
Finite-Length Scaling of SC-LDPC Codes With a Limited Number of
Decoding Iterations

Downloaded from: https://research.chalmers.se, 2024-03-13 09:52 UTC

Citation for the original published paper (version of record):
Sokolovskii, R., Graell I Amat, A., Brännström, F. (2023). Finite-Length Scaling of SC-LDPC Codes
With a Limited Number of Decoding Iterations. IEEE Transactions on Information Theory, 69(8):
4869-4888. http://dx.doi.org/10.1109/TIT.2023.3257235

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

1

Finite-Length Scaling of SC-LDPC Codes
With a Limited Number of Decoding Iterations
Roman Sokolovskii, Graduate Student Member, IEEE, Alexandre Graell i Amat, Senior Member, IEEE,

and Fredrik Brännström

Abstract—We propose four finite-length scaling laws to predict
the frame error rate (FER) performance in the waterfall region of
spatially-coupled low-density parity-check code ensembles under
full belief propagation (BP) decoding with a limit on the number
of decoding iterations and a scaling law for sliding window
decoding, also with limited iterations. The laws for full BP
decoding provide a choice between accuracy and computational
complexity; a good balance between them is achieved by the law
that models the number of decoded bits after a certain number of
BP iterations by a time-integrated Ornstein-Uhlenbeck process.
This framework is developed further to model sliding window
decoding as a race between the integrated Ornstein-Uhlenbeck
process and an absorbing barrier that corresponds to the left
boundary of the sliding window. The proposed scaling laws yield
accurate FER predictions for the semi-structured code ensembles
proposed by Olmos and Urbanke.

Index Terms—Codes-on-graphs, finite-length code perfor-
mance, spatially-coupled LDPC codes, window decoding.

I. INTRODUCTION

Spatially-coupled low-density parity-check (SC-LDPC)
codes [1], [2] achieve capacity under suboptimal yet compu-
tationally feasible belief propagation (BP) decoding, which
was first observed numerically [2], then proved for the binary
erasure channel (BEC) [3] and later for the broad class of
binary-input memoryless symmetric channels [4]. Moreover,
it was shown that the minimum distance of regular SC-LDPC
code ensembles grows linearly with the block length [5].
Spatial coupling is also a powerful technique more broadly;
it has been applied to, e.g., turbo-like codes [6], product-like
codes [7], lossy compression [8], and compressed sensing [9].

The Tanner graph of an SC-LDPC code is constructed
by arranging the Tanner graphs of several uncoupled LDPC
codes into a sequence and interconnecting them according to
a predefined pattern. The interconnecting is done in such a
way so as to create structured irregularity at the boundaries
of the resulting chain, such that the bits at the boundaries are
better protected than those in the middle of the chain and are
more likely to be decoded successfully; during BP decoding,
information propagates from those boundaries inward in a
wave-like fashion.

The structured irregularity at the boundaries entails a loss
in code rate. The rate loss goes to zero as the chain length
grows, but so does the probability that the decoding waves
successfully propagate through the entire chain. A longer chain

This work was funded by the Swedish Research Council (grant 2016-4026).
R. Sokolovskii, A. Graell i Amat, and F. Brännström are with the

Communication Systems Group, Department of Electrical Engineering,
Chalmers University of Technology, SE-41296 Gothenburg, Sweden (email:
{roman.sokolovskii,alexandre.graell,fredrik.brannstrom}@chalmers.se).

also implies higher latency if BP decoding is performed on the
whole received sequence simultaneously, a scheme we refer
to as full BP decoding. To limit decoding latency, so-called
sliding window decoding, originally proposed in [10], is used
in practice. Sliding window decoding limits BP decoding to
a window of several spatial positions that slides through the
chain from the left boundary rightward, making a decision
on the bits that leave the window along the way and thus
limiting decoding latency to the size of the window. Further,
due to constraints on decoding latency and energy efficiency,
both full BP and sliding window decoding must in practice be
limited in terms of the maximum number of BP iterations.

To adopt an SC-LDPC code in a practical setting, the
system designer would have to specify a range of parameters,
including the underlying LDPC code ensemble, the intercon-
necting pattern, the length of the coupled chain, the size of
the sliding window, and the limit on the number of decoding
iterations. It is therefore important to understand the influence
of these parameters on error-correcting performance, which is
the subject of ongoing scientific inquiry.

The asymptotic performance of SC-LDPC codes (i.e., when
the block length of the component LDPC codes grows large)
is relatively well understood. Much less is known about their
finite-length behavior. Olmos and Urbanke proposed a finite-
length scaling law to predict the frame error rate (FER) of
SC-LDPC code ensembles under full BP decoding with an
unlimited number of iterations over the BEC [11]. The law
in [11] follows the approach proposed earlier in [12] for un-
coupled LDPC code ensembles and focuses on the number of
degree-one check nodes (CNs) available for peeling decoding.
Peeling decoding is equivalent in error-correcting performance
to BP decoding with unlimited iterations but is more tractable
analytically. A decoding failure corresponds to the peeling
decoder running out of degree-one CNs before recovering the
entire codeword. The authors estimate the probability of that
event using an exponential approximation to the first-hit time
distribution of an appropriately chosen Ornstein-Uhlenbeck
process [11]. This framework was later applied to protograph-
based [13] and generalized [14] SC-LDPC code ensembles.

The prediction in [11] captures the slope of the FER
curve well. However, it exhibits a gap to the simulated FER
performance. In [15], we closed this gap by proposing an
alternative scaling law that models the number of degree-
one CNs available for peeling decoding as a sum of two
independent Ornstein-Uhlenbeck processes that correspond to
the decoding waves from the left and right boundary of the
chain. We provided laws to also predict the bit and block
error rate performance. Importantly for practical applications,

2

π
b b
b

π
b b
b

π
b b
b

π
b b
b

π
b b
b

π
b b
b

π
b b
b

π
b b
b

π
b b
b

π
b b
b

π
b b
b

π
b b
b

b b
b

b b
b

b b
b

b b
b

b b
b

b b
b

b b
b

b b
b

b b
b

b b
b

WL(ℓ) = 3 WR(ℓ) = 7W = 4

0 1 2 3 4 5 6 7 8 9 10 118
spatial position i

N VNs

Fig. 1. Tanner graph of the terminated (dv, dc, L,N) SC-LDPC ensemble with dv = 3, dc = 6, L = 10, and N VNs per spatial position. The rectangular
cuboids marked with π are permutation blocks. The sliding window of length W = 4 is shown as the red dashed frame. The decision on the VNs in the first
3 spatial positions (gray) has already been made; the associated values are fixed. The VNs in position WL(ℓ) = 3 (green) are next to be decided upon and
fixed. The VNs in the next three positions (blue) participate in message passing, while those in positions WR(ℓ) = 7 and above (white) do not.

we proposed scaling laws for the frame, bit, and block error
rate under sliding window decoding, albeit still in the case of
unlimited number of iterations.

The scaling law for the FER under full BP decoding
from [15] was used in [16] to elucidate the non-trivial space
of trade-offs associated with the choice of code parameters
and extended in [17] to predict the error rate performance of
periodically-doped SC-LDPC code ensembles for streaming.
In [18], the authors optimize protograph-based SC-LDPC code
constructions under sliding window decoding using a criterion
derived from finite-length scaling models (the so-called win-
dow mean parameter); they show that taking into account the
finite-length scaling behavior of SC-LDPC code ensembles
during code optimization can yield codes that significantly
outperform their counterparts designed using asymptotic BP
thresholds only.

Our ambition is to make finite-length scaling laws the tool of
choice in such code parameter optimization. To that end, this
paper tackles the problem of predicting the FER of SC-LDPC
code ensembles over the BEC under both full BP and sliding
window decoding for the practical case of a limited number
of iterations. First, we consider full BP decoding and propose
four scaling laws that vary in accuracy and computational
complexity. One of these laws models the number of bits
recovered after a certain number of BP iterations by a time-
integrated Ornstein-Uhlenbeck process. We then extend this
framework and model sliding window decoding as a race
between an absorbing barrier that corresponds to the left
boundary of the window and an integrated Ornstein-Uhlenbeck
process (with an additional diffusion term) that corresponds
to the position of the left decoding wave. We estimate the
probability of the wave being absorbed at the barrier (and
thus overtaken by the sliding window) by numerically solving
the initial value problem of the corresponding Fokker-Planck
equation with appropriately chosen boundary conditions. The
proposed laws yield accurate predictions of the FER and allow
us to quantify performance degradation associated with the
introduction of the limit on the number of decoding iterations,
making practical code parameter optimization using finite-
length scaling laws a step closer to reality.

II. PRELIMINARIES

We consider the semi-structured (dv, dc, L,N) SC-LDPC
code ensemble introduced in [11]. Its Tanner graph is shown
in Fig. 1. To construct the Tanner graph of an element of the
(dv, dc, L,N) SC-LDPC code ensemble, one must first take
L Tanner graphs of length-N (dv, dc)-regular LDPC codes
of variable node (VN) degree dv and CN degree dc and
arrange them into L spatial positions indexed by i ∈ L =
{0, . . . , L − 1}. Each spatial position contains N VNs and
M = dv

dc
N CNs, where we assume M is an integer. We refer

to N as the component code length and to L as the chain
length. The set of all LN VNs in the Tanner graph—and
thus of all LN code bits—is referred to as the frame. The L
Tanner graphs of the individual (uncoupled) LDPC codes are
then interconnected as follows: each VN at position i ∈ L is
connected to dv CNs in positions [i, . . . , i+dv−1]. Specifically,
one CN is chosen uniformly at random among M CNs at
position i, another one at position i + 1, and so on until
position i+ dv − 1. To connect the overhanging edges at the
end of the chain, dv − 1 additional positions that contain CNs
only are appended, resulting in a terminated ensemble. The
generation of the elements from this ensemble is described in
detail in [11] and can be expressed in terms of choosing the
L+ dv − 1 permutation blocks in the Tanner graph in Fig. 1,
marked by π.

The ensemble is structured from the VN perspective—it is
certain that each VN is connected to CNs in dv different spatial
positions. The same cannot be said about the CNs. Indeed, a
CN at position i ∈ {dv−1, . . . , L−1} can be connected to dc
VNs from any non-empty subset of positions [i−dv+1, . . . , i],
depending on how the permutation block at position i reshuf-
fles the edges connected to VNs at positions [i−dv+1, . . . , i]
(see Fig. 1). This particular “semi-structured” ensemble is
proposed in [11] to simplify the analysis. The same approach
was later applied to protograph-based ensembles [13].

In addition to the terminated ensemble, we also consider
the truncated and unterminated ensembles. In the truncated
ensemble, the additional dv−1 positions with CNs only are not
added at the end of the chain of length L, and the overhanging
edges emanating from VNs at positions [L−dv+1, . . . , L−1]
are simply deleted from the Tanner graph. The degree of VNs

3

in these last dv − 1 positions is therefore reduced. In the
unterminated ensemble, the chain is neither terminated nor
truncated, resulting in a “semi-infinite” sequence of coupled
codes. We introduce the unterminated ensemble for the analy-
sis of sliding window decoding, and we evaluate the decoding
error probability over the first L′ positions of this semi-infinite
chain. Both the truncated and the unterminated ensemble have
higher code rates than the terminated ensemble; however, they
are not relevant as candidates for practical code constructions
and are instead introduced here for analytical purposes.

Key to impressive error-correcting performance of SC-
LDPC codes under BP decoding is the lower degree of CNs at
the terminated boundaries of the chain, i.e., at the left boundary
of the truncated and unterminated ensembles and at both
left and right boundaries of the terminated ensemble. During
BP decoding, information propagates from the terminated
boundaries of the chain inward in a wave-like fashion. The
finite-length scaling laws aim to estimate the probability that
such “decoding waves” fail to propagate through the entire
chain, which results in decoding error.

Full BP decoding entails a decoding latency of LN bits,
which is impractical for long spatially-coupled chains. To limit
decoding latency, sliding window decoding is used in practice,
where decoding is limited to VNs in a window of W spatial
positions (depicted as the red dashed rectangle in Fig. 1). After
a certain number of BP iterations, the decoder decides on the
values of the bits in the left-most spatial position within the
window (colored green in Fig. 1) and the window slides by
one position to the right over the Tanner graph. We index BP
decoding iterations by ℓ and denote the leftmost position of the
window by WL(ℓ). The first position just outside the window
is denoted by WR(ℓ), as illustrated in Fig. 1. Sliding window
decoding has a decoding latency of WN bits [10].

