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Abstract—Early prediction of aging trajectories of lithium-ion 

(Li-ion) batteries is critical for cycle life testing, quality control, 
and battery health management. Although data-driven machine 
learning (ML) approaches are well suited for this task, 
unfortunately, relying solely on data is exceedingly time-
consuming and resource-intensive, even in accelerated aging with 
complex aging mechanisms. This challenge is rooted in the highly 
complex and time-varying degradation mechanisms of Li-ion 
battery cells. We propose a novel method based on physics-guided 
machine learning (PGML) to overcome this issue. First, electrode-
level physical information is incorporated into the model training 
process to predict the aging trajectory’s knee point (KP). The 
relationship between the identified KP and the accelerated aging 
behavior is then explored, and an aging trajectory prediction 
algorithm is developed. The prior knowledge of aging mechanisms 
enables a transfer of valuable physical insights to yield accurate 
KP predictions with small data and weak correlation feature 
relationship. Based on a Li[NiCoMn]O2 cell dataset, we 
demonstrate that only 14 cells are needed to train a PGML model 
for achieving a lifetime prediction error of 2.02% using the data of 
the first 50 cycles. In contrast, at least 100 cells are needed to reach 
this level of accuracy without the physical insights. 

Index Terms—Accelerated aging, battery aging trajectory 
prediction, data-driven method, machine learning, knee point, 
physics-guided. 

I. INTRODUCTION 

ITH their high energy density and decreasing costs, 
lithium-ion (Li-ion) batteries have emerged as a critical 

form of energy storage for realizing electrified transportation 
and smart grids [1]. Li-ion battery cells, however, are prone to 
manufacturing defects and inconsistent aging behavior, leading 
to varying capacity fade rates and service life [2, 3]. Accurate 
early prediction of the aging trajectory and lifetime can be time- 
and cost-saving for design and quality control from a battery 

manufacturing perspective [4-6]. 
For aging and lifetime prediction of Li-ion batteries in 

normal operating conditions, data-driven methods based on 
machine learning (ML) techniques are considered the most 
convenient and practical with the recent advancements in data 
science and artificial intelligence [7-10]. In these conditions, 
battery capacity usually has no significant nonlinear 
relationship with the charge/discharge cycles [11]. Therefore, 
many well-established ML techniques have gained widespread 
adoption, including sample entropy and advanced sparse 
Bayesian predictive modeling [12], support vector machine 
[13], random forest [14], long short-term memory (LSTM) 
recurrent neural network [15], convolutional neural network 
(CNN) [16], and CNN-LSTM [17], amongst others. Two 
factors are crucial in establishing a good ML model in these 
works. First, health features (HFs) are manually extracted from 
different data curves or automatically obtained using deep 
learning algorithms with the help of dimensional attention 
mechanisms [18]. This typically requires the HFs to have a 
linear relationship with the prediction target to allow for good 
prediction accuracy. Second, it is imperative to have a 
significant number of training and test samples to unravel the 
complex battery aging patterns concealed in the data [19, 20]. 

Unfortunately, collecting data covering the entire battery 
lifetime is time-consuming since normal operating conditions 
necessitate an extended period to age battery cells. Therefore, 
high current rates and low/high temperatures are preferred to 
accelerate the aging process to collect the data. However, under 
these wider operating conditions, Li-ion cells can experience an 
abrupt acceleration in the aging rate before reaching their end-
of-life (EOL), characterized by a knee point (KP) on the 
capacity retention curves [21, 22]. Earlier presence of the KP 
indicates higher system vulnerability that may cause severe 
safety problems if such a cell is used in practice [23, 24]. Hence, 
the aging prediction problem for accelerated aging batteries can 
be roughly simplified to model the KP reliably. In the context 
of accelerated aging, the task of predicting the complete 
behavior of Li-ion cells is challenging when only a small 
sample of early-life data is available. The main explanation is 
that the complex mechanisms during accelerated aging produce 
highly nonlinear and diverse patterns throughout the life cycle 
that may not be adequately captured in the early-age capacity 
data that decline linearly with cycle numbers [25]. Most 
existing ML-based methods attempt to find correlations 
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between extracted HFs and KP without considering the 
mechanisms behind the battery aging, partly because the 
mechanisms are not adequately reflected in the measurements, 
including current, terminal voltage, and surface temperature. In 
addition, similar to the challenges faced in normal operating 
conditions, many ML-based approaches require a vast amount 
of data that encompasses the entire information space for 
accelerated aging. These ML models need to be trained using 
complex deep neural networks to attain accurate predictions. 
However, deep learning often requires considerable computing 
resources, making the prediction scheme computationally 
inefficient and lacking cost-effectiveness [17]. 

Transfer learning (TL) has recently received increasing 
research attention in the battery community [26]. The primary 
purpose of TL is to use known information related to the target 
task in the source domain to train an ML model for the target 
task [27]. The method of migrating useful information from the 
source domain to the target task can significantly affect the 
performance of regression models [28]. For instance, Ma et al. 
showed that domain adaptation could improve the state of 
health estimation accuracy of the CNN by about 1.5% [20]. Zhu 
et al. developed a TL model to estimate battery capacity, and an 
extended TL model achieved a prediction error of 1.7% [29]. 
For the battery lifetime prediction, information can be 
transferred by model-based or sample-based approaches. For 
example, Sheng et al. proposed a deep CNN with ensemble 
learning and model-based TL for battery capacity estimation 
[30]. The model migration and sample selection were adopted 
to transfer the information from the source to the target datasets, 
where curve shape, long-term degradation rate, lifespan 
concentration, and distance between aging curves were used as 
criteria of curve transferability. In addition, a feature expression 
scoring rule based on grey relational analysis was developed to 
evaluate the relevance of multiple prediction tasks for battery 
state of health estimation [31]. In [32], early capacity sequence 
data of cells were used to implement pattern recognition and TL. 
The authors showed that unsupervised pattern analysis could 
help to select ML models and study useful sample knowledge. 

The above works using ML and TL for battery aging 
prediction show that if one can select the data from the training 
dataset with similar information to the target task, the ML 
model can perform well in the target dataset. However, 
accurately predicting the battery lifetime for accelerated aging 
cells with highly nonlinear capacity fade trajectories 
accompanied by KPs is often daunting, especially when relying 
on small early-age data samples. As will be exhibited in the 
latter sections, the external aging characteristics show 
pronounced nonlinearity due to the more complex and severe 
internal aging mechanism of accelerated aging cells. 
Furthermore, since the early accelerated aging trajectory data 
are approximately linear, it is questionable if one can 
distinguish accelerated aging cells with different characteristics 
by simply manipulating the limited training data.  

To address the challenges, this paper presents a novel 
physics-guided machine learning (PGML) framework that 
predicts the aging trajectory while taking into account the KP. 

The following explains the key advantages of this proposed 
approach that could benefit the research community. 

First, the proposed PGML framework integrates physical 
information and ML to predict KP. The PGML approach 
enhances the accuracy of training and prediction for 
conventional ML models when dealing with small samples and 
HFs having weak linear correlation. In addition, the PGML 
technique leverages the mechanism information to differentiate 
between various relationship patterns of HFs with weak linear 
correlation. Incorporating physical information for small 
battery samples has a significant impact on ML prediction 
performance. When physical information is unavailable, 
augmenting the number of training samples becomes inevitable 
to achieve a comparable level of ML prediction performance.  

Second, a linear relationship between EOL and KP is 
identified. An aging trajectory prediction method considering 
the KP is thus proposed to select suitable time series training 
samples from the training dataset based on the KP prediction 
results and KP similarity. We validated the algorithm using two 
datasets of Li[NiCoMn]O2 (NCM) cells and LiFePO4 (LFP) 
cells. It shows that accurate KP prediction is vital for early 
aging trajectory prediction. If mechanism information is 
available, only 14 cells are needed to achieve a high prediction 
accuracy of 2.02% with the first 50 cycles of data (<10% of the 
full life-cycle data). In contrast, such a task has to be completed 
with at least 100 cells without using the information on 
degradation mechanisms. 

