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Efficiency measurement based on
novel performance measures in
total productive maintenance
(TPM) using a fuzzy integrated
COPRAS and DEA method

Ebru Turanoglu Bekar*

Department of Industrial andMaterials Science, Chalmers University of Technology, Gothenburg, Sweden

Total Productive Maintenance (TPM) has been widely recognized as a strategic
tool and lean manufacturing practice for improving manufacturing performance
and sustainability, and therefore it has been successfully implemented in many
organizations. The evaluation of TPM efficiency can assist companies in improving
their operations across a variety of dimensions. This paper aims to propose a
comprehensive and systematic framework for the evaluation of TPM
performance. The proposed total productive maintenance performance
measurement system (TPM PMS) is divided into four phases (e.g., design,
evaluate, implement, and review): i) the design of new performance measures,
ii) the evaluation of the new performance measures, iii) the implementation of the
new performance measures to evaluate TPM performance, and iv) the reviewing
of the TPM PMS. In the design phase, different types of performance measures
impacting TPM are defined and analyzed by decision-makers. In the evaluation
phase, novel performance measures are evaluated using the Fuzzy COmplex
Proportional Assessment (FCOPRAS) method. In the implementation phase, a
modified fuzzy data envelopment analysis (FDEA) is used to determine efficient
and inefficient TPM performance with novel performance measures. In the review
phase, TPM performance is periodically monitored, and the proposed TPM PMS is
reviewed for successful implementation of TPM. A real-world case study from an
international manufacturing company operating in the automotive industry is
presented to demonstrate the applicability of the proposed TPM PMS. The main
findings from the real-world case study showed that the proposed TPM PMS
allows measuring TPM performance with different indicators especially soft ones,
e.g., human-related, and supports decision makers by comparing the TPM
performances of production lines and so prioritizing the most important
preventive/predictive decisions and actions according to production lines,
especially the ineffective ones in TPM program implementation. Therefore, this
system can be considered a powerful monitoring tool and reliable evidence to
make the implementation process of TPM more efficient in the real-world
production environment.
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1 Introduction

In today’s dynamic environment, having a consistent and
sustainable production system is crucial for competitiveness;
accordingly, Total Productive Maintenance (TPM) has become a
prominent subject as a strategic power for manufacturing
organizations (Brah and Chong, 2004; Pinjala et al., 2006). In the
literature, a number of studies present the relationship between
TPM and manufacturing performance (McKone et al., 2001; Brah
and Chong, 2004; Bartz et al., 2014; Belekoukias et al., 2014; Singh
and Ahuja, 2015; Wickramasinghe and Perera, 2016). According to
the results of these studies, proper implementation of TPM has a
positive impact on manufacturing performance. Thus, the relevant
literature has defined several critical success factors for TPM
implementation (Bamber et al., 1999; Ireland and Dale, 2006). In
this context, measurement of TPM performance is significantly
required for continuous improvement of the TPM
implementation program (Piechnicki et al., 2015). When it comes
to performance evaluation in TPM, overall equipment effectiveness
(OEE) has widely been used as a performance measure, because
TPM aims to maximize equipment effectiveness (Schippers, 2001;
Waeyenbergh and Pintelon, 2002). Although OEE has been
considered a standard measure for equipment performance
(Chan et al., 2005), what it captures is only the effectiveness of
TPM, not its efficiency.

OEE provides productivity behavior of only individual
equipment. However, the evaluation of TPM performance should
include an objective and comprehensive method based on multiple
inputs and outputs instead of OEE and its extensions (Muchiri and
Pintelon, 2008). For this context, in the literature, a few studies have
been made related to the performance measurement in TPM
implementation (Park, 2002; F.-K; Wang, 2006; Jeon et al., 2011).
In these studies, Wang (2006) and Jeon et al. (2011) used Data
Envelopment Analysis (DEA) to measure the efficiency of TPM
implementation. Furthermore, a number of studies have been
conducted to identify important factors in TPM (Ljungberg,
1998; Cua et al., 2001; McKone et al., 2001; Swanson, 2001;
Sharma et al., 2006; Wang, 2006; Ahuja and Khamba, 2008;
Singh and Gurtu, 2022). However, the findings from these
studies demonstrate that there is still a lack of a methodological
approach to determining how these important factors need to be
selected, evaluated, and measured in a systematic way in a
maintenance performance measurement system. Additionally,
recent studies have also investigated that companies should also
consider human-oriented factors as critical success factors in
combination with the technical and economical ones when they
are implementing TPM (Arunraj et al., 2014; Bekar and Kahraman,
2016; Peach et al., 2016; Sharma et al., 2016). Based on the
aforementioned gap and gained knowledge from the literature,
the motivation of this study is to develop a systematic framework
to measure TPM performance using novel performance indicators
including quantitative and qualitative information (e.g., availability
of maintenance personnel, human-oriented indicators such as
competence of maintenance personnel, the experience of
operators in a production line, operator reliability, training, and
continuing education, new ideas generated and implemented, level
of 5S and employee satisfaction indicators such as employee
absenteeism, employee turn-over rate and refusal of extended

hours or overtimes). In this context, the developed framework is
called the Total ProductiveMaintenance PerformanceMeasurement
System (TPM PMS) consisting of four phases from designing novel
TPM performance indicators to reviewing the proposed TPM PMS.
In each phase of the proposed framework, the different research
questions are aimed to answer (e.g., what indicators are to be
measured in the design phase of TPM PMS? How to evaluate the
proposed indicators under some attributes in the evaluation phase of
TPMPMS? How to use them tomeasure the performance of TPM in
the implementation phase of TPM PMS? How to use TPM
performance results for preventive/predictive decisions and
actions in the review phase of TPM PMS? How to review and
modify this system accordingly?). Overall, developing such TPM
PMS is important because it allows companies to monitor their
progress, identify areas for improvement, and continuously optimize
their maintenance efforts to maximize equipment effectiveness and
minimize downtime. This can result in lower maintenance costs,
increased equipment reliability, improved product quality, and
higher production capacity.

The rest of the paper is organized as follows. Section 2 explains
related literature. Section 3 introduces the fundamentals of the
proposed TPM PMS. In Section 4, an application of the
proposed TPM PMS for the evaluation of TPM performance
based on a real manufacturing case is presented. The results
from the case study and contributions of the proposed TPM
PMS are discussed in Section 5, and in the last section,
conclusions are given.

2 State of the art

2.1 The positioning of the proposed TPM
PMS in the literature

Park (2002) proposed a TPM analysis model including three
stages. The first stage represents the effect of TPM factors on TPM
performance. The second stage represents how TPM performance
factors influence productivity. The third stage also represents the
testing of the TPM analysis model with univariate and multivariate
regression and correlation analyses and the results show that TPM
performance factors improve productivity through TPM activity’s
characteristics. Wang (2006) suggested a simple methodology for
efficiency evaluation in TPM. In this study, DEA was used to
evaluate the efficiency score when the utility function considers
its many attributes. A prediction model by the multiple regression
method was performed to obtain the expected efficiency score for
checking the performance of implementing TPM. Wang (2006)
measured TPM efficiency at the factory level using the DEAmethod,
which has some limitations. Therefore, Jeon et al. (2011) measured
three types of TPM efficiency by self-directed work teams (SDWTs)
using DEA. Firstly, DEA efficiency scores of SDWTs were measured
for three stages (stage 1: from TPM input to TPM intermediate
output; stage 2: from TPM intermediate output to TPM final output,
and stage 3: from TPM input to TPM final output). Then, the
relationships between the three types of efficiency scores were
analyzed by Spearman correlation analysis (Gibbons and
Chakraborti, 1971). SDWTs were also clustered by the three
types of TPM efficiency. Based on the results of the literature
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review, there are a few studies related to efficiency measurement in
TPM implementation. In summary, while there are a few studies in
the literature on TPM performance measurement, there are still gaps
in the research that need to be addressed in order to develop best
practices for TPM implementation (e.g., lack of standardization and
lack of research on human factors of TPM). For instance, lack of
standardization means that there is currently no widely accepted
standard for TPM performance measurement, and many companies
measure different metrics or use different approaches. This makes it
difficult to compare results across companies and industries.
Additionally, while TPM is often viewed as a technical or
engineering-focused approach, there is a need for research that
examines the human factors involved in TPM implementation. This
includes factors such as employee engagement, training, and
development as this study examines in the designing of novel
performance indicators.