This paper investigates the influence of the limit on the
number of BP iterations on the error-correcting performance.
In the case of full BP decoding, we denote this limit by I
and treat it is as a parameter of the decoder. In the case of
sliding window decoding, the system designer should choose
two parameters instead: First, the number of BP iterations after
which the window slides for the first time, from position 0
to position 1, i.e., WL(ℓ) = 1, which we denote by Iin and
whose impact will be clarified later. Second, for WL(ℓ) ≥ 1,
the designer must specify the number of BP iterations before
the window slides further, which we denote by Is. The total
budget of BP iterations in the case of sliding window decoding
can be obtained from Iin and Is for a chain of length L as

I = Iin + (L− 1)Is . (1)

We consider transmission over the BEC with erasure prob-
ability ϵ.

A. Density Evolution

Let q(ℓ)i+j,i denote the probability that a CN at position i+ j
sends an erasure message to a VN at position i at BP iteration
ℓ. Likewise, let p(ℓ)i be the probability that a VN at position
i is erased, and p

(ℓ)
i,i+j the probability that a VN at position

i sends an erasure message to a CN at position i + j at BP

iteration ℓ. The CN update for the semi-structured ensemble
averages the incoming error probabilities as

q
(ℓ)
i+j,i = 1−

1− 1

dv

dv−1∑
j′=0

p
(ℓ−1)
i+j−j′,i+j

dc−1

. (2)

To circumvent the problem of the reduced-degree CNs at the
boundaries, the values of p

(ℓ−1)
i+j−j′,i+j that correspond to VN

indices i+j−j′ outside the chain—i.e., when i+j−j′ /∈ L—
are set to zero, implying that the VNs outside the chain are
not erased.

Since a VN at position i ∈ L is connected to dv consecutive
positions {i, . . . , i+dv−1}, as we discussed in the beginning
of Section II, the VN update for the semi-structured ensemble
is

p
(ℓ)
i,i+j = ϵ

∏
j′ ̸=j

q
(ℓ)
i+j′,i , (3)

and the a posteriori probability that a VN at position i remains
erased at iteration ℓ is

p
(ℓ)
i = ϵ

dv−1∏
j=0

q
(ℓ)
i+j,i . (4)

To numerically estimate the BP decoding threshold ϵ∗ for
a given (dv, dc, L,N) SC-LDPC code ensemble, we initialize
p
(0)
i,i+j = 1 for all i ∈ L, j ∈ {0, . . . , dv − 1} and iterate

equations (2)–(3) until the VN erasure probability (4) con-
verges either to zero (for ϵ ≤ ϵ∗) or to another fixed point (for
ϵ > ϵ∗) for all i.

B. Peeling Decoding

The finite-length analysis of BP decoding for the BEC
becomes more tractable by considering peeling decoding [19],
which is equivalent to BP decoding for an infinite number
of iterations. The peeling decoder gets stuck in the same
stopping sets and therefore yields the same performance as
the BP decoder [19]. At the initial stage of peeling decoding,
all VNs that correspond to non-erased bits are removed from
the Tanner graph. At every subsequent iteration, the decoder
selects one degree-one CN uniformly at random among all
degree-one CNs in the graph. Since the value of the code
bit associated with the VN connected to the chosen degree-
one CN can be recovered, the decoder removes both the CN
and VN from the Tanner graph along with dv adjacent edges
and modifies the parity-check equations associated with the
adjacent CNs according to the value of the recovered bit.
This may in turn create new degree-one CNs to choose from
(or remove some other degree-one CNs collaterally). Each
iteration of peeling decoding produces a new residual graph,
indexed by iteration number ℓPD. Decoding is successful if
eventually the decoder manages to peel off all VNs from
the original Tanner graph, resulting in an empty graph. This
happens if at every iteration of peeling decoding there is at
least one degree-one CN to choose from. On the other hand,
if the decoder runs out of degree-one CNs before recovering
all VNs, decoding gets trapped in a stopping set and fails.

The goal of scaling laws for LDPC codes in [12] and for
SC-LDPC codes in [11], [15] is to estimate the error rate

4

0 5 10 15 20 25
100

101

102
ᾰ α̃ β̃ εL

γ̆

2γ̆

2ν̆

ν̆

θ̆

truncated

terminated

Normalized peeling decoding iteration τPD

E
[r

1
(τ

P
D

)]
/
(ε

∗
−
ε)

Fig. 2. The evolution of E [r1(τPD)] during peeling decoding, normalized
by the distance to the BP threshold, for the (5, 10, L= 50) ensemble with
ϵ∗=0.4994 at ϵ=0.4875.

in the waterfall region, which is dominated by the stopping
sets whose size grows linearly with the block length N [12].
A scaling law therefore aims to estimate the probability of
the event that some VNs remain in the residual graph when
decoding stops, focusing on “large” stopping sets whose size
grows linearly with N .

We remark that the finite-length optimization of SC-LDPC
code and decoder parameters must consider their effect on
both the waterfall and the error-floor region. In the error-floor
region—in contrast to the waterfall region—the error probabil-
ity is dominated by small harmful substructures in the Tanner
graph known as stopping and trapping or absorbing sets. These
structures have been investigated in the context of SC-LDPC
codes in [20]–[22] and used to estimate the error floor for SC-
LDPC codes in [23]. Such error-floor analysis complements
the waterfall-oriented scaling-law approach developed in [11],
[12], [15], and in this paper.

C. The Scaling Laws for Unlimited Number of Iterations

The general approach to finite-length scaling of SC-LDPC
code ensembles originally proposed in [11] for full BP decod-
ing and improved and extended to sliding-window decoding
in [15] is to focus on the stochastic process associated with
the number of degree-one CNs in the residual graphs during
peeling decoding normalized by N [24],

r1(τPD) =
1

N

∑
u

R1,u(τPD) , (5)

where τPD = ℓPD/N is the normalized time of peeling
decoding, and R1,u(τPD) is the number of degree-one CNs
at position u at iteration ℓPD. Since peeling decoding requires
at least one degree-one CN at every iteration, a decoding error
occurs if r1(τPD) hits zero before recovering all VNs that are
erased by the channel. We refer to a realization of r1(τPD) as
a decoding trajectory.

0 50 100 150 200
100

101

102
Istart β̃

γ̆BP

2γ̆BP

Iend

2ν̆BP

ν̆BP

θ̆BP

truncated

terminated

BP iteration `

E
[v

B
P
(`

)]
/
(ε

∗
−
ε)

Fig. 3. The evolution of E [vBP(ℓ)] during BP decoding, normalized by the
distance to the BP threshold, for the (5, 10, L = 50) ensemble with ϵ∗ =
0.4994 at ϵ=0.47.

For a fixed τPD, the distribution of r1(τPD) converges to
a Gaussian as N → ∞ and concentrates around its mean
E [r1(τPD)] with expectation taken over the ensemble, channel,
and peeling decoding realizations [11], [12]. The evolution
of E [r1(τPD)] over τPD can be obtained by numerically
solving a system of coupled differential equations called mean
evolution. Mean evolution equations for the semi-structured
(dv, dc, L,N) SC-LDPC code ensemble are provided in [11].
For illustration, Fig. 2 shows the mean evolution curves
E [r1(τPD)] normalized by ϵ∗ − ϵ for the terminated (blue
curve) and truncated (red curve) (5, 10, L=50, N) SC-LDPC
code ensemble at ϵ=0.4875.

Notably, E [r1(τPD)] exhibits a steady-state phase where it
remains essentially constant [11]. We denote the range of τPD
corresponding to the steady state of the terminated ensemble
as
[
α̃, β̃

]
. Here and in the following, we denote the variables

associated with the terminated ensemble with a tilde, e.g., α̃,
and those associated with the truncated ensemble with a breve,
e.g., ᾰ—the two “extrema” in a tilde allude to the presence
of two decoding waves in the terminated ensemble, and a
single “extremum” in a breve to a single wave in the truncated
ensemble.

During the steady state, the two waves propagating in the
terminated chain are each equivalent to the single wave present
in the truncated chain. In [15], we proposed to isolate a single
wave by focusing on the truncated chain and modeling the
first two moments of r1(τPD) in the same way as is done for
the terminated chain in [11], namely

E [r1(τPD)] ≈ γ̆ (ϵ∗ − ϵ) , (6)

Var [r1(τPD)] ≈
ν̆

N
, (7)

Cov
[
r1

(
τ
(0)
PD

)
, r1

(
τ
(1)
PD

)]
≈ ν̆

N
exp
(
−θ̆
∣∣∣τ (0)PD −τ

(1)
PD

∣∣∣) , (8)

for a triple of real positive numbers (γ̆, ν̆, θ̆).

5

Apart from the BP decoding threshold ϵ∗, the scaling law for
unlimited number of BP iterations requires the five parameters
(α̃, β̃, γ̆, ν̆, θ̆). The first three can be estimated by numerically
solving mean evolution equations. We estimate them for
several ϵ and linearly interpolate the values in between. The
last two can be estimated by solving an augmented system
of differential equations called covariance evolution [11].
Instead, we estimate (ν̆, θ̆) from a set of realizations of r1(τPD)
for a fixed (ϵ,N) and treat them as parameters that depend
on (dv, dc) only. For our running example of the (5, 10, L,N)
SC-LDPC code ensemble, we use ν̆ = 0.424 and θ̆ = 1.64
as in [15]. The meaning of the scaling parameters for peeling
decoding is illustrated in Fig. 2.

The key idea behind the scaling laws in [11], [15] is to
model r1(τPD) in the steady state by an Ornstein-Uhlenbeck
process, parametrized to match the first two moments of
r1(τPD) (6)–(8). Olmos and Urbanke model the steady state
of the terminated ensemble by a single Ornstein-Uhlenbeck
process [11]; we proposed instead a refined model that relies
on two independent Ornstein-Uhlenbeck processes and yields
more accurate predictions [15]. We summarize the model
in [15] here and use it as the starting point for our analysis of
decoding with a limited number of iterations.

To estimate the FER, we consider the normalized time
of peeling decoding at which the number of degree-one
CNs—and hence the value of r1(τPD)—drops to zero, referred
to as the first-hit time τ0,

τ0 = min{τPD : r1(τPD) = 0} . (9)

For the terminated ensemble, to exhaust all available degree-
one CNs, the peeling decoder must run out of them in both the
left and right decoding wave. Accordingly, we model τ0 as the
sum of two independent variables A and B that correspond to
the first-hit time of the left and right wave, respectively [15],
as

τ0 = A+B . (10)

The number of degree-one CNs available to each wave is
modeled as an independent Ornstein-Uhlenbeck process. It
is known that the first-hit time distribution for an Ornstein-
Uhlenbeck process converges to an exponential distribution
with mean µ̆0 as N → ∞ [11],

A,B ∼ Exp(µ̆0) , (11)

where µ̆0 = µ0(γ̆, ν̆, θ̆) and

µ0(γ, ν, θ) =

√
2π

θ

∫ γ
√

N/ν(ϵ∗−ϵ)

0

Φ(z)e
1
2 z

2

dz , (12)

with Φ(z) denoting the CDF of the standard Gaussian distri-
bution. The PDF of the number of degree-one CNs recovered
by the left and right wave during the steady state is

fA(x) = fB(x) ≈ µ̆−1
0 exp

(
− x

µ̆0

)
. (13)

Let S denote successful decoding—specifically, the event
that a codeword from a randomly sampled element from the
code ensemble is fully recovered by the employed decoder
after transmission over the BEC with erasure probability ϵ.

Since the total number of degree-one CNs that must be
recovered during the steady state of the terminated ensemble
is β̃ − α̃, the probability of successful full BP decoding can
be expressed as

Pr {S} = Pr
{
A+B > β̃ − α̃

}
(14)

=

∞∫
β̃−α̃

x∫
0

fA(z)fB(x− z)dzdx .

The approximation for the FER in [15] is obtained from (14)
and (13) as

P
(L)
f,t ≈ 1−

(
1 +

β̃ − α̃

µ̆0

)
exp

(
− β̃ − α̃

µ̆0

)
. (15)

In a similar manner, the FER of an unterminated SC-
LDPC code ensemble evaluated over L′ spatial positions is
approximated in [15] as

P
(L′)
f,u ≈ 1− exp

(
−ϵL′ − ᾰ

µ̆0

)
, (16)

which is the same approximation used by Olmos and Urbanke
for the terminated ensemble, but with the scaling parameters
estimated from the truncated ensemble instead of from the
terminated ensemble. In other words, the law in (16) estimates
the probability that the decoding wave from the left boundary
of the unterminated chain successfully propagates through the
first L′ positions.

