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Mikko Valkama, Fellow, IEEE

Abstract—Millimeter (mmWave) positioning can go beyond
classical localization, allowing to extract more complete situational
awareness in terms of, e.g, clock offsets, antenna orientations or
landmark locations. In this article, we formulate an extended
Kalman filtering (EKF)-based framework called MU-PoSAC
(Multi-User Positioning, Synchronization and Anchor State
Calibration), that allows to jointly estimate and track the locations
and clock offsets of multiple users together with the unknown
locations and orientation offsets of the anchors, building on angle-
of-arrival (AoA) and time-of-arrival (ToA) measurements. We
provide an extensive set of numerical results in the context of
mmWave 5G New Radio (NR) deployment in an industrial facility
with moving robots and other industrial vehicles, incorporating
full-scale ray-tracing for accurate propagation modeling as well as
actual uplink reference signal based AoA and ToA estimators. Our
numerical results show that estimating and tracking the overall
system state is feasible, and that a single reference anchor can
further enhance the estimation accuracy. In addition, more users
are shown to lead to better performance, due to the beneficial
coupling of the anchor state. Therefore, our study demonstrates
that in order to maximize the estimation performance, it is
desirable to have at least one anchor state precisely known, and
to have multiple users in the system. Finally, the important
practical aspect of Line-of-Sight (LoS) blockage is addressed. It
is shown that in the considered industrial use case, the proposed
MU-PoSAC framework can offer robustness against intermittent
LoS blockage.

Index Terms—Anchor uncertainty, extended Kalman filter, joint
synchronization and tracking, millimeter wave networks, multi-
user positioning and tracking, orientation estimation, situational
awareness

I. INTRODUCTION

In addition to the enhanced mobile broadband service, the
5G New Radio (NR) mobile network technology is designed to
support various industrial and other mission-critical use cases
and applications [1]. One important ingredient, especially in
vehicular systems, is the ability to extract accurate and timely
situational awareness [2]. In general, such situational awareness
can be obtained with various sensors, such as cameras, radars,
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and lidars, but also through the 5G NR radio measurements [3]–
[5]. Compared to location awareness [6], situational awareness
subsumes not only the locations (i.e., the coordinates) of the
involved vehicles and other devices but also other relevant
knowledge such as the orientation of either transmitter or
receiver, or both [7]–[9], prevailing clock offsets [10]–[12],
as well as features of the propagation environment [3]–[5],
[13], [14], such as landmark locations. In general, improved
situational awareness can enable enhanced quality-of-service
(QoS) [15], safety [16] and operational efficiency, e.g., in
different industrial Internet-of-Things (IIoT) applications [17].

Localization is generally performed under the assumption
of perfect knowledge of the location and orientation of
the available infrastructure (anchors) [18]–[20]. In practice,
however, the locations and orientations of the involved network
anchors – referred to as the anchor state in the continuation
– may only be imperfectly known [21], [22]. In this article,
we focus on the challenging case of localizing users under
unknown anchor state with specific focus on millimeter wave
(mmWave) 5G NR systems with time- and angle-based radio
measurements. The motivation for considering probabilistic or
unknown anchor states stems from the fact that the base-station
or transmission point (TRP) deployments in 5G and other future
generation radio access networks are not necessarily permanent,
but can also be dynamic or frequently regenerating. Particularly
in IIoT-oriented private networks [23], [24], dynamic entities
such as unmanned aerial vehicles (UAVs) that can be flexibly
deployed in the areas of interest can serve as the anchors for
positioning, communications and/or sensing [25]–[27]. In such
cases, there clearly exist uncertainties in both the locations and
the orientation offsets of the anchors that need to be estimated
together with the users’ locations and relative clock offsets.
This is the main objective of this work. Furthermore, such
uncertainties can also take place in more permanently deployed
network anchors, e.g., in a distributed network structure where
the coordinates and orientations of the involved remote radio
units (RRUs) are not necessarily accurately known [24]. This
is because the communication system and corresponding radio
network planning related figures of merit (network capacity
and coverage) do not essentially depend on the exact BS or
TRP locations.

Earlier works on positioning with anchor state uncertainty
have mainly been conducted in the context of cooperative
wireless sensor networks and, in particular, non-Bayesian
localization. The anchor uncertainty can be either treated as a
nuisance parameter or estimated jointly with the user locations.
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Fig. 1. Concept illustration of the considered uplink based joint multi-user positioning, synchronization and anchor state calibration approach.

In the former category, [22] performed robust localization in
the presence of anchor uncertainty via convex optimization,
while [28] considered a spring mass method for the same
purpose. Explicit estimation of anchor positions was considered
from an algorithmic perspective in [29] and performance
bound perspective in [30]. In [31], the anchor node location
is considered as a nuisance parameter in an expectation-
maximization algorithm, while [32] interprets agents as mobile
anchors. Compared to non-Bayesian approaches developed
in the aforementioned works, variational Bayesian inference
was also applied to perform positioning of nodes in [33],
[34], under line-of-sight (LoS) or mixed LoS / non-line-of-
sight (NLoS) conditions. In terms of dynamic models, particle-
based approaches have been considered to deal with anchor
location uncertainties [35], while extended Kalman filter (EKF)
formulation for estimating anchor orientation uncertainties was
provided in [15]. Notably, except [15], all the existing works
have considered only the anchor location uncertainty, thus
ignoring anchor orientation which is of crucial importance
with angle-based measurements.

Furthermore, multi-user positioning and synchronization
have been addressed in [36]–[38] in the context of underwater
networks and ultra wideband (UWB) networks. Specifically,
in [36], UWB-based multi-user positioning was pursued
while addressing the achievable performance under differ-
ent synchronization accuracies and time-difference-of-arrival
(TDoA) measurements. It was observed that the synchronization
performance highly depends on the update frequency of syn-
chronization packets, yielding a tradeoff between positioning
accuracy and the synchronization update rate. The impact of
varying user numbers on positioning performance was, however,
not addressed. In [37], [38], multi-user underwater acoustic
positioning systems were proposed and tested, in which the
synchronization among the surface vessels serving as the system
anchors was achieved through global positioning system (GPS).
Such GPS-based approach can certainly provide an accurate
time base and accurate anchor coordinates, however, GPS

is commonly not available indoors or in other challenging
radio environments while also does not resolve the anchor
orientation challenge. Finally, as overviewed in [39], hybrid
systems fusing, e.g., acoustic measurements and UWB-based
radio measurements can offer very good positioning accuracy
even in challenging environments such as underground mines,
however, calling for a carefully designed dedicated positioning
infrastructure.

