise the d-optimality criterion as a linear optimality criterion with
LLT = Hd(θ0). Indeed, we have the following equivalence result:
Proposition 3 (Equivalence between d- and Φ-optimality).

a) Consider a function d : Ω→ R+ satisfying the conditions of Lemma 4 and denote by Hd(θ) the Hessian of
d(θ). Assume that the sampling scheme µ∗ is d-optimal with respect to the distance function d(θ). Then there
exists a real matrix L such that LLT = Hd(θ0) and µ∗ is L-optimal with respect to L.

b) Let Φ : Sp×p+ → R and L(µ;θ0) be defined as in Lemma 1 and assume that Φ(Γ(µ;θ0)) is differentiable
with respect to µ in a neighbourhood of its optimum argument µ∗. Then µ∗ is d-optimal with respect to the
distance function d(θ) = ||L(µ∗;θ0)T(θ − θ0)||22.

Proposition 3 follows immediately by the definitions and the optimality conditions of Proposition 1. By this result,
any Φ-optimality criterion may be viewed as minimising the expected distance of the estimator θ̂µ from the full-data
parameter θ0 for a particular choice of distance function. For instance, A-optimality is equivalent to d-optimality with
d(θ) = ||θ−θ0||22. Beyond linear optimality criteria, the induced distance function may be implicit and depend on the Φ-
optimal sampling scheme µ∗. As an example, E-optimality is equivalent to d-optimality with d(θ) = ||vTµ∗(θ − θ0)||22,
where vµ∗ is an eigenvector pertaining to the largest eigenvalue of Γ(µ∗;θ0) and µ∗ the corresponding E-optimal
sampling scheme. In this case the distance function for the d-optimality criterion can only be evaluated if the E-optimal
sampling scheme is known.

4.2 Some distance-minimising designs

Next we show how d-optimality may be used to derive a novel class of linear optimality criteria with good theoretical
properties, including transformation- and parameterisation invariance. Consider the following statistical distance
functions naturally arising in data subsampling applications and commonly encountered in statistics:

i) Empirical risk distance: Since θ0 is defined as the minimiser of the full-data empirical risk (2), we may
measure of the distance of a parameter value θ from the full-data parameter θ0 through the attained value of
the empirical risk. We define the empirical risk distance of θ from θ0 as dER(θ) = `0(θ)− `0(θ0).

ii) Kullback-Leibler divergence: Consider a random vector Y with probability density function fθ(y) and
cumulative distribution function Fθ(y). Let Y denote the domain of Y . The Kullback-Leibler divergence
of fθ from fθ0

is defined as KL (fθ0
||fθ) =

∫
Y log

fθ0
(y)

fθ(y) dFθ0
(y). To allow for covariates, we define the

Kullback-Leibler distance of θ from θ0 as dKL(θ) =
∑
i∈D

∫
Y log

fθ0
(y|xi)

fθ(y|xi)
dFθ0(y|xi).

iii) Mahalanobis distance: Consider a probability distribution on Rp with mean vector γ and covariance matrix

Σ. The Mahalanobis distance of a point θ ∈ Rp from the mean γ is then given by
√

(θ − γ)TΣ−1(θ − γ).
We define the squared Mahalanobis distance of θ from θ0 with respect to a real, symmetric, positive definite
dispersion matrix Σ as dΣ(θ) = (θ − θ0)TΣ−1(θ − θ0).

Four natural choices of the dispersion matrix Σ for the Mahalanobis distance are:

iii.a) Σ = Γ(µ;θ0), the approximate covariance matrix of θ̂µ.

iii.b) Σ = H(θ0)−1, which for a parametric model is an estimate of the covariance matrix of θ0, seen as an estimator
of some underlying super-population parameter θ∗. In this case, H(θ0) is also known as the observed Fisher
information matrix, often denoted as I(θ0) (Efron and Hinkley, 1978).

iii.c) Σ = H̃(θ0)−1, where H̃(θ0) is defined for a parametric model fθ(y|x) as H̃(θ) = Ey∼fθ0
(y|x)[H(θ0)]. In

this case, H̃(θ0) is also known as the expected Fisher information matrix, often denoted as I(θ0) (Efron and
Hinkley, 1978).

iii.d) Σ = H(θ0)−1V(θ0)H(θ0)−1, with

V(θ0) =
∑
i∈D

ψi(θ0)ψi(θ0)T, ψi(θ) = ∇θ`i(θ). (15)

This choice of the matrix Σ corresponds to the "robust estimator" or "sandwich estimator" of the covariance
matrix of θ0, seen as an estimator of some underlying super-population parameter θ∗ under a semi-parametric
or presumably misspecified parametric model (Stefanski and Boos, 2002).
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We define dER-, dKL- and dΣ-optimality accordingly, i.e., as d-optimality with the distance function taken as indicated
by the subscript. We also define dI-, dI- and dS-optimality as dΣ-optimality with dispersion matrix Σ taken as in iii.b)
(the inverse of the observed information matrix), iii.c) (the inverse of the expected information matrix) and iii.d) (the
sandwich variance estimator), respectively.

Note that dKL- and dI-optimality are defined for parametric models only, whereas dER-, dI- and dS-optimality
are appropriate also for semi-parametric and distribution-free methods, including estimation of finite population
characteristics. For regression problems, the d-optimality criterion with the empirical risk distance (i.e., dER-optimality)
is closely related to the V-optimality criterion (Table 1, Section 2.3). Indeed, these two optimality criteria are equivalent
for ordinary least squares regression when ν(x) is the empirical measure on {xi}i∈D.

The Mahalanobis distance with Σ = Γ(µ;θ0) arises by considering the uncertainty of θ̂µ as an estimator of the full-data
parameter θ0. In contrast, our motivation for the dispersion matrices in iii.b)–iii.d) above comes from a super-population
viewpoint where θ0 is seen as an estimator of some underlying parameter θ∗ (cf. Hartley and Sielken, 1975). The
different choices of dispersion matrix Σ then arise naturally trough different measures of uncertainty associated with the
full-data parameter θ0 (cf. Stefanski and Boos, 2002). We emphasise, however, that the super-population perspective
adopted here is purely rhetorical. The resulting distance functions are equally valid even without any intentions of
super-population inference. The significance of these particular choices of distance functions and dispersion matrices
are highlighted in Proposition 4 below and further in Section 4.3.

Proposition 4 (dER- dKL-, dΣ-optimality and equivalence with L-optimality).

a) d-optimality with respect to the empirical risk distance is equivalent to L-optimality with respect to a p× p
matrix L such that LLT = H(θ0).

b) d-optimality with respect to the Mahalanobis distance is equivalent to L-optimality with respect to a p× p
matrix L such that LLT = Σ−1.

c) Consider a parametric statistical model with density function fθ(y|x) and cumulative distribution function
Fθ(y|x). Let θ0 be defined by (1)–(2) with `i(θ) = − log fθ(yi|xi). Assume that the following holds for all
i ∈ D and all parameter values θ in a neighbourhood or θ0: dKL(θ) is finite, `i(θ) is two times continuously
differentiable with respect to θ, and all first- and second-order derivatives of log fθ(y|xi) are bounded in L1

with respect to the measure dFθ(y|xi). Then d-optimality with respect to the Kullback-Leibler distance is
equivalent to L-optimality with respect to a p× p matrix L such that LLT = H̃(θ0).

The result of Proposition 4 follows immediately from Proposition 3. Note that for c) we need conditions on the model
fθ(y|x) that allow us to change the order of integration and differentiation.

By Proposition 4a) and c) we observe that dER- and dI-optimality are equivalent (take Σ = H(θ0)−1). The same also
holds for dKL- and dI-optimality (take Σ = H̃(θ0)−1). We also note that for many models, including exponential
families and generalised linear models with a canonical link function, the observed information matrix I(θ0) = H(θ0)

and expected information matrix I(θ0) = H̃(θ0) are equal, and that these four optimality criteria hence are equivalent
(see, e.g. McCullagh and Nelder, 1989). For a correctly specified parametric model, they are also asymptotically
equivalent to dS-optimality (as N →∞), since in this case NH(θ0)−1, NH̃(θ0)−1 and NH(θ0)−1V(θ0)H(θ0)−1

all converge to the same limit (see, e.g. Stefanski and Boos, 2002).