The rest of this paper is organized as follows to detail our 
proposed approach. Section II describes the dataset and data 
preprocessing procedure, followed by Section III, which 
analyzes the key issues related to the early prediction of KP and 
aging trajectory. Section IV presents the PGML framework and 
the KP-conscious aging trajectory prediction method. The 
results of KP and aging trajectory prediction using early aging 
data are exhibited in Section V, where comparative analysis and 
discussions are also given. Finally, the main findings are 
summarized in Section VI.  

II. DATASET AND DATA PREPROCESSING 

We performed a cycle aging test for 36 NCM battery cells 
(denoted by Cell 1 to Cell 36) under a wide range of operating 
conditions. The data were collected and published in [33] for 
analyzing aging mechanisms and accelerated aging diagnosis. 
The measured data include the cell voltage, cell current, and 
positive and negative half-cell open-circuit voltages (OCVs) 
from charge/discharge cycling, hybrid pulse power 
characterization (HPPC) test, and low current test. 19 of the 36 
cells experienced significant nonlinear accelerated aging 
behaviors; the rest have normal and approximately linear aging 
trajectories. We randomly selected 14 of the 19 cells with 
accelerated aging behaviors to predict their aging trajectories in 
terms of the capacity retention curves, EOL, and KPs. Their 
ambient temperatures range from 10 ℃ to 45 ℃, and 
discharging current rates are between 0.5C and 2C. The 
corresponding aging trajectories are shown in Fig. 1(a).  
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It can be observed from Fig. 1(a) that the cells suffer 
accelerated aging after a sudden increase in the slope of the 
curve. We proposed an aging-speed-based method to quantify 
this sudden change and extract the KP [33]. First, we fit each 
capacity retention curve with a polynomial to characterize the 
capacity fade trend: 

𝐶𝐶dis(𝑛𝑛) = � 𝑎𝑎𝑘𝑘𝑛𝑛𝑘𝑘
𝐾𝐾
𝑘𝑘=0  (1a) 

where 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛)  is the discharge capacity retention at the nth 
cycle, and 𝑎𝑎𝑘𝑘 is the polynomial coefficient. By trial and error, 
the polynomial degree was selected as K = 5 since it can achieve 
high accuracy with the coefficient of determination R2 > 0.97. 
 

 
Fig. 1. Aging behaviors of 14 cells in the NCM dataset: (a) Capacity retention 
curves. (b) Relationship between the aging speed and the cycle number. 
 

Next, we define the aging speed as 

 𝑣𝑣 = 𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛)
𝑑𝑑𝑑𝑑

< 0 (1b) 

The calculated aging speed curves for some NCM cells are 
plotted in Fig. 1(b). Based on the NCM dataset used in this work, 
we found that all the cell aging curves reduce approximately 
linearly before the aging speed reaches −0.025%. After that, the 
aging curve starts to show apparent nonlinear characteristics, 
and the aging will accelerate. Specifically, it takes several 
hundred cycles for the cell to reach the aging speed of −0.025%, 
whereas the aging speed will increase to −0.04% after the 
subsequent ten cycles, as shown in Fig. 1(b). Hence, we define 
the KP as the cycle number n for v = −0.025%, and the 
calculated KPs were found to be within the 183rd to 975th 
cycles. The suitability of this empirical criterion for KP 
definition was also verified using the LFP dataset described 
later in Section V-E. It should be pointed out that the threshold 
of aging speed −0.025% can be adjusted to some extent for 
other aging datasets. When the KP is reached, the battery 
degradation rate accelerates, and the aging process intensifies 
at a faster pace 

With the calculated KPs, we then define the RUL before the 
knee point (RUK) at the nth cycle as the output to be predicted. 
The RUK represents the interval with normal aging and safe 
cycle, i.e., 

 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐾𝐾𝐾𝐾 − 𝑛𝑛 (1c) 

Next, 17 mechanism features (MFs), denoted by MF1 to 
MF17, were extracted from the evolution of the cell discharge 
curves, incremental capacity (IC) curves, and differential 
voltage (DV) curves. This feature extraction process is detailed 

in Appendix. Since these MFs are highly related to the aging 
mechanisms, we expect some connections can be established. 

III. ANALYSIS AND EXTRACTION OF DOMAIN KNOWLEDGE 
GUIDES 

A. Analysis of Feature Relationship and Aging Characteristics 
of Accelerated Aging Cells 

After extracting the MFs, we analyzed the feature 
relationships and characteristics of the 14 cells with accelerated 
aging. The difficulties of traditional ML methods in solving the 
present problem can be illustrated using Fig. 2(a), which shows 
the aging trajectories of four selected cells. It can be seen that 
Cells 21 and 24 (as well as Cells 29 and 30) have similar early 
linear aging trajectories but different KPs and EOLs. On the 
other hand, Cell 21 and Cell 30 share the same KP and EOLs, 
whereas their early aging trajectories differ significantly. 
Furthermore, Fig. 2(b) exhibits a linear relationship between 
KP and EOL. While the KP is a significant factor in determining 
the EOL, it is not reflected in the early linear trajectories. The 
linear relationship between KP and EOL was reported in our 
previous work [33]. To further illustrate this, Fig. 2(c) shows 
the predictive result of the early aging trajectory for Cell 21 
before the presence of KP based on a conventional ML 
algorithm, i.e., support vector regression (SVR) with a fifth-
order polynomial kernel function. Since only the first 100 
cycles of capacity sequence data were used for training, the 
aging trajectory is approximately linear during the early aging 
phase. Such a technique thus fails to capture the entire aging 
trajectory with nonlinear patterns at later stages. 

 

 
Fig. 2. Analysis of the NCM dataset: (a) Aging characteristics of accelerated 
aging cells. (b) Linear relationship between KP and battery life. (c) Prediction 
result of Cell 21’s aging trajectory using SVR trained based on early linear 
aging data. (d) Two accelerated aging modes between MF 13 and the RUK. (e) 
Correlation coefficients of MFs and the RUK. 

 
In the literature, a linear and monotonic relationship 
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between the MF and RUK is preferred and sometimes essential 
to train a good ML model [19]. For the problem at hand, we 
calculate the Pearson correlation coefficient rs between the sth 
MF and the RUK as follows [34]: 

𝑟𝑟𝑠𝑠 = ∑ �𝑀𝑀𝐹𝐹𝑠𝑠,𝑖𝑖−𝑀𝑀𝐹𝐹𝑠𝑠�������∙(𝑅𝑅𝑅𝑅𝐾𝐾𝑠𝑠,𝑖𝑖−𝑅𝑅𝑅𝑅𝐾𝐾𝑠𝑠��������)𝑀𝑀
𝑖𝑖=1

�∑ �𝑀𝑀𝐹𝐹𝑠𝑠,𝑖𝑖−𝑀𝑀𝐹𝐹𝑠𝑠�������2𝑀𝑀
𝑖𝑖=1 ∙�∑ �𝑅𝑅𝑅𝑅𝐾𝐾𝑠𝑠,𝑖𝑖−𝑅𝑅𝑅𝑅𝐾𝐾𝑠𝑠���������2𝑀𝑀

𝑖𝑖=1

∈ [−1, 1] (2) 

where i and M are the index of the sample and the total number 
of samples, respectively, and the overbar represents the mean 
value. In Fig. 2(e), we can see that the absolute values of all the 
calculated rs are less than 0.68, which is indicative of a weak 
correlation.  