In this article, we describe a network-centric Bayesian
framework for multi-user positioning, synchronization, and
anchor state calibration (MU-PoSAC), with primary application
focus on 5G NR mmWave systems assuming no additional
aiding infrastructure such as GPS. An illustration of the
considered system scenario is shown in Fig. 1, where all the
involved entities and the corresponding unknown or uncertain
parameters are depicted and highlighted. As the orientation
offsets and the locations of the network anchors are all
estimated simultaneously with the locations and the relative
clock offsets of the involved users, multiple users are assumed
to be involved for enhanced measurement geometry and
degrees of freedom. Compared to the existing literature, MU-
PoSAC is a sequential estimation framework, which takes
into consideration not only the user clock offsets, but also
the uncertainty of both location and orientation offsets of the
anchors. Thus, compared to the existing methods that treat the
anchor state as a nuisance variable – leading, at best, to robust
localization methods – we aim to infer also the anchor states,
which is a different and more challenging problem formulation.
The key contributions and novelty of this article can be thereon
stated and summarized as follows:

1) We propose and describe an EKF based formulation for
network-centric joint user positioning, synchronization,
and anchor location and orientation estimation with
multiple moving users;

2) Building on 5G NR beam management process [40]
and the underlying uplink reference signals, we provide
a cascaded angle-of-arrival (AoA) and time-of-arrival
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(ToA) estimation method with raw physical layer in-
phase/quadrature (IQ) samples, containing novel multi-
beam fusion for enhanced performance;

3) We address the initialization challenge, and describe
efficient methods for the initialization of the unknown
parameters, by using the TDoA measurements at the
first time step to construct a measurement-induced prior
density of the user positions;

4) We provide extensive ray-tracing based numerical evalua-
tions in an industrial facility containing moving vehicles,
while assess the estimation and tracking performance and
its dependence on various involved system parameters;

5) We address the practical NLoS or blockage challenge
and show that the proposed MU-PoSAC approach has
built-in robustness against missing LoS measurements;

The rest of the article is organized as follows. Section II
provides the assumptions, physical signal models and the AoA
and ToA estimation methods. In Section III, we present and
formulate the proposed MU-PoSAC framework for joint multi-
user positioning, synchronization and anchor state calibration.
Section IV presents the ray-tracing based industrial evaluation
environment, provides numerical results regarding the AoA and
ToA estimation accuracy, and describes the EKF initialization.
Section IV then present and analyzes the actual MU-PoSAC-
based performance results for joint estimation and tracking of
both user and anchor states under different scenarios. Finally,
conclusions are drawn in Section VI.

Notation: Throughout this paper, the identity matrix is
denoted by I, while complex-conjugation, transpose and Hermi-
tian trasponse are denoted by (·)*, (·)T, and (·)H, respectively.
Furthermore, diag(·) and blkdiag(·) refer to diagonal and block-
diagonal matrices, respectively, while ⊙ and ⊗ denote the
Hadamard and Kronecker products, correspondingly. Finally,
the C and R are individually denoted as the complex and real
number sets.

II. PHYSICAL SIGNALS AND AOA/TOA ESTIMATION

We consider a multi-user system, as illustrated in Fig. 1.
The main purpose of our work is to estimate and track
the locations of both the users and the anchors, while the
orientation offsets of the anchors are also assumed unknown
and hence estimated. In addition, the clocks of the users
are assumed to be independently drifting, while anchors are
mutually synchronized.

In terms of the available physical signals and corresponding
measurements, we assume that all the users are periodically
transmitting uplink pilot or reference signals. Specifically, in
the context of 5G NR, the uplink sounding reference signal
(SRS) transmissions [41] form one feasible option that are
also considered as concrete signal structure in our numerical
experiments in Sections IV and V. While the reference signal
transmission can be omni-directional, we further assume that
the anchors observe them in a beam-based manner, reflecting
NR beam-sweeping procedure [40] at the RX side. The RX
beam-sweeping procedure can take place, e.g., once per 100 ms,
depending on the network configuration, and we refer to
such time window as a measurement cycle in the following,

indexed with i. Furthermore, as a concrete example, a uniform
rectangle array (URA) is assumed as the antenna model in
each anchor with a total number of NR = NelNaz antenna
elements. Finally, the existence of a LoS path is implicitly
assumed in the algorithm derivations, while in the ray-tracing
based numerical evaluations, true propagation geometry with
all physical paths are considered. Furthermore, intermittent
lack of LoS measurements is explicitly addressed in the actual
positioning and state estimation stage along the numerical
results in Section V.

A. Signal and Channel Models

In the following, the set of considered users is denoted
by K, while the corresponding set of anchors is M. To this
end, the kth user with k ∈ K = {1, 2, · · · ,K} is transmitting
the uplink pilot signal utilizing orthogonal frequency division
multiplexing (OFDM) waveform with the allocated set of
subcarriers being denoted by Pk. Furthermore, we assume
that |Pk| = P , independent of k, and that when multiple users
are involved, they are allocated orthogonal sets of subcarriers
such that Pk1 and Pk2 are disjoint for any k1 ̸= k2. For
notational simplicity, omni-directional transmission is assumed
while the extension to beamformed or other directional antenna
systems is straightforward, see, e.g., [4], [13].

To this end, the received complex sample at anchor m ∈
M = {1, · · · ,M} at measurement cycle i and subcarrier
p ∈ Pk , stemming from the user k, can be expressed as

r(q,k)m [p, i] =
(

w(q)
m [i]

)H (
Λ(k)

m [p, i]x
(q,k)
ref [p, i] + n(q)

m [p, i]
)
,

(1)
where q is the OFDM symbol index during measurement cycle
i, while w(q)

m [i] refers to the corresponding RX beamformer
weights. In addition, x(q,k)

ref [p, i] refers to the transmitted refer-
ence signal sample at subcarrier p during the RX beamformer
setting q. Lastly, n(q)

m [p, i] ∼ CN
(
0, σ2

nINR

)
refers to the RX

spatial noise vector at subcarrier p during the RX beamformer
setting q within measurement cycle i.

Furthermore, by considering all the propagation paths in the
environment, the single-input multiple-output (SIMO) spatial
channel vector at sub-carrier p, denoted by Λ

(k)
m [p, i] ∈ CNR×1,

can be expressed as

Λ(k)
m [p, i] =

L−1∑
l=0

bURA

(
ϕ

(k)
l,m[i]

)
η
(k)
l,m[i]e−j2πfscpτ

(k)
l,m[i], (2)

where L is the overall number of propagation paths and fsc
refers to the sub-carrier spacing. Each path is described by
the path gain η

(k)
l,m[i], AoA ϕ

(k)
l,m[i] and ToA τ

(k)
l,m[i]. The RX

beam-sweeping procedure is assumed to take place within
the channel coherence time, hence the channel variables are
not functions of the RX beamformer setting. Furthermore,
bURA(ϕ

(k)
l,m) ∈ CNR×1 refers to the URA response, which can

be calculated as [42], [43]

bURA(ϕ
(k)
l,m) =

√
β0(NR,ϕ

(k)
l,m)aULA(φ

(k)
l,m)⊗aULA(θ

(k)
l,m|φ(k)

l,m),
(3)
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where ⊗ denotes the Kronecker product and β0(NR, ϕ
(k)
l,m)

represents the antenna gain of the URA, which is a function
of the overall number of antenna elements NR = NelNaz as
well as the AoA pair that is defined as

ϕ
(k)
l,m ≜

(
φ
(k)
l,m, θ

(k)
l,m

)
, (4)

where the azimuth AoA θ
(k)
l,m = (−π, π) together with the co-

elevation AoA φ
(k)
l,m = (−π/2, π/2) specify the received signal

direction of the lth path. Finally, we express the corresponding
uniform linear array (ULA) responses as

aULA(φ
(k)
l,m) = e

−jπsin(φ(k)
l,m)

[
−Nel−1

2 ,··· ,Nel−1

2

]T
,

aULA(θ
(k)
l,m|φ(k)

l,m) = e−jπcos(φ(k)
l,m)sin(θ(k)

l,m)[−Naz−1
2 ,··· ,Naz−1

2 ]
T

.
(5)

B. AoA and ToA Estimation

Based on the beamformed reference signal observations
described above, the AoA and the ToA can be estimated as
described in the following. These AoA and ToA estimates are
then serving as inputs or measurements to the actual positioning,
synchronization and anchor state calibration engine, described
in Section III.