The scaling law for the unterminated ensemble is used here
and in [15] in the analysis of sliding window decoding, where
the sliding window does not allow the right wave to propagate
to the left by further than W positions, effectively limiting the
first L−W positions to decoding by a single wave only. As
we showed in [15], this results in a “two-phase” decoding,
where the first phase comprises the first L−W positions and
includes a single decoding wave from the left, and the second
phase comprises the last W positions and may contain both
the wave from the left and the wave from the right. The FER
in the case of sliding window decoding with unlimited number
of BP iterations can then be approximated as [15]

P
(L,W)
f,t,sw = 1−

(
1− P

(L−W)
f,u

)(
1− P

(W)
f,t

)
, (17)

where P
(·)
f,t is given in (15), and P

(·)
f,u is given in (16).

Lastly, we will use the speed of a decoding wave in our
analysis. Specifically, we assume that a wave traverses VPD

positions in N peeling decoding iterations. We estimate VPD

from the average number of erased VNs in the middle of the
coupled chain during the steady state as

VPD ≈ N · E

[
V⌊L/2⌋

(
β̃ + α̃

2

)]−1

, (18)

where E [Vu(τPD)], the average number of erased VNs at
position u at normalized iteration τPD, is produced alongside
E [r1(τPD)] by numerically solving mean evolution [15].

For future reference, Table I provides the essential notation
used throughout the paper. The table is split into three blocks.
The first block covers the ensemble, channel, and decoder

6

TABLE I
ESSENTIAL NOTATION

Alias Meaning

ϵ BEC erasure probability
dv VN degree
dc CN degree
L number of VN positions
N number of bits (VNs) in each position
I limit on the number of full BP iterations
W size of the sliding window (in VN positions)
Iin number of iterations before the sliding window slides

for the first time
Is number of iterations in each subsequent sliding win-

dow position
VW 1/Is, the speed of the sliding window

ℓPD PD iteration number
r1(τPD) the number of degree-one CNs in the Tanner graph,

normalized by N , at peeling decoding iteration ℓPD =
N · τPD

(α̃, β̃) boundaries of the steady state of E [r1(τPD)] for the
terminated ensemble

γ̆ steady-state level of E [r1(τPD)] /(ϵ
∗ − ϵ) for the

truncated ensemble
ν̆ variance constant for r1(τPD) (truncated ensemble)
θ̆ covariance decay constant for r1(τPD) (truncated en-

semble)
VPD speed of the decoding wave during peeling decoding

(truncated ensemble, normalized iterations)

ϵ∗ BP decoding threshold
ℓ BP iteration number
vBP(ℓ) the number of bits recovered in BP iteration ℓ, nor-

malized by N
Istart the number of BP iterations before the onset of the

steady state of E [vBP(ℓ)]
Iend the number of BP iterations for decoding to finish once

the two waves “meet” (terminated ensemble)
γ̆BP steady-state level of E [vBP(ℓ)] /(ϵ

∗ − ϵ) for the
truncated ensemble

ν̆BP variance constant for vBP(ℓ) (truncated ensemble)
θ̆ covariance decay constant for vBP(ℓ) (truncated en-

semble)
VBP speed of the decoding wave during BP decoding

parameters, and thus can be viewed as input to the scaling
laws. The second and third blocks cover the notation used
to describe the properties of the peeling and BP decoder,
respectively.

We now proceed to develop the scaling laws for decoding
with a limited number of iterations; first, for full BP decod-
ing in Sections III–V, then for sliding window decoding in
Section VI.

III. THE SPEED OF THE DECODING WAVES AND THE
DURATION OF THE STEADY STATE

Besides providing BP thresholds for SC-LDPC code ensem-
bles, density evolution, described in Section II-A, can be used
to answer the following questions: How many BP iterations are
needed before the steady state begins and the decoding waves
establish? How fast do decoding waves propagate under BP
decoding? How many iterations does it take for the decoding
waves to collapse once they meet at the end of the steady
state?

Let vBP,i(ℓ) be the fraction of code bits at position i
recovered in BP iteration ℓ. The expected value of vBP,i(ℓ)

can be obtained from the decrease in the erasure probability
across iterations of density evolution as

E [vBP,i(ℓ)] = p
(ℓ−1)
i − p

(ℓ)
i (19)

with p
(ℓ)
i from (4). Define vBP(ℓ) ≜

∑
i∈L vBP,i(ℓ). The

number of code bits recovered in iteration ℓ is then N·vBP(ℓ),
with E [N · vBP(ℓ)] = N · E [vBP(ℓ)], where

E [vBP(ℓ)] =
∑
i∈L

E [vBP,i(ℓ)] . (20)

The evolution of E [vBP(ℓ)] / (ϵ
∗ − ϵ) through BP iterations

is shown in Fig. 3 for the terminated (blue curve) and truncated
(red curve) (5, 10, L = 50, N) SC-LDPC code ensemble at
ϵ = 0.47. In contrast to the mean evolution curves (Fig. 2),
the onset of the steady state happens at the same time for
the truncated and terminated ensemble because BP decoding
resolves all code bits corresponding to VNs connected to
degree-one CNs in parallel.1

Denote the number of BP iterations before the onset of the
decoding waves by Istart and the number of BP iterations it
takes for the waves to collapse once they meet by Iend. The
parameters Istart and Iend are illustrated in Fig. 3. We estimate
(Istart, Iend) by tracking the change in E [vBP(ℓ)] / (ϵ

∗ − ϵ)
across iterations and comparing it with a numerical threshold
(the value of 10−2 is used; Istart corresponds to the first ℓ
when the magnitude of the change becomes smaller than the
threshold, and Iend corresponds to the number of iterations
between the first ℓ when the change subsequently rises above
the threshold and E [vBP(ℓ)] collapses to zero, see Fig. 3).
Both Istart and Iend are estimated for several values of ϵ, and
linear interpolation is used to estimate the intermediate values.
A similar procedure was used in [15] to estimate (ᾰ, α̃, β̃) for
peeling decoding.

As introduced in Section II, we denote the limit on the total
number of BP iterations by I . For decoding to be successful,
the decoding waves must meet before the effective deadline of

Ieff = I − Istart − Iend (21)

iterations of BP decoding after the beginning of the steady
state phase.

Denote the speed of the decoding wave under BP decoding
by VBP, measured in positions traveled by the wave per BP
iteration. Fig. 4 shows VBP as a function of ϵ, VBP(ϵ). The
black dots represent the values estimated directly from density
evolution by tracking the mid-point of the wave fronts of
p
(ℓ)
i over density evolution iterations. Their apparent noisiness

stems from the discretization of the estimated positions of the
wave fronts. The red solid curve is a quadratic fit to these data;
we use VBP from the smoothed (red) curve in the numerical
calculations.

There is an alternative way to estimate VBP(ϵ). Since a
single iteration of BP decoding recovers all VNs connected to
degree-one CNs, we assume that a single BP iteration during
the steady state is equivalent to as many peeling decoding

1This interpretation of BP decoding for the BEC is made rigorous in [25]
with the concept of parallel peeling decoding, which the authors prove to be
equivalent to BP decoding on a per-iteration basis.

7

0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Probability of erasure ϵ

V
B
P
(ϵ
)

density evolution
peeling decoding (22)

Fig. 4. The speed of the waves for the (5, 10, L) SC-LDPC code ensemble
under BP decoding.

iterations as there are degree-one CNs available for each of
the waves. This assumption allows us to approximate VBP(ϵ)
as

VBP(ϵ) ≈ VPD(ϵ) · γ̆(ϵ∗ − ϵ) , (22)

where VPD(ϵ) is the speed of the waves under peeling decod-
ing, which can be calculated as shown in (18), and γ̆(ϵ∗ − ϵ)
is the average number of degree-one CNs available to one
decoding wave during the steady state of peeling decoding
(see (6)).

The approximation (22) is also shown in Fig. 4 (blue dashed
curve). The good match between the direct density evolution-
based estimation of VBP(ϵ) (red) and the approximation in (22)
(blue dashed) indicates that the number of degree-one CNs
available to a decoding wave can be used as a crucial bridge
between the steady-state behavior of peeling decoding and
BP decoding. (This bridge between peeling and BP decoding
was used by Olmos and Urbanke to estimate γ̃ from density
evolution instead of from mean evolution [11, Sec. III.D]; we
use it to characterize the effect of imposing a limit on the
number of BP iterations.)

IV. FINITE-LENGTH SCALING: CONSTANT
PROPAGATION MODEL

For a limited number of BP iterations, the probability of
successful decoding (14) should be rewritten as

Pr {S} = Pr
{
A+B > β̃−α̃

⋂
enough iterations

}
; (23)

the decoding waves must jointly recover β̃ − α̃ degree-one
CNs, and they must do so within the allotted budget of Ieff
BP iterations. The first condition is the same as in the law for
unlimited BP iterations in (14). The second condition is novel
and is operationalized below.

Density evolution shows that the decoding waves propagate
throughout the chain with a constant speed in the limit of
N → ∞. A natural first step toward a finite-length scaling
law would be to also assume a constant propagation speed in
the context of a finite N—i.e., to assume that with every BP
iteration each wave travels by exactly VBP positions.

To understand why a limit on the number of iterations
affects the probability of successful decoding, consider the
following scenario: imagine one of the waves fails immedi-
ately at the beginning of the chain; imagine further that VBP

Leff

Dmin Dmin

L

1 2

Fig. 5. Schematic illustration of the model.

is too small for the other wave to propagate through the whole
chain and meet the first wave within Ieff iterations. In that case
decoding would fail even though it could have been successful
without a limit on I .

Our approach is to incorporate a limit on the number of
BP iterations into the scaling laws for peeling decoding—
analyzing BP decoding directly proves to be challenging. First,
we need to account for the width of the decoding waves under
peeling decoding. It takes β̃− α̃ normalized peeling decoding
iterations for the waves to propagate through the chain with
a constant speed of VPD positions per normalized peeling
decoding iteration (see Fig. 2). This means that the length
(in positions) covered during the steady state is

Leff = (β̃ − α̃)VPD . (24)

We schematically illustrate the meaning of Leff , which can be
thought of as the effective length of the chain, in Fig. 5.

How much of that effective length should a wave cover
under a limit on the number of BP iterations? Without loss
of generality, take the left decoding wave, marked by 1 in
Fig. 5. In Ieff BP iterations during the steady state, the wave
can propagate by up to VBPIeff positions. This means that for
successful decoding, wave 2 should propagate by at least

Dmin = max {0, Leff − VBPIeff}

≈ VPD ·max
{
0, β̃ − α̃− γ̆(ϵ∗ − ϵ)Ieff

}
(25)

positions to meet wave 1 before the deadline, as illustrated in
Fig. 5. We need to bear in mind that, mutatis mutandis, the
same logic applies to both the first and second wave, hence
both waves need to propagate by at least Dmin positions for
decoding to be successful.

Fig. 6 shows an example of Dmin calculated using (25) for
the terminated (5, 10, L = 50, N) SC-LDPC code ensemble
and I = {175, 250, 300} (solid curves). We observe that Dmin

is zero up to a certain value of ϵ and then increases with
increasing ϵ. Dmin = 0 means that a single decoding wave has
enough time to propagate all the way along the chain (i.e.,
successful decoding is possible even if the other wave fails
immediately after the onset of the steady state), so the limit
on the number of iterations does not change the probability of
decoding error compared to the case of unlimited number of
iterations. For larger ϵ, Dmin may exceed Leff/2 (black dashed
curve), which is when the waves do not get a chance to meet
in time at all and decoding is bound to fail.

We can now use Dmin to translate the limitation on the
number of BP iterations into the language of the first-hit times
A and B. To require a wave to travel by at least Dmin positions
is to ask it to survive for at least τmin = Dmin/VPD peeling

8

0.455 0.460 0.465 0.470 0.475 0.480 0.485
0

5

10

15

20

25

Leff/2

Probability of erasure ϵ

D
m
in

I = 300

I = 250

I = 175

Fig. 6. The minimum propagation distance Dmin (25) for the (5, 10, L = 50)
SC-LDPC code ensemble under BP decoding for I = {175, 250, 300}.