The aim of this study is to develop a new framework for the
measurement of TPM performance based on novel
performance indicators which include uncertain information
or imprecise data. Fuzzy set theory, introduced by Zadeh
(1965), provides a new mathematical tool to deal with the
uncertainty of information (Zadeh, 2008). In the proposed
TPM PMS, after the design of novel TPM performance
indicators, these indicators are evaluated and measured
using some methods under a fuzzy environment. For
example, in the evaluation phase, since the evaluation
involves multiple attributes, it can be thought of as multi-
attribute decision-making (MADM) problem, and thus a

method called COmplex PRoportional ASsessment of
alternatives with Grey relations (COPRAS-G), which is one
of the most popular MADM methods, is modified with fuzzy
numbers, and thus fuzzy COmplex PRoportional ASsessment
of alternatives (FCOPRAS) proposed by Turanoglu Bekar and
Kahraman, (2016) is used for evaluation of novel TPM
performance indicators. Then, in the implementation phase,
a fuzzy data envelopment analysis (FDEA), which is a
mathematical programming approach for the evaluation of
performance with uncertainty pertinent to the existence of
qualitative data set, is utilized to evaluate TPM performance
based on these indicators. The fuzzy utility degrees obtained by
the FCOPRAS method are integrated into the Generalized
Fuzzy Data Envelopment Analysis with Assurance Region
(GFDEA/AR) models in order to find efficient and
inefficient TPM performance. In these models, desirable and
undesirable performance indicators (inputs and outputs) are
also considered which are explained in Section 3. The
positioning and contributions of the proposed TPM PMS are
summarized in Table 1.

2.2 Literature review on FDEA methods
integrated with MADM

DEA can be described as a series of models, whereas the type of
returns to scale is what characterizes the two main ones: a) CRS
(constant returns to scale), or CCR which is an acronym for

TABLE 1 The positioning of the proposed TPM PMS.

Park (2002) Wang (2006) Jeon et al. (2011) Proposed TPM performance measurement system

Efficiency measurement in TPM √ √ √

Performance measures in TPM √ √

New performance measures in TPM √

Multiple inputs and outputs √ √ √

MADM √

Fuzzy MADM √

Fuzzy group decision making √

Fuzzy criteria weights √

Fuzzy relative importance √

Fuzzy group hierarchy √

Fuzzy aggregation √

Fuzzy arithmetic √

Fuzzy ranking √

Optimization √ √

Fuzzy optimization √

Sensitivity analysis √

Real-world manufacturing case √ √ √
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Charnes, Cooper, and Rhodes (Charnes et al., 1978); and b) VRS
(variable returns to scale) or BCC which is an acronym for Banker,
Charnes, and Cooper (Banker et al., 1984) which is one of the
broadenings of the CCR model where the efficient frontiers set is
characterized by a convex curve passing through all efficient
decision-making units (DMUs) and structured by both constant
and -decreasing returns to scale (Faizrahnemoona et al., 2012). In
brief, while the CCR model assumes that outputs always grow
proportionally to inputs, in the BCC model this proportionality
is not required, as a DMUmay display returns to scale: a) increasing:
where outputs grow proportionally more than inputs; b) constant:
where there is proportionality; or c) decreasing: where outputs grow
proportionately less than inputs (Mariano et al., 2015).

The traditional DEA models require accurate and precise
performance data since it is a methodology focused on frontiers or
boundaries (Gua and Tanaka, 2001). However, in real-world
applications such as in a manufacturing system, a production
process, or a service system, the observed data are volatile and
complex and generally include uncertainty (Emrouznejad and
Mustafa, 2012). In this context, the data with crisp numbers will not
satisfy the real requirements and this restriction will diminish the
practical flexibility of DEA in an application (Agarwal, 2014). Thus,
imprecise or vague data can be represented with bounded intervals,
ordinal (rank order) data or fuzzy numbers (Hatami-Marbini et al.,
2011). Fuzzy set theory, established by Zadeh (1965), has been proven to
be useful as a way to quantify imprecise and vague (expressed by
linguistic variables) data in DEA models. Therefore, the DEA models
with fuzzy data can more realistically represent real-world applications
than the conventional DEAmodels (Lertworasirikul et al., 2003), which
is also preferred to be used as a basis in this study. The applications of
fuzzy set theory in DEA are generally classified into four groups
(Lertworasirikul et al., 2003; Karsak, 2008) such as the tolerance
approach, the α-level based approach, the fuzzy ranking approach,
and the possibility approach. Emrouznejad et al. (2014) extended this
classification and attached two new groups: the fuzzy arithmetic and the
fuzzy random variables and other extensions of fuzzy sets. In this study,
an integrated FCOPRAS-FDEA method is conducted. Therefore, this
paper examines some articles that combine different MADM methods
with FDEA; and then develops hybrid methods. According to the

literature, AHP and FAHP are the most widely used MADMmethods
with FDEA, specifically for the application areas, which are facility
layout design and supplier evaluation and selection, as summarized in
Table 2. There has not been any study in the literature about the
application and theory of combined FCOPRAS-FDEA methodology.
Additionally, to the best knowledge of the author, this can be the first
study that integrates the FCOPRAS-FDEA method to evaluate the
performance of TPM with novel performance measures, which can be
considered a significant contribution to the TPM literature.

3 Proposed TPM PMS

TPM implementation and practice is an organization-wide
activity. Thus, to measure TPM implementation effectiveness, an
organization-wide program is required based on some factors
having an impact on TPM. In this study, the proposed TPM
PMS is divided into four phases: i) the design of new
performance measures, ii) the evaluation of the new performance
measures, iii) the implementation of the new performance measures
to evaluate TPM performance, and iv) the monitoring the TPM
performance and reviewing the TPM PMS. Figure 1 shows the
general overview of the proposed TPM PMS.

In the design phase, various types of indicators which might
impact TPM performance are designed based on the theoretical and
practical aspects. Then, these TPM performance indicators (TPM
PIs) are analyzed by the experts to identify the most important ones
using the nominal group technique which is a group decision-
making method, and the conjoint analysis which is a MADM
method based on experimental design. In the evaluation phase,
the TPM PIs proposed in the design phase are evaluated by
using COPRAS-G, which is one of the recently developed and
most popular MADM methods. Since the proposed TPM PIs
include both quantitative and qualitative data, these are
represented by linguistic variables, which are essentially from the
insufficient and/or imprecise nature of data as well as the subjective
and evaluative preferences of the expert. To evaluate these TPM PIs,
the FCOPRASmethod based on fuzzy group decision-making is also
proposed in this phase. In the proposed FCOPRASmethod, all fuzzy

TABLE 2 The review on FDEA integrated with MCDM methods

FDEA integrated with MADM methods Application problem References

Analytic hierarchy process (AHP) Facility layout design Ertay et al. (2006)

AHP Personnel selection Lin (2010)

Delphi technique and AHP Supplier performance evaluation Awasthi et al., 2011

FAHP Supplier selection Kuo et al. (2010)

FAHP Facility layout design with safety and ergonomic factors Azadeh and Moradi (2014)

FAHP Facility layout design Azadeh et al. (2016)

Technique for order of preference by similarity to ideal solution (TOPSIS) Selection of welding process Mirhedayatian et al. (2013)

Multi-objective fuzzy linear programming High-technology project selection at NASA Tavana et al. (2013)

Grey system theory A numerical example from the literature Khodabakhshi et al. (2016)
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judgments and numbers are not converted to crisp values (or real
numbers), and all calculations are performed in accordance with the
fuzzy arithmetic operations and fuzzy ranking method (Turanoglu
Bekar et al., 2016). In the implementation phase, the proposed TPM
PIs are used to evaluate TPM performance using FDEA, which is a
very effective method to evaluate the relative efficiency of decision-
making units (DMUs) on the basis of multiple fuzzy inputs and
outputs. The fuzzy relative significances of the proposed TPM PIs
obtained by the FCOPRAS method are integrated into the FDEA
models based on assurance region (AR) and undesirability
approaches. In this regard, different GFDEA/AR models in the
presence of desirable and undesirable inputs and outputs are
proposed to measure TPM performance. The flow diagram of the
integrated FCOPRAS-FDEA method is also illustrated in Figure 2.
Finally, in the review phase, the proposed TPM PMS is periodically
monitored and reviewed. Afterward, the necessary improvement,
preventive decisions, and other actions should be made for the
successful implementation of TPM.