1) AoA Estimation: The overall estimation procedure starts
by calculating the beam reference signal received power (B-
RSRP) quantities. At anchor m, and considering the qth RX
beamformer and kth user reference signal transmission, the
B-RSRP can be expressed as

B(q,k)
m [i] =

1

P

∑
p∈Pk

|r(q,k)m [p, i]|2. (6)

Since the received samples are obtained via a specific beam-
former that is a function of an AoA pair as shown in (4), a given
B-RSRP is essentially parameterized with the same AoA pair
as the utilized beamformer. Thus, by collecting the B-RSRP
values over all the angle pairs within the utilized beamformer
space or codebook, the LoS AoA of the considered transmitter-
receiver (i.e., user – anchor) pair at time instant i, denoted for
simplicity by ϕ

(k)
m [i] ≜ ϕ

(k)
0,m[i], can be estimated via

q̂ = argmax
q

B(q,k)
m [i],

ϕ̂(k)
m [i] = Ω[q̂],

(7)

where q̂ is the beam index that corresponds to the maximum
B-RSRP at measurement cycle i while Ω refers to the overall
set of angles that is covered by the set of beamformers.

Intuitively speaking, the estimation performance of the
method in (7) is inevitably subject to the angular resolution
of the utilized set of beamformers, e.g., a discrete Fourier
transform (DFT)-based codebook [44]. Typically, the angular
resolution of the utilized codebook is proportional to the
antenna array size, i.e., the larger the array size, the finer
the angular resolution. Therefore, the AoA estimation accuracy
of the method in (7) may be insufficient for high-efficiency
positioning with array sizes of practical interest.

One way of improving the AoA estimation accuracy, and
thus to address the above challenge, is to fuse the angular

information from multiple beams – referred to as the multi-
beam fusion method in the rest of the article. To this end,
instead of one beam, a set of NB highest beams is selected
and fused together to obtain the final LoS AoA estimate. In
this case, the estimator in (7) can be re-defined as

ϕ̂(k)
m [i] = ΓTΩselected[i], (8)

where Ωselected[i] denotes the vector consisting of the NB

selected angle pairs,

Ωselected[i] = [Ω[q̂1], · · · ,Ω[q̂NB
]]
T
, (9)

with q̂1 referring to the beam index that corresponds to the
highest B-RSRP while q̂NB

is the beam index corresponding to
the NB th highest B-RSRP at measurement cycle i. Additionally,
the normalized weight vector Γ ∈ CNB×1 can be expressed as

ΓT =
[
B(q̂1,k)

m [i], · · · , B(q̂NB
,k)

m [i]
]
/

q̂NB∑
q=q̂1

B(q,k)
m [i]. (10)

The AoA estimation accuracy through the fusion of different
numbers of beams will be assessed and discussed along the
numerical results in Section IV-B.

In general, stemming from the beam-sweeping like physical
observation model, it can be noted that there is an inherent
tradeoff between the estimation accuracy and the estimation
latency. Specifically, a higher estimation accuracy relies on a
finer beam resolution, which in turn implies a larger number
of beamformers and thereon a longer reference signal measure-
ment latency. This tradeoff can be resolved by narrowing down
the possible angular range based on the previous estimates,
such that only a sub-set of the overall angle pool Ω is applied
in the beam sweeping process for the AoA estimation.

2) ToA Estimation: The ToA estimation is essentially
dependent on the estimated AoA, given the fact that the delay
and angle information of the same path are associated with
each other. In other words, the received signal that contains the
LoS AoA can also be utilized to find the LoS ToA, denoted for
simplicity by τ

(k)
m [i] ≜ τ

(k)
0,m[i] in the continuation. Denoting

again the beam index with the highest beam power by q̂1, the
corresponding received signal samples in (1) can be stacked
over all considered subcarriers into a vector r(q̂1,k)m [i] ∈ CP×1.
Next, according to the properties of the Fourier transform, the
path delay experienced in the time-domain is reflected by the
phase shifts in the frequency-domain. Therefore, the ToA can
be efficiently estimated as

τ̂ (k)m [i] = argmax
τ

∥d(k)(τ)HG(k)
m [i]∥, (11)

where d(k)(τ) ∈ CP×1 = [ej2πfscτPk(1), · · · , ej2πfscτPk(P )]T.
Furthermore, the frequency response G(k)

m [i] ∈ CP×1 corre-
sponding to the beamformer q1, containing a phase response
estimate of the channel, is denoted as

G(k)
m [i] = r(q̂1,k)m [i]⊙ (x(q̂1,k)

ref [i])∗, (12)

where x(q̂1,k)ref [i] refers to the vector of the known reference
signal samples, transmitted by user k at the considered
subcarriers, during the beamformer setting q1.
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C. Discussion

It is generally fair to state that there are many existing
methods for AoA and ToA estimation, including methods based
on MUSIC, ESPRIT, maximum likelihood, message passing,
and sparse recovery. However, all these methods require perfect
knowledge of the array steering vectors bURA(ϕ) as well as the
beamformer weights w. This knowledge is hard to obtain in
practice, for two reasons. First, real user devices and anchors
(base-stations) only provide a beam codebook with beam
index and nominal direction. This means that the beamforming
weights w are not available. Second, the steering vector is
generally impaired with array element spacing errors, unknown
and spatially varying element responses, as well as mutual
coupling. This means that bURA(ϕ) is only approximately
known, at best. The combined lack of knowledge on bURA(ϕ)
and w in real systems thus precludes the use of standard
AoA estimation methods – a limitation that is often ignored
in academic research. The proposed AoA estimation method,
in turn, stems from the assumed analog array architecture
together with the 5G NR beam sweeping procedure that is
standardized by 3GPP for the mmWave 5G NR network.
The AoA estimation method is thus fully realizable also in
practical systems. Additionally, as illustrated in Section IV, its
performance is close to the corresponding Cramér-Rao bound
that is derived for beamformed power based observation model.
Finally, the ToA estimation approach is essentially a maximum
likelihood 1D search-based method and is thus asymptotically
optimal, operating close to the corresponding Cramér-Rao
bound.

III. JOINT MULTI-USER POSITIONING, SYNCHRONIZATION,
AND ANCHOR STATE CALIBRATION

A. Fundamentals and Notation

We next address how the estimated ToAs and AoAs, obtained
at different measurement cycles i, can be efficiently utilized to
estimate and track not only the locations of the involved users,
but also the locations and orientations of the anchors as well
as the time-varying clock offsets between each user and the
network. The non-linear mapping procedure from the available
ToA and AoA measurements to the locations, orientations and
relative clock offsets is described and accomplished using an
EKF, which is generally known to be a sequential minimum
mean square error (MMSE) estimator [45].

For the purpose of later definitions and derivations, we next
define the following quantities:

• sk[i]: the state of user k at time i, defined as sk[i] =
[xk[i], yk[i], zk[i], ωk[i], ρk[i], ρ̇k[i]]

T containing the
3D location, horizontal heading, the clock offset ρk and
the clock skew ρ̇k;

• s[i]: the concatenated state vector containing all K users,
that is, s[i] = [(s1[i])T , . . . , (sK [i])T ]T ;

• mj : the state of static anchor j, defined as mj =
[xj , yj , zj , αφj , αθj ]

T containing the 3D location, and
orientation offsets in elevation and azimuth domain;

• m: the concatenated state vector containing all M anchors,
that is, m = [(m1)

T , . . . , (mM )T ]T ;

• y[i]: the measurement vector containing the available ToA
and AoA estimates from all users and anchors at time i;

• u[i]: the control vector, applied at time i− 1 to drive the
users to state s[i] at time i.