0.455 0.460 0.465 0.470 0.475 0.480 0.485
10−3

10−2

10−1

100

Probability of erasure ε

FE
R

unlim. iter.
I = 300

I = 250

I = 175

Fig. 7. FER for the (5, 10, L = 50, N = 1000) SC-LDPC code ensemble
under BP decoding for different limits on the number of iterations I (solid
curves) and its approximation using (28) (corresponding dash-dotted curves).

decoding iterations. Bearing in mind that both waves need to
survive that long to meet the deadline, we can rewrite the
second condition in (23) as

enough iterations ⇐⇒ A,B > τmin . (26)

Since the first-hit times A and B are exponentially dis-
tributed (11), the two conditions in (23) can be combined as

Pr {S} = Pr
{
A+B > β̃ − α̃

⋂
A,B > τmin

}
(27)

=

∞∫
β̃−α̃

x−τmin∫
τmin

fA(z)fB(x− z)dzdx

=

(
1 +

β̃ − α̃− 2τmin

µ̆0

)
exp

(
− β̃ − α̃

µ̆0

)
,

where we assumed Dmin < Leff/2; otherwise, Pr {S} = 0.
The FER can therefore be estimated as

Pf ≈ 1−

(
1 +

β̃ − α̃− 2τmin

µ̆0

)
exp

(
− β̃ − α̃

µ̆0

)
(28)

if Dmin < Leff/2 and 1 otherwise.
Fig. 7 compares the simulated FERs (solid curves) for

the terminated (5, 10, L = 50, N = 1000) SC-LDPC code

ensemble with the approximation (28) (dash-dotted curves)
under different limits on the number of BP iterations I =
{175, 250, 300}. Naturally, as the limit I increases, the solid
curves approach the FER curve for unlimited iterations (green
dashed) calculated using (15). The scaling law (28) is a reason-
ably accurate approximation to the simulated FER, especially
given that the only change to the scaling law for unlimited
iterations (15) is the introduction of the additional term −2τmin

in (28). However, juxtaposing Figs. 6 and 7 reveals that the
analytical approximation does not capture the simulated FER
behavior in the regions where Dmin is close either to zero
(where the FER approximation curve joins the green dashed
curve, as for I = 300 at around ϵ = 0.468) or to Leff/2 (where
there may be a discontinuous jump to Pf = 1, as for I = 175
at around ϵ = 0.47).

V. FINITE-LENGTH SCALING: RANDOMIZED
PROPAGATION DISTANCE MODELS

In this section, we introduce three scaling laws that drop
the assumption that a decoding wave propagates by the same
distance in every BP iteration. Indeed, the partial mismatch of
the scaling law (28) to the simulated FER curves in Fig. 7
suggests that the assumption of constant wave propagation
does not hold in practice for a finite number of iterations—
when VBP(ϵ) is sufficient for the limitation on the number of
iterations not to matter for the scaling law (i.e., when predicted
FER curves merge with that for full BP decoding), the waves
may still fail to meet before the deadline. Likewise, when
VBP(ϵ) becomes so low that the law predicts the FER to be
equal to one, the waves may still succeed.

Let us denote by nPD(K) the number of normalized peeling
decoding iterations (and hence the number of VNs recovered)
that corresponds to K BP iterations for a decoding wave
that has not run out of degree-one CNs. The scaling law
in Section IV and the conversion between VPD and VBP

in (22) effectively assume nPD(K) to be constant and equal
to γ̆(ϵ∗ − ϵ)K. In this section, we treat nPD(K) as a random
variable instead.

A decoding wave stops either because it runs out of degree-
one CNs or because it reaches the limit on the number of BP
iterations, whichever event happens first. Correspondingly, let
X1 and X2 denote the number of VNs recovered by the first
and second wave by that time,

X1 = min
{
A,n

(1)
PD(Ieff)

}
,

X2 = min
{
B,n

(2)
PD(Ieff)

}
,

(29)

where A and B are the first-hit times of the first and second
wave, respectively, and the superscripts to nPD(Ieff) empha-
size that these are two independent random variables that
correspond to the two decoding waves. (The two waves are
numbered left to right as shown in Fig. 5.) The probability of
a successful decoding can then be rewritten as

Pr {S} = Pr
{
X1 +X2 > β̃ − α̃

}
. (30)

Essentially, the model (30) incorporates the second require-
ment in (23)—that there should be enough BP iterations

9

2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

nPD(Ieff)

PD
F

Fig. 8. The PDF of the Ornstein-Uhlenbeck-simulated nPD(Ieff) for the
(5, 10, L,N = 1000) SC-LDPC code ensemble under BP decoding for I =
200 and ϵ = 0.47.

for the two waves to meet—into X1 and X2 via a random
variable nPD(Ieff), as opposed to incorporating it via a constant
boundary τmin as in (27).

Assuming A and nPD(Ieff) to be independent and A to be
exponentially distributed (see (11)), we approximate the PDF
of X1 as

fX(x) = fA(x)
[
1− FnPD

(x)
]
+ fnPD

(x)
[
1− FA(x)

]
≈ 1

µ̆0
exp

(
− x

µ̆0

)[
1−FnPD

(x)
]

+ fnPD
(x) exp

(
− x

µ̆0

)
, (31)

where fnPD
and FnPD

denote the PDF and the CDF of
nPD(Ieff), respectively. The same logic applies to the second
wave, so the PDF of X2 is also fX(x). We can now use (31)
to estimate the FER similarly to (14) as

Pf = 1− Pr {S} ≈ 1−
∞∫

β̃−α̃

x∫
0

fX(z)fX(x− z)dzdx . (32)

In summary, we need to approximate the distribution of
nPD(Ieff) and use it in (31)–(32) to predict the FER. We
provide three ways to model nPD(Ieff) below. The third way
results in a scaling law that offers the best trade-off between
accuracy and computational complexity; however, it combines
the features of the first two, and we present all three for clarity
of exposition.

A. Simulating nPD(Ieff) Using an Ornstein-Uhlenbeck Process

We can approximate the distribution of nPD(Ieff) using the
following heuristic: We keep the assumption that an iteration
of BP corresponds to as many iterations of peeling decoding
as there are degree-one CNs available to decode. However, we
no longer assume the normalized number of available degree-
one CNs across iterations during the steady state, r1(τPD),
to be constant. Instead, we assume that each BP iteration is
equivalent to advancing along a peeling decoding trajectory—
i.e., a realization of r1(τPD)—by as much as there are degree-
one CNs in the current position on the peeling decoding
trajectory. This heuristic model allows us to directly simulate
the PDF of nPD(Ieff) from Monte-Carlo realizations of the
Ornstein-Uhlenbeck process that correspond to realizations

0.455 0.460 0.465 0.470 0.475 0.480 0.485
10−3

10−2

10−1

100

Probability of erasure ε

FE
R

unlim. iter.
I = 300

I = 250

I = 175

Fig. 9. FER for the (5, 10, L = 50, N = 1000) SC-LDPC code ensemble
under BP decoding for different limits on the number of iterations I (solid
curves) and its approximation using the PDF of nPD(Ieff) from (33) based
on the Ornstein-Uhlenbeck process (corresponding dash-dotted curves).

of the steady-state of r1(τPD). Indeed, from each Ornstein-
Uhlenbeck realization of r1(τPD) we can generate a realization
of nPD(K) as

nPD(K) = nPD(K − 1) + r1 (nPD(K − 1)) , (33)

starting with nPD(1) = r1(0). We remark that when r1(τPD) is
set to be constant and equal to E [r1(τPD)] from (6), nPD(K)
boils back down to γ̆(ϵ∗ − ϵ)K.

Fig. 8 shows an example PDF of nPD(Ieff) simulated
via (33) from Monte-Carlo realizations of the Ornstein-
Uhlenbeck process with parameters (γ̆, ν̆, θ̆) in (6)–(8) chosen
to match the first two moments of r1(τPD) (blue histogram).
We observe that the average value of nPD(Ieff) (vertical black
dashed line) is smaller than γ̆(ϵ∗ − ϵ)Ieff (vertical red solid
line). Further, the left tail of the PDF is “heavier” than the
right. This can be explained by the asymmetry in the way
temporal correlation in r1(τPD) influences nPD(K) in (33):
when r1 (nPD(K − 1)) is large, nPD(K) will end up far away
from nPD(K − 1), so the next increment in nPD will be
statistically close to a sample from an independent Gaussian
random variable centered at γ̆(ϵ∗−ϵ). When r1 (nPD(K − 1))
is small, on the other hand, the next increment in nPD will also
likely be small.

The first scaling law we propose in this section uses the
simulated distribution of nPD(Ieff) based on the Ornstein-
Uhlenbeck model (33) in (31)–(32) to estimate the FER.
The corresponding approximations are shown in Fig. 9 for
the terminated (5, 10, L = 50, N = 1000) SC-LDPC code
ensemble and I = {175, 250, 300} (dash-dotted curves). The
match between the predicted and simulated (solid) FER curves
is remarkable—evidently, the iterative model based on the
Ornstein-Uhlenbeck process (33) is a good approximation of
the behavior of BP decoding. The drawback of the model
is that it requires Monte-Carlo approximation of the PDF
of nPD(Ieff) for every combination of (ϵ,N, I); however,

10

simulating nPD(Ieff) via (33) is still far less computationally
complex than simulating BP decoding.

B. Gaussian Propagation Distance Model

In this section, we introduce a model that does not require
Monte-Carlo simulation of the distribution of nPD(Ieff) as in
Section V-A. Instead, the model approximates nPD(Ieff) by a
Gaussian random variable. To that end, we will rely on the
fact that a time integral of an Ornstein-Uhlenbeck process is
normally distributed, as we describe below.

1) Ornstein-Uhlenbeck process. Necessary background: A
generic Ornstein-Uhlenbeck process Zt can be described using
the following stochastic differential equation:

dZt = −b(xt −m)dt+ σdBt , (34)

where Bt is the standard Wiener process, b and σ are real
positive constants, and m is real. The first term on the right-
hand side of (34) can be conceptualized as a mean-reverting
factor and the second term as a random fluctuation. The
constants b and σ determine their relative importance.

For a fixed sufficiently large t, the distribution of Zt is
Gaussian. Specifically,

Zt ∼ N
(
m,

σ2

2b

)
. (35)

Moreover, for sufficiently large t+ s,

Cov [Zt, Zs] =
σ2

2b
exp (−b |t− s|) . (36)

Crucially, Ornstein and Uhlenbeck showed that a time-
integrated Ornstein-Uhlenbeck process is a Gaussian random
variable [26]. For t → ∞,

t∫
0

Ztdt ∼ N
(
mt,

σ2

b2
t

)
. (37)

This result is the cornerstone of our approximation of
nPD(Ieff) as a Gaussian random variable.

2) Ornstein-Uhlenbeck process as a model for BP decod-
ing: Let vBP(t) denote the number of new VNs (normalized
by N) resolved in BP iteration ℓ, where t is

t = ℓ · (ϵ∗ − ϵ) . (38)

The quantity vBP(t) can be interpreted as the instantaneous
decoding speed, measured in VNs (normalized by N) per
BP iteration. Here, the time variable t is normalized by
the distance to the BP threshold (ϵ∗ − ϵ) instead of by N
as is the case for τPD, discussed in Section II-C. Up to
the normalization of time, vBP(t) is equivalent to vBP(ℓ)
introduced in Section III. We use different time variables in
these two cases to avoid confusion.

The process vBP(t) was introduced in [25] to provide
an alternative finite-length scaling law for SC-LDPC code
ensembles that yields less accurate predictions of the FER
than the law in [15] (and even than the law in [11]) but does
not rely on peeling decoding or mean evolution. Indeed, as
opposed to E [r1(τPD)], E [vBP(t)] can be obtained directly
from density evolution, as we discuss in Section III (see (20)).