3.1 Mathematical description of the
proposed FCOPRAS-FDEA models

The GFDEA/AR model proposed by Zhou et al. (2012) is one of
the adapted models within the scope of this study. For a
comprehensive overview of the GFDEA with AR, the reader is

referred to Zhou et al. (2012). The fuzzy ~Qi values, i.e., lower
and upper bounds of the utility degrees of inputs and outputs
obtained from FCOPRAS are incorporated into the models which
are explained in the following equations:

Ej0( )L
α
� max∑s

r�1
ur Yrj0( )L

α
− δ1u0 (1)

Subject to;

∑s
r�1
ur Yrj0( )L

α
−∑m

i�1
vi Xij0( )U

α
− δ1u0 ≤ 0, (2)

∑s
r�1
ur Yrj0( )U

α
−∑m

i�1
vi Xij0( )L

α
− δ1u0 ≤ 0, j � 1, . . . , n. j ≠ j0 (3)

∑m
i�1
vi Xij0( )U

α
� 1, (4)

QILpq ≤
vp
vq

≤QIUpq, 1≤p< q � 2, . . . ,m (5)

QOL
pq ≤

up

uq
≤QOU

pq, 1≤p< q � 2, . . . , s (6)
vi ≥ ε, i � 1, . . . , m; ur ≥ ε, r � 1, . . . , s (7)

δ1δ2 −1( )δ3u0 ≥ 0. (8)
where vi is the weight for the ith input, ur is the weight for the rth
output for i � 1, . . . , m, r � 1, . . . , s, and ε is a positive number less
than any positive real number. QILpq, QI

U
pq, QO

L
pq, and QOU

pq are the

FIGURE 1
The general overview of the proposed TPM PMS.
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lower and upper bounds of the fuzzy relative significance of inputs
and outputs respectively obtained from the FCOPRAS method. The
parameters δ1, δ2, and δ3 are binary ones assuming only values zero
and one. In the above model, the values of these parameters are
taken as zero.

In Model 1), the objective function in Eq. 1 calculates the lower
bound of efficiency at any given α-cut level for the DMUp. The

constraint in Eq. 2 is shown as
∑s

r�1ur( ~Yrp)Lα∑m

r�1vi( ~Xip)Uα
≤ 1 meaning that the ratio

of the maximum value of the output data to the minimum value of

the input data is less and equal than one for the DMUp at the given

α-cut level. The constraint in Eq. 3 is also shown as
∑s

r�1ur( ~Yrj)Uα∑m

r�1vi( ~Xij)Lα
≤ 1

meaning that the ratio of the maximum value of the output data to

the minimum value of the input data is less and equal than one for

the other DMUs at the given α-cut level. The constraint in Eq. 4

demonstrates that the sum of the maximum value of the weighted

input data for theDMUp is equal to one at the given α-cut level. This

constraint also provides converting the fractional linear

programming model to a conventional linear programming

model. The constraints in Eqs 5, 6 give the assurance regions for

the inputs and outputs data, respectively. Additionally, Eq. 7

provides the sign constraints for the decision variables. Finally,

Eq. 8 gives the binary constraint for the parameters δ1, δ2 and δ3.
In Model 2), the objective function in Eq. 9 calculates the

upper bound of the efficiency at any given α-cut level for the
DMUp. The constraint in Eq. 10 gives that the ratio of the
maximum value of the output data to the minimum value of
the input data is less and equal than one for the DMUp at the
given α-cut level. The constraint in Eq. 11 also presents that the
ratio of the minimum value of the output data to the maximum
value of the input data is less and equal than one for the other
DMUs at the given α-cut level. The constraint in Eq. 12 provides
that the sum of the minimum value of the weighted input data for
theDMUp is equal to one at the given α-cut level. The constraints
in Eqs 13 and 14 give the assurance regions for the inputs and
outputs data, respectively. Additionally, Eq. 15 provides the sign
constraints for the decision variables. Finally, Eq. 16 gives the
binary constraint for the parameters δ1, δ2 and δ3.

Ej0( )U
α
� max∑s

r�1
ur Yrj0( )U

α
− δ1u0 (9)

Subject to;

∑s
r�1
ur Yrj0( )U

α
−∑m

i�1
vi Xij0( )L

α
− δ1u0 ≤ 0, (10)

∑s
r�1
ur Yrj0( )L

α
−∑m

i�1
vi Xij0( )U

α
− δ1u0 ≤ 0, j � 1, . . . , n. j ≠ j0 (11)

∑m
i�1
vi Xij0( )L

α
� 1, (12)

QILpq ≤
vp
vq

≤QIUpq, 1≤p< q � 2, . . . ,m (13)

QOL
pq ≤

up

uq
≤QOU

pq, 1≤p< q � 2, . . . , s (14)

vi ≥ ε, i � 1, . . . , m; ur ≥ ε, r � 1, . . . , s (15)
δ1δ2 −1( )δ3u0 ≥ 0 (16)

Secondly, Models 1) and 2) are extended by adding three
different undesirability approaches. The first approach is the
ignorance of undesirable outputs and desirable inputs. Thus,
Models 1) and 2) are solved without any modifications. The
second approach is to treat the undesirable outputs as inputs and
the desirable inputs as outputs. In this way, Models 1) and 2) are
solved without any modifications. Therefore, in these models, the
number of inputs and outputs is only changed. Therefore, these
models are called “Models 3) and 4)”. The third approach is to
apply the FDEA model proposed by Puri and Yadav (2014) with
ignorance of the desirable inputs. In this context, Models 1) and
2) are integrated with the FDEA model, and then Models 5) and
6) are obtained as demonstrated in Eqs 17–34. Here it should be
also noted that Puri and Yadav (2014) used a method developed
by Saati et al. (2002) to solve the FDEA model. However, Models
5) and 6) are proposed based on the approach developed by Kao
and Liu (2000). In the Models 5) and 6), it is assumed that the
performance of a homogeneous set of n DMUs
(DMUj; j � 1, . . . , n) is to be measured. The performance of a
DMU is characterized by a production process of m fuzzy inputs
to yield s fuzzy outputs in which s1 fuzzy outputs are desirable
(good) and s2 fuzzy outputs are undesirable (bad) such that
s � s1 + s2. Let ~Y be the fuzzy output matrix consisting of
positive fuzzy elements. Then the fuzzy output matrix ~Y can
be decomposed as ~Y � [~Yg ~Y

b ]T, where ~Y
g
and ~Y

b
are the

matrices for desirable fuzzy outputs and undesirable fuzzy

FIGURE 2
The flow diagram of the integrated FCOPRAS-FDEA method.
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outputs respectively. Let ~X be the fuzzy input matrix consisting of
positive fuzzy elements. Further, let ~Xij0 � [( ~Xij0)Lα, ( ~Xij0)Uα ]
(i � 1, . . . , m) be them fuzzy inputs used by the j0 th DMU, ~Y

g
rj0

�
[(~Yg

rj0
)L
α
, (~Yg

rj0
)U
α
] (r � 1, . . . , s1) be the α-level form of the s1
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1, . . . , s2) be the α-level form of the s2 desirable fuzzy outputs
produced by the j0 th DMU respectively. The lower bound (Ej0)Lα
and the upper bound (Ej0)Uα of the fuzzy efficiency score of the j0
th DMU with the undesirable fuzzy outputs can be evaluated
from the Models 5) and 6).
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b
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where ugr , ubp, and vi are the weights for the rth desirable fuzzy
output, pth undesirable fuzzy output, and ith fuzzy input of the j0 th
DMU respectively, and ε is the non-Archimedean infinitesimal.

In Model 5), the objective function in Eq. 17 calculates the lower
bound of the efficiency at any given α-cut level for the DMUj0. The
constraint in Eq. 18 gives that the ratio of the lower bound of the
desirable output data to the lower bound of the undesirable output data
and the upper bound of the input data is less and equal than 1 for the
DMUj0 at the given α-cut level. The constraint in Eq. 19 also presents
that the ratio of the upper bound of the desirable output data to the
upper bound of the undesirable output data and the lower bound of the
input data is less and equal than 1 for the other DMUs at the given α-cut
level. The constraint in Eq. 20 prevents taking negative efficiency score
of the lower bound for the DMUj0 at the given α-cut level. The
constraint in Eq. 21 provides that the sum of the upper bounds of the
weighted input data for theDMUj0 is equal to 1 at the given α-cut level.
The constraints in Eqs 22 and 23, and 24 give the assurance regions for
the inputs and desirable and undesirable outputs data, respectively. The
last constraint in Eq. 25 provides the sign constraints for the decision
variables.
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b
p ≥ ε, p � 1, . . . , s2, (34)

where ugr , ubp, and vi are the weights for the rth desirable fuzzy
output, pth undesirable fuzzy output and ith fuzzy input of the j0 th
DMU respectively, and ε is the non-Archimedean infinitesimal.