The above-mentioned optimality criteria are also related to A-optimality after an appropriate change of variables.
Consider, e.g., a linear regression model, and assume that the model matrix X (i.e., the matrix with rows xTi ) has
orthogonal columns. Then the dER- and dKL-optimality criteria are equivalent to A-optimality, since in this case
H(θ0) = H̃(θ0) ∝ XTX = Ip×p. In the non-orthogonal case, the dER- and dKL-optimality criteria depend on
the parameterisation of the model and on the scaling of the data and correlations between the variables, through the
Hessian H(θ0). As a consequence, invariance under non-singular affine transformations of the data and under a
re-parameterisation of the model is achieved (see Section 4.3). Geometrically, the A-optimality criterion minimises the
expected Euclidean distance of the estimator θ̂µ from the full-data parameter θ0 (Proposition 3, Section 4.1). The dER-
and dKL-optimality criteria minimise the expected distance with respect to the natural geometry of the model space.

Finally we consider the relation between d-optimality and D-optimality. These two criteria coincide if the distance
function is taken as the squared Mahalanobis distance dΣ(θ) with dispersion matrix Σ = Γ(µ∗;θ0), where µ∗ is
the D-optimal sampling scheme (see Proposition 3 and Proposition 4b)). In particular, D-optimality is equivalent to
L-optimality with L = H(θ0)V(µ∗;θ0)−1/2, and with V(µ;θ0) defined as in (8). This result is not very practical,
however, since the coefficient matrix of the L-optimality criterion depends on the D-optimal sampling scheme µ∗. An
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optimality criterion closely related to D-optimality is L-optimality with L = H(θ0)V(θ0)−1/2, where V(θ0) given by
(15) does not depend on µ. By Proposition 4b), this is equivalent to dS-optimality.

We point out that having the coefficient matrix L depending on the full-data Hessian H(θ0) and parameter θ0 is not
restrictive, since all optimal designs anyway depend on unknown full-data characteristics. Methods to handle this issue
will be addressed in Section 5.

4.3 Invariance properties

In addition to their appealing geometric and statistical interpretation, the expected-distance-minimising optimality
criteria introduced in the previous section have two desirable properties: computational tractability and parameterisation
invariance. Indeed, belonging to the class of linear optimality criteria, the dER-, dKL and dS-optimality criteria have
simple solutions for the optimal sampling schemes according to Algorithm 1. The invariance properties of these
optimality criteria and their corresponding optimal sampling schemes are established below.

Consider a re-parameterisation g : θ 7→ η, where g is a one-to-one differentiable mapping on the parameter space.
Under such a transformation the full-data empirical risk minimiser θ0 is equivariant in the sense that the minimiser of
the induced empirical risk `∗0(η) :=

∑
i∈D `i(g

−1(η)) is given by η0 = g(θ0) (see, e.g., Casella and Berger, 2001).
By similar arguments, the Hansen-Hurwitz empirical risk minimiser for η0 is given by η̂µ = g(θ̂µ). Evaluating the
derivatives of the induced empirical risk `∗0(η), by (7) we obtain the covariance matrix of η̂µ as

Cov(η̂µ − η0) = Γg(µ;θ0) + o(n−1), Γg(µ;θ0) = Jg(θ0)Γ(µ;θ0)Jg(θ0)T, (16)

where Jg(θ) is the Jacobian of g, i.e,. the matrix with rows ∇θgi(θ)T. We say that an optimality criterion is invariant
under a re-parameterisation g : θ 7→ η if the optimal sampling schemes for Γ(µ;θ0) and Γg(µ;θ0) are equal.
Invariance of the dER-, dKL- and dS-optimality criteria is established in Proposition 5.

Proposition 5 (Parameterisation invariance). Let V(θ0) be defined as in (15), and assume that H(θ0) and V(θ0) are
of full rank. Then the dER- and dS-optimality criteria are invariant under a re-parameterisation g : θ 7→ η, where g is
a one-to-one differentiable mapping on the parameter space. Under the assumptions of Proposition 4c), the same also
holds for the dKL-optimality criterion.

Similar results may also be obtained for invariance under non-singular affine transformations of the data. Indeed, in
many cases a transformation of the data induces a transformation on the parameter space that satisfies the conditions on
the transformation g in Proposition 5. Care needs to be taken, however, to make sure that the empirical risk function
is still defined after applying the transformation, and that the transformation produces a mathematically equivalent
model. Under such circumstances, the notions of transformation- and parameterisation-invariance are interchangeable
in most practical situations. Exceptions exist, however, where a transformation of the data renders the Hessian H(θ0)
unchanged. In such a case, the dER- and dKL-optimality criteria are no longer invariant under affine transformations of
the data. We provide such an example in Section 6.4. We note that even in such cases the D- and dS-optimality criteria
remain invariant under affine transformations of the data.

5 Practical implementation

Thus far, we have assumed the full data {(xi,yi)}i∈D and full-data parameter θ0 to be known. However, if such
information were available at the design stage, subsampling would not be needed in the first place. In this section we
describe a practical approach to optimal subsampling. In Section 5.1 we introduce the anticipated covariance matrix
(cf. Isaki and Fuller, 1982) to be used in the optimisation as a surrogate for the unknown covariance matrix Γ(µ;θ0).
Sequential optimal design and multi-stage sampling procedures, where the information needed for the optimisation is
acquired gradually during the sampling process, are discussed in Section 5.2.

5.1 Auxiliary-variable-assisted subsampling designs

In addition to the data {(xi,yi)}i∈D, we now assume the existence of a collection of auxiliary variables {zi}i∈D,
which are available a priori for all members i ∈ D. Depending on context, the auxiliary variables may include some of
the variables in xi and/or some of the variables in yi. For instance, consider a case-control study to investigate the
effect of some exposure variables on a known binary outcome. In this case the auxiliary variables contain the (scalar)
outcome yi, and possibly some of the explanatory variables or some proxies for those (cf. Imberg et al., 2022a). The
opposite situation is encountered in active learning (Settles, 2012). In this case all predictor vectors xi are known but
the outcomes yi can be observed only for a subset S ⊂ D, hence zi = xi (cf. Bach, 2007; Wang et al., 2017; Meng
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et al., 2021; Zhang et al., 2021; Imberg et al., 2022b). In the extreme case, one may even have access to the full-data
{(xi,yi)}i∈D, but using this information to calculate θ0 may be too computationally demanding to be feasible (see,
e.g. Ma et al., 2015; Drovandi et al., 2017; Wang et al., 2018; Deldossi and Tommasi, 2022). Any case in between those
extremes may be encountered in practice. The auxiliary variables may be weakly, strongly, or even perfectly correlated
with the unobserved study variables. The stronger the correlation, the greater the potential benefits of optimal sampling.

The algorithms presented in Section 3.3 for finding optimal sampling schemes require information about the full-data
Hessian matrix H(θ) and gradients ψi(θ), evaluated at the full-data parameter θ0. Moreover, the Hessian depends
on the explanatory variables xi, if such are included in the model, and sometimes also on the outcomes yi. Similarly,
the gradients depend on both the outcomes and the explanatory variables. To handle this we introduce a collection
of random variables {(Xi,Yi)}i∈D to describe our uncertainty in the unknown values of the data {xi,yi}i∈D. For
any variable also included in zi, we may associate a degenerate (deterministic) distribution with the corresponding
component of (Xi,Yi) conditioned on zi. We also assume that we have a preliminary estimate θ̃0 of the full-data
parameter θ0, and an auxiliary model f(x,y|z) for the conditional distribution of the random variables (Xi,Yi) given
auxiliary variables zi. Such information may be available from domain knowledge, previous studies, a pilot sample,
or a combination of those. In Section 5.2 we will discuss how such information can be acquired gradually during the
subsampling process. Below we define the anticipated covariance matrix as the target of optimisation under an assisting
auxiliary model for the unknowns.
Definition 3 (Anticipated covariance). Consider a data triplet {(Xi,Y i, zi)}i∈D, where (Xi,Yi) is a random vector
and zi are known for all i ∈ D. Also consider a preliminary estimate θ̃0 of the full-data parameter θ0, and a model
f(x,y|z) for the conditional distribution of (Xi,Yi) given auxiliary variables zi. The anticipated covariance matrix
of θ̂µ is defined as

Γ̃(µ; θ̃0) = E(x,y)∼f(x,y|z)[Γ(µ;θ0)]θ0=θ̃0
.