While the MFs do not display linear relationships with RUK, 
we notice that four mechanism features (MF11, MF13, MF14, 
and MF15) exhibited two distinct aging modes. For example, 
Fig. 2(d) shows that the relationship between the MF13 and 
RUK has two nonlinear patterns, represented by Mode 1 and 
Mode 2. For Mode 1, the corresponding RUK is smaller, so the 
KP with this feature relationship tends to present earlier, and the 
cell degrades faster. In Mode 2, the corresponding RUK is 
longer, indicating that the cell with this feature relationship is 
likely to experience later KP presence and slower degradation. 
Therefore, using these two aging modes indiscriminately to 
train an ML model will result in the underperformance of the 
prediction.  

B. Physics Guides for Feature Relationship Pattern 
Recognition  

The bimodal relationship between MF13 and RUK suggests 
that there may be specific mechanisms governing accelerated 
aging behaviors. Table Ⅰ shows the aging modes, cell numbers, 
cycling temperatures, and discharge current rates for the 14 
cells under investigation. According to Table Ⅰ, both Mode 1 
and Mode 2 can be triggered at discharge current rates of 1.5C 
and 1C. In contrast, Mode 1 only appears when cells are cycled 
at 45 ℃ or 10 ℃. Thus, it is the temperature rather than the 
current rate that affects the aging mode. Unfortunately, the two 
aging modes cannot be separated using a single temperature 
value. This implies that external conditions, such as current rate 
and temperature, cannot serve as reliable guides for mode 
separation. 

 
TABLE Ⅰ.  

CYCLE CONDITIONS OF 14 NCM CELLS WITH TWO MODES OF MF13 
Accelerated 
Aging Mode Cell Number Cycle 

Temperature 
Discharging 
Current Rate 

2 20, 21, 22, 23, 24 25 ℃ 1C 
2 25,26 25 ℃ 1.5C 
2 27 25 ℃ 2C 
1 28 10 ℃ 1.5C 
2 29, 30 35 ℃ 1C 
1 34, 35, 36 45 ℃ 1C 

 
To investigate the aging mechanisms of both modes for 

MF13, we conducted a non-destructive analysis based on the 
method proposed in our previous work [33]. We first 

reconstructed the OCV versus the state of charge (SOC) curves 
at different cycle numbers using the positive and negative half-
cell curves, measured in a 0.05-C small current test during the 
cycle life test [35]. With these curves, loss of positive electrode 
material (LAMPE), loss of negative electrode material (LAMNE), 
and loss of lithium inventory (LLI) were obtained [33]. In 
addition, the cell resistances (R) at different cycle numbers 
were also obtained via the HPPC test by dividing the voltage 
change by current at 1-s response time [36].  

Fig. 3 displays the calculated LAMPE, LAMNE, LLI, and 
resistance related to the two modes of MF13. In, Fig. 3(a), the 
LLI is more pronounced in Mode 1 than in Mode 2 before the 
200th cycle. Fig. 3(b) shows that the LAMPE is more prominent 
in Mode 1 than in Mode 2 below 45℃ before the 200th cycle, 
but not at low temperatures. Fig. 3(c) and Fig. 3(d) reveal that 
both the LAMNE and the growth rates of internal resistance in 
Modes 1 and 2 are nearly indistinguishable before the 200th 
cycle. However, the growth rate of internal resistance is more 
significant at low temperatures before the 200th cycle.  

 

 
Fig. 3. Aging mechanisms of the NCM battery aging dataset. (a) LLI of two 
accelerated aging modes. (b) LAMPE of two accelerated aging modes. (c) 
LAMNE of two accelerated aging modes. (d) The resistance growth rate of two 
accelerated aging modes. 

 
Several previous studies have investigated the impact of 

internal mechanisms and external conditions on LLI, LAMPE, 
and LAMNE. For example, solid electrolyte interface (SEI) 
growth, cathode electrolyte interphase growth [37], and lithium 
plating [38] are known to contribute to LLI. LAMPE can be 
caused by various factors, such as particle cracking of positive 
material [39], side reactions between cathode material and 
electrolyte [40], and dissolution of active metal cations [41]. 
LAMNE can arise from three main sources: chemical side 
reactions between graphite and electrolyte [42], particle 
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cracking due to Li-ion insertion and extraction [43], and co-
intercalation of Li ions and other molecules into the anode [44]. 
Resistance growth is typically caused by SEI film growth, 
cathode electrolyte interphase growth, electrolyte 
decomposition, and current collector corrosion [45]. 
Furthermore, significant lithium plating and SEI growth occur 
on the graphite anode at low temperatures, resulting in a rapid 
rise in internal resistance [46]. The NCM cathode materials are 
relatively prone to fracture under high-temperature conditions, 
leading to more LAMPE [47, 48]. The cathode and anode 
materials can experience high mechanical stress and volume 
changes at high discharge current rates [35]. As a result, LAMPE 
and LAMNE will be more significant at higher discharging 
current rates. In addition, SEI film will crack and grow rapidly 
due to the high temperatures caused by the high-rate 
discharging. Hence, the internal resistance and LLI grow faster 
at higher discharge current rates [49].  

In summary, there is significant LLI, LAMPE, and LAMNE, 
as well as a rapid increase in internal resistance after the 
presence of the KP as a consequence of complex, interrelated 
mechanisms. LAMNE and LAMPE under the two accelerated 
aging modes of MF13 are indistinguishable before the KP. The 
distinction between the two modes is attributed to their different 
aging mechanisms. Specifically, Mode 1 is characterized by 
more severe aging mechanisms, such as the LLI and resistance 
growth. This suggests that aging mechanisms may be useful 
guides for separating the aging modes of feature relationship of 
each MF.  

IV. METHODOLOGY 

A. PGML and Knee-Point-Conscious Aging Trajectory 
Prediction 

As demonstrated in the previous section, we discovered a 
close correlation between the feature relationship MF13 and 
aging mechanisms, which can be distinguished as Modes 1 and 
2 by identifying LLI, LAM, or resistance growth. The two 
modes in MF13 versus RUK relationship can be viewed as two 
regression routes, where physical information is used to help 
ML algorithms select the more suitable route. We thus regard 
the combination of physics guide and ML as physics-guided 
machine learning. We leverage these relationships to develop 
PGML for aging trajectory prediction that takes into account 
KP in this section. The PGML, as shown in Fig. 4, consists of 
two main steps:  

1) Analyzing aging mechanisms by reconstructing OCV 
curve to obtain physical information and extracting mechanism 
features from discharge curves, IC curves, and DV curves;  

2) Employing physics-guided feature relationship 
recognition to minimize physical inconsistency and enhance the 
prediction performance of ML models on small datasets.  

After obtaining KPs with PGML, the next step is to predict 
the aging trajectories using an accelerated aging characteristics 
minimization approach. To achieve this, KP similarity is used 
to select time-series samples for training the ML model 
considering the linear relationship between KP and cycle life. 
The algorithmic details are provided in the subsequent 
subsections. 

 
Fig. 4. Framework of the PGML and knee point conscious aging trajectory prediction. 

 
B. Decision Tree Regression and Classification Models 

Decision tree regression (DTR) is chosen for KP prediction 
due to its shorter training time, higher accuracy, and better 

robustness than many state-of-the-art ML methods [50]. The 
DTR builds an “if-then” tree structure to predict the output 
values. It generally involves the following steps. 
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Step 1: Data preparation. Denote 𝑋𝑋 = [𝑋𝑋1, 𝑋𝑋2, … ,𝑋𝑋𝑗𝑗 , … ,𝑋𝑋𝐽𝐽] 
as the input matrix and 𝑌𝑌 = [𝑅𝑅𝑅𝑅𝑅𝑅1, 𝑅𝑅𝑅𝑅𝑅𝑅2, …𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚, … ,
𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀]𝑇𝑇 as the RUK label vector of the aging cell. Here, 𝑋𝑋𝑗𝑗 =
[𝑥𝑥1,𝑗𝑗 , 𝑥𝑥2,𝑗𝑗 , … , 𝑥𝑥𝑚𝑚,𝑗𝑗 , … , 𝑥𝑥𝑀𝑀,𝑗𝑗]𝑇𝑇 is an M-dimensional feature vector 
for the jth feature, J is the total number of features, and M is the 
total number of samples in each feature vector. In the input 
space X, where the training dataset is located, we recursively 
divide a region into two subregions and determine the output 
values. A split node is selected when a specific region or 
subregion is divided. 