In Model 6), the objective function in Eq. 26 calculates the
upper bound of the efficiency at any given α-cut level for the
DMUj0. The constraint in Eq. 27 gives that the ratio of the upper
bound of the desirable output data to the upper bound of the
undesirable output data and the lower bound of the input data is
less and equal than 1 for the DMUj0 at the given α-cut level. The
constraint in Eq. 28 also presents that the ratio of the lower
bound of the desirable output data to the lower bound of the
undesirable output data and the upper bound of the input data is
less and equal than 1 for the other DMUs at the given α-cut level.
The constraint in Eq. 29 prevents taking negative efficiency
score of the upper bound for the DMUj0 at the given α-cut level.
The constraint in Eq. 30 provides that the sum of the lower
bounds of the weighted input data for the DMUj0 is equal to 1 at
the given α-cut level. The constraints in Eqs 31–33 give the
assurance regions for the inputs and desirable and undesirable
outputs data, respectively. The last constraint in Eq. 34 provides
the sign constraints for the decision variables.

The proposed models as mentioned above have some
computational and practical implications, which are
summarized below.

• They consider AR for inputs and outputs and perform
together with the fuzzy multiattribute decision-making
(FMADM) method, e.g., FCOPRAS, to increase their
computational effort and reliability;

• They handle both desirable and undesirable inputs and
outputs that are very suitable for analyzing complicated
real-world problems;

• They account for the uncertainties inherent to real-world data
using fuzzy sets to provide more flexibility for dealing with
real-world cases;
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• Solving these models leads to a fuzzy efficiency score
(i.e., optimistic and pessimistic efficiency values
according to different α-cut levels) for each DMU. This
provides a practical and broader approach for the decision-
makers.

4 Implementation of the proposed TPM
PMS: A real manufacturing case study

This section presents a case study to implement the proposed
TPM PMS in a manufacturing company that is operating in the
automotive industry. Along with the core operating departments,
there are support functions including the TPM department. In the
TPM department, there are one lead engineer and four supervisors
and 28 maintenance technicians. The overall TPM activities of this
company are managed by the TPM-office. This company produces
components of fuel injection systems. These components are tubular
rail (CR), high pressure valve (HPV), and nozzle holder body
(NHB). CR is manufactured in two segments which are “CR
Machining” and “CR and Test”. HPV is manufactured in a
separate assembly line and being assembled to rail in CR A&T
line. NHB is manufactured in two segments as well as those “NHB
Beginning of Line (BOL)” and “NHB End of Line (EOL)”. The
selected production lines for this study to evaluate TPM
performance, which are also called decision-making units in
short DMUs, were “Rail Machining (DMU1)”, “Rail Assembly
and HPV (DMU2)”, “NHB BOL (DMU3)”and “NHB EOL
(DMU4)”.

Firstly, the proposed TPM performance indicators (TPM PIs)
were evaluated by using the COPRAS-G and developed FCOPRAS
methods, as presented in the study done by Turanoglu Bekar and
Kahraman, (2016). The results obtained by the FCOPRAS method
were compared with the most popular FMADM methods and its
reliability is also validated by the sensitivity analysis. Afterward,
these TPM PIs were classified as desirable and undesirable inputs
and outputs, and then their fuzzy relative significances (i.e., fuzzy ~Qi

values) obtained by the FCOPRAS were integrated into the GFDEA/
AR models modified based on the three different undesirability
approaches in the presence of desirable and undesirable inputs and
outputs as explained in details in the previous section. In this regard,
the proposed models were solved to obtain fuzzy efficiencies of the
DMUs as representing the production lines of the company. Then,
these fuzzy efficiencies were ranked using a proper ranking method.
According to the ranking results, the DMUs which have the best and
the worst TPM performance values were determined. Consequently,
the performance values of each production line were compared to its
corresponding OEE values which have previously been measured by
the company. The results from each step as explained above are
summarized in the following sub-sections.

4.1 Proposed TPM PIs in the design phase

This section answers the question what indicators are to be
measured in the design phase of TPM PMS. Turanoglu Bekar and
Kahraman, (2016) proposed an outline for defining different types of
PIs impacting TPM and evaluated these PIs using COPRAS-G and

TABLE 3 A detailed list for the proposed TPM PIs.

Category Sub -category Proposed TPM PIs

Operational-related Unplanned down-time Number of unplanned maintenance

MTTR

MTBF

Reduced speed

Reduced yield

Quality losses

Business-related HSE problems Number of HSE incidents

Organization problems and labour unrest (Employee satisfaction) Employee absentees

Employee turn-over rate

Refusal of extended hours or overtimes

Human-oriented Direct human-oriented Competence of maintenance personnel

Experience of operators in production line

Operator reliability

Training and continuing education

Indirect human-oriented Motivational management New ideas generated and implemented

Work environment Level of 5S

Other - Availability of maintenance personnel
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proposed FCOPRAS methods. A detailed list of the proposed TPM
PIs is given in Table 3.

According to Table 3, “operational-related indicators” are the
production losses observed while running the plant. Since these are
the most common problems observed in production, they are the
ones analyzed regularly. “Business-related indicators” consist of
problems at the entire business level. “Organizational problems
or labor unrest” are stated employee satisfaction and also may
cause the production to shut down leading to production loss.
“Employee satisfaction indicators” can include morale, teamwork,
and industrial harmony. Some of these are “employee absentees”,
“employee turnover rate”, and “refusal of extended hours or
overtime” (Parida and Chattopadhyay, 2007). “HSE problems”
cause production to be slowed down or stopped. An indicator of
HSE problems is the number of HSE incidents (Muchiri and
Pintelon, 2010). Human factors represented by maintenance
technicians and other related staff (e.g., machine operators are in
direct contact with the maintenance activities and efforts because of
the autonomous maintenance concept in TPM) are the backbone of
the maintenance system in any organization (Ljungberg, 1998;
Cabahug et al., 2004). Qualified and well-trained machine
operators and maintenance technicians are the driving force
behind any effective maintenance measurement system (Simoes
et al., 2011). As such, the effectiveness of the different facets of
the performance system is very much dependent on the competency,
training, and motivation of the human factor in charge of the
maintenance system (Peach et al., 2016). In this context, human-
oriented factors are proposed to measure TPM performance. These
factors are divided into two groups, direct and indirect human-
oriented factors. Proposed indicators for direct human-oriented
factors are “Competence of maintenance personnel”, “experience

of operators in production line”, “operator reliability”, and “training
and continuing education”. The indirect human-oriented factor is
addressed from two different points such as motivation
management and work environment. Proposed indicators for the
motivational management and work environment are “new ideas
generated and implemented”, and “5S level”, respectively. Another
proposed indicator is “the availability of maintenance personnel”.
This indicator is very important when breakdowns occur and should
urgently be repaired. Thus, the availability of maintenance personnel
needs to be looked into, because otherwise, it can act as a
performance killer.

4.2 Evaluation of proposed TPM PIs using
COPRAS-G and proposed FCOPRAS
methods

This section answers the question how to evaluate the proposed
indicators under some attributes in the evaluation phase of TPM
PMS. The proposed TPM PIs are evaluated by COPRAS-G and the
proposed FCOPRAS methods under some attributes determined by
the committee according to the literature investigation. The
committee consisted of three experts (TPM, Production, and
Quality Managers), which were selected based on their
knowledge and professional expertise about the subject under
investigation according to the purposive sampling (Palys, 2008).
Then, six criteria were identified, e.g., the specificity (i.e., clear and
concentrated to keep away misunderstanding and it should contain
measure suppositions and descriptions and be simply explained);
the measurability (i.e., can be quantified and resemble other data; the
attainability (i.e., is achievable, rational, and reliable under the

TABLE 4 Linguistic assessments for all of the criteria and their aggregated fuzzy weights.

Criteria TPM manager Production manager Quality
Manager

Aggregated fuzzy weights

Specifity VHI VHI VHI 0.1974 0.3056 0.5333

Measurability HI VHI HI 0.1736 0.2722 0.5133

Attainability SHI HI HI 0.1423 0.2306 0.4567

Practicalness MI HI HI 0.1256 0.2014 0.3900

Timely SLI VHI HI 0.1125 0.1847 0.3467

Cost of Measure SHI HI SHI 0.1328 0.2208 0.4467

Linguistic terms for criteria Scores (%) Linguistic terms for alternatives

Very Low Important (VLI) (0, 0, 10) Very Poor (VP)

Low Important (LI) (5, 15, 25) Poor (P)

Somewhat Low Important (SLI) (20, 32.5, 45) Somewhat Poor (SP)

Medium Important (M) (40, 50, 60) Fair (F)

Somewhat High Important (SHI) (55, 67.5, 80) Somewhat Good (SG)

High Important (HI) (75, 85, 95) Good (G)

Very High Important (VHI) (90, 100, 100) Very Good (VG)
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TABLE 5 The ranking of fuzzy ~Qi values of alternatives according to different α-cut levels.