The anticipated covariance matrix in Definition 3 is our prediction of the actual unknown covariance matrix Γ(µ;θ0),
given the available auxiliary information. We use the term anticipated rather than expected, as adopted from Isaki
and Fuller (1982), to emphasise that the expectation involved in the above definition is a hypothetical construct and
generally differs from the expectation under the data generating mechanism.

All results in Section 3 and 4 may now be restated for Φ-optimality with respect to the anticipated covariance matrix
Γ̃(µ; θ̃0) instead of the approximate covariance matrix Γ(µ;θ0). Under weak assumptions on the model f(x,y|z) that
allow us to replace the order of integration and differentiation, all that changes is that the coefficients ci in Algorithm 2
are replaced by their corresponding expectations

c̃i := E(x,y)∼f(x,y|z) [Ci|{zi}i∈D] , Ci =
∣∣∣∣LT

tH(θ0)−1ψi(θ0)
∣∣∣∣2

2,θ0=θ̃0
, (17)

where Ci is a function of the random variables {(Xi,Yi)}i∈D, and Lt a matrix such that LtL
T
t = φ(Γ̃(µt−1; θ̃0)).

We note that Ci in (17) is a positive random variable, which implies that c̃i > 0 as long as Ci > 0 with positive
probability. This is fulfilled whenever the covariance matrices for the components of (Xi,Yi) not included in zi
are of full rank for all i. Hence, considering the anticipated covariance under an auxiliary distribution that properly
acknowledge the uncertainty in the unknowns, we effectively avoid the situation where the presented algorithms
(Algorithm 1 and 2) converge to an unfeasible solution.

5.2 Sequential optimal design

The anticipated covariance introduced in the previous section takes us one step closer to a practical framework for
optimal subsampling. With this notion, optimal sampling schemes may be found using the methods of Section 3.3,
with the unknown values of the coefficients ci replaced by their expectations (17) under an assisting auxiliary model
f(x,y|z) and a preliminary parameter estimate θ̃0. In most cases, however, even this information is unavailable
before any data is observed. This problem may be approached using sequential optimal design. Hence, subsampling is
performed in multiple stages, where the information acquired from previous sampling stages may be utilised to devise
optimal sampling schemes in succeeding stages. We acknowledge that many algorithms and methods in this spirit
have already been presented (see, e.g. Bach, 2007; Wang et al., 2018; Imberg et al., 2020; Ai et al., 2021b). A general
procedure is presented in Algorithm 3.

The number of sampling stages K in Algorithm 3 may range from a single stage with n observations, to n stages with a
single observation in each subsample. In linear regression, for instance, there is no need for sequential subsampling if
the explanatory variables xi are known. This holds since in this case (17) is a function of the predictors xi (which are
known), the Hessian H(θ0) (which only depends on the predictors xi), and the second moments of the residuals. See
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Algorithm 3. K-stage subsampling procedure.
Input: Index set D, optimality criterion Φ, family of sampling designs (PO-WR, PO-WOR or MULTI), number of
sampling stages K, batch sizes {nk}Kk=1.

1: for k = 1, 2, . . . ,K do
2: Calculate (optimal) sampling scheme.
3: Select a random subsample of size nk.
4: Estimate the target parameter θ0.
5: Update the auxiliary model f(x,y|z).
6: Evaluate performance/precision.
7: STOP if sufficient precision in reached. ELSE continue.
8: end for

Ma et al. (2020) for various optimality criteria and corresponding optimal sampling schemes in this context. At the
other extreme, active learning methods utilise a large number of sampling stages, often with a single observation per
stage to gain maximal flexibility in the sampling process (Bach, 2007; Imberg et al., 2020; Kossen et al., 2022; Zhan
et al., 2022). Subsampling methods in big data often rely on two sampling stages: an initial simple random sample
followed by an optimal unequal probability sample (Wang et al., 2018; Ai et al., 2021b; Wang and Ma, 2021).

An estimator for θ0 after k sampling stages may be defined as

θ̂
(k)

µ = arg min
θ∈Ω

ˆ̀(k)
µ (θ), (18)

ˆ̀(k)
µ (θ) = m−1

k

k∑
j=1

nj ˆ̀
µ,j(θ), ˆ̀

µ,j(θ) =
∑
i∈D

Sjiwji`i(θ),

where Sji is the number of times an instance i ∈ D is selected by the sampling mechanism at stage j, µji the
corresponding expected number of selections, mk = n1 + . . . + nk the cumulative sample size after k stages, and
wji = 1/µji. Here ˆ̀

µ,j(θ) is an unbiased Hansen-Hurwitz estimator of the full-data empirical risk `0(θ) from the
sample obtained at stage j, and ˆ̀(k)

µ (θ) a pooled estimator calculated from the first k subsamples.

The properties of the resulting estimator (18), have been studied in some specific cases, where it has been proven that

under suitable regularity conditions the estimator θ̂
(k)

µ is asymptotically normally distributed and consistent for θ0. See,
e.g., Ai et al. (2021b) and Yu et al. (2022) for results on generalised linear models and quasi-likelihood methods when
the number of sampling stages K = 2. Imberg et al. (2022b) established the asymptotic properties of estimators for
finite population vector characteristics when the subsample sizes nk are bounded and the number of sampling stages
K → ∞. Combining martingale limit theory (Hall and Heyde, 1980) with the asymptotics of estimating equation
estimators in survey sampling (Binder, 1983), consistency and asymptotic normality of (18) when the batch sizes nk
are bounded and K →∞ may also be deduced (cf. Zhang et al., 2021). We conjecture that a similar result holds also
in the case when the number of sample stages K is bounded and the subsample sizes nk tend to infinity, along with
N →∞ and nk/N → γk ∈ (0, 1). A thorough treatment of this issue, however, is a topic for future research.

6 Application and Examples

There is already an extensive amount of publications demonstrating the benefits of optimal subsampling; see, e.g., the
references in Section 1. We will not provide further evidence for these already convincing results. Instead, in this
section we illustrate the presented methodology through examples, and compare different optimality criteria for data
subsampling in terms of computation aspects and estimator efficiency.

We consider an application in scenario generation for virtual safety assessment of an advanced driver assistance system.
A brief background to the application, description of the data and problem formulation is provided in Section 6.1.
Examples, illustrations and results for parametric density estimation are presented in Section 6.2, regression modelling
in Section 6.3, and finite population inference in Section 6.4.

6.1 Materials and methods

Background Road traffic injuries is a major cause of death worldwide (World Health Organization, 2018). Coun-
termeasures, such as advanced driver assistance systems, are constantly developed to mitigate these risks. One way
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to evaluate such systems before they enter the market is through virtual simulations (Anderson et al., 2013; Seyedi
et al., 2021). Since such evaluations are performed in a virtual rather than physical test environment, they are more
cost-efficient than traditional test beds. This, however, comes at the cost of a huge computational load. Computation
demands can be substantially reduced through subsampling (Mullins et al., 2018; Imberg et al., 2022b; Sun et al., 2022).

Dataset Our dataset consists of 44,220 observations generated through variations of 44 reconstructed real rear-end
crashes. The variations were generated by altering the driver behaviour of the ensuing vehicle in terms of glance
behaviour (off-road glance duration after a specific anchoring point in time) and braking profile (maximal deceleration
during braking). For each such variation, a corresponding scenario was setup in a virtual environment and simulation
software, through which the entire course of events could be simulated. The outcomes of such a simulation include
whether a collision occurred or not, and the impact speed if there was a collision. Thus, each observation in the dataset
represents a synthetic event that describes what could have happened in the original crash event under certain variations
of the conditions. Each scenario was further run under two ’treatment conditions’: a scenario with an advanced
emergency braking (AEB) system, and a baseline manual driving scenario without the AEB.