The authors show that vBP(t) exhibits a steady-state phase;
they approximate the first two moments of this process during
the steady-state phase as

E [vBP(t)] ≈ γ̆BP (ϵ
∗ − ϵ) , (39)

Var [vBP(t)] ≈
ν̆BP
N

, (40)

Cov [vBP(t), vBP(s)] ≈
ν̆BP
N

exp
(
−θ̆BP |t− s|

)
. (41)

We apply the same refinement of the law as we did in [15]
and model the two-wave process for the terminated ensemble
as a combination of two independent Ornstein-Uhlenbeck
processes. We therefore estimate the triple (γ̆BP, ν̆BP, θ̆BP)
from the truncated ensemble, as we did in [15] for peel-
ing decoding to estimate (γ̆, ν̆, θ̆). (We review the peeling
decoding-based laws in Section II-C.) The steady-state level
constant γ̆BP is estimated along with Istart and Iend from
density evolution: once Istart and Iend are estimated as de-
scribed in Section III, we estimate γ̆BP from the average of
E [vBP(ℓ)] for ℓ ∈ [Istart, Iend]. The covariance parameters
ν̆BP and θ̆BP are estimated from Monte-Carlo simulations
of BP decoding for a single fixed (N, ϵ). For our running
example of the (5, 10, N, L) SC-LDPC code ensemble, ν̆BP
and θ̆BP are estimated for (N = 5000, ϵ = 0.465) to be
ν̆BP ≈ 0.41, θ̆BP ≈ 2.74. The scaling parameters γ̆BP, ν̆BP,
and θ̆BP are illustrated in Fig. 3 along with Istart and Iend.

We follow [25] and model vBP(t) in the steady state by an
Ornstein-Uhlenbeck process. Equating the moments (39)–(41)
to those in (35)–(36) yields

m = γ̆BP (ϵ
∗ − ϵ) , b = θ̆BP , σ2 = 2θ̆BP · ν̆BP

N
. (42)

3) Normal approximation based on a time-integrated
Ornstein-Uhlenbeck process: The total number of VNs de-
coded in Ieff iterations, nPD(Ieff), can be expressed as a time
integral of vBP(t), divided by (ϵ∗ − ϵ) to convert the units of
speed to VNs per normalized iteration,

nPD(Ieff) ≈
1

ϵ∗ − ϵ

tstart+teff∫
tstart

vBP(t)dt

=
1

ϵ∗ − ϵ

teff∫
0

vBP(t+ tstart)dt , (43)

where

tstart = Istart (ϵ
∗ − ϵ) , teff = Ieff (ϵ

∗ − ϵ) . (44)

We can now use the expression for a time-integrated
Ornstein-Uhlenbeck process (37) with appropriately chosen
parameters (42) to approximate the distribution of nPD(Ieff)
from (43) as

(ϵ∗−ϵ)nPD(Ieff) ∼ N
(
mteff ,

σ2

b2
teff

)
(a)
= N

(
γ̆BP (ϵ

∗−ϵ) teff ,
2ν̆BP

Nθ̆BP
teff

)
(45)

(b)
= N

(
γ̆BP (ϵ

∗−ϵ)
2
Ieff ,

2ν̆BP

Nθ̆BP
(ϵ∗−ϵ) Ieff

)
,

11

0.455 0.460 0.465 0.470 0.475 0.480 0.485
10−3

10−2

10−1

100

Probability of erasure ε

FE
R

unlim. iter.
I = 300

I = 250

I = 175

Fig. 10. FER for the (5, 10, L = 50, N = 1000) SC-LDPC code
ensemble under BP decoding for different limits on the number of iterations
I (solid curves) and its approximation using (31)–(32) with the distribution
of nPD(Ieff) from (46) (corresponding dash-dotted curves).

nPD(Ieff) ∼ N

(
γ̆BP (ϵ

∗ − ϵ) Ieff ,
2ν̆BPIeff

Nθ̆BP (ϵ∗ − ϵ)

)
, (46)

where in (a) we used (42) and in (b) we used (44). Notably,
the approximation (46) reveals that both mean and variance
of nPD(Ieff) grow linearly with Ieff . We must also remark that
the approximation (46) does not account for the possibility that
the underlying Ornstein-Uhlenbeck process becomes negative.

The second scaling law we propose in this section uses
the normal approximation (46) to the distribution of nPD(Ieff)
in (31)–(32) to estimate the FER. The corresponding pre-
dictions are shown in Fig. 10 for our running example of
the terminated (5, 10, L = 50, N = 1000) SC-LDPC code
ensemble and I = {175, 250, 300} (dash-dotted curves).
We observe that, while being a good approximation to the
simulated FER, the predictions are more optimistic than the
predictions based on the simulated Ornstein-Uhlenbeck pro-
cess from Section V-A (cf. Fig. 9).

4) Shifted normal approximation: Part of the reason behind
the mismatch between the simulated and predicted FER in
Fig. 10 is that (39) overestimates the average number of VNs
decoded in a BP iteration for finite N , as shown in Fig. 11
for the truncated (5, 10, L = 50, N = 1000) SC-LDPC code
ensemble and ϵ = 0.47. For the same ensemble and ϵ, Fig. 12
shows that the gap in the steady-state level translates into a
shift in the location of the Gaussian approximation (46) to
nPD(Ieff) (green curve) relative to the simulated histogram
(thin blue curve). Estimating the gap without resorting to
Monte-Carlo simulations proves to be difficult; moreover, even
if we adjust the location of the Gaussian by shifting its mean
to account for the gap, the resulting distribution (red curve)
lags behind the simulated histogram (thin blue curve). Overall,
the simulated PDF based on the iterative Ornstein-Uhlenbeck
model in Section V-A (purple curve) is the most accurate.
On the other hand, the figure suggests that the two Gaussian
models capture the variance of nPD(Ieff) rather well.

0 100 200 300 400
101

102

103

Iteration of BP decoding `

N
um

be
r

of
de

co
de

d
V

N
s

Fig. 11. The number of VNs decoded per BP iteration for the truncated
(5, 10, L = 50, N = 1000) SC-LDPC code ensemble and ϵ = 0.47: the
simulated average from 105 trajectories (blue solid curve) and the mean from
density evolution (red dashed curve). Several simulated trajectories are shown
as thin gray lines.

2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

nPD(Ieff)

PD
F

Fig. 12. The PDF of the total number of VNs decoded during the steady state
for the truncated (5, 10, L = 50, N = 1000) SC-LDPC code ensemble,
ϵ = 0.47 and I = 200: the simulated histogram (thin blue curve), the
Gaussian approximation (46) with density evolution- (green curve) or BP
simulation-based (red curve) mean, and the simulated PDF based on the
iterative Ornstein-Uhlenbeck model from Section V-A (purple curve).

With that in mind, we propose a hybrid model where
the Gaussian approximation (46) is shifted to be located at
the average of the iterative Ornstein-Uhlenbeck model (33).
Specifically, let f(ϵ,N, Ieff) denote that average. Unfortu-
nately, obtaining f(ϵ,N, Ieff) analytically is challenging; we
resort to Monte-Carlo simulations of the iterative Ornstein-
Uhlenbeck model (33) to estimate it. These simulations indi-
cate that f(ϵ,N, Ieff) depends linearly on Ieff—we can thus
estimate the slope of f(ϵ,N, Ieff) as cf = f(ϵ,N, I ′eff)/I

′
eff for

a specific I ′eff and obtain the values of f(ϵ,N, Ieff) for other
Ieff by scaling that mother curve as cfIeff , thereby avoiding
the need to re-simulate f(ϵ,N, Ieff) for every Ieff . This is
equivalent to using

m = cf (47)

instead of m = γ̆BP (ϵ
∗ − ϵ) in (42).

Putting it all together, the third and last scaling law we pro-
pose in this section approximates the distribution of nPD(Ieff)

12

0.455 0.460 0.465 0.470 0.475 0.480 0.485
10−3

10−2

10−1

100

Probability of erasure ε

FE
R

unlim. iter.
I = 300

I = 250

I = 175

Fig. 13. FER for the (5, 10, L = 50, N = 1000) SC-LDPC code
ensemble under BP decoding for different limits on the number of iterations
I (solid curves) and its approximation using (31)–(32) with the distribution
of nPD(Ieff) from (48) (corresponding dash-dotted curves).

as

nPD(Ieff) ∼ N

(
cfIeff ,

2ν̆BPIeff

Nθ̆BP (ϵ∗ − ϵ)

)
(48)

and uses it in (31)–(32) to estimate the FER.
The resulting FER predictions for the (5, 10, L = 50, N =

1000) SC-LDPC code ensemble are shown in Fig. 13 for
I = {175, 250, 300} (dash-dotted curves). We chose I ′eff =
350−Istart−Iend, estimated cf = f(ϵ,N = 1000, I ′eff)/I

′
eff for

several ϵ, and linearly interpolated it to obtain the intermediate
values. (We remark that Istart and Iend depend on ϵ in their
turn; as we discuss in Section III, we also estimate them for
several ϵ and use linear interpolation to obtain the intermediate
values.) The resulting predictions are very close to those in
Fig. 9 by the iterative Ornstein-Uhlenbeck model (i.e., by the
first scaling law proposed in this section).

We conclude that the hybrid model provides the best trade-
off between accuracy and analytical tractability. Importantly,
unlike the first scaling law in this section, it does not require
Monte-Carlo simulation for every combination of (ϵ,N, I)—
estimating cf from a single value of the number of BP
iterations allows us to obtain the whole family of FER curves
for different limits on the number of BP iterations.

C. Discussion

Before we tackle the FER prediction for sliding window
decoding with a limit on the number of iterations in Sec-
tion VI, let us summarize the performance-complexity trade-
offs associated with the four scaling laws we proposed for
full BP decoding. To that end, Fig. 14 groups the simulated
(black solid curve with pentagons) and predicted FER curves
for the terminated (5, 10, L = 50, N = 1000) SC-LDPC code
ensemble under full BP decoding with I = 175 using the
constant propagation model (28) (black dash-dotted curve)
and the randomized propagation model (31)–(32) with the

0.455 0.460 0.465 0.470 0.475 0.480 0.485
10−3

10−2

10−1

100

Probability of erasure ε

FE
R

unlim. iter.
unlim. iter. (sim.)
constant propagation
iterative OU
Gaussian
Gaussian, shifted
simulated

Fig. 14. Simulated FER for the (5, 10, L = 50, N = 1000) SC-LDPC code
ensemble under BP decoding for I = 175 (solid curve) and its approximations
(dash-dotted curves).

approximated distribution of nPD(Ieff) based on the itera-
tive Ornstein-Uhlenbeck model (33) (red dash-dotted curve
with squares), on the normal distribution for the integrated
Ornstein-Uhlenbeck process (46) (blue dash-dotted curve with
circles), and on the shifted normal distribution (48) (purple
dash-dotted curve with triangles). For reference, we have also
included the simulated FER curve for unlimited number of
iterations (green solid curve with diamonds) alongside our
prediction from [15] (given in (15)) (green dashed curve).

Besides the scaling parameters also required for the scaling
law with unlimited iterations (15), the black dash-dotted pre-
diction curve obtained via the constant propagation model (28)
requires calculating τmin, which is a function of quantities we
estimate from mean and density evolution, as we describe in
Section IV. In that sense, the constant propagation model (28)
is no more computationally challenging than the scaling law
for unlimited iterations (15). On the other hand, the constant
propagation model does not capture well the transition regions
of the FER curve, as exemplified by the discontinuous jump
of the black dash-dotted curve around ϵ = 0.47 and discussed
in Section IV.

The iterative Ornstein-Uhlenbeck model (33) yields very
accurate FER predictions (red dash-dotted curve with squares);
however, it requires Monte-Carlo simulation of the Ornstein-
Uhlenbeck process and numerical approximation of the PDF
of nPD(Ieff) from the simulated realizations for every (ϵ,N, I).
The normal approximation based on the time-integrated
Ornstein-Uhlenbeck process (46), shown in Fig. 14 as the
blue dash-dotted curve with circles, is computationally less
complex than the iterative Ornstein-Uhlenbeck model once
the parameters (γ̆BP, ν̆BP, θ̆BP) are estimated, since it does not
require estimating a probability distribution via Monte-Carlo
simulation. However, it is also less accurate. The accuracy
can be improved by shifting the Gaussian to be located at
the mean of the iterative Ornstein-Uhlenbeck model, which
we describe in Section V-B4 to obtain the purple dash-dotted
curve with triangles in Fig. 14 via (48). The shifted normal ap-

13

proximation is less computationally complex than the iterative
Ornstein-Uhlenbeck model—not only does it rely on Gaussian
distribution and thus simplify numerical integration in (32),
but it also avoids simulating the iterative Ornstein-Uhlenbeck
model (33) for every I—while achieving similar accuracy. It
offers the best trade-off between complexity and accuracy, and
we build upon the same shifted model in Section VI below
to provide a scaling law for sliding window decoding with a
limit on the number of iterations.