α � 0 α � 0.1 α � 0.2 α � 0.3 α � 0.4

Ranking QTri

( ~Q1 . . . ~Q17)
Ranking QTri

( ~Q1 . . . ~Q17)
Ranking QTri

( ~Q1 . . . ~Q17)
Ranking QTri

( ~Q1 . . . ~Q17)
Ranking QTri

( ~Q1 . . . ~Q17)
~Q3 7.9179 ~Q3 6.7215 ~Q3 5.6150 ~Q3 4.5985 ~Q3 3.6718

~Q7 7.6253 ~Q7 6.4400 ~Q7 5.3486 ~Q7 4.3512 ~Q7 3.4477

~Q6 7.4971 ~Q6 6.3269 ~Q6 5.2502 ~Q6 4.2668 ~Q6 3.3770

~Q5 7.4733 ~Q5 6.3059 ~Q5 5.2318 ~Q5 4.2511 ~Q5 3.3637

~Q8 7.3494 ~Q8 6.1972 ~Q8 5.1378 ~Q1 4.1792 ~Q1 3.3581

~Q4 7.3177 ~Q4 6.1785 ~Q4 5.1299 ~Q2 4.1792 ~Q2 3.3581

~Q1 7.0904 ~Q1 6.0453 ~Q1 5.0749 ~Q4 4.1718 ~Q4 3.3043

~Q2 7.0904 ~Q2 6.0453 ~Q2 5.0749 ~Q8 4.1710 ~Q8 3.2970

~Q10 6.7871 ~Q10 5.6981 ~Q10 4.7003 ~Q10 3.7937 ~Q10 2.9783

~Q9 6.3965 ~Q9 5.3767 ~Q9 4.4413 ~Q9 3.5905 ~Q9 2.8241

~Q11 6.2869 ~Q11 5.2614 ~Q11 4.3241 ~Q11 3.4750 ~Q11 2.7140

~Q14 5.2901 ~Q14 4.4672 ~Q14 3.7095 ~Q14 3.0172 ~Q14 2.3902

~Q12 4.9003 ~Q12 4.1405 ~Q12 3.4406 ~Q12 2.8007 ~Q12 2.2208

~Q13 4.6474 ~Q13 3.9446 ~Q13 3.2948 ~Q13 2.6979 ~Q13 2.1538

~Q17 4.5992 ~Q17 3.8804 ~Q17 3.2191 ~Q15 2.6447 ~Q15 2.1219

~Q15 4.5030 ~Q15 3.8353 ~Q15 3.2158 ~Q17 2.6154 ~Q16 2.0735

~Q16 4.4199 ~Q16 3.7610 ~Q16 3.1503 ~Q16 2.5878 ~Q17 2.0692

~Q3 2.8351 ~Q3 2.0882 ~Q3 1.4313 ~Q3 0.8643 ~Q3 0.3872

~Q7 2.6382 ~Q1 1.9400 ~Q1 1.3430 ~Q1 0.8207 ~Q1 0.3730

~Q1 2.6117 ~Q2 1.9400 ~Q2 1.3430 ~Q2 0.8207 ~Q2 0.3730

~Q2 2.6117 ~Q7 1.9226 ~Q7 1.3011 ~Q7 0.7734 ~Q7 0.3397

~Q6 2.5805 ~Q6 1.8775 ~Q6 1.2680 ~Q6 0.7519 ~Q6 0.3292

~Q5 2.5697 ~Q5 1.8691 ~Q5 1.2618 ~Q5 0.7478 ~Q5 0.3272

~Q4 2.5272 ~Q4 1.8407 ~Q4 1.2448 ~Q4 0.7393 ~Q4 0.3244

~Q8 2.5157 ~Q8 1.8271 ~Q8 1.2312 ~Q8 0.7281 ~Q8 0.3177

~Q10 2.2540 ~Q10 1.6208 ~Q10 1.0789 ~Q10 0.6281 ~Q10 0.2685

~Q9 2.1423 ~Q9 1.5448 ~Q9 1.0319 ~Q9 0.6035 ~Q9 0.2595

~Q11 2.0413 ~Q11 1.4567 ~Q11 0.9602 ~Q11 0.5520 ~Q14 0.2351

~Q14 1.8286 ~Q14 1.3322 ~Q14 0.9012 ~Q14 0.5355 ~Q15 0.2329

~Q12 1.7008 ~Q12 1.2407 ~Q15 0.8435 ~Q15 0.5140 ~Q11 0.2319

~Q13 1.6626 ~Q13 1.2243 ~Q12 0.8406 ~Q12 0.5064 ~Q13 0.2268

~Q15 1.6475 ~Q15 1.2213 ~Q13 0.8389 ~Q13 0.5005 ~Q16 0.2251

~Q16 1.6074 ~Q16 1.1895 ~Q16 0.8198 ~Q16 0.4983 ~Q12 0.2203

~Q17 1.5805 ~Q17 1.1493 ~Q17 0.7757 ~Q17 0.4596 ~Q17 0.2010
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TABLE 6 Results of the Spearman test.

Proposed and other FMADM
methods

Proposed Proposed Proposed Fuzzy
TOPSIS

Fuzzy
ARAS

Fuzzy
VIKOR

Fuzzy
MULTIMOORA-1

Fuzzy
MULTIMOORA-2

Fuzzy
MULTIMOORA-3

Fuzzy
ELECTRE I

Fuzzy
COPRAS
(α = 0)

Fuzzy
COPRAS
(α = 0.5)

Fuzzy
COPRAS
(α = 0.9)

Spearman’s
rho

Proposed CC 1.000 .931** .863** .669** .583* .674** .613** −.159 .404 .826**

Fuzzy COPRAS
(α = 0)

Sig .000 .000 .003 .014 .003 .009 .541 .107 .000

Proposed CC 1.000 .961** .797** .735** .811** .755** .100 .596* .922**

Fuzzy COPRAS
(α = 0.5)

Sig .000 .000 .001 .000 .000 .701 .012 .000

Proposed CC 1.000 .870** .814** .870** .831** .167 .703** .971**

Fuzzy COPRAS
(α = 0.9)

Sig .000 .000 .000 .000 .523 .002 .000

Fuzzy CC 1.000 .973** .978** .980** .390 .902** .907**

TOPSIS Sig .000 .000 .000 .122 .000 .000

Fuzzy CC 1.000 .946** .998** .461 .958** .860**

ARAS Sig .000 .000 .063 .000 .000

Fuzzy CC 1.000 .951** .375 .880** .897**

VIKOR Sig .000 .138 .000 .000

Fuzzy CC 1.000 .439 .949** .877**

MULTIMOORA-1 Sig .078 .000 .000

Fuzzy CC 1.000 .505* .240

MULTIMOORA-2 Sig .039 .353

Fuzzy CC 1.000 .757**

MULTIMOORA-3 Sig .000

Fuzzy CC 1.000

ELECTRE I Sig

Correlation Coefficient is denoted by “CC”

Significant (2-tailed) is denoted by “Sig.”

**Correlation is significant at the 0.01 level (2-tailed)

*Correlation is significant at the 0.05 level (2-tailed)
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FIGURE 3
Ranking orders of alternatives for α = 0, 0.5, and 0.9 according to ten different cases.

TABLE 7 A list for desirable and undesirable inputs and outputs and their fuzzy ~Qi values.

The proposed TPM PIs Inputs Outputs Fuzzy ~Qi values

Desirable Undesirable Desirable Undesirable

MTTR √ 0.5190 1.6782 7.9868

MTBF √ 0.5190 1.6782 7.9868

Number of unplanned maintenance √ 0.5200 1.7112 9.5109

Number of HSE incidents √ 0.3952 1.3957 9.4479

Reduced speed √ 0.3972 1.4028 9.7324

Reduced yield √ 0.4016 1.4125 9.7459

Quality defects √ 0.4172 1.4637 9.8128

Availability of maintenance personnel √ 0.3678 1.3566 9.6404

Competence of maintenance personnel √ 0.2758 1.0863 8.7236

Experience of operators in production line √ 0.2825 1.1144 9.3990

Operator reliability √ 0.2161 0.9391 9.0335

Training and continuing education √ 0.2417 0.9514 6.2366

New ideas generated and implemented √ 0.2721 1.0016 5.5605

Level of 5S √ 0.2592 1.0121 6.7909

Employee absentees √ 0.2968 1.0435 5.1290

Employee turn-over rate √ 0.2754 1.0048 5.0960

Refusal of extended hours or overtimes √ 0.2211 0.8614 5.9740
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conditions expected); the practicalness (i.e., conforms to the
organization’s restrictions and is profitable); the timely (i.e., is
available within the time frame given); and the cost of measure.
The first five criteria are benefit attributes, while the last one is cost.
The committee provided linguistic assessments for the six criteria
and alternatives (TPM PIs) using the scales proposed by Jamalnia
and Soukhakian (2009) as given in Table 4. It should be noted that
the reader is referred to the study done by Turanoglu Bekar and
Kahraman, (2016) for a more detailed explanation of the steps of the
methods and the obtained result. Since the hierarchy between the
experts in the committee was defined, thereby they were ranked in a
fuzzy way, i.e.; 1̃, 2̃,; 3̃. Then, the fuzzy weights of the experts are
calculated by using the Rank Reciprocal method (Malczewski, 1999).
Then, the aggregated fuzzy weights of the criteria are achieved as in
Table 4.