The following variables are included in the dataset:

• Input variables: case identifier (categorical with 44 levels corresponding to the 44 original rear-end crashes)
off-road glance duration (67 levels, 0–6.6 s), and maximal deceleration during braking (15 levels, 3.3–10.3
m/s2).

• Direct outcomes: crash indicator (1 if there was a collision and 0 otherwise) and impact speed with the AEB
system and under the baseline manual driving scenario.

• Calculated outcomes: injury risk with the AEB system and under the baseline manual driving scenario, impact
speed reduction, injury risk reduction, and crash avoidance indicator with the AEB system compared to
baseline manual driving.

Associated with each observation is also an observation weight wi > 0, describing the probability of the specific input
parameter configuration (i.e., off-road glance duration and maximal deceleration during braking) occurring in real life.
Additional details may be found in Imberg et al. (2022b).

Target characteristics We are interested in the following:

i) The impact speed distribution under the baseline scenario, restricted to the subset of input values that produce
a crash.

ii) The impact speed response surface under the baseline scenario, as a function of the off-road glance duration
and maximal deceleration.

iii) The mean impact speed reduction, mean injury risk reduction, and crash avoidance rate with the AEB compared
to baseline manual driving, restricted to the subset of variations for which there is a crash in the baseline
scenario.

Characteristics of the dataset, including the baseline impact speed distribution, impact speed response surface, and
safety benefit distribution of the AEB compared to baseline manual driving, are presented graphically in Figure S1 and
S2 in Appendix B.

As often is the case in practice, we assume that running all simulations of interest is practically unfeasible and
subsampling inevitable. In such a case, the input variables (i.e., case identifier, off-road glance duration, and maximal
deceleration during braking) and scenario probabilities are available a priori for all instances in the dataset. Hence,
these are our auxiliary variables. The remaining variables can only be observed for a subset on which inference will be
based. For simplicity, we restrict our consideration in problem i) (Section 6.2) and iii) (Section 6.4) to simulations that
produce a crash in the baseline scenario. Thus, the 4299 observations that did not result in a crash are excluded from the
corresponding evaluations.

Performance evaluation We evaluate the performance of the proposed optimal subsampling methods in terms of
computation time and statistical efficiency on the application and inference problems described above. Also, for
non-linear optimality criteria, we evaluate the number of iterations needed for convergence of the fixed-point iteration
algorithm (Algorithm 2, Section 3.3), i.e., the time it takes to find the optimal sampling scheme. For a sampling scheme
µ, the statistical efficiency of the estimator θ̂µ with respect to a criterion Φ is measured by the relative Φ-efficiency

Φ-eff(µ) = Φ(Γ(µ∗;θ0))/Φ(Γ(µ;θ0)),
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where µ∗ is the Φ-optimal sampling scheme (Atkinson and Donev, 1992; Pukelsheim, 1993). The relative Φ-efficiency
measures the extent to which the sampling scheme µ exhausts the maximum information for θ0 with respect to the
criterion Φ. Its inverse is the relative increase in the sample size needed to reach the same level of performance as the
optimal design with respect to the Φ-optimality criterion. The relative efficiencies are evaluated analytically using the
expression (7) for the approximate covariance matrix.

The following optimality criteria are considered: A-, c-, D-, and E-optimality, Φq-optimality with q = 0.5, q = 5,
and q = 10, dER-optimality (i.e., L-optimality with L = H(θ0)1/2, which for all models in this evaluation also is
equivalent to dKL-optimality), and dS-optimality (i.e., L-optimality with L = H(θ0)V(θ0)−1/2). See Section 2.3 and
4.2 for additional details and definitions. For the D-optimality criterion, the non-logarithmic version of the objective
function (det(Γ)1/p) is used (Table 1, Section 2.3).

All algorithms and evaluations are implemented using the R language and environment for statistical computing, version
4.2.3 (R Core Team, 2023). Computations are carried out using a single core on a desktop running Windows 11 with an
2.1 GHz Intel i7 processor. The subsample size is set to 1% of the full-data size. Sampling schemes for linear optimality
criteria are calculated according Algorithm 1, and sampling schemes for non-linear optimality criteria are calculated
according to Algorithm 2 with tolerance parameter ε = 0.001. The full data {(xi,yi)}i∈D and full-data parameter θ0

are assumed to be known, so that the theoretically optimal sampling schemes can be found. The dataset and R code is
available online at https://github.com/imbhe/OSD.

Results are presented for PO-WR and multinomial sampling designs, which produce identical analytical results. By
similar means, analogous results may be obtained for PO-WOR.

6.2 Parametric density estimation

First we consider the distribution of the impact speed under the baseline scenario, illustrated in Figure S1 in Appendix
B.

Model The impact speed is assumed to follow a log-normal distribution with parameter (η, σ) for the mean and
standard deviation of the log impact speed. The full-data parameter θ0 = (η0, σ0)T is defined as

θ0 = arg min
η∈R,σ∈R>0

1

2

N∑
i=1

wi

(
(log yi − η)2

σ2
+ log σ2

)
, (19)

where wi is an observation weight known a priori, and yi is the impact speed in scenario i ∈ D. Without loss of
generality, we assume that the observation weights have been normalised so that

∑N
i=1 wi = 1.

Optimal sampling schemes As an illustrative example we consider the c-optimality criterion with c = (1, 0)T, i.e.,
minimising the variance of estimating the location parameter η0. Since the optimality criterion is linear here, the optimal
sampling scheme can be found according to Algorithm 1 with

L = (1, 0)T, H(θ0) =
1

σ2
0

(
1 0
0 2

)
, ψi(θ0) = −wi

(
log yi − η0

σ2
0

,
(log yi − η0)2

σ3
0

− 1

σ0

)T
,

and

ci =
∣∣∣∣LTH(θ0)−1ψi(θ0)

∣∣∣∣2
2
∝ w2

i (log yi − η0)2. (20)

To find an optimal sampling scheme with respect to the anticipated variance of our estimator for η0, we replace yi by a
random variable Yi and evaluate the corresponding expectation of (20) under an assumed model for Yi. If we assume
that log Yi has mean ŷi and variance σ2

i , we obtain

c̃i ∝
√

EYi [w
2
i (log Yi − η0)2] = wi

√
(ŷi − η0)2 + σ2

i ,

which in practice may be evaluated at a preliminary estimate η̃0 of η0. The predictions ŷi and dispersion parameters σ2
i

may be modelled as functions of the observed auxiliary variables (i.e., the case identifier, off-road glance duration, and
maximal deceleration during braking), and estimated from a pilot sample or using sequential subsampling methods
(Algorithm 3). The resulting sampling scheme is guaranteed to produce strictly positive sampling probabilities as long
as all wi, σi > 0.
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Results The computation time, number of iterations needed for convergence, and relative efficiencies for various
optimality criteria are presented in Table 2. The D-optimal sampling scheme was found in four fixed-point iterations
with Algorithm 2. The Φ0.5-, Φ5- optimal sampling schemes were found in three and 25 iterations, respectively. An
E-optimal sampling scheme could not be found, due to the non-convexity of the objective function. The computation
time for finding an optimal sampling scheme ranged from 0.10 seconds for the linear optimality criteria to 0.96 s for
the D-optimality criterion and 4.95 s for the Φ5-optimality criterion. The optimal sampling schemes of the dER- and
dS-optimality criteria reached 97–99% A-efficiency, 96–99% D-efficiency, and 92–94% Φ5-efficiency. The A-optimal
sampling scheme had a similar performance.

Table 2. Performance measures for estimating the log-normal model (19) by optimal subsampling with various
optimality criteria. The columns show the number of fixed-point iterations and execution time to find the optimal
sampling scheme, and relative efficiencies with respect to other optimality criteria.