Step 2: Select the optimal splitting feature j and cleavage h, 
and two regions can be obtained, denoted as 𝑅𝑅1(𝑗𝑗,ℎ) =
{𝑥𝑥𝑚𝑚,𝑗𝑗|𝑥𝑥𝑚𝑚,𝑗𝑗 ≤ ℎ}  and 𝑅𝑅2(𝑗𝑗,ℎ) = {𝑥𝑥𝑚𝑚,𝑗𝑗|𝑥𝑥𝑚𝑚,𝑗𝑗 > ℎ} . Find the 
optimal j and h by solving the following optimization problem: 

 min
𝑗𝑗,ℎ

[∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚 − 𝑐𝑐1)2𝑥𝑥𝑚𝑚,𝑗𝑗∈𝑅𝑅1 + ∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚 − 𝑐𝑐2)2𝑥𝑥𝑚𝑚,𝑗𝑗∈𝑅𝑅2 ]   (3) 

 𝑐𝑐1 = 1
𝑁𝑁1
∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑥𝑥𝑚𝑚,𝑗𝑗∈𝑅𝑅1(𝑗𝑗,ℎ)   (4) 

 𝑐𝑐2 = 1
𝑁𝑁2
∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑥𝑥𝑚𝑚,𝑗𝑗∈𝑅𝑅2(𝑗𝑗,ℎ)   (5) 

where 𝑐𝑐1  and 𝑐𝑐2  are the total output values for the two 
subregions, and 𝑁𝑁1  and 𝑁𝑁2  are the numbers of samples in 𝑅𝑅1 
and 𝑅𝑅2, respectively. 

Step 3: Repeat Step 2 on both subspaces until the 
termination condition is met. 

Step 4: Divide the dataset D = [X, Y] into P subregions 
𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑃𝑃, and the final generated DTR is: 

 𝑅𝑅𝑅𝑅𝑅𝑅 = DTR(𝑋𝑋) = ∑ 𝑐𝑐𝑝𝑝𝐼𝐼𝑝𝑝 (𝑥𝑥𝑚𝑚,𝑗𝑗 ∈ 𝑅𝑅𝑝𝑝)𝑃𝑃
𝑝𝑝=1   (6) 

 𝐼𝐼𝑝𝑝 = �
1, 𝑖𝑖𝑖𝑖 (𝑥𝑥𝑚𝑚,𝑗𝑗 ∈ 𝑅𝑅𝑝𝑝)
0, 𝑖𝑖𝑖𝑖 (𝑥𝑥𝑚𝑚,𝑗𝑗 ∉ 𝑅𝑅𝑝𝑝)  (7) 

 𝐾𝐾𝐾𝐾 = 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑛𝑛  (8) 

where cp is the output value for the pth subregion. 
A decision tree classification (DTC) model is built to 

diagnose the type of feature relationship (accelerating aging 
mode) of the target cells. The steps to build the DTC model are 
similar to those of the DTR model above [51]. The main 
difference is that the DTC model is designed to learn the 
mapping between the feature vectors and the relationship 
classification labels, thereby enabling it to classify data points 
based on their intrinsic relationships accurately. 

C. Performance Evaluation Indices 

The indices used to evaluate the performance of our method 
include the root mean square error (RMSE) that measures the 
difference between a series of predicted and the true values 
under a given condition, the mean absolute error (MAE), and 
the mean absolute percentage error (MAPE) that assess the 
prediction accuracy of the model under all conditions and the 
mean RMSE (MRMSE) that measures the difference between 
the predicted and true actual values under all conditions, i.e., 

 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑘𝑘 = �1
𝑍𝑍
∑ �𝑦𝑦�𝑖𝑖,𝑘𝑘 − 𝑦𝑦𝑖𝑖,𝑘𝑘�

2𝑍𝑍
𝑖𝑖=1   (9) 

  𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑍𝑍
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑍𝑍
𝑖𝑖=1  (10) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑍𝑍
∑ |𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖|

𝑦𝑦𝑖𝑖
𝑍𝑍
𝑖𝑖=1 × 100% (11) 

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘𝑁𝑁
𝑘𝑘=1  (12) 

where y and ŷ represent the true and predicted outputs, 
respectively, i is the index of samples, Z is the total number of 
samples, k is the index of conditions, and N is the total number 
of conditions. In addition, accuracy (ACC) is used to evaluate 
the performance of ML classification models, defined as 

 ACC = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

× 100% (13) 

where 𝑇𝑇𝑇𝑇 is the number of the positive samples diagnosed as 
positive samples, 𝑇𝑇𝑇𝑇  is the number of the negative samples 
diagnosed as negative samples, 𝐹𝐹𝐹𝐹  is the number of positive 
samples diagnosed as negative samples, and 𝐹𝐹𝐹𝐹 is the number 
of negative samples diagnosed as positive samples.  

D. A Physics-Guided Machine Learning Method 

This subsection outlines the development of the PGML 
architecture tailored for small datasets that incorporate physical 
information. We present in Fig. 5 a schematic representation of 
the PGML, which comprises three distinct components as 
detailed below. 

1) Feature Extraction and Physical Information Acquisition 
We aim to reduce the physical differences between the 

training and the test data in this mechanism-driven part. First, 
as in the conventional ML algorithms, we can obtain a training 
data matrix D = [X, Y] based on conventional measurements, 
where X and Y are defined earlier in Section IV-B. The MFs, 
LLI, LAMPE, LAMNE, and resistance of each cell are calculated 
based on the methods in Sections II and III.  

2) Physics-Guided Feature Relationship Separation 
Next, we use the physical information to form a physics-

enhanced data matrix 𝐷𝐷PH = [𝑋𝑋PH,𝑌𝑌] where XPH = [X1, X2, …, 
Xj, …, XJ, XLLI, XLAMPE, XLAMNE, XR] is the new input data matrix. 
Here, XLLI, XLAMPE, XLAMNE, and XR are four physical feature 
vectors containing LLI, LAMPE, LAMNE, and resistance 
information, as described in Section III-B. To optimize the 
prediction accuracy, our next step involves identifying an 
appropriate mechanistic segmentation point, chosen from XLLI, 
XLAMPE, XLAMNE, and XR, which will enable us to divide 𝐷𝐷PH into 
two sub-matrices. This can be done by repeatedly selecting a 
candidate segmentation point from XLLI, XLAMPE, XLAMNE, or XR. 
For example, when an element 𝑥𝑥seg,LLI in XLLI is selected, 𝐷𝐷PH 
can be divided into two sub-matrices, e.g., 

a) 𝐷𝐷PH1 = [𝑋𝑋PH1,𝑌𝑌1] , where 𝑥𝑥min,LLI <𝑥𝑥seg,LLI < 𝑥𝑥𝑚𝑚,LLI < 
𝑥𝑥max,LLI  

b) 𝐷𝐷PH2 = [𝑋𝑋PH2,𝑌𝑌2] , where 𝑥𝑥min,LLI <𝑥𝑥𝑚𝑚,LLI < 𝑥𝑥seg,LLI < 
𝑥𝑥max,LLI 
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where 𝑥𝑥min,LLI  and 𝑥𝑥max,LLI  are the minimum and maximum 
elements in XLLI, respectively. Based on 𝐷𝐷PH1  and 𝐷𝐷PH2 , two 
ML regression models are trained for each MF, and we identify 
the MF with the minimum RUK prediction error as the best MF 
for the selected 𝑥𝑥seg,LLI. By conducting an exhaustive search of 
all elements in XLLI, 𝑥𝑥m,LLI with the highest prediction accuracy 
is used as the candidate segmentation point for LLI, and the 
corresponding best MF and accuracy are recorded. The above 
procedure is repeated for XLAMPE, XLAMNE, and XR, and the final 
mechanistic segmentation point and MF corresponds to the best 
MF with the minimum prediction error. The corresponding 
division is denoted by 𝐷𝐷relationship,PH1 = �𝑋𝑋𝑣𝑣,1,𝑅𝑅𝑅𝑅𝑅𝑅1� , 
𝐷𝐷relationship,PH2 = �𝑋𝑋𝑣𝑣,2,𝑅𝑅𝑅𝑅𝑅𝑅2�, where v is the index of the best 
MF. 