Let us review the steps required to apply the scaling law
based on the shifted normal approximation. The user needs
to implement density and mean evolution for the ensemble of
interest, and the Monte-Carlo simulators of BP and peeling
decoding and of the Ornstein-Uhlenbeck process. Density
evolution is used to obtain the decoding threshold ϵ∗ and, for
different ϵ, the values of Istart and Iend (the unshifted normal
approximation requires γ̆BP estimated in the same way). Mean
evolution is used to obtain the boundaries and the level of
the peeling decoding steady state (α̃, β̃, γ̆) for several ϵ. For
a single fixed (N, ϵ), Monte-Carlo simulation of the peeling
decoding is required to estimate the variance and covariance
decay parameters of the steady state, (ν̆, θ̆); analogously,
Monte-Carlo simulation of BP decoding is required to estimate
(ν̆BP, θ̆BP). Finally, Monte-Carlo simulations of the Ornstein-
Uhlenbeck process for several (ϵ,N) are needed to estimate
cf . These parameters are fed to (48) and (31)–(32) to estimate
the FER for different (ϵ,N, I).

It would greatly benefit the applicability of the finite-length
scaling approach to be able to estimate (ν̆, θ̆) and (ν̆BP, θ̆BP)
without resorting to Monte-Carlo simulation (and without
implementing covariance evolution [11]). Similarly, it would
be interesting to find a way to estimate cf without simulating
the Ornstein-Uhlenbeck process for different (ϵ,N). Providing
faster ways to estimate these values would facilitate further
adoption of finite-length scaling laws for code and decoder
parameter optimization and is an interesting direction of future
research. The values that are estimated from density and mean
evolution, on the other hand, are relatively easy to obtain.

VI. FINITE-LENGTH SCALING: SLIDING WINDOW
DECODING WITH A LIMITED NUMBER OF ITERATIONS

The core idea behind the scaling laws in Section V is to
model the number of bits recovered by a given number of BP
iterations as a time integral of the Ornstein-Uhlenbeck process
vBP(t). In this section, we further develop this approach and
use it to estimate the FER under sliding window decoding.
First, however, we need to consider the specific ways in which
a limit on the number of iterations affects the probability
of decoding error, which we discuss in the two following
subsections.

A. Competition Between the Left Wave and the Sliding Win-
dow

In addition to the potential failure of the decoding waves
that we analyzed in [15], a limit on the number of BP
iterations in sliding window decoding introduces a kind of
race between the left decoding wave and the sliding window.

Let PL(ℓ) ∈ [0, L− 1] denote the position of the leftmost VN
that remains unrecovered by iteration ℓ. We will refer to PL(ℓ)
as the position of the left wave at iteration ℓ. Analogously, let
WL(ℓ) denote the leftmost position within the sliding window,
and WR(ℓ) = WL(ℓ) + W the next position just outside the
right boundary of the sliding window. If, at any iteration ℓ,
the left boundary of the window overtakes the wave, decoding
fails, even though it could potentially have succeeded had
the number of iterations not been limited. Let O denote this
overtaking event,

O =
{
PL(ℓ) < WL(ℓ) for some ℓ ∈ [1, I]

}
. (49)

A necessary condition for successful decoding is that O does
not happen.

The setup we are considering can be illustrated by means
of the following analogy. Suppose a user is watching a video
via a streaming service. The video is being downloaded at a
rate that fluctuates around a certain average. After an initial
buffering period, the device starts playing the video. Then the
event O in question is that the buffer is exhausted (and thus
the video frozen) at least once during playback.

B. Reduced Maximum Propagation Distance for the Right
Wave

Apart from the possibility of the window overtaking the
left wave, the limit on the number of iterations also affects
decoding by reducing the maximum distance that can be
possibly traveled by the right wave (once the sliding window
reaches the right boundary of the chain). When the number
of decoding iterations is not limited, we assume that the right
wave can travel by up to W positions, which is reflected in
our scaling law for sliding window decoding (17) proposed
in [15]. Here, we account for the presence of a limit on the
number of iterations by estimating the maximum number of
positions the right wave can travel to the left while the sliding
window is moving to the right, which we denote by W ′ ≤ W .

We assume the following three-phase process: In the first
phase, which begins when the sliding window starts to cover
the last VN position (i.e., the right boundary of the window has
reached the end of the coupled chain) and lasts Istart iterations,
the right wave forms. Then, in the second phase, the right
wave and the window move toward each other. Finally, in
the third phase, which lasts Iend iterations, the two decoding
waves meet and collapse. During the first and third phase the
right wave does not travel, whereas the window moves to the
right with speed VW = 1/Is. During the second phase, the
right wave travels leftward with speed VBP, and the window
moves rightward with speed VW. The maximum number of
positions the right wave can travel, W ′, corresponds to the
distance covered by the right wave in the second phase.

During the first and third phase, the window slides by

(Istart + Iend)VW (50)

positions while the right wave does not move. The remaining

W − (Istart + Iend)VW (51)

14

positions will be covered by the window and the wave jointly
with speed VBP + VW, which will take[

W − (Istart + Iend)VW

]
· 1

VBP + VW
(52)

iterations. During that time, the right wave will have traveled
by

W ′ =
[
W − (Istart + Iend)VW

]
· VBP

VBP + VW
(53)

positions, which is the adjusted size of the sliding window
we use in our model below. Naturally, as the limit on the
number of iterations is relaxed, VW → 0 in (53) and therefore
W ′ → W .

C. General Form of the Scaling Law

We incorporate the limit on the number of iterations during
sliding window decoding into our model via the two effects
outlined above, namely, the possibility that the window over-
takes the left wave (an event denoted by O) and the reduction
of the maximum distance the right wave can travel. In essence,
successful decoding requires that (i) the overtaking O does
not happen; (ii) the left wave does not run out of VNs to
decode while propagating through the first L−W ′ positions;
and (iii) the left and right wave jointly cover the last W ′

positions. Conditions (ii) and (iii) are equivalent to the two-
phase model we proposed in [15] to estimate the FER under
unlimited iterations as in (17); the only adjustment is that the
size of the second phase is reduced from W to W ′, defined
in (53), to account for the reduction of the maximum reach of
the right wave, as discussed in more detail in Section VI-B.
Condition (i) is introduced in Section VI-A and is novel.

Modeling the three conditions as independent events, we
approximate the FER under sliding window decoding with a
limit on the number of BP iterations as

Pf = 1−
(
1− Pr {O}

)
·
(
1− P

(L−W ′)
f,u

)(
1− P

(W ′)
f,t

)
, (54)

where P
(L−W ′)
f,u and P

(W ′)
f,t are the estimated FERs for the

unterminated and terminated SC-LDPC code ensembles of
length L − W ′ and W ′, and are defined in (15) and (16),
respectively.

The rest of the section is devoted to the estimation of
Pr {O}, the core of our finite-length scaling law for sliding
window decoding with a limited number of iterations.

D. Modeling the Race Between the Left Wave and the Window

The general idea behind our approach is to model the
stochastic process associated with the position of the left wave,
PL(ℓ), by a scaled time integral of the Ornstein-Uhlenbeck
process that corresponds to vBP(ℓ), the normalized number
of bits recovered in iteration ℓ defined in Section III, with
an additional noise term. The wave cannot overtake the right
boundary of the window, WR(ℓ), because no BP iterations
are performed there. On the other hand, if the wave is itself
overtaken by the left boundary, WL(ℓ), decoding is bound to
fail. This motivates us to incorporate the boundaries of the

window into our model as an absorbing barrier at WL(ℓ) and
a reflecting barrier at WR(ℓ). When a stochastic process hits
an absorbing barrier, it remains absorbed indefinitely. When
a stochastic process hits a reflecting barrier, it is reflected
back inside the domain [27]. The overtaking event O that
we introduced in Section VI-A in (49) corresponds to PL(ℓ)
having been absorbed by iteration I . The probability of this
event can be estimated by tracking the evolution of the PDF of
PL(ℓ) across iterations. That evolution can in turn be described
by a partial differential equation called the Fokker-Planck
equation [27]. We numerically solve the initial value problem
for the Fokker-Planck equation for PL(ℓ) with the boundary
conditions that correspond to an absorbing barrier at WL(ℓ)
and a reflecting barrier at WR(ℓ) and obtain the estimation of
the probability of O.

1) Position of the left wave as an integrated Ornstein-
Uhlenbeck process: The scaling law for full BP decoding
proposed in Section V uses a time integral of the Ornstein-
Uhlenbeck process vBP(ℓ) as a model for the total number of
VNs (normalized by N) decoded in a given number of BP
iterations. In the context of sliding window decoding, we are
interested instead in the position of the wave after a number
of iterations. The basic element of our model is the conversion
of the normalized number of VNs decoded in BP iteration ℓ,
vBP(ℓ), to the number of positions traveled by the wave in that
iteration. We assume that N VNs decoded during the steady
state of BP decoding advance the wave by VPD positions—i.e.,
by the same number of positions as for peeling decoding (18).
The number of positions traveled in iteration ℓ is then

vBP(ℓ)VPD (55)

and the total number of positions traveled in ℓ steady-state BP
iterations is

PL(ℓ) = nPD(ℓ)VPD , (56)

where nPD(ℓ) is the number of VNs decoded in ℓ steady-state
BP iterations that we introduced in Section V. We can use the
model (43) of nPD(ℓ) in (56) to obtain

PL(ℓ) = nPD(ℓ)VPD =
VPD

ϵ∗ − ϵ

ℓ(ϵ∗−ϵ)∫
0

vBP(t)dt . (57)

For convenience, we have assumed here that iteration ℓ = 0
corresponds to the beginning of the steady state when the
position of the wave is zero.

To declutter notation, we do not use the time t normalized
by the distance to the threshold (38) as we do in Section V and
in (57). Instead, we use a continuous version of the variable
ℓ with a unit of time also measured in BP iterations, denoted
by τ . The model (57) can be rewritten in terms of τ as

PL(ℓ) =

ℓ∫
0

vBP(τ)VPD dτ . (58)

As we do for vBP(t) in Section V-B2, we model vBP(τ)
by an Ornstein-Uhlenbeck process of the form (34). The

15

parameters b and σ need to be rescaled relative to those in (42),
resulting in

m = cf , b = θ̆BP (ϵ
∗ − ϵ) ,

σ2 = 2θ̆BP (ϵ
∗ − ϵ)

ν̆BP
N

;
(59)

the two models (i.e., the one with rescaled time t and the
one with rescaled b and σ) are equivalent and yield identical
predictions. We remark that in this section we use the same
value for the average steady-state level m of vBP(τ) as in the
shifted normal approximation (47).

The scaling law for full BP decoding in Section V requires
the probability distribution of the time integral of an Ornstein-
Uhlenbeck process for a specific t, which is known to be
Gaussian (37). The analysis of sliding window decoding
requires a more granular approach, since we need to track the
evolution of PL(ℓ) over iterations. In other words, we need
to treat PL(ℓ) as a stochastic process in its own right. This is
complicated by the fact that an integrated Ornstein-Uhlenbeck
process of the form (37) or (58) is not Markov. However, the
two-dimensional processη(τ) = vBP(τ)VPD , PL(τ) =

τ∫
0

η(s) ds

 (60)

is Markov and can be analyzed using standard tools for
diffusion processes [27]. (A diffusion process can informally
be thought of as a continuous-time Markov processes with
continuous sample paths [27].) The corresponding stochastic
differential equation is [28, Eq. (35)]{

dη(τ) = −b(η(τ)−m)dτ + σ1dBτ

dPL(τ) = η(τ)dτ ,
(61)

where Bτ is the standard Wiener process. To account for the
scaling of the Ornstein-Uhlenbeck process vBP(τ) (defined
via (34) with parameters (59)) by VPD in (60), m and σ1

in (61) should be rescaled relative to those in (59), resulting
in

m = cfVPD , b = θ̆BP (ϵ
∗ − ϵ) ,

σ2
1 = 2θ̆BP (ϵ

∗ − ϵ)V 2
PD

ν̆BP
N

.
(62)

The need for a subscript in the diffusion coefficient σ1 will
become apparent in the next subsection.