Optimality criterion No. iterations Time (s) A-eff c(1,0)-eff c(0,1)-eff D-eff dER-eff Φ5-eff
A 0.11 1.00 0.90 0.76 0.99 0.99 0.96
c, c = (1, 0)T 0.10 0.14 1.00 0.04 0.24 0.10 0.09
c, c = (0, 1)T 0.10 0.27 0.16 1.00 0.47 0.34 0.19
D 4 0.96 0.98 0.86 0.79 1.00 0.99 0.91
dER 0.10 0.99 0.84 0.83 0.99 1.00 0.92
dS 0.10 0.97 0.84 0.79 0.96 0.98 0.94
E Diverged -
Φ0.5 3 0.78 >0.99 0.88 0.78 >0.99 0.99 0.94
Φ5 25 4.95 0.95 0.91 0.65 0.90 0.91 1.00
Φ10 Diverged -

6.3 Regression modelling

Next we consider the distribution of the baseline impact speed as a function of the input variables to the scenario
generation, i.e., the off-road glance duration and maximal deceleration during braking.

We first note that the impact speed increases monotonically with increased levels of the off-road glance duration and
decreased levels of deceleration. Hence, variations generated from the same original rear-end crash have an upper bound
on their impact speed, attained for the variation having the off-road glance duration at its maximum and the deceleration
level at its minimum. We assume that this maximal impact speed is known, e.g., observed by running the corresponding
virtual simulation. The impact speed may then be expressed relative to the maximal impact speed for that specific case,
with values in the common range [0, 1]. Note that in this case the explanatory variables are known a priori, whereas the
outcome (i.e., relative impact speed) can only be observed after running the corresponding virtual simulation.

Model A simple model for a response variable on the unit interval is a quasi-binomial logistic regression model, for
which the full-data parameter θ0 is defined as

θ0 = arg min
θ∈Rp

−
N∑
i=1

yi log pi(θ) + (1− yi) log(1− pi(θ)), pi(θ) = (1 + exp(−xTiθ))−1, (21)

where xi is a feature vector pertaining to instance i, and θ a vector of regression coefficients. As explanatory variables
we include the case identifier of the original rear-end crash event (categorical with 44 levels, dummy coded into 44
binary variables), the off-road glance duration, the maximal deceleration during braking, and all three-way interactions.
For each of the 44 cases, the impact speed response surface is then described by 4 parameters: an intercept parameter
and three slope parameters corresponding to the off-road glance duration, deceleration level, and the interaction between
those. The joint parameter vector θ is of dimension 44 × 4 = 176. Note that in this case we do not include the
observation weights wi in the empirical risk function, since these are functions of the explanatory variables and hence
ignorable in this context. Illustrations of the observed and predicted impact speed response surfaces for three of the
cases are presented in Figure S2 in Appendix B.

Optimal sampling schemes For illustrative purposes, we consider the dER-optimality criterion. Since this is a linear
optimality criterion, the optimal sampling scheme can be found according to Algorithm 1 with

L = H(θ0)1/2, H(θ0) = XTW(θ0)X, ψi(θ0) = −(yi − pi(θ0))xi,
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where W(θ) is the diagonal matrix with entries pi(θ)(1− pi(θ)) and X the matrix with rows xTi , and

ci = ||LTH(θ0)−1ψi(θ0)||22 = (yi − pi(θ0))2xTi (X
TW(θ0)X)−1xi. (22)

To find a dER-optimal sampling scheme with respect to the anticipated covariance matrix, we replace yi in (22) by
a random variable Yi and evaluate the corresponding expectation under a model for Yi given the known explanatory
variables xi. For instance, we may assume that Yi has mean p(θ0) and variance pi(θ0)(1− pi(θ0)). We then obtain

c̃i =
√

EYi [(Yi − pi(θ0))2xTi (X
TW(θ0)X)−1xi] =

√
hii(θ0), (23)

where hii(θ0) is the ith diagonal element of the ’hat matrix’, or projection matrix

W(θ0)1/2X(XTW(θ0)X)−1XTW(θ0)1/2

(see Hoaglin and Welsch, 1978; Pregibon, 1981). To account for the influence a data point (xi, yi) exerts on its own
prediction, it is appropriate to deflate the variance of Yi by a factor 1− hii(θ0), resulting in

c̃i =
√
hii(θ0)(1− hii(θ0))

instead of (23) (cf. Ma et al., 2020). In practice we may evaluate c̃i at a preliminary estimate θ̃0 obtained from a pilot
sample or estimated using sequential subsampling methods (Algorithm 3). The resulting sampling scheme is guaranteed
to produce strictly positive sampling probabilities as long as the predictions pi(θ̃0) are bounded away from 0 and 1.

Results Table 3 shows the computation time, relative efficiencies, and number of iterations needed to find an optimal
sampling scheme for various optimality criteria. Optimal sampling schemes were found in five fixed-point iterations for
D-optimality, four iterations for Φ0.5-optimality, and could not be found for the Φ5-, Φ10- and E-optimality criteria.
Finding an L-optimal sampling scheme required 95% less computation time than for the non-linear D-optimality
criterion. The dER- and dS-optimal schemes attained 40–47% A-efficiency and 92–96% D-efficiency. The A-optimal
sampling scheme had only 60% D-efficiency. The Φ0.5-optimal sampling scheme, which interpolates between A- and
D-optimality, achieved 92% A-efficiency and 80% D-efficiency.

Table 3. Performance measures for estimating the quasi-binomial logistic regression model (21) by optimal subsampling
with various optimality criteria. The columns show the number of fixed-point iterations and execution time to find the
optimal sampling scheme, and relative efficiencies with respect to other optimality criteria. The computation time for
fitting the model to the full dataset was 8.46 seconds.

Optimality criterion No. iterations Time (s) A-eff D-eff dER-eff dS-eff Φ0.5-eff
A 1.16 1.00 0.60 0.47 0.42 0.93
D 5 27.69 0.49 1.00 0.89 0.94 0.77
dER 1.11 0.47 0.92 1.00 0.91 0.71
dS 1.12 0.40 0.96 0.92 1.00 0.67
E Diverged -
Φ0.5 4 20.37 0.92 0.80 0.68 0.65 1.00
Φ5 Diverged -
Φ10 Diverged -

6.4 Finite population inference

We finally consider the potential safety benefit of the AEB system compared to a baseline manual driving scenario. For
a scenario i ∈ D, let yi = (yi1, yi2, yi3)T, where y1i is the impact speed reduction, yi2 the injury risk reduction, and
yi3 the binary crash avoidance indicator with the AEB system compared to baseline manual driving. The distributions
of these characteristics are illustrated in Figure S1 in Appendix B.

Model We are interested in the mean impact speed reduction, mean injury risk reduction and crash avoidance rate,
given by the vector total

ty =

N∑
i=1

wiyi,

where the observation weights wi are normalised so that
∑N
i=1 wi = 1. This can also be expressed as

ty = θ0 = arg min
θ∈R3

1

2

N∑
i=1

wi||yi − θ||22. (24)
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Optimal sampling schemes As an example, consider the dS-optimality criterion. Since this is a linear optimality
criterion, the optimal sampling scheme can be found according to Algorithm 1 with

L = H(θ0)V(θ0)−1/2, H(θ0) = I3×3, V(θ0) =
∑
i∈D

ψi(θ0)ψi(θ0)T , ψi(θ0) = −wi(yi − θ0),

and

ci = ||LTH(θ0)−1ψi(θ0)||22 = w2
i (yi − θ0)TV(θ0)−1(yi − θ0). (25)

In order to find the L-optimal sampling scheme with respect to the anticipated covariance matrix, we introduce a random
vector Yi, substitute Yi for yi in (25), and evaluate the expectation. Let therefore ŷi and Σ̂i denote the mean vector
and covariance matrix of Yi, respectively. By properties of quadratic forms (Mathai and Provost, 1992), we obtain

c̃i =
√

E [w2
i (yi − θ0)TV(θ0)−1(yi − θ0)] = wi

√[
(ŷi − θ0)TV(θ0)−1(ŷi − θ0) + tr(V(θ0)−1Σ̂i)

]
. (26)

To implement optimal sampling in practice, we evaluate (26) at a preliminary estimate θ̃0 obtained from a pilot sample.
The predictions ŷi and dispersion matrices Σ̂i may be modelled as functions of the observed auxiliary variables (i.e.,
the case identifier, off-road glance duration, and maximal deceleration during braking) and iteratively updated using
sequential subsampling methods (Algorithm 3). The sampling scheme derived from (26) is guaranteed to produce
strictly positive sampling probabilities as long as all Σ̂i are full-rank.