The experts gave the linguistic terms presented in Table 4 to each
criterion with respect to all alternatives based on their own
judgments to construct the fuzzy decision matrix. The proposed
method requires aggregation, averaging and normalization process
of the fuzzy decision matrix as explained in detail in Turanoglu
Bekar and Kahraman, (2016). In the proposed FCOPRAS method,

FIGURE 4
The membership functions of the inputs “availability of
maintenance personnel”, “operator reliability” and “refusal of extended
hours or overtimes”.

TABLE 8 Fuzzy normalized values of the relevant data for inputs and outputs.

Desirable inputs (BAD-ViB) DMU1 DMU2 DMU3 DMU4

Availability of maintenance personnel (v1
B) 0.3333 0.5556 0.7778 0.1111 0.3333 0.5556 0.3333 0.5556 0.7778 0.5556 0.7778 1.0000

Competence of maintenance personnel (v2
B) 0.9195 0.9425 0.9655 0.9540 0.9770 1.0000 0.7471 0.7701 0.7931 0.8736 0.8966 0.9195

Experience of operators in production line (v3
B) 0.9459 0.9730 1.000 0.8378 0.8649 0.8919 0.5811 0.6081 0.6351 0.5135 0.5405 0.5676

Operator reliability (v4
B) 0.5556 0.7778 1.0000 0.1111 0.3333 0.5556 0.3333 0.5556 0.7778 0.4444 0.7778 1.0000

Training and continuing education (v5
B) 0.4762 0.6667 0.8571 0.6190 0.8095 1.0000 0.5238 0.7143 0.9048 0.5714 0.7619 0.9524

New ideas generated and implemented (v6
B) 0.8000 0.9000 1.0000 0.4000 0.5000 0.6000 0.2000 0.3000 0.4000 0.3000 0.4000 0.5000

Level of 5S (v7
B) 0.7133 0.8244 0.9356 0.7400 0.8511 0.9622 0.7778 0.8889 1.0000 0.7400 0.8511 0.9622

UNDESIRABLE INPUTS (GOOD-ViG) DMU1 DMU2 DMU3 DMU4

Employee absentees (v1
G) 0.6331 0.7698 0.9817 0.5095 0.5944 0.7133 0.4477 0.5120 0.5978 0.6407 0.7810 1.0000

Employee turn-over rate (v2
G) 0.2000 0.3333 1.0000 0.1250 0.1667 0.2500 0.0714 0.0833 0.1000 0.1111 0.1429 0.2000

Refusal of extended hours or overtimes (v3
G) 0.2000 0.3333 1.0000 0.1429 0.2000 0.3333 0.1111 0.1429 0.2000 0.1429 0.2000 0.3333

DESIRABLE OUTPUTS (GOOD-Ui
G) DMU1 DMU2 DMU3 DMU4

MTTR (u1
G) 0.2025 0.3082 0.6447 0.3289 0.3952 0.4949 0.1576 0.2722 1.0000 0.2737 0.4414 0.7206

MTBF (u2
G) 0.5233 0.7391 0.9548 0.3417 0.4805 0.6193 0.6427 0.8210 1.0000 0.1681 0.3875 0.6068

UNDESIRABLE OUTPUTS (BAD-Ui
B) DMU1 DMU2 DMU3 DMU4

Reduced speed (u1
B) 0.6696 0.6858 0.7029 0.9339 0.9658 1.0000 0.7962 0.8193 0.8438 0.8955 0.9248 0.9560

Reduced yield (u2
B) 0.8499 0.8924 0.9394 0.9048 0.9500 1.0000 0.8675 0.9108 0.9588 0.8857 0.9300 0.9789

Quality defects (u3
B) 0.9048 0.9500 1.0000 0.1293 0.1357 0.1429 0.3016 0.3167 0.3333 0.1810 0.1900 0.2000

Number of unplanned maintenance (u4
B) 0.4473 0.5464 0.7019 0.3238 0.3983 0.5175 0.1895 0.2330 0.3023 0.2231 0.3648 1.0000

Number of HSE incidents (u5
B) 0.9494 0.9740 1.0000 0.4121 0.4167 0.4213 0.7143 0.7282 0.7426 0.4777 0.4839 0.4902
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all fuzzy judgments were not converted to real numbers and all
calculations were performed in accordance with the fuzzy arithmetic
and ranking. The ranking results of the proposed FCOPRAS
method based on the different α-cut levels from 0 to 0.9 are
given in Table 5.

According to Table 5, the best alternative for all levels of α-cut is
“the number of unplanned maintenance”. When transitioning from
non-deterministic conditions (e.g., levels of α-cut being 0, 0.1, 0.2,
and 0.3) to deterministic conditions (levels of α-cut approaching to
1), the ranking orders of the alternatives change. For example, at the

deterministic conditions (e.g., levels of α-cut equal 0.6, 0.7, 0.8, and
0.9), while the best three alternatives are “the number of unplanned
maintenance”, “MTTR”, and “MTBF”, the worst alternative is
“refusal of extended hours or overtimes” for these α-cut levels.
Furthermore, at the non-deterministic conditions (e.g., levels of α-
cut equal 0, 0.1, 0.2, 0.3 and 0.4), while the best three alternatives are
“the number of unplanned maintenance”, “quality defects”, and
“reduced yield”, the worst alternative is “employee turn-over rate”
for these α-cut levels. As a conclusion, the other alternatives have
almost the same rankings for the different levels of α-cut.

TABLE 9 The fuzzy efficiencies obtained by solving Models (1–6).

Models (1) and (2) based on the first approach

DMUs α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 L 0.8182 0.8641 0.9198 0.9842 1 1 1 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

2 L 0.6263 0.6544 0.6908 0.7448 0.8057 0.8716 0.9443 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

3 L 0.8802 0.9296 0.9812 1 1 1 1 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

4 L 0.6240 0.6499 0.6781 0.7105 0.7445 0.7820 0.8243 0.8690 0.9161 0.9801 1

U 1 1 1 1 1 1 1 1 1 1 1

Models (3) and (4) based on the second approach

DMUs α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 L 0.8316 0.8705 0.9117 0.9567 1 1 1 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

2 L 0.8801 0.9135 0.9483 0.9856 1 1 1 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

3 L 0.7558 0.8014 0.8580 0.9213 0.9999 1 1 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

4 L 0.6705 0.7089 0.7491 0.7930 0.8435 0.8991 0.9653 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

Models (5) and (6) based on the third approach

DMUs α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 L 0.2958 0.3264 0.3611 0.3999 0.4427 0.4899 0.5420 0.59998 0.6726 0.7618 0.9396

U 1 1 1 1 1 1 1 1 1 1 1

2 L 0.2425 0.2650 0.2977 0.3452 0.4054 0.4792 0.5711 0.7417 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

3 L 0.8504 0.9896 1 1 1 1 1 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

4 L 0.1925 0.2202 0.2526 0.2907 0.3360 0.3915 0.4608 0.5474 0.6576 0.8540 1

U 1 1 1 1 1 1 1 1 1 1 1

Frontiers in Manufacturing Technology frontiersin.org14

Turanoglu Bekar 10.3389/fmtec.2023.1072777

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2023.1072777


The proposed FCOPRAS method was also compared to the
other most popular FMADMmethods, e.g., TOPSIS-F, fuzzy ARAS,
VIKOR-F, fuzzy MULTIMOORA and fuzzy ELECTRE I (Kaya and
Kahraman, 2010; Turskis and Zavadskas, 2010; Awasthi, et al., 2011;
Balazentis et al., 2012; Hatami-Marbini et al., 2013; Kahraman et al.,
2016). In order to measure the similarity between the ranks by the
proposed FCOPRAS method and benchmarked FMADM methods,
Spearman rank correlation coefficient (Gibbons and Chaakraborti,
2014) was calculated. The results of the Spearman test are given in
Table 6.