It is highlighted that the states of all K users are deliberately
concatenated to be jointly estimated, since they are indirectly
mutually coupled through the anchor states and the related
measurements. With multiple users in the network, the anchor
state can thus be more accurately calibrated due to a stricter
geometric constraints formed by multiple users, with the
achievable performance gains being demonstrated numerically
in Section V.

For sequential Bayesian estimation [46], the following joint
probability of the form

P (s[i],m | y[1 : i],u[1 : i]) , (13)

is computed for each time instant in order to characterize
the joint posterior density given the available controls and
measurements from the first to the current time instant i, as
well as the initial state [47]. Starting with an estimate for
the distribution P (s[i− 1],m | y[1 : i− 1],u[1 : i− 1]) at time
i − 1, the joint posterior at time i is computed using Bayes
theorem. This requires that the state transition model and
observation model are defined describing the effect of the
controls and measurements, respectively. Initialization of the
filter is presented and discussed in Section IV-C.

B. User State Evolution and Measurement Models

As static anchors are considered, their states are modeled as
time-invariant. The user states, in turn, are dynamic, and the
transition density describing their evolution is expressed as

P (s[i] | s[i− 1],u[i]) = N (s[i]; f(s[i− 1],u[i]),Q) , (14)

where f(s[i − 1],u[i]) represents the nonlinear function that
describes the user motion and Q is the covariance matrix.
The nonlinear motion can be modeled using the kinematic
bicycle model [48], and the clock behavior using a first order
auto-regressive model [49]. Since a synchronous network is
considered, the clocks of all the anchors are synchronized to a
reference model, while each user has time-varying clock offset
ρk[i]. For user state sk[i−1] and control uk[i] = [vk[i], γk[i]]

T ,
the transition model for a single user is now given by

fk(sk[i− 1],uk[i]) = sk[i− 1]

+


vk[i]∆t cos (ωk[i− 1] + γk[i])
vk[i]∆t sin (ωk[i− 1] + γk[i])

0
vk[i]∆t sin(γk[i])/WBk

ρ̇k[i− 1]∆t
0

 , (15)

where vk[i] is the speed, γk[i] is the steering angle, ∆t denotes
the time interval between two consecutive measurement instants
and WBk is the distance between the front and rear axels of
the user (which we simulate as industrial vehicle).
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The complete transition model is defined as

f(s[i− 1],u[i]) =

 f1(s1[i− 1],u1[i])
...

fK(sK [i− 1],uK [i])

 . (16)

For convenience, let us express the process noise covariance
of the controls, Qu, and states, Qs, independently so that we
can define them as

Qu = IK ⊗ Qu, where Qu = diag(σ2
v , σ

2
γ), (17)

Qs = IK ⊗ Qs, where Qs = diag(0, 0, σ2
z , 0, 0, σ

2
ζ ). (18)

In (17), σ2
v and σ2

γ are the variances of the speed and steering
angle controls, and in (18), σ2

z and σ2
ζ are the variances of the

z-coordinate and clock skew. Here, the noise related to the
clock offset can be understood as the oscillator uncertainty of
the applied clock, i.e., jitter.

The observation model is required to describe the measure-
ments and their dependence on the state variables which we
express as

P (y[i] | s[i],m) = N (y[i];h(s[i],m),R[i]) , (19)

where h(s[i],m) represents the nonlinear function that captures
the geometric relationship between the users and anchors, and
R[i] is the covariance matrix. For a user state sk[i] and anchor
state mj , the nonlinear measurement model is defined as

hk,j(sk[i],mj) =


∥pk[i]− pj∥/c+ ρk[i]

arcsin
(

zk[i]− zj
∥pk[i]− pj∥

)
+ αφj

atan2 (yk[i]− yj , xk[i]− xj) + αθj

 ,

(20)
where pk[i] and pj denote the 3D position of the user and
anchor respectively. Now, the complete measurement model is

h(s[i],m) =

 h1(s1[i],m)
...

hK(sK [i],m)

 , (21)

where

hk(sk[i],m) =

 hk,1(sk[i],m1)
...

hk,M (sk[i],mM ))

 , (22)

is the measurement vector of user k and the M anchors. The
full covariance matrix is R[i] = blkdiag(R1[i], . . . ,RK [i]),
where Rk[i] = blkdiag(Rk,1[i], . . . ,Rk,M [i]) and Rk,j [i] =
diag(σ2

τ,k,j [i], σ
2
φ,k,j [i], σ

2
θ,k,j [i]). In general, the variances of

measurements can be acquired empirically or through closed-
form equations as shown, e.g., in [50]. For our system
model, we highlight this further along the numerical results in
Section IV-B.

C. Extended Kalman Filter

As is generally well-known, the computation of the joint
probability in (13) can be solved using the Bayes’ rule [46]
iteratively over time. Approximating the joint distribution using
a Gaussian, expressed as

P (s[i],m | y[1 : i],u[1 : i]) ≈ N (x[i]; x̂[i],Σ[i]) , (23)

and using a first-order Taylor series based Gaussian ap-
proximation to the nonlinear models results in the well-
known extended Kalman filter (EKF) recursion [51]. In (23),
x[i] = [s[i]T , mT ]T denotes the total concatenated state
vector, for which the mean and covariance are x̂[i] and Σ[i],
respectively. For convenience, let us partition the state and
covariance as

N (x[i]; x̂[i],Σ[i]) =

N
([

s[i]
m

]
;

[
ŝ[i]
m̂[i]

]
,

[
Σss[i] Σsm[i]
Σms[i] Σmm[i]

])
, (24)

so that the time-update of the EKF can be expressed as

ŝ−[i] = f(ŝ[i− 1],u[i]), (25)

Σ−
ss[i] = FsΣss[i− 1]FT

s + FuQuF
T
u + Qs, (26)

Σ−
sm[i] = FsΣss[i− 1], (27)

Σ−
ms[i] = (Σ−

sm[i])T , (28)

where Fs = ∇sf(s[i − 1],u[i]) |s[i−1]=ŝ[i−1] and Fu =
∇uf(s[i − 1],u[i]) |s[i−1]=ŝ[i−1] are the Jacobians of f(·)
evaluated with respect to s and u, respectively. Thereafter,
once measurement y[i] becomes available at time i, the mean
and covariance can be corrected using

K = Σ−[i]HT
(
HΣ−[i]HT + R[i]

)−1
,

x̂[i] = x̂−[i] + K
(

y[i]− h
(

ŝ−[i], m̂[i− 1]
))

,

Σ[i] = (I − KH)Σ−[i],

(29)

where H = ∇s,mh(s[i],m) |s[i]=ŝ[i],m=m̂[i−1] is the Jacobian
of h(·) evaluated with respect to the complete state. It is worth
noting that the time-update only involves the user states since
the anchors are static. However, the correction step involves
the complete state for which the predicted mean x̂−[i] and
covariance Σ−[i] are obtained by updating the partitioned state
in (24) with the predicted values in (25).