Results Results in terms of computation time, number of iterations needed for convergence, and relative efficiencies of
various optimality criteria are presented in Table 4. The optimal sampling scheme was found in four fixed-point iterations
for the D-optimality criterion, and in two iterations for the other non-linear optimality criteria. The computation time
ranged from 0.10 for the linear optimality criteria, to 0.94 s for the D-optimality criterion. The dER-optimal sampling
scheme had 100% A-efficiency, 46% D-efficiency and >99% E-efficiency. In fact, in this case the dER-optimality
criterion is identical to A-optimality. In contrast, the dS–optimal sampling scheme had 73% A-efficiency, 98% D-
efficiency, and 72% E-efficiency. The Φ0.5-criterion had 99% A-efficiency, 58% D-efficiency and 99% E-efficiency.
The A- and E-optimality criteria were largely driven by the mean impact speed reduction, as this was measured on a
scale that was orders of magnitude larger than the measurement-scale for the injury risk reduction and crash avoidance
(Figure S1, Appendix B).

Table 4. Performance measures for estimating the vector of finite population means (24) by optimal subsampling
with various optimality criteria. The columns show the number of fixed-point iterations and execution time to find the
optimal sampling scheme, and relative efficiencies with respect to other optimality criteria.

Optimality criterion No. iterations Time (s) A-eff c(1,0,0)-eff c(0,1,0)-eff c(0,0,1)-eff D-eff E-eff
A 0.10 1.00 >0.99 0.36 0.25 0.46 >0.99
c, c = (1, 0, 0)T 0.10 0.98 1.00 0.05 0.04 0.20 >0.99
c, c = (0, 1, 0)T 0.10 0.12 0.12 1.00 0.11 0.22 0.12
c, c = (0, 0, 1)T 0.10 0.41 0.41 0.50 1.00 0.70 0.41
D 4 0.94 0.65 0.65 0.76 0.82 1.00 0.65
dER 0.10 1.00 >0.99 0.36 0.25 0.46 >0.99
dS 0.10 0.73 0.72 0.77 0.77 0.98 0.72
E 2 0.70 0.99 >0.99 0.07 0.06 0.22 1.00
Φ0.5 2 0.57 0.99 0.99 0.46 0.38 0.58 0.99
Φ5 2 0.58 0.99 >0.99 0.07 0.06 0.22 1.00
Φ10 2 0.57 0.99 >0.99 0.07 0.06 0.22 1.00

7 Discussion

We have presented a theory of optimal subsampling design for a general class of estimators, sampling designs, and
optimality criteria. Although the presented optimality conditions are valid for any differentiable objective function, the
algorithms for finding optimal sampling schemes are most appropriate for convex functions. Further research could
include development of methods to handle non-convex optimality criteria, such as E- and G-optimality (Kiefer and
Wolfowitz, 1960; Kiefer, 1974).
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From an applied perspective, we believe that the proposed invariant linear optimality criteria (i.e., dER-, dKL- and
dS-optimality) offer a good compromise between computational and statistical efficiency. Non-linear optimality criteria
require iterative procedures and computationally expensive covariance matrix evaluations, which limits their usability
in problems and applications where computational complexity is a major concern. Further studies evaluating the
performance of these methods in practice and in other applications are encouraged.

Sequential subsampling is a viable approach to implement optimal subsampling methods in practice. The theoretical
properties of the estimators derived from such sequential subsampling methods have so far only been studied rigorously
in limited settings. Further research in this direction is requested.
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A Proofs

A.1 Proof of Lemma 1

According to the chain rule in matrix differential calculus (Petersen and Pedersen, 2012) we have that

∂Φ(Γ(µ;θ0))

∂µi
= tr

(
φ(Γ(µ;θ0))T

∂Γ(µ;θ0)

∂µi

)
,

where φ(U) = ∂Φ(U)
∂U is the p × p matrix derivative of Φ with respect to its matrix argument, and ∂Γ(µ;θ0)

∂µi
the

elementwise derivative of Γ(µ;θ0) with respect to µi. Since Φ(Γ(µ;θ0)) is symmetric, φ(Γ(µ;θ0)) must also be
symmetric, which proves (11).

By the assumptions, Γ(µ;θ0) decreases monotonically with µi in the Loewner order sense, which implies that ∂Γ(µ;θ0)
∂µi

is negative semi-definite. Therefore, there exists a real matrix U such that UUT = −∂Γ(µ;θ0)
∂µi

. Moreover, Φ(Γ(µ;θ0))

is monotone for Loewner’s ordering and hence a monotone decreasing function of µi, so we must have

∂Φ(Γ(µ;θ0))

∂µi
≤ 0,

which by the above is equivalent to

tr
(
UTφ(Γ(µ;θ0))U

)
≥ 0, UUT = −∂Γ(µ;θ0)

∂µi
.

This inequality holds true for every U, and hence for every possible value of the matrix ∂Γ(µ;θ0)
∂µi

, if and only
if φ(Γ(µ;θ0)) is positive semi-definite. Consequently, there exists a real p × p matrix L(µ;θ0) such that
L(µ;θ0)L(µ;θ0)T = φ(Γ(µ;θ0)).
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A.2 Proof of Lemma 2

Proof of a) We have by (7) and (9) that

Γ(µ;θ0) =

{∑
i∈D µ

−1
i H(θ0)−1ψi(θ0)ψi(θ0)TH(θ0)−1, for PO-WR or MULTI designs, and∑

i∈D(µ−1
i − 1)H(θ0)−1ψi(θ0)ψi(θ0)TH(θ0)−1, for PO-WOR.

Taking the derivative with respect to µi, we obtain

∂Γ(µ;θ0)

∂µi
= −µ−2

i H(θ0)−1ψi(θ0)ψi(θ0)TH(θ0)−1.

Proof of b)–e) Follows by the following rules from matrix differential calculus (Petersen and Pedersen, 2012):

b) ∂ log det(U)
∂U = U−1, provided that U is of full rank.

c) ∂λmax(U)
∂U = vvT, where v is an eigenvector pertaining to the maximal eigenvalue of U, provided that v is

unique.

d) ∂tr(UA)
∂U = AT.

e) ∂tr(Uq)
∂U = q(Uq−1)T, so that ∂tr(Uq)1/q

∂U = 1
q tr(Uq)1/q−1 ∂tr(Up)

∂U = tr(Uq)1/q−1(Uq−1)T, provided that U

is of full rank. The final result follows by symmetry of Γ(µ;θ0).

A.3 Proof of Lemma 3

Combining the results of Lemma 1 and 2, we observe for PO-WR, PO-WOR and MULTI designs that the partial
derivative of Φ(Γ(µ;θ0)) with respect to µi, whenever it exists, is given by

∂Φ(Γ(µ;θ0))

∂µi
= −tr

(
φ(Γ(µ;θ0))µ−2

i H(θ0)−1ψi(θ0)ψi(θ0)TH(θ0)−1
)

= −µ−2
i tr(ψi(θ0)TH(θ0)−1L(µ;θ0)L(µ;θ0)TH(θ0)−1ψi(θ0))

= −µ−2
i

∣∣∣∣L(µ;θ0)TH(θ0)−1ψi(θ0)
∣∣∣∣2

2
.

The second equality follows from the cyclic property of the trace and definition of L(µ,θ0), and the third by not-
ing that the expression within the parentheses is a scalar and equals the squared Euclidean norm of the vector
L(µ;θ0)TH(θ0)−1ψi(θ0).

A.4 Proof of Lemma 4

By a second order Taylor expansion around θ0, we have that

d(θ̂µ) = d(θ0) +∇d(θ)T
∣∣
θ=θ0

(θ̂µ − θ0) +
1

2
(θ̂µ − θ0)THd(θ0)(θ̂µ − θ0) + op(||(θ̂µ − θ0)||22),

where the first two terms, by definition of d(θ), are zero, and Hd(θ0) = ∂2d(θ)

∂θ∂θT
. By the assumptions on θ̂µ, we have

that θ̂µ − θ0 = op(n
−1/2) and E[|θ̂µ − θ0|2+δ] <∞ (elementwise) for some δ > 0. By bounded convergence, this

implies for the remainder that E[op(||(θ̂µ − θ0)||22)] = o(n−1). We have further that

E
[
(θ̂µ − θ0)THd(θ0)(θ̂µ − θ0)

]
= tr

(
Hd(θ0)Cov(θ̂µ − θ0)

)
+ E[θ̂µ − θ0]THd(θ0)E[θ̂µ − θ0]

= tr (Γ(µ;θ0)Hd(θ0)) + o(n−1),

where the first equality follows from properties of quadratic forms (Mathai and Provost, 1992), and the second by
assumptions (6)–(7) on θ̂µ and the cyclic property of the trace.