3) Binary Machine Learning Training and Prediction 
Finally, we adopt 𝐷𝐷relationship,PH1  and 𝐷𝐷relationship,PH2  to 

train two DTR models ƒPH1: 𝑋𝑋𝑣𝑣,1 → 𝑅𝑅𝑅𝑅𝑅𝑅1  and ƒPH2: 𝑋𝑋𝑣𝑣,2 →
𝑅𝑅𝑅𝑅𝑅𝑅2 , respectively. We then obtain 𝐷𝐷diagnosis = �𝑋𝑋diagnosis,
𝑌𝑌diagnosis� , where 𝑋𝑋diagnosis = [𝑋𝑋PH1dia,𝑋𝑋PH2dia] T and 
𝑌𝑌diagnosis = [𝑌𝑌diagnosis1,𝑌𝑌diagnosis2] T. The feature vectors in 
𝑋𝑋diagnosis  include 17 MFs without mechanism information. 
Here, 𝑌𝑌diagnosis1  is 0 for the feature vector 𝑋𝑋PH1dia , and 
𝑌𝑌diagnosis2 is 1 for the feature vector 𝑋𝑋PH2dia. We train an ML 
classification model ƒMLC (the DTC) to determine which DTR 
model (ƒPH1 or ƒPH2) the target battery feature vector 𝑋𝑋𝑣𝑣,target 
belongs to, i.e., ƒMLC: 𝑋𝑋diagnosis → 𝑌𝑌diagnosis. The feasibility of 
diagnosing two feature relationship patterns under different 
physics regions is shown in our previous work [33]. We use the 
selected DTR model to predict the KP of the target cell with its 
feature vector 𝑋𝑋𝑣𝑣,target.  

According to the analysis in Section III-A, there is a linear 
relationship between the KP and cycle life. Therefore, we train 
an SVR model with a linear kernel function to learn the 
relationship between KP and cycle life on the source dataset. 
Finally, we feed the predicted KP to the SVR model to predict 
the cycle life of the target cells. 

 

 

 
Fig. 5. Schematics of PGML.  

 

E. Knee-Point-Conscious Aging Trajectory Prediction  

Given the strong correlation between the aging trajectory 
and KP, we developed a method for predicting the aging 

trajectory based on KP similarity. First, we select the 
transferable time series sample from the source dataset 
according to KP similarity. The KP similarity is measured by 
the distance d: 

 𝑑𝑑 = |𝐾𝐾𝑃𝑃pre − 𝐾𝐾𝑃𝑃true|  (14) 

where 𝐾𝐾𝑃𝑃pre  and 𝐾𝐾𝑃𝑃true  represent the predicted and the true 
KPs, respectively. By doing so, inconsistent characteristics of 
accelerated aging cells are minimized. Then, we train a DTR 
model with the selected transferable time series sample. Finally, 
we use the trained DTR model to predict the aging trajectory of 
target cells. We denote the method PGML-DTR in the rest of 
the work. 

V. RESULTS AND DISCUSSION 

A. Early Knee Point Prediction Results Based on NCM 
Dataset 

The NCM dataset was divided into four cases to validate the 
proposed KP-conscious aging trajectory prediction algorithm. 
For each case, three cells were chosen for testing, and the rest 
were used for model training, as shown in Table Ⅱ. MFs were 
extracted every five cycles between the 50th cycle and the 90th 
cycle.  

The PGML-DTR uses a full-cell OCV-SOC reconstruction 
method to obtain each cell’s LLI, LAMPE, and LAMNE, and the 
resistance of each cell was obtained from the HPPC test. Then, 
we used the physical information to find the separable feature 
relationship for each feature. The relationship between each MF 
and KP can be separated into two sub-relationships according 
to the difference in aging mechanisms. For the four cases, the 
best feature relationship is MF15, determined by the PGML, 
and its best physics separation point is determined according to 
LLI. 

TABLE Ⅱ.  
TRAINING AND TEST CELLS FOR THE 4-FOLD VALIDATION ON THE NCM 

DATASET 
Case  Training cells Test cells 

Case 1 21,23,24,26,27,28,29,30,34,35,36 20,22,25 
Case 2 20,22,24,25,27,28,29,30,34,35,36 21,23,26 
Case 3 20,21,23,24,25,27,28,29,30,35,36 22,26,34 
Case 4 20,21,22,24,26,27,28,29,30,35,36 23,25,34 

 
The two feature relationship patterns can be classified with 

ACC = 100% based on the proposed DTC model. After the 
feature relationship separation, we trained two DTR models 
with two relationships between MF15 and RUK for KP 
prediction. The KP prediction results are summarized in Table 
Ⅲ, where it can be seen that the average MAPE of four cases is 
4.05% with the aging data of the 50th cycle on the training 
datasets. The corresponding average MAPE of four cases is 
4.18%, the average MAE is 22.44 cycles, and the average MAE 
of four cases is 22.58 cycles. The results show that the proposed 
PGML-DTR can accurately predict the KP with only 11 cells 
for training when the physical information is combined with 
ML. Fig. 6 depicts the KP prediction outcomes achieved via the 
PGML-DTR method, with an MAE of approximately 25 cycles 
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and an MAPE ranging from 0.76% to 7.4%. Therefore, the 
proposed PGML-DTR can effectively predict the KP with very 
few cells and early aging data under complex cycle conditions. 

B. Early Aging Trajectory and Life Prediction Results Based on 
NCM Dataset 

We train an SVR model with a linear kernel using the linear 
relationship between the KP and cycle life. The KPs of the 
target cells are predicted by the PGML. Then, the predicted KPs 
are fed into the SVR model for cycle life prediction. The EOL 
prediction results are shown in Table Ⅳ, Fig. 7, and Fig. 8.  

The MAE and MAPE are used to evaluate the EOL 
prediction accuracy. The RMSE and MRMSE are used to 
evaluate the aging trajectory prediction accuracy. According to 
Table Ⅳ and Fig. 7, the early aging trajectory prediction error 
is 2.02% with the 50th cycle of data in the NCM dataset. 
According to Table Ⅳ and Fig. 7, the aging trajectory 
prediction of four cases can be accurately predicted with an 
EOL prediction error of 8.47%. In Fig. 8, the aging trajectory 
prediction error is all less than 3% for all four NCM cases. In 
Fig. 7, though the accuracy of the aging trajectory prediction is 
very high, the apparent errors existed in the mid-stage of the 
capacity degradation curve. The mid-stage of the capacity 
degradation curve before the knee point is approximately linear. 
In this paper, the knee point-conscious aging trajectory 
prediction method mainly considers the knee point influence. 
The knee point conscious aging trajectory prediction method 
predicts the entire nonlinear aging trajectory well with early 
linear capacity sequence data. Therefore, the knee point 
conscious aging trajectory prediction method has some errors 
during the linear stage before the knee point, and can predict 
the aging trajectory accurately after the knee point. 