It is to be noted that the nonlinear filtering problem could be
solved using any Gaussian assumed density approximation,
such as the unscented Kalman filter (UKF) or cubature
Kalman filter (CKF). However, since the underlying models are
differentiable and the EKF provides good accuracy combined
with low computational overhead, the EKF is the preferred
choice in this article. The main advantage of the EKF over other
nonlinear filtering methods, such as the UKF or the particle
filter, is its relatively low computational overhead compared to
its performance [51].

D. Performance Bound

The performance bound of all the parameters of interests that
are estimated by the algorithm is referred to as posterior Cramér-
Rao lower bound (PCRB). In essence, the bound infers that the
mean square error (MSE) of an algorithm is in general larger
than J−1 in the positive semi-definite sense [45], expressed as

E{[x̂(y)− x] [x̂(y)− x]T } ≥ J−1, (30)

where J represents the Fisher information matrix (FIM) and
x̂(y) is the estimate of the state x at the output of the algorithm
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whose inputs are the available measurements y. In general, the
FIM can be computed from two additive parts [52], as

J = Jprior + Jmeas, (31)

where Jprior = E[−∆x
xlogP(x)] refers to the available prior

information of the state and Jmeas = E[−∆x
xlogP(y|x)] repre-

sents the information obtained from the measurements, with
∆x

x referring to the second-order partial derivative. For the
considered nonlinear filtering problem with additive noise, the
FIM can be recursively computed by plugging [52, eq. (34-36)]
into [52, eq. (21)]. Furthermore, using the matrix inversion
lemma to simplify the resulting expression, the FIM can be
calculated iteratively as

J[i] =
[
Ω−

ss[i] Ω−
sm[i]

Ω−
ms[i] Ω−

mm[i]

]−1

︸ ︷︷ ︸
prior

+HT [i](R[i])−1H[i]︸ ︷︷ ︸
meas

, (32)

where

Ω−
ss[i] = FsΩss[i− 1]FT

s + FuQuF
T
u + Qs, (33)

Ω−
sm[i] = FsΩss[i− 1], (34)

Ω−
ms[i] = (Ω−

sm[i])T , (35)

Ω−
mm[i] = Ωmm[i− 1], (36)

and Ω[i− 1] = (J[i− 1])−1 is partitioned in the same way as
Σ[i−1]. After computing the FIM, the PCRB of all the param-
eters of interest can be computed accordingly. As a concrete
example, the PCRB of the first user’s location can be calculated
as

√
trace (J[i]−1)[1:3,1:3], while the PCRB of the first anchor’s

location is obtained as
√

trace (J[i]−1)[6K+1:6K+3,6K+1:6K+3].
We will utilize PCRB as one fundamental performance refer-
ence in our numerical studies in Section V.

IV. EVALUATION SCENARIO, MEASUREMENT ACCURACY,
AND INITIALIZATION

In this section, the ray-tracing based industrial evaluation
scenario is first presented. Then, the estimation accuracy of
the positioning-related parameters (i.e., AoA and ToA) based
on the proposed beam sweeping approach is evaluated under
different antenna and beamforming codebook configurations.
Finally, the applied initialization method is introduced, offering
the prior information for the initial state of the EKF-based
MU-PoSAC.

A. Evaluation Scenario

In this work, we focus on the indoor industrial scenario
illustrated in Fig. 2, where the warehouse or factory site consists
of several industrial vehicles and devices together with several
fixed or dynamically deployed but static anchors. In general,
the anchor density plays an important role from the achievable
performance point of view because more anchors leads to
more measurements and increased LoS probability. However,
as discussed in [53], one important design criteria is to minimize
the total number of required anchors while achieving as good
accuracy as possible. Thus, given the fact that both angle and
delay measurements are utilized, we consider overall three

TABLE I
CONSIDERED 5G NUMEROLOGY AND EVALUATION PARAMETERS

Parameter Value

carrier frequency 28 GHz
sub-carrier spacing 60 kHz
channel bandwidth 100 MHz

transmit power 0 dBm
anchor antenna URA, NR = {64, 256, 1024}

beamforming gain {18, 24, 30} dBi
user antenna omni-directional
anchor height (1, 2, 3): (8.5 m, 12 m, 15 m)

user height 0.5 m
user velocity range 0.4 – 0.6 m/s

EKF update time-interval 100 ms
user trajectory and motion random waypoint [56] and

kinematic model [48]

anchors being deployed in the locations of green squares
illustrated in Fig. 2. These anchor locations stem from the basic
radio network planning such that the they provide essentially
full radio coverage for the considered warehouse whose
physical dimensions are approximately 70 m× 26 m× 18 m.

Very importantly, for realistic and accurate propagation
modeling, full ray tracing calculations are carried out with
Wireless InSite [54], that incorporates an accurate digital map
of the industrial facility and the different objects therein. This
ensures that all the multipath components are also correctly
modeled from the received signals perspective, in addition to
the basic LoS path. The assumed 5G NR numerology and basic
evaluation assumptions are summarized in Table I. Furthermore,
in terms of the antenna configurations at the anchors, the anchor
3 contains two URA panels to cover a 360◦ spatial area, while
the anchors 1 and 2 contain one URA panel each. Such antenna
system assumptions together with the anchor locations ensure
seamless radio coverage for the considered industrial facility,
while being also inline with 3GPP 5G NR standardization and
evaluation assumptions [55]. Finally, the user trajectories are
generated using the random waypoint (RWP) model [56], while
the movement along the waypoints is driven by the kinematic
bicycle model [48]. This way, realistic movement patterns of
industrial vehicles can be modeled and generated.

B. AoA and ToA Measurement Accuracy

The accuracy of the estimated AoAs and ToAs that serve as
the observations and inputs of the MU-PoSAC framework plays
an important role in the achievable state estimation performance.
Operating at 28 GHz with 100 MHz channel bandwidth, we
compare three implementation-feasible antenna configurations
each with different angular resolution or separation, namely 8×
8 URA with 4◦ separation, 16× 16 URA with 2.2◦ separation,
32 × 32 URA with 1.1◦ separation. The angular resolutions
are the same for both elevation and azimuth domain, and
are deliberately selected to be smaller than the corresponding
half-power beam width (HPBW)1 [57] to ensure sufficient 3D

1Strictly-speaking, the HPBW becomes wider as the beam steering angle
moves away from the boresight, therefore, the AoA estimation accuracy is
worse at high steering angles than at angles near the boresight.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3262955

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

anchor 1

anchor 2

anchor 3

example user trajectory

Fig. 2. Illustration of the industrial evaluation environment where full ray-tracing is executed for accurate propagation modeling.

spatial coverage in AoA estimation. The considered reference
signal structure builds on 5G NR uplink SRS with comb-4
configuration [41]. For each beam during a beam-sweeping
procedure, SRS is transmitted using a single OFDM symbol
with full band allocation and the above noted comb-structure.

We will first focus on the estimation performance of the
elevation and azimuth AoA when fusing different numbers
of beams, through the approach proposed in Section II-B.
In Fig. 3a and Fig. 3b, the angular root mean square error
(RMSE) results are shown for random UE trajectories along
the open area within the warehouse. From the estimation
accuracy perspective, the array configurations with more
antenna elements results in enhanced performance. Furthermore,
because of the finer angular resolution, the RMSE performance
obtained by using 16×16 URA and 32×32 URA are observed
to be closer to the corresponding Cramér-Rao lower bound
(CRLB), calculated in this work according to [50], [58] for
the considered beamformed power based observation model,
compared to the 8×8 URA case.