According to Table 6, the minimum and maximum correlation
coefficient values are provided as −0.159 (fuzzy MULTIMOORA-2
that is fuzzy reference point) and 0.826 (fuzzy ELECTRE I) for α = 0,
respectively. Furthermore, the maximum and minimum correlation
coefficient values are provided as 0.1 (fuzzy MULTIMOORA-2) and
0.922 (fuzzy ELECTRE I) for α = 0.5. Finally, these values are yielded
as 0.167 (fuzzy MULTIMOORA-2) and 0.971 (fuzzy ELECTRE I) in
case of α = 0.9. These values support the similarity of the results and
indicate that the proposed method has high correlation or

substantial relationship with the selected most popular FMADM
methods. Additionally, the correlations between fuzzy VIKOR and
the proposed FCOPRAS methods for α = 0, α = 0.5 and α = 0.9 are
high (0.674, 0.811 and 0.870, respectively). This means that these
methods produce rankings that are statistically similar since there is
not enough evidence to accept the null hypothesis in accordance
with significant values 0.003, 0.000 and 0.000, respectively. In
summary, the maximal correlation values can be provided by the
calculation of the proposed FCOPRAS with α = 0.5 and α = 0.9.

4.2.1 Sensitivity analysis
In order to see the effects of the optimistic and pessimistic

changes in the weights of the criteria, a sensitivity analysis were
performed. The new weights of criteria were determined using the
randomly generated linguistic assessment values for ten different
cases. These cases were examined and the obtained results using by
the proposed FCOPRAS method were illustrated in Figure 3.

Figure 3 shows the ranking orders of the alternatives according
to the current and ten different cases for three α-cut levels, e.g., 0, 0.5,
and 0.9. Here the current case represents the ranking order of the
results obtained by the criteria weights originally assigned by the
experts. When the α-cut level is 0, the alternative “the number of
unplanned maintenance” is the best option in the current and other
cases except for cases 1 and 6. In case 1, this alternative ranks as the
second order and the best alternative is “quality defects”. In case 6,
this alternative ranks as the third order and the best alternative is
also “quality defects”. Additionally, the alternatives like “refusal of
extended hours or overtimes” and “employee turn-over rate” are the
worst options in most cases. Furthermore, the rank orders of the
other alternatives generally change the bottom or the top order from
the current order in all cases. When the α-cut levels are 0.5 and 0.9,
the alternative “the number of unplanned maintenance” is still the
best option in all cases for these α-cut levels. The alternatives such as
“refusal of extended hours or overtimes” and “employee turn-over
rate” are the worst options in most cases except case 2. In this case,
the worst alternative is “employee absentees”. The alternatives such
as “number of HSE incidents”, “reduced speed”, “reduced yield”,
“quality defects”, “availability of maintenance personnel”,
“competence of maintenance personnel”, and “experience of
operators in production line” take place almost in the same rank
order in all cases. The rank orders of the other alternatives generally

TABLE 10 The ranking results of DMUs according to the models.

Models (1) and (2) based on the first approach

DMUs 1 2 3 4

I 0.8994 0.5957 0.9492 0.4629

Ranking 2 3 1 4

Models (3) and (4) based on the second approach

DMUs 1 2 3 4

I 0.8401 0.8986 0.7530 0.6219

Ranking 2 1 3 4

Models (5) and (6) based on the third approach

DMUs 1 2 3 4

I 0.3798 0.4417 0.9808 0.3474

Ranking 3 2 1 4

FIGURE 5
The comparisons of TPM performance values with the OEE values with respect to each DMU.
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change the bottom or the top order from the current order in all
cases. As a result of the sensitivity analysis, even when weights of the
criteria retrieve optimistic and pessimistic values, the rank orders of
the alternatives do not change considerably. This indicates that the
proposed FCOPRAS method is reliable for the evaluation of the
proposed TPM PIs. Additionally, this method can be also used to
assess different application problems.

4.3 Performance evaluation of TPM using
the proposed TPM PIs

This section answers the question how to use the proposed TPM
PIs to measure the performance of TPM in the implementation
phase of TPM PMS. The GFDEA/AR models (see section 3.1.1) that
integrate the proposed FCOPRAS and FDEA methods were
implemented to evaluate the performance efficiency of TPM for
four production lines in other words the DMUs as described at the
beginning of Section 4.

4.3.1 Determination of desirable and undesirable
inputs and outputs

Firstly, the proposed TPM PIs (alternatives) given in Table 3
were classified as inputs and outputs, and then they were determined
as desirable and undesirable inputs and outputs; Table 7 presents a
list of the desirable and undesirable inputs and outputs and their
corresponding fuzzy ~Qi values (i.e., fuzzy relative significance) which
were determined using the proposed FCOPRAS method.

The relevant data of “MTRR”, “MTBF”, “the number of
unplanned maintenance”, “quality defects”, “the number of HSE
incidents”, and “reduced yield” are crisp values, which can be treated
as degenerated Triangular Fuzzy Numbers (TFNs). “Reduced speed”
which cannot be assessed by exact data, is represented as TFNs. In
these inputs, “new ideas generated and implemented”, “level of 5S”
and “employee absentees” are crisp, which can be treated as
degenerated TFNs. In addition, “employee turn-over rate” and
“training and continuing education” were scored by approximate
value according to production lines. Hence, they were represented as
TFNs. The inputs “availability of maintenance personnel”, “operator
reliability” and “refusal of extended hours or overtimes” are
evaluated from the observations of the production line supervisor
and team leader using fuzzy linguistic scale such as “very low”, “low”,
“medium”, “high” and “very high”. The membership functions of
these inputs are shown in Figure 4, which can be regarded as
degenerated TFNs. The relevant data of “competence of
maintenance personnel” is a crisp value, which can be treated as
degenerated TFN and it was obtained from the table of ability for
maintenance personnel in the company. Finally, the relevant data of
the input “experience of operators in production line” was assessed
according to years of relevant work experience on a specific machine
and operation and also working time in the company, which is a
crisp value, and can be treated as a degenerated TFN.

In order to rectify the problems due to the significant differences
in the magnitude of inputs and outputs, the linear scale
transformation was used to convert the various inputs and
outputs scales into a comparable scale. In this context, the
obtained fuzzy normalized values of all inputs and outputs
regarding the DMUs are listed in Table 8.

4.3.2 Solving the proposed GFDEA/AR models
The proposed GFDEA/AR models in the presence of

desirable and undesirable inputs and outputs, which are
explained in detail in Section 3.1, were used to evaluate TPM
performance for DMUs. In this context, firstly the α-cut sets of
inputs and outputs for each DMU were obtained using the fuzzy
normalized values given in Table 8. Afterwards, the proposed
Models (1–6) based on the first, second third approaches (see
Section 3.3.1) were performed according to the concept of α-cut
for the lower and upper bounds of each DMU. Each model
includes eighty-eight different mathematical models (for the
lower and upper bounds of each DMU at eleven different α-
cut levels) and these were solved by using General Algebraic
Modeling System (GAMS) 23.5. By solving the proposed Models
(1–6) for each DMU, the fuzzy efficiencies scores were obtained
under the different α-cut levels from 0 to 1 and the results are
presented in Table 9.

In order to compare the fuzzy efficiency scores of DMUs as listed
in Table 9, a ranking method needs to be used. In the literature, while
many methods for ranking fuzzy numbers have been proposed, the
area measurement method proposed by Chen and Klein (1997) is a
proper method for this study, since it does not need the exact
membership functions of the fuzzy numbers to be ranked.
Therefore, this ranking method is implemented to evaluate the
production lines according to TPM performance using the
following equation:

I ~Ej( ) � ∑n
i�0

Ej( )U
αİ
) − c( )/ ∑n

i�0
Ej( )U

αİ
)( ) − c⎡⎣ ⎤⎦ −∑n

i�0
Ej( )L

αİ
)| − d( ), n → ∞

(35)

where c � min
i, j

Ej( )L
αİ

{ } and d � max
i, j

Ej( )U
αİ

{ }. The larger the

value of the ranking index I(~Ej)jj the more preferred the number is.
In this context, the ranking indices of the four fuzzy efficiency

scores for each models are calculated using Eq. 35 and given in
the first row of Table 9. Based on the ranking indices, the TPM
performances of the four production lines are ranked
accordingly.