 
TABLE Ⅲ.  

MAPE AND MAE RESULTS OF KP PREDICTION FOR THE FOUR CASES NCM 
CELLS DATASETS WITH PGML-DTR AT THE 50TH CYCLE 

Case  Training dataset Test dataset 
MAE / cycles   MAPE / % MAE / cycles  MAPE / % 

Case 1 21.61 3.87 21.37 3.68 
Case 2 22.52 4.06 21.5 4.2 
Case 3 22.71 4.13 29.16 5.29 
Case 4 22.93 4.17 18.29 3.57 

Average 22.44 4.05 22.58 4.18 
 

TABLE Ⅳ.  
EARLY LIFE PREDICTION RESULTS WITH THE 50TH CYCLE DATA ON THE NCM 

DATASET 
Case MAE / cycles MAPE / % MRMSE / % 

Case 1 35.5 5.04 1.95 
Case 2 80.16 11.63 2.84 
Case 3 65.23 9.84 2.06 
Case 4 54.75 7.4 1.23 

Average 58.91 8.47 2.02 

C. Enable Machine Learning to Study and Understand the 
Insightful Physics Knowledge 

To further study the influence of the physical mechanism on 
the feature relationship of Li-ion batteries, we classified the 17 

feature relationships of 14 NCM cells according to the LLI, 
LAM, and resistance of the cells before the 90th cycle. 
According to Fig. 9(a), the MAPE of the DTR training can be 
significantly reduced by the PGML. As shown in Fig. 9(b), each 
feature relationship has a most suitable mechanistic separation 
point. Each feature relationship can be separated into two sub-
relationships with similar physics information. The MAPE of 
the DTR model with each feature relationship can decrease by 
about 5.23%−13.83%. Compared to conventional ML methods, 
PGML yields an impressive 50% improvement in DTR 
prediction accuracy when the single weak correlation feature 
relationship is used to train the DTR model. Our work thus 
shows the potential of using physical information to enhance 
the identification of the feature relationship patterns of Li-ion 
batteries. 

 
Fig. 6. KP prediction results: MAE and MAPE from the 50th cycle to the 90th 
cycle of four cases on the NCM dataset with PGML-DTR. (a) MAE of KP 
prediction on the training dataset. (b) MAE of KP prediction on the test dataset. 
(c) MAPE of KP prediction on the training dataset. (d) MAPE of KP prediction 
on the test dataset. 
 

 
Fig. 7. Aging trajectory prediction results of 4 cases on the NCM test dataset by 
KP-conscious aging trajectory prediction method with the 50th cycle data. (a) 
Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 
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D. Comparison Analysis for the Early Knee Point Prediction 
with PGML 

1) Early knee point prediction with different machine 
learning methods 

Based on the results of Section V-A, it can be seen that 
PGML-DTR can accurately predict KP. In addition to DTR, 
other ML methods, such as k-nearest neighbor regression 
(KNN), random forest regression (RFR), artificial neural 
networks (ANN), and SVR, also have excellent regression and 
prediction capabilities. This subsection compares the KP 
prediction results of PGML combined with other conventional 
ML algorithms with the same feature and mechanism 
information. Table V shows that the KP prediction accuracy of 
PGML-DTR at the 50th cycle is higher than PGML-KNN, 
PGML-RFR, PGML-ANN, and PGML-SVR. Except for the 
KP prediction error of PGML-SVR, which is 16.2%, the 
prediction error of other ML methods under the PGML 
framework is less than 9%. 
 

 
Fig. 8. Early EOL and aging trajectory results from the 50th cycle to the 90th 
cycle of four cases on the NCM dataset with the KP-conscious aging trajectory 
method. (a) EOL results. (b) Aging trajectory results. 
 

 

 
Fig. 9. Feature relationship separation results of NCM cells. (a) Training results 
of the DTR model with a conventional ML method and PGML-DTR. (b) 
Physics separation type for the 17 feature relationships of NCM cells.  

 
As shown in Fig. 10, the KP prediction accuracy of PGML-

DTR and PGML-KNN is high, and the predicted MAPEs on the 

test dataset are all about 5%. On the contrary, the KP prediction 
errors of PGML-SVR are large, and the predicted MAPE of 
PGML-SVR on the four test datasets are all higher than 10%. 
The predicted MAPE of PGML-ANN on test dataset 2 is less 
than 5%, but the predicted MAPEs of PGML-ANN on test 
datasets 1, 3, and 4 are greater than 10%. Compared with the 
PGML-DTR, the PGML-RFR has a worse KP prediction 
accuracy on four cases of NCM battery datasets. 

Based on the above comparison, we can conclude that 1) the 
PGML can adapt to different ML models and ensure high KP 
prediction accuracy on small sample datasets with physical 
information. 2) DTR is more suitable for PGML than other 
investigated ML algorithms.  

 

 

 
Fig. 10. MAPE of KP prediction from the 50th to the 90th cycles of four cases 
on the NCM dataset with PGML and different ML models. (a) Training dataset 
of Case 1. (b) Test dataset of Case 1. (c) Training dataset of Case 2. (d) Test 
dataset of Case 2. (e) Training dataset of Case 3. (f) Test dataset of Case 3. (g) 
Training dataset of Case 4. (h) Test dataset of Case 4. 

2) Comparison analysis for the early knee point prediction 
with conventional machine learning methods 

Next, we compare the KP prediction accuracy of PGML-
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DTR and some traditional ML algorithms. As shown in Fig. 11, 
traditional ML architectures often do not consider physical 
information. When a feature exhibits a strong correlation with 
KP, it will be selected as an input of the ML model. Since the 
features on the NCM dataset do not correlate strongly with KP, 
all 17 features are used as the input of the traditional ML models. 

As shown in Table VI, at the 50th cycle, PGML-DTR has 
higher KP prediction accuracy than DTR, RFR, KNN, ANN, 
and SVR. The KP prediction error of PGML-DTR is 4.18%, 
whereas the predicted MAPE of conventional ML algorithms 
are all greater than 9%. As shown in Fig. 12, from the 50th to 
the 90th cycles, the KP prediction accuracy of PGML-DTR is 
higher than the conventional ML algorithms. The predicted 
MAPEs of PGML-DTR are all within 5%. The KP prediction 
errors of the conventional ML algorithms are large, with 
predicted MAPE greater than 10% on all four test datasets. We 
can see that for small sample datasets with physical information, 
PGML-DTR has better KP prediction capability than DTR, 
RFR, KNN, ANN, and SVR, especially when the features do 
not correlate strongly with the prediction target. 

 
TABLE Ⅴ.  

KP PREDICTION MAPE FOR THE FOUR CASES OF NCM TEST DATASETS BY 
PGML WITH DIFFERENT ML METHODS AT THE 50TH CYCLE 

 PGML-
DTR 

PGML-
KNN 

PGML-
RFR 

PGML-
ANN 

PGML-
SVR 

Case 1 3.68% 4.12% 4.37% 12.8% 14.2% 
Case 2 4.2% 5.26% 5.12% 1.67% 15.7% 
Case 3 5.29% 6.75% 7.71% 1.52% 17.5% 
Case 4 3.57% 6.1% 17.5% 3.17% 17.4% 

Average 4.18% 5.56% 8.69% 4.79% 16.2% 
 

TABLE Ⅵ. 
KP PREDICTION MAPE FOR THE FOUR CASES OF NCM TEST DATASETS BY 

CONVENTIONAL ML METHODS AND PGML-DTR AT THE 50TH CYCLE 
 PGML-

DTR DTR KNN RFR ANN SVR 

Case 1 3.68% 14.2% 22.5% 6.09% 12.4% 295% 
Case 2 4.2% 3.54% 10.9% 10.1% 29.1% 58.9% 
Case 3 5.29% 11.5% 12.3% 9.51% 16.8% 249% 
Case 4 3.57% 11.4% 8.38% 14.1% 19.7% 29.2% 

Average 4.18% 10.2% 13.5% 9.95% 19.5% 158% 

E. Impact of the Amount of Cell Sample on KP Prediction 
Accuracy of DTR Without Physics Information 

In the previous subsection, we show the effectiveness of 
PGML-DTR for KP prediction on a small sample dataset with 
mechanism information. This subsection focuses on the effect 
of the number of training samples on the KP prediction 
accuracy of the DTR model for Li-ion batteries. Since the NCM 
dataset has limited samples, for this purpose, we adopted an 
LFP dataset containing 123 accelerated aging LFP cells [19]. 
Fig. 13(a) shows the aging trajectories of the 123 LFP cells. The 
decline curves of the LFP cells are all nonlinear with KPs. As 
shown in Fig. 13(b), similar to the NCM cells, the KP and EOL 
of the LFP cells also have a strong linear relationship, where the 
correlation coefficient is 0.9952. Fig. 13(c) shows the 
correlation between the 17 mechanism features used in this 
paper and the KP of the LFP cells. It can be seen that there is no 

strong linear correlation between the 17 mechanism features 
and KP. 