2) Additional diffusion of the left wave’s position: To an-
swer whether the integrated Ornstein-Uhlenbeck process (61)–
(62) is a good model for the propagation distance of the left
wave, it can be tested against direct Monte-Carlo simulation
of the decoding process. Fig. 15 compares the distribution of
PL(ℓ) obtained via direct simulation (blue filled histogram)
with the one estimated by simulating PL(τ) (red dashed
curve) and ⌊PL(τ)⌋ (green solid curve) using (61)–(62). The
integrated Ornstein-Uhlenbeck model captures the average
position of the wave relatively well (the means of the blue
and green histogram are approximately 78 and 80 positions,
respectively, after ℓ=412 BP iterations) but underestimates its
variance. In other words, the uncertainty in the wave’s position
does not come solely from the variation in the number of
decoded VNs; there must be other factors at play.

50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

PL(τ)

PD
F

Fig. 15. The histogram of the positions of the left wave PL(τ) after τ = 412
BP iterations for the (5, 10, L,N = 1000) SC-LDPC code ensemble with
ϵ = 0.455. Direct Monte-Carlo simulation of the decoding process (blue bars),
numerical simulation of the integrated Ornstein-Uhlenbeck process (61)–(62):
continuous (red dashed curve) and discretized (green solid curve) position. The
difference in variance between the blue and green histograms is clear.

We model this additional source of uncertainty via an ad-
ditional diffusion term that affects PL(τ) directly. Throughout
iterations, even if the number of decoded VNs is known, the
positions of these VNs is subject to random fluctuation. As
Fig. 15 shows, by time τ that fluctuation accumulates into a
difference in variance between simulated PL(ℓ) and ⌊PL(τ)⌋
from the model (61)–(62). We denote the variance of the
simulated PL(ℓ) by σ2

sim(ℓ) and that of ⌊PL(τ)⌋ from (61)–(62)
by σ2

model(ℓ). We introduce a parameter σ2
2 that corresponds

to additional per-iteration variance in position,

σ2
2 =

σ2
sim(ℓ)− σ2

model(ℓ)

ℓ
, (63)

and incorporate that additional source of variance into our
model by changing (61) to{

dη(τ) = −b(η(τ)−m)dτ + σ1dBτ

dPL(τ) = η(τ)dτ + σ2dB
′
τ ,

(64)

where B′
τ is another standard Wiener process independent of

Bτ . The rationale behind this model is that the variance of the
standard Wiener process grows linearly with time [27]; adding
the term σ2dB

′
τ in (64) results in an additional variance of σ2

2ℓ
in PL(ℓ) compared with the model in (61), thereby canceling
the mismatch between the simulated and the modeled variance
in (63) but “spreading” this variance evenly across iterations.

We treat σ2 as a scaling parameter that depends on (dv, dc)
only. We rely on a set of simulated realizations of the decoding
process for a certain triple (ϵ,N, ℓ) to estimate σ2

sim. For
our running example of the (5, 10, L,N) SC-LDPC code
ensemble, we use (ϵ = 0.455, N = 1000, ℓ = 412) and obtain
σ2 ≈ 0.1179.

As an aside, we remark that the video streaming analogy we
introduced in Section VI-A can be stretched further to include
the additional uncertainty we are modeling here. Indeed,
the amount of downloaded data is not the only factor that
determines how much time of playback is gained. This is also
affected by, e.g., how much movement occurs in consecutive
frames of the video, assuming the video is compressed before
transmission.

16

BP iteration τ

Sp
at

ia
l

po
si

tio
n

0 `∗ `∗ + Is

0

1

2

3

4

5

6

7

8

E [PL(τ)]

WL(τ)

Fig. 16. Schematic illustration of the proposed model for the race between
the left wave PL(τ) and the left boundary of the window WL(τ) from (66).
The average position of the wave is shown as the blue solid line. The position
of the window is shown as the red dashed line. The gray curves represent the
minimum and maximum values observed for the position of the wave for
a number of simulated realizations of PL(τ). The range of values between
them is shadowed. It is apparent that the spread of PL(τ) grows with τ . Even
though the wave (blue solid line) moves faster than the window (red dashed
line) on average, some realizations of PL(τ) do get overtaken by the window.

3) Modeling the boundaries of the sliding window: We are
now ready to incorporate the sliding window into our model.
In essence, we do so by limiting the process PL(ℓ) to the
range from WL(ℓ) to WR(ℓ), i.e., to the range of positions
covered by the sliding window at iteration ℓ. Indeed, PL(ℓ)
cannot be larger than WR(ℓ) because sliding window decoding
does not perform any BP iterations there. Similarly, if PL(ℓ)
ever becomes smaller than WL(ℓ), the overtaking O happens
and decoding fails. We account for these effects in our model
by introducing an absorbing barrier at WL(ℓ) and a reflecting
barrier at WR(ℓ).

During decoding, the sliding window moves in discrete
steps. It is convenient to smoothen this movement and assume
it to be continuous and linear instead. We denote the continu-
ously moving boundaries of the window by WL(τ) and WR(τ).
The setup we use is illustrated in Fig. 16. The red dashed line
corresponds to WL(τ), which will be included in the model
as an absorbing barrier. Its slope is known and equal to VW.
What remains to be specified is the iteration where WL(τ)
crosses 1, which we denote by ℓ∗ (see Fig. 16).

The value of ℓ∗ is what couples the model for PL(τ) with
WL(τ). First, ℓ∗ depends not only on Iin but also on the time
it takes for the wave to form, Istart. A natural choice for ℓ∗ in
that regard would be Iin−Istart: it takes Istart iterations for the
steady state to establish, which eats away from the budget of
Iin initial iterations, and then the window slides to position 1.
However, numerical simulations show that PL(Istart) is already
around one, not zero. In our model, we would like instead
to set the initial position of the wave to zero. We therefore
subtract from Istart a term that corresponds to m−1 in (62),
which is the average time it takes for the wave to propagate

by one position, and set

ℓ∗ = Iin − Istart + c−1
f V −1

PD . (65)

Using our knowledge that WL(ℓ
∗) = 1 and that the slope

of WL(τ) is VW, we obtain the continuous version of WL(ℓ)
as

WL(τ) = τVW + 1− ℓ∗VW . (66)

For simplicity, we ignore the fact that WR(ℓ) remains flat for
the first ℓ∗ iterations and let

WR(τ) = WL(τ) +W . (67)

With (66)–(67) we have ensured that the boundaries of
the window, WL(τ) and WR(τ), grow linearly with τ . They
correspond to time-dependent absorbing and reflecting barriers
and make the domain of PL(τ) change over time. We remove
that dependency by subtracting the time-dependent term τVW

from PL(τ). That corresponds to subtracting VW from η(τ),
which can in turn be expressed as a change in m.

Putting it all together, we use the model (64) with

m = cfVPD − VW , b = θ̆BP (ϵ
∗ − ϵ) ,

σ2
1 = 2θ̆BP (ϵ

∗ − ϵ)V 2
PD

ν̆BP
N

,
(68)

and the boundaries

WL = 1− ℓ∗VW , absorbing , (69)
WR = WL +W , reflecting , (70)

which no longer depend on τ . The initial conditions are η(0) ∼
N
(
m,σ2

1/(2b)
)

as in (35) and PL(0) = 0.
The probability of the overtaking event O corresponds to

the probability of PL(τ) being absorbed at the barrier WL by
the time ℓ∗+(L−1)Is. The latter probability can be obtained
by solving the Fokker-Planck equation for (η(τ), PL(τ)) with
appropriately chosen initial and boundary conditions. The
following subsection provides a summary of the associated
results for general multidimensional diffusion processes.

4) Necessary background on the Fokker-Planck equation:
Let Y τ be a time-homogeneous diffusion process on Rd

defined as the solution to the Itô stochastic differential equa-
tion [27, Ch. 3]

dY (τ) = b(Y (τ))dτ + σ(Y (τ))dBτ , (71)

where Bτ is the standard Wiener process on Rn, b(Y) ∈ Rd

is a drift vector, and σ(Y) ∈ Rd×n. The matrix Σ(Y) =
σ(Y)σ(Y)T ∈ Rd×d is known as the diffusion matrix of
Y (τ). Let the initial condition Y (0) be a random vector
with probability density p0(Y) independent of Bτ . Then the
probability density p(Y , τ) of Y (τ) is the solution to the
initial value problem for the Fokker-Planck (also known as
forward Kolmogorov) equation

∂p

∂τ
= ∇ ·

(
−b(Y)p+

1

2
∇ · (Σ(Y)p)

)
(72)

= −
d∑

i=1

∂

∂yi
(bi(Y)p) +

1

2

d∑
i,j=1

∂2

∂yi∂yj
(Σij(Y)p) ,

p(Y , 0) = p0(Y) ,

17

where y{i,j} , bi(Y) , and Σij(Y) denote the components of
Y , b(Y) , and Σ(Y), respectively [27, Proposition 3.3 and Eq.
(4.1)]. The Fokker-Planck equation describes the evolution of
the probability density of Y (τ) over time.

Absorbing or reflecting barriers affect p(Y , τ) through
additional boundary conditions for the Fokker-Planck equa-
tion (72). An absorbing barrier Ba imposes a Dirichlet bound-
ary condition on (72), namely

p(Y , τ) = 0 ∀Y ∈ Ba . (73)

Likewise, a reflecting barrier Br translates into a Neumann
boundary condition for (72). Specifically,

n ·
(
b(Y)p− 1

2
∇ · (Σ(Y)p)

)
= 0 ∀Y ∈ Br , (74)

where n denotes a vector normal to Br. In other words, the
probability density must vanish at the absorbing barrier Ba,
and there should be no probability flow at the reflecting barrier
Br [27, pp. 90–91]. The probability mass lost by p(Y , τ) is
equal to the probability of Y (τ) having been absorbed at Ba

by the time τ ,

Pr {Y (τ) absorbed at Ba} = 1−
∫
Ω

p(Y , τ)dY , (75)

assuming Ba to be the only absorbing barrier present [27,
p. 239]. The integration is performed over Ω that denotes the
domain of Y (τ).

5) The Fokker-Planck equation for the proposed model:
The model (64) is of the form (71) with

Y (τ) =

[
η(τ)
PL(τ)

]
, b(Y) =

[
−b(η −m)

η

]
,

σ(Y) =

[
σ1 0
0 σ2

]
, and Bτ =

[
Bτ

B′
τ

]
.

(76)

We can therefore use (72)–(74) to derive the Fokker-Planck
equation for the evolution of the PDF p(η, PL, τ) of the
process (64) as

∂p

∂τ
=

∂b (η −m) p

∂η
− η

∂p

∂PL
+

σ2
1

2

∂2p

∂η2
+

σ2
2

2

∂2p

∂P 2
L

,

p(η, PL, 0) = p0(η, PL) , (77)

with boundary conditions

p (η,WL, τ) = 0 ,

ηp (η,WR, τ)−
σ2
2

2

∂p (η, PL, τ)

∂PL

∣∣∣∣
PL=WR

= 0 ,
(78)

where WL and WR are defined in (69) and (70), respectively,
and the parameters (m, b, σ1, σ2) are given in (68) and (63).

As we specify in Section VI-D3, the initial distribution of
η(τ) and PL(τ) should be η(0) ∼ N

(
m,σ2

st

)
and PL(0) = 0,

where σ2
st = σ2

1/(2b). We should therefore set p0(η, PL) to
a PDF whose marginal for η is the PDF of N

(
m,σ2

st

)
and

for PL the Dirac delta function. Handling such a distribution
numerically is challenging; instead, we set p0(η, PL) to the
PDF of the correlated two-dimensional Gaussian distribution

N
([

m
0

]
,

[
σ2
st ρδσst

ρδσst δ2

])
, (79)

where ρ → 1 and δ → 0. As δ → 0, the PDF of PL tends to the
Dirac delta function as required; the correlation parameter ρ
should tend to 1 because as τ → 0 , η(τ) and its integral PL(τ)
become ever more dependent. The use of the PDF of (79)
allows us to avoid the aforementioned numerical issues by
backing ρ and δ off from their limits.

6) Numerical solution to the Fokker-Planck equation: To
the best of our knowledge, the closed-form solution to the
Fokker-Planck equation (77) in the presence of the boundary
conditions (78) is not available. We therefore resort to solv-
ing (77)–(78) numerically using FiPy, a finite-volume solver
of partial differential equations [29]. The range of η is limited
to m ± 4σst to cover most of the probability mass without
overstretching the domain, and that of PL to [WL,WR]. The
resulting rectangular domain is discretized into a regular grid
with η and PL split into 200 and 20W segments, respectively.
We set ρ = 0.99 and δ = 0.1. The solver treats (77) as a
convection-diffusion equation; we use implicit convection and
diffusion terms [29], which allows us to choose a large time
step 1 without encountering numerical stability issues.