Table 10 reveals that DMU3 (NHB BOL) has the highest TPM
performance value while DMU4 (NHB EOL) has the lowest TPM
performance value according to the ranking results of Models 1) and 2)
based on the first approach. However, inModels 3) and 4) based on the
second approach, the best TPM performance value is obtained by
DMU2 (Rail assembly and HPV) and DMU4 again has the worst TPM
performance value. Furthermore, DMU1 (Rail machining) has the same
ranking order in Models (1–4) based on the first and second
approaches. In this table, according to the ranking results of Models
5) and 6) based on the third approach, the DMU3 is the most efficient
production line with respect to TPM performance. DMU4 has also the
lowest TPM performance value. As conclusion, it is observed that the
production lines DMU2 andDMU3 together define an efficient Frontier
andDMU1 is the production line with the best performance followed by
these production lines according to TPM performance.

5 Discussion

In most organizations, the performance of TPM is measured
by the OEE metric which gives information about only
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equipment-related performance. However, different factors such
as business-related factors, external-related factors, and,
especially human-related factors (e.g., operators who are most
familiar with the daily operation of the equipment and
maintenance personnel who are most familiar with the
technical specifications and long-run performance of the
equipment) have a great impact on successful implementation
of TPM.

According to the literature, although several critical success
factors for TPM implementation have been defined in various
studies, a few studies have been made related to the performance
measurement in TPM implementation (Park, 2002; F.-K; Wang,
2006; Jeon et al., 2011). Therefore, the results from this study
demonstrated a standardized and systematic way of how the
critical factors impacting on TPM performance can be evaluated
under some conflicting attributes and how they can be further used
for the measurement of TPM performance. Therefore, it can fulfill
the gap in knowledge in the field, which is lack of standardization. In
the following paragraphs, the contributions of the proposed TPM
PMS according to its each phase.

In the design phase, the human-related factors were also identified as
significant TPM PIs having an impact on TPM, which was previously
studies in the literature (Arunraj et al., 2014; Bekar and Kahraman, 2016;
Peach et al., 2016; Sharma et al., 2016; Turanoglu Bekar et al., 2016), and
this result contributed to the research on human factors of TPM. In the
evaluation phase, the proposed FCOPRAS method was applied for the
evaluation of the proposed TPM PIs. The proposed FCOPRAS method
was also compared to the most popular FMADM methods using
Spearman’s rank correlation coefficient in the evaluation phase. It is
concluded that the proposed FCOPRAS method produces statistically
similar rankings with the other FMADM methods in the literature.
Finally, its validity and robustness were tested by using sensitivity analysis
according to optimistic and pessimistic changes in the linguistic
assessments of attributes. The innovative side of the proposed
FCOPRAS method is that all calculations were performed in
accordance with the fuzzy arithmetic operations and fuzzy ranking
method, and therefore it does not include any defuzzification step for
avoiding information loss.

According to the fuzzy efficiencies of the GFDEA/AR models with
coexisting desirable and undesirable inputs and outputs proposed in the
implementation phase, Models 3) and 4) based on the second approach
gave the best fuzzy efficiencies whileModels 5) and 6) based on the third
approach presented the worst fuzzy efficiencies for each DMU at any
given α-cut level. However, Models 1) and 2) based on the first
approach calculated the intermediate fuzzy efficiencies for each
DMU at any given α-cut level among the proposed models.
Accordingly, Models 3) and 4) provided optimistic efficiency values
whileModels 5) and 6) gave pessimistic efficiency values. Models 1) and
2) found the efficiencies between the optimistic and pessimistic values.
Consequently, the proposed models give an opportunity to see the
different approaches for the performance evaluation of TPM.
According to the best knowledge of the author, the GFDEA/AR
models were firstly integrated with the proposed FCOPRAS method.
Additionally, these models were extended in the presence of desirable
and undesirable inputs and outputs. Thus, the proposed models make a
significant contribution to the TPM literature.

In the review phase answers to the questions about how to use TPM
performance results for preventive/predictive decisions and actions and

how to review and modify this system accordingly. In this context, the
comparisons were made between the TPM performance values
obtained by the proposed models (I indexes as seen in Table 10)
and the OEE values (the average values of 36 weeks) which were
measured by the company with respect to each DMU. Figure 5
illustrates these comparisons.

As seen in Figure 5, the production lines such as “Rail Machining”
and “NHB BOL” have the highest OEE values after the production line
“NHB EOL” while the production line “Rail Assembly and HPV” has
the lowest OEE value. However, “NHB EOL” has the lowest TPM
performance value according to Models (1–6). It can be concluded that
other indicators (e.g., “operator reliability”, “competence of
maintenance personnel”, “level of 5S, etc.) have a greater impact
than the operational related indicators (e.g., “reduced speed”,
“reduced yield”, “quality defects”, MTTR and MTBF) in this
production line. Furthermore, the ranking orders of the production
lines, namely, “Rail Machining”, “NHB BOL” and “Rail Assembly and
HPV” according toOEE values are similar to the ranking orders of these
lines according to TPM performance values obtained by Models (1–4).
Furthermore, experts responsible for the TPM program
implementation in the company were invited to fill out a form with
their judgments, regarding their expertise and experiences in a
successful TPM implementation. In this context, in the review phase
by monitoring the performance of TPM, it was validated by the experts
(e.g., TPM, Production, andQualitymanagers) in order to control TPM
plans, compare the TPM performances of production lines and so
prioritize the most important preventive and predictive decisions and
actions according to production lines, especially the ineffective ones in
TPM program implementation. In conclusion, the real manufacturing
case study as presented in the previous section demonstrated the
applicability of the proposed TPM PMS. The following
contributions and benefits of the proposed TPM PMS are identified
from the results of the case study.

• It standardizes the performance of TPM;
• It allows measuring TPM performance with different
indicators especially soft ones, e.g., human-related. Thus, it
uses both quantitative and qualitative data;

• It supports a true picture of the current state of the production
processes in terms of TPM performance;

• It offers a powerful control tool and reliable evidence in order
to make effective decisions and actions;

• It provides a holistic and systematic approach and supports
the TPM implementation process to be more effective;

• It provides important information to the annual meeting of
the company;

• It is also applicable to all industries.

6 Conclusion

TPM has been widely implemented as a lean production tool
for improving manufacturing performance in many
organizations in today’s competitive environment. The
performance of TPM should be measured by some factors
since it can make a significant contribution to companies in
advancing their manufacturing operations. In this study, a new
framework is proposed to measure TPM performance with novel
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performance indicators. The proposed framework provides a
comprehensive and systematic way to measure TPM
performance since it covers all phases of a performance
measurement system, namely, design, evaluation,
implementation, and review. In the design phase, various
types of indicators which tend to impact TPM performance
were designed based on the theoretical and practical aspects.
In the evaluation phase, the TPM PIs proposed in the design
phase were evaluated by using the proposed FCOPRAS method.
Additionally, it was compared with the most popular FMADM
methods and its reliability was also represented by the sensitivity
analysis. In the implementation phase, the proposed TPM PIs
were used to evaluate TPM performance using FDEA which is a
very effective method for evaluating the relative efficiency of
DMUs on the basis of multiple fuzzy inputs and outputs. The
fuzzy relative significance of the proposed TPM PIs obtained by
the FCOPRAS method is integrated into the FDEA models based
on AR and undesirability approaches. In this regard, different
GFDEA/AR models in the presence of desirable and undesirable
inputs and outputs were proposed to measure TPM performance.
The results from a real-world manufacturing case study
demonstrated the applicability and superiority of the
integrated method based on FCOPRAS-FDEA in performance
measurement for TPM.

Overall, this TPM PMS can provide valuable insights and
learning opportunities for companies, and can help to improve
the effectiveness of maintenance practices, increase equipment
reliability, enhance product quality, optimize asset utilization
using qualitative and quantitative indicators, and continuous
improvement in their maintenance practices, production
processes, and overall business operations. This can help to drive
innovation and create a culture of continuous improvement within
the organization. Thereby, in a longer term, this would contribute
toward future competitiveness and sustainability of manufacturing
systems. Moreover, the proposed TPM PMS can be simply applied
for measuring TPM performance using different real-cases from
various industries. While the proposed TPM PMS can be a valuable
tool, there might be some limitations which are reliance on data
accuracy (i.e., it relies on accurate and reliable data to be effective)
and potential for over-reliance on the proposed TPM PIs (i.e., it can
be highly focused on the indicators, whichmay lead to a narrow focus
on short-term improvements rather than long-term goals).
Therefore, for further research, the proposed TPM PMS can be
used in conjunction with other improvement methodologies and
business strategies. Additionally, other extensions of the fuzzy sets
such as type-2, intuitionistic, multi-sets, and hesitant might be used

or different undesirability approaches might be adopted to the
proposed models in the implementation phase. Using these
alternative fuzzy sets and approaches can help to improve the
accuracy and flexibility of fuzzy logic-based models, particularly
in situations where uncertainty, complexity, and ambiguity are
present. This can lead to more effective decision-making and
better outcomes.
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