 

 
Fig. 11. Conventional ML framework for KP prediction. 

 

 
Fig. 12. MAPE of KP prediction from the 50th to the 90th cycles on the NCM 
dataset with PGML-DTR and conventional ML frameworks. (a) Training 
dataset of Case 1. (b) Test dataset of Case 1. (c) Training dataset of Case 2. (d) 
Test dataset of Case 2. (e) Training dataset of Case 3. (f) Test dataset of Case 3. 
(g) Training dataset of Case 4. (h) Test dataset of Case 4. 

 
Since the LFP dataset does not provide mechanistic 

information, the PGML architecture cannot be used. 
Fortunately, since the sample size of the LFP dataset is nearly 
ten times larger than that of the NCM, we can use the traditional 
ML methods to investigate the effect of the number of training 
samples on the KP prediction accuracy of the DTR model. 23 
of the 123 LFP cells were randomly selected as the test set, and 
the rest were used for training with different training sample 
sizes and cycle numbers of feature extraction. Finally, a total of 
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10,000 training and test datasets are randomly generated.  
As shown in Fig. 14, the MAPE of KP on the training and 

test datasets decreases with increased training samples. When 
the number of cells used for training is less than 40, the 
predicted MAPE of KP on the test dataset will be greater than 
50%. The MAPE of training and testing decreases when the 
number of cells for training is between 40 to 100. However, the 
cycle number used for feature extraction has no significant 
effect on the KP prediction MAPE of the DTR model. Therefore, 
for the DTR model, increasing the number of training samples 
is an effective way to improve the accuracy of the DTR model 
in the absence of physical information. In summary, in KP 
prediction, small samples can be used for PGML-DTR by 
providing additional physical information regarding aging 
mechanisms. When physical information is unavailable, 
traditional ML algorithms must increase the number of training 
samples.  
 

 
Fig. 13. Aging characteristics and feature correlation analysis of LFP cells. (a) 
Accelerated aging curves of LFP cells. (b) Linear interdependency between KP 
and battery life. (c) Correlation coefficients of MFs and the RUK for LFP cells. 

 
Fig. 14. KP prediction results with DTR and different train sample numbers on 
the LFP dataset: (a) Training dataset. (b) Test dataset.  

F. Validating Prediction Accuracy and Generalization of Knee 
Point Conscious Aging Trajectory Prediction on the LFP Cell 
Dataset 

The LFP cell dataset was used to validate the KP-conscious 
aging trajectory prediction accuracy based on the training and 
test data sets of four LFP cells from the 10,000 data sets 
generated in Section V-E. The training dataset contains 100 cell 
samples and features of the fifth cycle. The KP prediction 
results are shown in Table Ⅶ, which shows that the MAPE of 
DTR is 9.6%.  

The prediction results of EOL and aging trajectory are 
shown in Table Ⅷ and Fig. 15, respectively. The EOL 
prediction error is 7.48% with the data of five cycles, and the 

aging trajectory prediction error is 2.68%. The results indicate 
that the proposed algorithm is not only applicable to NCM cells 
but also highly effective for LFP cells. This is owing to the 
strong correlation between the aging characteristics and KP of 
both NCM and LFP cells, leading to the high adaptability and 
accuracy of the algorithm. The high accuracy of the aging 
trajectory and lifetime prediction is mainly attributed to the 
accurate prediction of KP. 
 

TABLE Ⅶ.  
EARLY KP PREDICTION RESULTS FOR THE FOUR CASES OF LFP DATASETS BY 

DTR WITH THE FIFTH CYCLE DATA 

Case Training dataset Test dataset 
MAE/cycles  MAPE / % MAE / cycles  MAPE / % 

Case 1 47.1 8.34 51.1 9.44 
Case 2 51.5 8.93 75.4 9.83 
Case 3 51.7 9.38 49 9.62 
Case 4 49.9 9.17 55.6 9.54 

Average 50.05 8.95 57.7 9.60 
 

TABLE Ⅷ.  
EARLY LIFE PREDICTION RESULTS WITH THE FIFTH CYCLE DATA IN THE LFP 

TEST DATASET 
Case number MAE / cycles MAPE / % MRMSE / % 

Case 1 52.88 6.87 2.91 
Case 2 83.15 8.51 2.11 
Case 3 54.27 7.49 2.78 
Case 4 56.72 7.06 2.94 

Average 61.75 7.48 2.68 
 

 
Fig. 15. Aging trajectory prediction results of four cases on the LFP test dataset 
by KP-conscious aging trajectory prediction method with the fifth cycle data. 
(a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 

VI. CONCLUSION 

ML is a promising technique for Li-ion battery health 
management and prognostics. However, for early prediction of 
accelerated aging cells, complex aging mechanisms and 
unfavorable operating conditions will reduce the accuracy of 
ML in the life prediction of Li-ion batteries. We developed a 
PGML-DTR framework that combines a physics guide and 
DTR for the KP-conscious aging trajectory prediction with 
early-age data. Using the PGML-DTR, the KP prediction error 
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is less than 4.2% on an NCM dataset with small training battery 
samples. With the DTR, the KP prediction error is 9.6% on an 
LFP dataset when we have a large sample size for training. We 
then obtained an aging trajectory prediction error is 2.02% with 
50 cycles of 14 NCM cells. The aging trajectory prediction error 
is 2.68% with five cycles of 123 LFP cells data. The KP 
prediction results show that incorporating physical information 
regarding the aging mechanisms can improve ML prediction 
accuracy for small data sets. In comparison, traditional ML 
methods can work well on large data sets without physics 
information. 

The high accuracy of PGML-DTR with fewer training 
samples is attributed to four aspects. 1) the mechanism features 
can reflect the aging mechanism inside the battery. 2) the 
accelerated aging battery MFs with weak correlations are 
caused by complex feature sub-relationships and aging 
mechanisms. 3) the relationship of MFs with weak correlations 
can be divided into two sub-relationships corresponding to two 
physical regions. These two sub-relations can be well-trained 
for two independent DTRs. 4) the DTR model has good 
regression and prediction ability for complex nonlinear systems. 
The DTR can have good prediction accuracy in more training 
samples when the features are weakly correlated and the 
physics information is insufficient. 

 It highlights the prospects of combining physics 
information, domain knowledge, and ML for analyzing and 
predicting complex nonlinear systems, such as Li-ion batteries. 

APPENDIX 

The accelerated aging features of Cell z are extracted from 
the evolution of the discharge curve, the IC curve, and the DV 
curve from the rth cycle (i.e., the reference cycle) to the nth 
cycle. The steps of feature extraction are given below. 