Additionally, an interesting phenomenon is observed when
it comes to the impact of varying the number of fused beams,
NB . Specifically, for both elevation and azimuth AoA, the
RMSE is clearly decreasing when NB increases from 1 to
around 4 or 5. Such improved performance is mainly because
of the weighted average calculation based on the B-RSRP,
such that the potential beam misalignment using 1 beam can
be corrected by proper fusion of angular information from
other nearby beams. However, the RMSE starts to then increase
when NB is further increased. Such degradation in performance
mainly originates from the fact that after a certain NB value,
the angular information from multipath scattering components
are being integrated in the fused beam pool, resulting in a
drift away from the LoS angle. Hence, we conclude that the
multi-beam fusion can provide clear performance benefits while
the exact number of fused beams is to be optimized in given
deployment scenario.

Finally, we plot the cumulative density function (CDF) of the

estimation errors of elevation AoA and azimuth AoA in Fig. 3c,
while include also the corresponding error CDF of the ToA
estimation. In this illustration, we focus on the example case
of 16×16 URA while fusing beams with the five highest B-
RSRP values (i.e., NB = 5). We can clearly observe that very
accurate ToA estimation can be obtained, with approximately
95% of the error samples being less than 1 m. The AoA
estimation accuracy in both domains is also very high, though
still somewhat higher in the elevation domain. This is mostly
due to the fact that the users move across a larger horizontal
span than the vertical span. Moreover, the angular spread is in
general lower in elevation domain than in azimuth domain [55].

C. Filter Initialization

All sequential filtering solutions, such as the proposed EKF-
based framework, need to be initialized at the beginning of the
filtering process. From the anchor state perspective, the initial
location uncertainty of the anchors Σmm defined in (24) can
be decomposed as Σmm = IM×M ⊗Σ

(j)
mm for each individual

anchor, the jth element being

Σ(j)
mm =

[
Σloc 0
0 Σα

]
, (37)

where the location covariance matrix is defined as Σloc =
σ2

A I3×3 in which σA refers to the uncertainty in any of the in-
dividual directions in 3D. Similarly, an equal initial uncertainty
in the orientation offsets in both elevation and azimuth domains
is assumed and denoted as Σα = σ2

α I2×2. For simplicity,
we also assume that all the anchors share the same initial
uncertainty in their states, and the prior distribution of the jth
anchor state is a Gaussian with m̂j ∼ N

(
mj ,Σ

(j)
mm

)
.

In terms of the user initialization, the parameters that need
to be initialized are locations, headings and relative clock
offsets. For the location, we apply a TDoA-based quasi-Newton
method to find the initial user location estimates based on the
erroneous initial anchor location estimates. The principle of the
applied method is illustrated in Fig. 4a, with the corresponding
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(a) RMSE of estimated elevation AoA as a function of total fused beams.

(b) RMSE of estimated azimuth AoA as a function of total fused beams.

(c) CDFs of the AoA and ToA estimation errors when fusing NB = 5 beams, 16×16
URA.

Fig. 3. Estimation accuracy of positioning-related parameters in the ray-tracing
environment shown in Fig. 2 at 28 GHz with 100 MHz channel bandwidth.
In (a) and (b), the CRLB with different antenna configurations are illustrated
using: 8× 8 URA ( ), 16× 16 URA ( ) and 32× 32 URA ( ).

distributions under three numerical examples values of σA
being calculated over 800 trials and shown in Fig. 4b. It can
be noted that the resulting initial location errors are larger than
the corresponding initial anchor location uncertainty, the 68th
percentiles being 0.9 m, 2.2 m and 4.1 m for σA = 0.2 m, 1 m
and 2 m, respectively.

As the proposed Bayesian framework utilizes also the user
heading, the corresponding initialization can build on local
motion sensor(s) being then transmitted towards the network.
The corresponding uncertainty is modeled as a Gaussian error
with a standard deviation of 4◦, modeling realistic performance
of state-of-the-art sensors [59]. Finally, the initial relative
clock offsets ρ and skews ρ̇ for all the users are randomly
picked from Gaussian distributions of N (0, (10 us)2) and

(a) User location initialization using the TDoA measurements based on erroneous anchor
locations.

(b) CDFs of the initial user location estimation errors with the initialization method in
(a) under three different anchor location uncertainties σA.

Fig. 4. Illustrations of the user location initialization concept, shown in (a),
and the resulting statistics in initial uncertainty, shown in (b).

N (20 ppm, (200 ppm)2), where ppm stands for parts per
million [49]. Furthermore, the clock skew driving noise is set
to σ2

ζ = 10−14 s2 [60], and the process noise variance in the
z-coordinate is set to σ2

z = 10−10 m2 since we primarily focus
on industrial vehicles moving on ground. Finally, the control
noise defined in (18) is set as σv = 0.3 m/s and σγ = 3◦ [48]
throughout the evaluations.

V. FILTERING RESULTS AND ANALYSIS

In this section, we evaluate and demonstrate the actual
MU-PoSAC EKF performance for positioning, synchronization
and orientation offset estimation. We use the AoA and ToA
estimates from the previous section, with 8 × 8 antenna
configuration, building on the ray-tracing environment and
the described estimator solutions. The performance is also
compared with multi-user positioning and anchor state cali-
bration (MU-PoAC), i.e., an alternative approach that deploys
only AoA estimates, which can be obtained as a special case
from MU-PoSAC. Also the PCRB expressions presented in
Section III are evaluated and shown as reference. In case only
a single user is considered, the methods are called simply
PoSAC and PoAC, respectively. Finally, in the following
numerical results, we apply the closed-form approach as
in [26], [50] for setting the measurement covariance entries.
Supplementary multimedia and other materials are available at
https://research.tuni.fi/wireless/research/positioning/muposac/
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anchor location prior in 3D

(a) RMSE of anchor location

prior of orientation offsets 

(b) RMSE of orientation offset

(c) RMSE of user location

heading prior 

(d) RMSE of user heading

Fig. 5. RMSE performance of single-user PoSAC and PoAC vs. PCRB as a
function of time for σA = 1 m and σα = 6◦.

A. Estimation Performance vs. PCRB
First, we focus on the estimation performance in the basic

single-user case and corresponding comparisons against the

(a) CDFs of 3D location errors for both anchors and users with σα = 6◦ and two
different σA cases.

(b) CDFs of errors in orientation offsets with σα = 6◦ for two different σA cases.

Fig. 6. MU-PoSAC estimation and tracking performance under two different
initial anchor location uncertainties and for different numbers of users.

PCRB. In Fig. 5, the achieved RMSE and the PCRB of the
four key parameters are shown. In this evaluation, the initial
uncertainty of anchor location is set to σA = 1 m while the
orientation uncertainty is set as σα = 6◦. The red solid, blue
dashed-dot and black dashed curves represent the performance
of PoSAC (utilizing both AoA and ToA measurements), PoAC
(utilizing only AoA) and PCRB, respectively, where the PCRB
is calculated for the case of both AoA and ToA measurements.
From the anchor state perspective, we see that the EKF
solutions progressively tend towards the PCRB for both the
locations and the orientation offsets. Similarly, it is seen that
the estimated and tracked user state becomes gradually better,
getting closer to the PCRB as the time goes on. Furthermore, we
can observe that PoSAC outperforms PoAC in all the estimated
parameters mainly due to the additional measurements in delay
domain. More importantly, the very minor difference or gap
between the PoSAC and PCRB after initial convergence shows
that the proposed EKF solution is efficient. It is also important
to note that the estimation performance does not significantly
improve even if the iteration steps are continued beyond the
shown 1000 steps. This motivates towards the actual multi-
user study and the potential positive impacts of multiple users,
addressed next.