A.5 Proof of Proposition 1

First we note that the matrix L(µ∗;θ0) exists by Lemma 1 whenever the objective function is differentiable at µ∗.
Hence, the coefficients ci are positive, the square roots

√
ci are real, and the optimality conditions (13) and (14a)–(14c)

well-defined.
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Proof of a) Consider the function Φ(Γ(µ;θ0)) subject to the constraints
∑
i∈D µi = n, and µi > 0 for all i ∈ D. By

the Lagrange multiplier method (Boyd and Vandenberghe, 2004), the constrained stationary points of Φ(Γ(µ;θ0)) are
obtained as the stationary points of the Lagrangian

Λ(µ, α) = Φ(Γ(µ;θ0)) + αg(µ), g(µ) =
∑
i∈D

µi − n.

Taking the derivatives with respect to µ and α, we obtain the system of equations

∇Λ(µ, α) = 0 ⇔
{
g(µ) = 0

−∇µΦ(Γ(µ;θ0)) = α∇g(µ).

Now, ∂Φ(Γ(µ;θ0))
∂µi

= −ci/µ2
i by Lemma 3 and definition of ci, and ∂g(µ)

∂µi
= 1. A stationary point therefore satisfies

the system of equations α = c1/µ
2
1 = . . . = cN/µ

2
N for all i ∈ D. For µ∗ to be Φ-optimal we must have µ∗i ∝

√
ci,

µ∗i > 0, and
∑
i∈D µi = n, and hence

µ∗i = n

√
ci∑

j∈D
√
cj

for all i ∈ D.

Proof of b) Consider the function Φ(Γ(µ;θ0)) subject to the constraints
∑
i∈D µi = n and 0 < µi ≤ 1 for all i ∈ D.

Also consider the Lagrangian

Λ(µ, α,β) = Φ(Γ(µ;θ0)) + αg(µ) +
∑
i∈D

βihi(µ),

where g(µ) =
∑
i∈D µi − n and hi(µ) = µi − 1. The constrained stationary points of Φ(Γ(µ;θ0)) are characterised

as the solutions to the Karush-Kuhn-Tucker conditions (Boyd and Vandenberghe, 2004):

• Stationarity: −∇µΦ(Γ(µ;θ0)) = α∇g(µ) +
∑
i∈D βi∇hi(µ).

• Primal feasibility: g(µ) = 0, and hi(µ) ≤ 0 for all i ∈ D.

• Dual feasibility: βi ≥ 0 for all i ∈ D.

• Complementary slackness: βihi(µ) = 0 for all i ∈ D.

First note that ∂Φ(Γ(µ;θ0))
∂µi

= −ci/µ2
i by Lemma 3 and definition of ci,

∂g(µ)
∂µi

= 1, and ∂hi(µ)
∂µj

= 1 if i = j and
0 otherwise. Consider a sampling scheme µ ∈ Mn and let E = {i ∈ D : µi = 1} and nE = |E|. For the
Karush-Kuhn-Tucker conditions to be satisfied, we must have that

i) µi ≤ 1 and
∑
i∈D\E µi = n− nE , by the primal feasibility condition,

ii) βi = 0 if µi < 1, by the complementary slackness condition,

iii) ci/µ2
i = α+ βi by the stationarity condition, which by the above implies that

ci =

{
α+ βi if µi = 1

αµ2
i if µi < 1

⇔
{
βi = ci − α if µi = 1

α = ci/µ
2
i if µi < 1,

iv) βi ≥ 0 by the dual feasibility condition, which by the above implies that βi = ci − α = ci − cj/µ2
j ≥ 0 for

i ∈ E and j ∈ D \ E .

The condition (14a) follows from i), (14b) from i) and iii), and (14c) from iv).

A.6 Proof of Proposition 2

Note first that the domainMn of µ is convex. The results hence follow from the second derivative test by showing that
the Hessian matrix of Φ(Γ(µ;θ0)) is positive semi-definite onMn.
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Proof of a) We have by Lemma 3 that

∂Φ(Γ(µ;θ0))

∂µi
= −µ−2

i

∣∣∣∣L(µ;θ0)TH(θ0)−1ψi(θ0)
∣∣∣∣2

2
.

For the L-optimality criterion the matrix L(µ;θ0) = L does not depend on µ. The second-order partial derivatives are
given by

∂2Φ(Γ(µ;θ0))

∂µi∂µj
=

{
2µ−3

i

∣∣∣∣LTH(θ0)−1ψi(θ0)
∣∣∣∣2

2
≥ 0 if i = j,

0 if i 6= j.

This matrix is diagonal with non-negative entries for all µi > 0, and hence positive semi-definite onMn.

Proof of b) We show that det (Γ(µ;θ0)) is log-convex in µ, i.e., that log det (Γ(µ;θ0)) is convex.

First note that log det (Γ(µ;θ0)) = log det (V(µ;θ0))) − 2 log det (H(θ0)), where V(µ;θ0) is given by (9) and
H(θ0) does not depend on µ. Thus, it suffices to show that log det (V(µ;θ0)) is convex in µ. We obtain the desired
result by showing that the Hessian of Φ(V(µ;θ0)) can be decomposed as the Hadamard product between two positive
semi-definite matrices, and hence is positive semi-definite (Horn and Johnson, 1990).

Consider first a PO-WR or multinomial sampling design. The partial derivatives of Φ(V(µ;θ0)) are given by

∂Φ(V(µ;θ0))

∂µi
= −µ−2

i ψi(θ0)TV(µ;θ0)−1ψi(θ0),

∂2Φ(V(µ;θ0))

∂µ2
i

= 2µ−3
i ψi(θ0)TV(µ;θ0)−1ψi(θ0)− µ−4

i (ψi(θ0)TV(µ;θ0)−1ψi(θ0))2,

∂2Φ(V(µ;θ0))

∂µi∂µj
= −(µiµj)

−2(ψi(θ0)TV(µ;θ0)−1ψj(θ0))2, i 6= j.

These results follow in analogy with the proof of Lemma 3 by the chain rule (11) and the following rules for matrix
differentiation (Petersen and Pedersen, 2012):

∂aTXa

∂X
= aaT,

∂ log det(Y)

∂x
= tr

(
Y−1 ∂Y

∂x

)
, and

∂Y−1

∂x
= −Y−1 ∂Y

∂x
Y−1.

Let ui = ψi(θ0)/
√
µi and U be the matrix with rows uTi . Also, let A = U(UTU)−1UT and aij the elements of A.

We note the following:

• UTU =
∑
i∈D µ

−1
i ψi(θ0)ψi(θ0)T = V(µ;θ0),

• aij = uTi (U
TU)−1uj = (µiµj)

−1/2ψi(θ0)TV(µ;θ0)−1ψj(θ0),

• A is an idempotent matrix, i.e., A2 = A, which implies that aii =
∑
j a

2
ij ,

• aii = uTi (U
TU)−1ui = uTiV(µ;θ0)−1ui > 0, since V(µ;θ0) by assumption is positive definite.

We may now write
∂2Φ(V(µ;θ0))

∂µi∂µj
=

{
µ−2
i (2aii − a2

ii) if i = j,

(µiµj)
−1a2

ij if i 6= j.

We recognise the Hessian matrix ∂2Φ(V(µ;θ0))
∂µ∂µT

as the Hadamard product M⊗B of a rank-one matrix M = mmT with
m = (µ−1

1 , . . . , µ−1
N )T, and a symmetric matrix B with entries

bij =

{
2aii − a2

ii if i = j,

a2
ij if i 6= j.