Step 1: Extract the discharge capacity versus voltage curve 
and discharge time versus voltage curve of Cell z in the voltage 
boundary range of 2.9 V to 4 V during the discharge process of 
the nth cycle, denoted as 𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) and 𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖), respectively. Then, 
calculate the changes of discharge capacity and discharge time 
during a fixed voltage and time interval. Finally, obtain 
d𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) and d𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) data, Vi ∈ (2.9 V−4 V). 

Step 2: Use (A.1), (A.2), and (A.3) to calculate the changes 
of Qn(𝑉𝑉𝑖𝑖), dV/dtn(𝑉𝑉𝑖𝑖), and dQ/dVn(𝑉𝑉𝑖𝑖) of Cell z from the 15th to 
the nth cycles, i.e.,  

 Δ𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) = 𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) − 𝑄𝑄𝑟𝑟𝑧𝑧(𝑉𝑉𝑖𝑖) (A.1) 

 Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) =  d𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) − d𝑉𝑉/d𝑡𝑡𝑟𝑟𝑧𝑧(𝑉𝑉𝑖𝑖)  (A.2) 

 Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) = d𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) − d𝑄𝑄/d𝑉𝑉𝑟𝑟𝑧𝑧(𝑉𝑉𝑖𝑖) (A.3) 

where Vi ∈ (2.9 V−4 V), i=1, 2, …, lv is the index of the voltage 
data, and lv is the number of voltage data. 𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) and 𝑄𝑄𝑟𝑟𝑧𝑧(𝑉𝑉𝑖𝑖) 
represent the relationships between discharge capacity and 
voltage of Cell z at the nth cycle and the reference cycle, 
respectively. Δ𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖)  is the difference between the discharge 
capacity versus voltage curve at the reference cycle and the nth 
cycle of Cell z. d𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) is the DV curve of Cell z at the nth 

cycle; d𝑉𝑉/d𝑡𝑡𝑟𝑟𝑧𝑧(𝑉𝑉𝑖𝑖)  is the DV curve of Cell z at the reference 
cycle. Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) is the difference between the DV curve at 
the reference cycle and the nth cycle of Cell z. d𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) is 
the IC curve of Cell z at the nth cycle; d𝑄𝑄/d𝑉𝑉𝑟𝑟𝑧𝑧(𝑉𝑉𝑖𝑖) is the IC 
curve of Cell z at the reference cycle. Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖)  is the 
difference between the IC curve at the reference cycle and the 
nth cycle of Cell z.  

Step 3: Extract 17 features from the curves of Δ𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) , 
Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) , and Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) . The mean values of these 
three curves are calculated by (A.4)−(A.6), with which 17 
statistical features are calculated by (A.7)−(A.23).  

 Δ𝑄𝑄𝑛𝑛𝑧𝑧����� = 1
𝑘𝑘
Σ𝑖𝑖=1𝑘𝑘 Δ𝑄𝑄𝑛𝑛z(𝑉𝑉𝑖𝑖) (A.4) 

 Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧����������� = 1
𝑘𝑘
Σ𝑖𝑖=1𝑘𝑘 Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) (A.5) 

 Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧������������ = 1
𝑘𝑘
Σ𝑖𝑖=1𝑘𝑘 Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) (A.6) 

 𝑓𝑓1,𝑛𝑛
𝑧𝑧 = ln (�(Δ𝑄𝑄𝑛𝑛𝑧𝑧)���������) (A.7) 

 𝑓𝑓2,𝑛𝑛
𝑧𝑧 = ln (|max (Δ𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖))|) (A.8)  

 𝑓𝑓3,𝑛𝑛
𝑧𝑧 = ln (|min (Δ𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖))|) (A.9) 

 𝑓𝑓4,𝑛𝑛
𝑧𝑧 = ln ( � 1

𝑘𝑘−1Σ𝑖𝑖=1
𝑘𝑘 (Δ𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) − Δ𝑄𝑄𝑛𝑛𝑧𝑧�����)2�)  (A.10) 

 𝑓𝑓5,𝑛𝑛
𝑧𝑧 =

1
𝑘𝑘Σ𝑖𝑖=1

𝑘𝑘 �Δ𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖)−Δ𝑄𝑄𝑛𝑛𝑧𝑧�������
3

��1𝑘𝑘Σ𝑖𝑖=1
𝑘𝑘 �Δ𝑄𝑄𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖)−Δ𝑄𝑄𝑛𝑛𝑧𝑧�������

2
�
3 (A.11) 

 𝑓𝑓6,𝑛𝑛
𝑧𝑧 = ln (�Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧�������������) (A.12) 

 𝑓𝑓7,𝑛𝑛
𝑧𝑧 = ln (|max (Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖))|) (A.13) 

 𝑓𝑓8,𝑛𝑛
𝑧𝑧 = ln (|min (Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖))|) (A.14) 

 𝑓𝑓9,𝑛𝑛
𝑧𝑧 = ln ( � 1

𝑘𝑘−1Σ𝑖𝑖=1
𝑘𝑘 �Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) − Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧�������������2�)  (A.15) 

 𝑓𝑓10,𝑛𝑛
𝑧𝑧 =

1
𝑘𝑘Σ𝑖𝑖=1

𝑘𝑘 �Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖)−Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧��������������
3

��1𝑘𝑘Σ𝑖𝑖=1
𝑘𝑘 �Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖)−Δd𝑄𝑄/d𝑉𝑉𝑛𝑛𝑧𝑧��������������

2
�
3 (A.16) 

 𝑓𝑓11,𝑛𝑛
𝑧𝑧 = ln (�Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧������������) (A.17) 

 𝑓𝑓12,𝑛𝑛
𝑧𝑧 = ln (|max (Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖))|) (A.18) 

 𝑓𝑓13,𝑛𝑛
𝑧𝑧 = ln (|min (Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖))|) (A.19) 

 𝑓𝑓14,𝑛𝑛
𝑧𝑧 = ln ( � 1

𝑘𝑘−1Σ𝑖𝑖=1
𝑘𝑘 �Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖) − Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧������������2�)  (A.20) 

 𝑓𝑓15,𝑛𝑛
𝑧𝑧 =

1
𝑘𝑘Σ𝑖𝑖=1

𝑘𝑘 �Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖)−Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧�������������
3

��1𝑘𝑘Σ𝑖𝑖=1
𝑘𝑘 �Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧(𝑉𝑉𝑖𝑖)−Δd𝑉𝑉/d𝑡𝑡𝑛𝑛𝑧𝑧�������������

2
�
3 (A.21) 

 𝑓𝑓16,𝑛𝑛
𝑧𝑧 = 𝑡𝑡𝑛𝑛𝑧𝑧 − 𝑡𝑡𝑟𝑟𝑧𝑧 (A.22) 

 𝑓𝑓17,𝑛𝑛
𝑧𝑧 = 𝑄𝑄dis,𝑛𝑛

𝑧𝑧 − 𝑄𝑄dis,𝑟𝑟
𝑧𝑧  (A.23) 

where 𝑄𝑄dis,𝑛𝑛
𝑧𝑧   and 𝑄𝑄dis,𝑟𝑟

𝑧𝑧   are the total discharge capacity of the 
nth cycle and the reference cycle, respectively. As mentioned 
earlier, the features are extracted within the voltage boundary 
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range of 2.9 V−4 V for the NCM cells. For the LFP cells, the 
features are extracted from the voltage range of 2.02 V−3.58 V. 
In [19], the influence of the selection of the reference cycle on 
the prediction accuracy during the feature extraction was 
analyzed on the LFP dataset. It was found that when the 
reference cycle is earlier than 20, and the cycle number for 
feature extraction is greater than 50, the changes of the 
discharge, IC, and DV curves can be used to predict the aging 
trajectory with high accuracy.  Hence, we adopted r = 15 in this 
work as the reference cycle as an example. On the other hand, 
for the LFP dataset, since the features are extracted before five 
cycles, we use r = 2 as the reference cycle. 
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