B. Impact of Multiple Users

Next, we address and analyze the estimation performance
when multiple users are present and considered in the system.
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Fig. 7. RMSE performance of anchor location estimation as a function of σα

with two users and for three different values of σA.

Two σA values (0.2 m and 2 m) are considered to assess the
performance under low and high anchor location uncertainties,
while the uncertainty of orientation offsets, σα, is again set
to 6◦. The achieved positioning error performance in 3D,
covering both the anchors and the users, is presented in Fig. 6a
for 1, 3 and 5 users in terms of the error CDFs after initial
convergence referring to the first 500 iteration steps. It is seen
that the positioning error is in general higher when σA is larger.
Importantly, the existence of multiple users helps to improve the
overall estimation performance, especially at larger values of
σA. As a concrete numerical example, the average positioning
error is 1.5 m lower with 5 users compared to the single-user
case. Similar behavior can be observed for the performance of
orientation offsets that are presented in Fig. 6b. We can also
observe that for a given σα value, larger initial anchor location
uncertainty leads to a worse performance in orientation offset
estimation. This stems from the joint estimation approach and
nature of MU-PoSAC.

Overall, the obtained results show that having more users in
the system clearly helps in achieving more accurate estimation
results. Finally, the performance of user heading and clock
offset estimation is not explicitly shown since very similar
performance trends were observed.

C. Impact of Initial Anchor State Uncertainty

We next address the performance of PoSAC and PoAC under
a wider range of initial uncertainty of the anchor state, i.e., σα

and σA. The corresponding estimation accuracy of the anchor
locations is presented in Fig. 7, in terms of the steady-state
RMSE, as a function of the orientation offset’s uncertainty
σα while considering 3 different values of the anchor location
uncertainty σA. In this case, 2 users are considered in the
system.

Generally speaking, based on the results in Fig. 7, MU-
PoSAC again systematically outperforms the MU-PoAC. Ad-
ditionally, for the whole considered value ranges of the
uncertainties, MU-PoSAC provides gain compared to the prior,
though at largest orientation offsets the gains are already fairly
small. These results and findings thus indicate that when there
is no accurately known reference anchor available, achieving

(a) RMSE of anchor location

(b) RMSE of user location

Fig. 8. Localization accuracy as a function of time of single-user PoSAC and
with different user speeds v and measurement intervals ∆t. The overall user
tracks are identical in all cases.

very high estimation performance is difficult. This is because
the posterior distribution calculated by the EKF based on
the measurements is not maximized at the true state of the
users or the anchors. Such finding motivates towards the
further numerical studies presented in Section V-F, where
the performance is evaluated when there exists at least one
precisely known reference anchor.

D. Impact of User Velocity and Measurement Time Interval

Next, the impacts of user speed and measurement time
interval are investigated. In these simulations, only one user
is considered for simplicity, the anchors are initialized using
σA = 1m and σα = 6◦, and the durations of the experiments
with different speeds are adjusted such that the trajectories
have equal length. The anchor and user localization RMSEs
are illustrated in Fig. 8, and at a first glance, the results may
seem counter-intuitive since the performance improves with
higher user speeds. In general, it is expected that localization
accuracy of the user degrades when maneuverability of the
user grows. However, in our scenario, it is important to note
that the user and anchor estimates are tightly coupled and
as long as the anchors can be estimated accurately, good
user tracking performance will follow. Interestingly, RMSEs
of the static anchors converge approximately to the same
value when the measurement time intervals are the same as
shown in Fig. 8a. Since the anchors can be estimated with
comparative performance, also the localization accuracy of
the users converge to the same value as illustrated in Fig. 8b.
On the other hand, locating the anchors relies on accurate
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user estimates and in general, lower/higher measurement time
interval ∆t enhances/degrades tracking accuracy of the user
which in turn increases/decreases the localization accuracy of
the anchors as illustrated in Fig. 8. Thus, we can conclude that
the measurement time interval and the path of the user and
the underlying geometric constraints it imposes on the anchor
estimates, have in general a much larger impact on accuracy
than the exact speed.
E. Impact of Intermittent LoS Blockage

In practical deployments, it is possible that the LoS path does
not always exist between the user and a network anchor, the
impact of which we will analyze next. We model the existence
of LoS as a two-state Markov process such that the existence
of the LoS path at the next time instant depends only on the
present state. The state transition matrix of the model is given
by

P =

[
P1,1 1− P1,1

1− P2,2 P2,2

]
(38)

in which P1,1 and P2,2 denote the transition probabilities of the
LoS and NLoS states, respectively. Furthermore, we consider
two scenarios for the existence of LoS. In scenario 1, the
Markov process is independent for the different anchors and
for each time instant, mixed LoS / NLoS conditions can thus
exist. In scenario 2, the Markov process is shared among the
anchors and at time step i, either the LoS exists to all anchors,
or to none of them.

At time instances when the LoS is blocked for one or more
anchors, the update step of the filter can still be carried out
using a reduced set of LoS measurements. In this case, the
elements of the Jacobian matrix corresponding to the blocked
anchors are set to zero and the filter update is carried out
normally. It is important to note that even though an anchor
is blocked, the estimates of the anchor are updated using
measurements from the other anchors that are not blocked.
This might seem counter-intuitive, but is possible due to the
fact that the covariance matrix is full, meaning that the anchors’
states have cross-correlations among each other. Hence, the
measurements of an anchor with LoS can be used to update the
state of an anchor that is in NLoS. In case that all the anchors
are in NLoS, the update step has no effect on the estimated
mean and covariance since the Jacobian is an all zeros matrix.

The results in the two scenarios and for various transition
probabilities are visualized in Fig. 9. As illustrated by the
results, PoSAC can tolerate intermittent LoS blockages well:
if P1,1 ≥ 0.9 and P2,2 ≤ 0.5, the filter nearly achieves the
same performance as without LoS blockages (P1,1 = 1.0). The
most notable differences are in the convergence properties of
the filter and since there a fewer measurements, convergence
of the filter takes longer. The results also imply that the
developed estimator can tolerate quite severe NLoS conditions.
For example, if P1,1 = 0.5 and P2,2 = 0.9, under 20%
of the measurements are received, with the longest realized
time period without a LoS path being 96 samples and the
corresponding average duration being 9.8 samples. Nonetheless,
accuracy of the system degrades approximately by 5% for the
anchor localization and by 10% for user localization. This
implies that the system is robust to measurement outages,

(a) RMSE of anchor location / scenario 1

(b) RMSE of user location / scenario 1

(c) RMSE of user location / scenario 2

(d) RMSE of user heading /scenario 2

Fig. 9. Performance of single-user PoSAC under various NLoS conditions. In
scenario 1, the LoS / NLoS conditions between the user and the anchors are
independent of one another, whereas in scenario 2, all anchors are either LoS
or NLoS. The increased process noise scenario illustrated using ( ).

since the filter can rely on the open loop transition model
when the LoS path does not exist. However, relying solely on
the transition model accumulates errors of the estimator, but as
long as the time period without measurements is short enough,
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Fig. 10. RMSEs of all five parameters of interests under 0, 1, 2 and 3 known
reference anchors and when considering only one user in the system. The
uncertain anchors are initialized with σA = 1m and σα = 6◦.

the developed filter is able to compensate for the accumulated
errors until the LoS is present again.