The matrix M has eigenvalues mTm and 0, and hence is positive semi-definite. The matrix B is diagonally dominant
with positive entries, since aii =

∑
j a

2
ij , bii = 2aii − a2

ii = aii +
∑
j 6=i a

2
ij , and aii > 0 implies

bii > aii > 0, and bii >
∑
j 6=i

a2
ij =

∑
j 6=i

bij .

Hence, B is positive definite (Horn and Johnson, 1990). It follows that the Hessian matrix ∂2Φ(V(µ;θ0))
∂µ∂µT

is positive
semi-definite onMn for PO-WR and multinomial sampling designs.
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It remains to prove convexity for PO-WOR. First note that the function log det (V(µ;θ0)), by assumptions on V(µ;θ0),
is differentiable and continuous onMn. It suffices, by continuity, to prove that the Hessian is positive semi-definite on
the interior ofMn. Consider therefore a point µ ∈ Mn such that µi < 1 for all i. Let ui = ψi(θ0)T

√
1− µi/

√
µi

and U be the matrix with rows uTi . Also let A = U(UTU)−1UT and aij the elements of A. Similar to above, we may
now write

∂2Φ(V(µ;θ0))

∂µi∂µj
=

{
µ−2
i (1− µi)−1(2aii − a2

ii) if i = j,

(µiµj)
−1(1− µi)−1/2(1− µj)−1/2a2

ij if i 6= j.

We recognise the Hessian matrix ∂2Φ(V(µ;θ0))
∂µ∂µT

as the Hadamard product M⊗B of a rank-one matrix M = mmT with
m = (µ−1

1 (1− µ1)−1/2, . . . , µ−1
N (1− µN )−1/2)T, and a symmetric matrix B with entries

bij =

{
2aii − a2

ii if i = j,

a2
ij if i 6= j.

The remainder of the proof follows in complete analogy with the proof for PO-WR and multinomial sampling designs.

A.7 Proof of Proposition 3

Proof of a) First note that the Hessian Hd(θ) is positive semi-definite at θ = θ0, since θ0 is the global minimiser
of d(θ). Hence, there exists a matrix L such that LLT = Hd(θ). L is non-zero since Hd(θ), by assumption, is
non-zero. The d-optimal sampling scheme µ∗ is defined as the minimiser of the function tr(Γ(µ;θ0)Hd(θ0)) =
tr(Γ(µ;θ0)LLT), which by definition is equivalent to L-optimality with respect to a matrix L such that LLT = Hd(θ).

Proof of b) Assume that µ∗ is the minimser of Φ(Γ(µ;θ0)) and let d(θ) = 1
2 ||L(µ∗;θ0)T(θ − θ0)||22 with Hessian

matrix Hd(θ0) = L(µ∗;θ0)L(µ∗;θ0)T. According to Proposition 1, the Φ-optimal sampling scheme µ∗ must satisfy
the optimality conditions (13) or (14a)–(14c) with

ci = ||L(µ∗;θ0)TH(θ0)−1ψi(θ0)||22
= ψi(θ0)TH(θ0)−1L(µ∗;θ0)L(µ∗;θ0)TH(θ0)−1ψi(θ0)

= ψi(θ0)TH(θ0)−1Hd(θ0)H(θ0)−1ψi(θ0).

This is identical to the optimality conditions for the d-optimality criterion. Moreover, the d-optimality criterion is
convex in µ by Proposition 2a) and 3a), so µ∗ must be the global minimiser for the d-optimality criterion. Now,
minimising tr(Γ(µ;θ0)Hd(θ0)) is equivalent to minimising tr(kΓ(µ;θ0)Hd(θ0)) for any constant k > 0, so µ∗ is
also d-optimal with respect to the distance function d(θ) = ||L(µ∗;θ0)T(θ − θ0)||22.

A.8 Proof of Proposition 4

The results follow from Proposition 3a) since the Hessian matrices of dER(θ), dΣ(θ), and dKL are given by
∂2dER(θ)

∂θ∂θT
=
∂2`0(θ)

∂θ∂θT
= H(θ),

∂2dΣ(θ)

∂θ∂θT
=

∂2

∂θ∂θT
(θ − θ0)TΣ−1(θ − θ0) = Σ−1, and

∂2dKL(θ)

∂θ∂θT
=

∂2

∂θ∂θT

∑
i∈D

∫
Y

log
fθ0

(y|xi)
fθ(y|xi)

dFθ0
(y|xi)

= − ∂2

∂θ∂θT

∑
i∈D

∫
Y

log fθ(y|xi)dFθ0(y|xi)

= −
∑
i∈D

∫
Y

∂2 log fθ(y|xi)
∂θ∂θT

dFθ0(y|xi)

= Ey∼fθ0
(y|x)

[
−
∑
i∈D

∂2

∂θ∂θT
log fθ(y|xi)

]
= Ey∼fθ0

(y|x)[H(θ)] = H̃(θ).

For the Hessian of the Kullback-Leibler distance we have used the Leibniz integral rule to change the order of integration
and differentiation (cf. Kullback and Leibler, 1951).
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A.9 Proof of Proposition 5

Consider a one-to-one differentiable mapping g : θ 7→ η. Denote by `∗0(η) =
∑
i∈D `i(g

−1(η)) the induced empirical
risk, with the minimiser η0 = g(θ0). By the chain rule, the Hessian matrix of `∗0(η) at η = η0 is given by

H`∗0
(η0) =

∂2`∗0(η)

∂η∂ηT

∣∣∣∣
η=η0

= Jg−1(g−1(η0))TH`0(g−1(η0))Jg−1(g−1(η0))

= Jg(θ0)−TH(θ0)Jg(θ0)−1.

Here we have also used the fact that∇θ`0(θ)
∣∣
θ=θ0

= 0, by definition of θ0 as the minimiser of `0(θ).

Now assume that µ∗ and µ̃∗ are dER-optimal for θ0 and η0, respectively. By the latter we mean that µ̃∗ minimises
the expected distance of η̂µ = g(θ̂µ) from η0 = g(θ0) with respect to the induced empirical risk distance d∗ER(η) =

`∗0(η)− `∗0(η0). By Proposition 4, µ∗ is L-optimal with respect to a matrix L such that LLT = H(θ0). Similarly, µ̃∗

is L-optimal with respect to a matrix L̃ such that

L̃L̃T = H`∗0
(η0) = Jg(θ0)−TH(θ0)Jg(θ0)−1 = Jg(θ0)−TLLTJg(θ0)−1. (27)

Now, µ∗ is the minimiser of the function

tr(Γ(µ;θ0)LLT) = tr(Jg(θ0)−1Jg(θ0)Γ(µ;θ0)Jg(θ0)TJg(θ0)−TLLT)

= tr(Γg(µ;θ0)Jg(θ0)−TLLTJg(θ0)−1)

= tr(Γg(µ;θ0)L̃L̃T).

The first equality follows by inserting the identity matrix Ip×p = Jg(θ0)−1Jg(θ0) = Jg(θ0)TJg(θ0)−T twice, the
second equality by (16) and the cyclic property of the trace, and the third equality by (27). But µ̃∗ is also a minimiser of
tr(Γg(µ;θ0)L̃L̃T). Since the L-optimality criterion is convex in µ, the optimum is unique and we must have µ∗ = µ̃∗.
Hence, the dER-optimality criterion is invariant under the re-parameterisation g : θ 7→ η.

The results for dS- and dKL-optimality follow analogously.
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B Supplementary Figures

Figure S1. Characteristics of the vehicle safety assessment dataset considered in Section 6. A: Impact speed distribution
under a baseline manual driving scenario. B–D: Distribution of the impact speed reduction, injury risk reduction, and
crash avoidance rate, with an automatic emergency system compared to the baseline manual driving scenario.

Figure S2. Impact speed response surface as a function of off-road glance duration and maximal deceleration during
braking for counterfactual variations of three reconstructed rear-end crashes. Top panel: Observed impact speed.
Bottom panel: Predicted impact speed using the quasi-binomial logistic regression model (21). The response values
have been mapped from the model range [0, 1] to the original range [0, ymax,k], where ymax,k is the maximal possible
impact speed for the variations generated from case k, k = 1, . . . , 44.
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