In general, performance of the system degrades as the process
noise increases and it solely defines the accuracy of the system
during LoS blockages. To demonstrate the system performance
with higher process noise, the control noises are next doubled
to σv = 0.6 m/s and σγ = 6◦ in the most difficult LoS
blockage scenario. The results are illustrated in Fig. 9 using
the dashed cyan lines and in both scenarios, the accuracy
degrades slightly. It is expected that under yet more severe LoS
blockage scenarios the performance decreases more, whereas
in milder LoS blockage scenarios the accuracy is not affected
as much since the filter can correct the inaccurate transition
model estimates using the measurements.

F. Impact of Known Reference Anchor(s)

We next continue studying the estimation performance when
certain amount of anchors in the system are actually precisely
known. From hereon, we also focus on (MU-)PoSAC only for
presentation simplicity. To this end, in Fig. 10, the steady-state
RMSEs of all five parameters of interests are presented when
there are 0, 1, 2 or 3 reference anchors with perfectly known
states (locations and orientation offsets). The states of uncertain
anchors are initialized with σA = 1m and σα = 6◦, and only
a single user is considered in the system. Overall, two major
observations clearly stand out. Firstly, the existence of known
reference anchor(s) brings clear benefits to the estimation
performance of all the involved parameters. Secondly, the
performance gain brought by having more than one known
reference anchor is already relatively smaller. Considering
the user location as a concrete example, having one known
reference anchor improves the RMSE from 1.1 m (all anchors
uncertain) to 0.5 m, while the corresponding accuracy with
three known reference anchors is 0.28 m.

Based on the observed insights in Fig. 10, we next fur-
ther assess the estimation performance of anchor locations,
orientation offsets and user locations when only one anchor
is perfectly known. To this end, Fig. 11 shows the relevant
RMSE behavior over time while also contains and shows the
corresponding performance when all anchors are uncertain for

anchor location prior

in 3D

(a) RMSE of anchor locations as a function of iteration time steps.

prior of orientation offsets 

(b) RMSE of orientation offsets as a function of iteration time steps.

(c) RMSE of user locations as a function of iteration time steps.

Fig. 11. RMSE performance over time with different numbers of users, and
when either all anchors are uncertain or when one anchor state is perfectly
known. Uncertain anchors are initialized with σA = 1m and σα = 6◦.

reference and comparison purposes. The uncertain anchors are
again initialized with σA = 1m and σα = 6◦, while the impact
of the number of users is also addressed.

Specifically, the anchor location estimation performance
given in Fig. 11a shows that when all anchors are uncertain,
the converged RMSE for anchor location is around 1.1 m when
there is one user, while improves to 0.7 m when there are 5
users. Alternatively, with one certain reference anchor in the
system, the performance achieved with only one user is about
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converge to a similar accuracy level

when there is 1 certain anchor

Fig. 12. Steady-state RMSE performance of user localization under different
σα and σA values with two users in the system, and when either all anchors
are uncertain or when one anchor state is perfectly known.

0.6 m which is already better than that by having 5 users and
no known reference anchors. Furthermore, the achieved RMSE
with a known reference anchor reaches to around 0.3 m in
the 5-user case. Similarly, in Fig. 11b, we see that the highly
accurate orientation offset estimation of around 0.3◦ RMSE
can be achieved when there are 5 users and one certain anchor.
Additionally, a faster convergence is observed when more
users are considered in the system. Meanwhile, the estimation
performance of user localization is provided in Fig. 11c. In
general, the obtained performance is rather close to that of the
anchor locations shown in Fig. 11a. Similar conclusions can
be drawn, namely that multi-user approach helps improving
the performance and convergence time, and that the achieved
accuracy with one user and one known reference anchor is
already better than the case with 5 users and no known anchors.

Finally, we further address the performance of user location
estimation that is anyway one of the most important parameters
in any application, and specifically focus on the impact of
σA and σα. The results are shown in Fig. 12, covering the
cases of zero or one known reference anchor, and focusing
on a two-user system in this case. It can be observed that the
obtained improvement through the known reference anchor
is significant, especially at larger values of σA. Importantly,
through the known reference anchor, the user localization
performance becomes considerably more robust against both the
initial anchor location uncertainty and the anchor orientation
uncertainty. Additionally, the results show that clearly sub-
meter 3D user positioning accuracy can be reached in the
system. Considering the 5G NR requirements for horizontal and
vertical positioning accuracy in [61], the achieved sub-meter
3D positioning accuracy can be shown to satisfy requirements
for all positioning service levels regarding absolute positioning.
Similarly, as part of studying positioning use cases of 5G
NR in [62], 3GPP has evaluated the desirable horizontal and
vertical positioning accuracy of trolleys in factories as 0.5 m
and 1-3 m, respectively. When combining the given horizontal
and vertical accuracies into a 3D accuracy, it can be seen that
the achieved 3D sub-meter accuracy is adequate also for the
trolley use case. However, in certain use cases the importance

of horizontal and vertical accuracies can be fundamentally
different, and thus generalizing them to the 3D accuracy is not
necessarily always suitable.

Overall, based on the provided numerical results and their
analysis, especially from Fig. 10 to Fig. 12, we clearly see
that the benefit of having one known reference anchor in
the system is significant. The estimation performance can be
further enhanced by having more certain anchors, however,
the additional performance improvements are already relatively
smaller. Therefore, for any industrial or other applications
where the anchors may suffer from some uncertainty in their
states, it is highly recommended to have at least a single anchor
whose state can be precisely measured and known. In all cases,
the impact of multiple users is also beneficial.

VI. CONCLUSION

In this article, we formulated and presented an EKF-
based Bayesian framework – called MU-PoSAC – for jointly
estimating and tracking the 3D locations and time-varying clock
offsets of users, together with the unknown anchor locations
and orientation offsets. With specific focus on applications
in mmWave 5G NR networks, also AoA and ToA estimators
were provided building on beamformed uplink reference signal
measurements and novel multi-beam fusion processing. A vast
collection of numerical results was provided and analyzed, in
the context of an indoor industrial warehouse with moving
robots and other industrial vehicles as users, incorporating full
ray-tracing for accurate propagation modeling at the considered
28 GHz center frequency. On the physical measurement
accuracy side, the obtained results show that fusing multiple
beams is beneficial and that highly accurate AoA and ToA
measurements can be obtained with practical antenna array
models and reference signal bandwidths. In terms of the actual
positioning, synchronization and anchor state calibration, our
results show that estimating and tracking the overall system
state is technically feasible. Through the concatenated overall
state definition, our results also clearly show that having
multiple users in the system is beneficial for the state estimation
performance. Additionally, the results also show that having
one known reference anchor is further benefiting the estimation
accuracy. With one known anchor in the considered industrial
deployment scenario, estimation and tracking of the user
positions and anchor locations were shown to be feasible with
RMSE levels clearly below 1 m. Finally, the proposed EKF-
based joint estimation framework was shown to offer robustness
against intermittent blockage of LoS measurements. Our future
work will focus on extending the described Bayesian estimation
framework to cover also localization of the scatterers and other
landmarks in the environment, simultaneous to the positioning
of the users and anchors.
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