The numerical solution is propagated forward in time until
the window is slid through the entire chain, i.e., until

τ∗ = ℓ∗ + (L− 1)Is . (80)

The PDF p(η, PL, τ
∗) is used to estimate the probability of

the overtaking event O according to (75) as

Pr {O} = 1−
WR∫

WL

m+4σst∫
m−4σst

p(η, PL, τ
∗) dη dPL . (81)

The estimated Pr {O} is then used in (54) to estimate the
FER.

In addition to the parameters required for the scaling law
based on the shifted normal approximation, reviewed in Sec-
tion V-C, the proposed scaling law for sliding window decod-
ing with a limited number of iterations requires VPD, VBP, and
σ2; VPD can be obtained from mean evolution for several ϵ
as shown in (18), VBP can either be obtained directly from
density evolution or from VPD using the approximation (22),
and σ2 requires Monte-Carlo simulation of the BP decoder
and of the integrated Ornstein-Uhlenbeck process (61)–(62)
for a single fixed triple (ϵ,N, ℓ). It is thus relatively easy to
obtain VPD and VBP; estimating σ2 more efficiently, on the
other hand, is an open problem of practical interest.

We note that our implementation of the solver takes longer
to estimate the FER than direct Euler-Maruyama simulation
of 104 realizations of (64) to the same end. However, the
computational complexity of the estimation based on the
Fokker-Planck equation does not depend on the FER to attain a
given accuracy, which is not the case for the simulation-based
approach. Moreover, no attempt has been made to optimize
either implementation.

E. Numerical Results

Fig. 17 compares the FER for the (5, 10, L = 50, N =
1000) SC-LDPC code ensemble under sliding window decod-
ing with W = 20 and Iin = 60 for Is = {6, 7, 10} (solid

18

0.455 0.460 0.465 0.470 0.475 0.480
10−3

10−2

10−1

100

Probability of erasure ε

FE
R

unlim. iter.
Is = 10

Is = 7

Is = 6

Fig. 17. FER for the (5, 10, L = 50, N = 1000) SC-LDPC code ensemble
under sliding window decoding with W = 20 and Iin = 60 for different Is
(solid curves) and its approximation (54) with Fokker-Planck-based estimation
of the overtaking probability O (corresponding dash-dotted curves). The green
dashed line corresponds to our approximation for the FER with unlimited
number of iterations from [15].

0.455 0.460 0.465 0.470 0.475 0.480 0.485
10−3

10−2

10−1

100

Probability of erasure ε

FE
R

unlim. iter.
Is = 10

Is = 9

Is = 8

Is = 7

Is = 6

Fig. 18. FER for the (5, 10, L = 50, N = 2000) SC-LDPC code ensemble
under sliding window decoding with W = 20 and Iin = 60 for different Is
(solid curves) and its approximation (54) with Fokker-Planck-based estimation
of the overtaking probability O (corresponding dash-dotted curves). The green
dashed line corresponds to our approximation for the FER with unlimited
number of iterations from [15].

curves) with the corresponding approximation using (54),
where the overtaking probability O is estimated using (81)
(corresponding dash-dotted curves). We observe an impressive
match between the simulated and predicted error rates. A
similarly accurate prediction is obtained for N = 2000 in
Fig. 18 and for other values of (dv, dc) with dv > 3.

Figs. 19 and 20 compare the simulated (solid curves)
and predicted (corresponding dash-dotted curves) FER perfor-
mance for the (4, 12, L = 50, N) SC-LDPC code ensemble
under sliding window decoding with W = 20, Iin = 60,
and different values of Is for N = 996 and N = 1992,
respectively. For this ensemble, the scaling parameters are es-

0.290 0.295 0.300 0.305 0.310 0.315
10−3

10−2

10−1

100

Probability of erasure ϵ

FE
R

unlim. iter.
Is = 8

Is = 5

Is = 4

Fig. 19. FER for the (4, 12, L = 50, N = 996) SC-LDPC code ensemble
under sliding window decoding with W = 20 and Iin = 60 for different Is
(solid curves) and its approximation (54) with Fokker-Planck-based estimation
of the overtaking probability O (corresponding dash-dotted curves). The green
dashed line corresponds to our approximation for the FER with unlimited
number of iterations from [15].

0.295 0.300 0.305 0.310 0.315 0.320
10−3

10−2

10−1

100

Probability of erasure ϵ

FE
R

unlim. iter.
Is = 8

Is = 7

Is = 6

Is = 5

Is = 4

Fig. 20. FER for the (4, 12, L = 50, N = 1992) SC-LDPC code ensemble
under sliding window decoding with W = 20 and Iin = 60 for different Is
(solid curves) and its approximation (54) with Fokker-Planck-based estimation
of the overtaking probability O (corresponding dash-dotted curves). The green
dashed line corresponds to our approximation for the FER with unlimited
number of iterations from [15].

timated as ν̆ = 0.307, θ̆ = 2.172, ν̆BP = 0.285, θ̆BP = 2.921,
and σ2 = 0.2056. As for the (5, 10, L,N) SC-LDPC code
ensemble, the predictions for the (4, 12, L,N) SC-LDPC code
ensemble are fairly accurate.

The quality of the prediction deteriorates for smaller Iin,
as exemplified in Fig. 21 for the (5, 10, L = 50, N = 1000)
SC-LDPC code ensemble under sliding window decoding with
W = 20, Is = 9 and Iin = 25. We observe that degradation
when Iin is such that the left wave is often overtaken at the
very beginning of the chain. This setup, however, is of limited
practical relevance—it is sensible for the system designer to
ensure that the wave is firmly established by choosing Iin

19

0.455 0.460 0.465 0.470 0.475 0.480
10−3

10−2

10−1

100

Probability of erasure ε

FE
R

unlim. iter.
unlim. iter. (sim.)
Iin = 25, Is = 9

Fig. 21. FER for the (5, 10, L = 50, N = 1000) SC-LDPC code ensemble
under sliding window decoding with W = 20, Iin = 25, and Is = 9 (solid
curve with squares) and its approximation (54) with Fokker-Planck-based
estimation of the overtaking probability O (dash-dotted curve with squares).
The green dashed line corresponds to our approximation for the FER with
unlimited number of iterations from [15].

sufficiently large. This also lowers the probability that the
wave is overtaken by the window early on during decoding
if wave propagation happens to slow down for some time. We
have included in Fig. 21 the simulated FER curve for unlimited
number of iterations (green solid curve with circles) alongside
our prediction from [15] using (17) (green dashed curve) for
reference.

We remark that we use θ̆BP ≈ 2.34 estimated at (ϵ =
0.455, N = 1000) to obtain the predictions in Figs. 17, 18,
and 21. This is smaller than θ̆BP ≈ 2.74 used in Section V and
estimated at (ϵ = 0.465, N = 5000). Choosing the latter value
makes the prediction curves slightly more optimistic. The
covariance decay parameter θ̆BP seems to exhibit a stronger
dependency on N than θ̆ in the case of peeling decoding; we
leave the investigation of this dependency as a subject of future
work. As a general rule of thumb, one should estimate θ̆BP for
(ϵ,N) that lie within the range one is interested in.

VII. CONCLUSION AND DISCUSSION

The proposed scaling laws for full BP decoding with a
limited number of iterations and a scaling law for sliding
window decoding with a limited number of iterations provide
accurate predictions of the FER.2 Modeling the number of bits
decoded in a given number of iterations by a time integral of an
Ornstein-Uhlenbeck process—the cornerstone of our scaling
laws—proves to be a powerful tool in the analysis of decoding
schemes with practically relevant constraints on the maximum
number of iterations. More broadly, low-dimensional diffusion
processes seem to be able to capture much of the behavior
of iterative decoders relevant for error rate prediction in the
waterfall region.

2An implementation of the proposed scaling laws along with density and
mean evolution and the necessary Monte-Carlo simulators is available at
https://github.com/rsokolovskii/fl scaling sc ldpc

Another takeaway is that it is important for sliding window
decoding to perform a sufficient number of iterations at the
beginning of the chain. It is necessary not only because the
decoder must ensure that the decoding wave is established,
but also because allowing the decoding wave to propagate
further inside the window builds up the decoder’s resilience
to variation in the wave’s propagation speed.

We also remark that the scaling laws we propose in this
paper can be extended to predict the bit and block error rate
using the same techniques we employed in [15] to the same
end. (Block error rate refers to the probability that a spatial
position—a block—contains unrecovered bits after decoding.)
Specifically, the models for both full BP decoding in Sec-
tions IV–V and for sliding window decoding in Section VI
already keep track of the number of bits decoded across
iterations implicitly; what is required to obtain a scaling law
for bit and block error rate is to make use of this knowledge
and average the bit and block error rate expressions over the
probability distributions of when decoding stops, which we
did in [15] in the context of unlimited number of iterations.

Further, we do not foresee substantial difficulties in ex-
tending the scaling laws proposed here to protograph-based
ensembles. What is required to do so is to modify density and
mean evolution equations to account for the changed Tanner
graph connectivity, as it is done in [13] for unlimited number
of decoding iterations.

REFERENCES

[1] A. Jimenéz Feltström and K. S. Zigangirov, “Time-varying periodic
convolutional codes with low-density parity-check matrix,” IEEE Trans.
Inf. Theory, vol. 45, no. 6, pp. 2181–2191, Sep. 1999.

[2] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[3] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: Why convolutional LDPC ensembles perform so
well over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–
834, Feb. 2011.

[4] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE
Trans. Inf. Theory, vol. 59, no. 12, pp. 7761–7813, Dec. 2013.

[5] A. Sridharan, D. Truhachev, M. Lentmaier, D. J. Costello, and K. S.
Zigangirov, “Distance bounds for an ensemble of LDPC convolutional
codes,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4537–4555, Dec.
2007.

[6] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially coupled
turbo-like codes,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6199–
6215, Oct. 2017.

[7] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge,
“Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30,
no. 1, pp. 110–117, Jan. 2012.

[8] V. Aref, N. Macris, R. Urbanke, and M. Vuffray, “Lossy source coding
via spatially coupled LDGM ensembles,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Cambridge, MA, USA, Jul. 2012, pp. 373–377.

[9] D. L. Donoho, A. Javanmard, and A. Montanari, “Information-
theoretically optimal compressed sensing via spatial coupling and ap-
proximate message passing,” IEEE Trans. Inf. Theory, vol. 59, no. 11,
pp. 7434–7464, Nov. 2013.

[10] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[11] P. M. Olmos and R. L. Urbanke, “A scaling law to predict the finite-
length performance of spatially-coupled LDPC codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 6, pp. 3164–3184, Jun. 2015.

[12] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, “Finite-
length scaling for iteratively decoded LDPC ensembles,” IEEE Trans.
Inf. Theory, vol. 55, no. 2, pp. 473–498, Feb. 2009.

20

[13] M. Stinner and P. M. Olmos, “On the waterfall performance of finite-
length SC-LDPC codes constructed from protographs,” IEEE J. Sel.
Areas Commun., vol. 34, no. 2, pp. 345–361, Feb. 2016.

[14] D. J. Costello, D. G. M. Mitchell, P. M. Olmos, and M. Lentmaier,
“Spatially coupled generalized LDPC codes: Introduction and overview,”
in Proc. 10th IEEE Int. Symp. Turbo Codes and Iterative Inf. Process.
(ISTC), Hong Kong, China, Dec. 2018.

[15] R. Sokolovskii, A. Graell i Amat, and F. Brännström, “Finite-length
scaling of spatially coupled LDPC codes under window decoding over
the BEC,” IEEE Trans. Commun., vol. 68, no. 10, pp. 5988–5998, Oct.
2020.

[16] H.-Y. Kwak, J.-W. Kim, and J.-S. No, “Optimizing code parameters
of finite-length SC-LDPC codes using the scaling law,” IEEE Access,
vol. 9, pp. 118 640–118 650, Aug. 2021.

[17] R. Sokolovskii, A. Graell i Amat, and F. Brännström, “On doped SC-
LDPC codes for streaming,” IEEE Commun. Lett., vol. 25, no. 7, pp.
2123–2127, Jul. 2021.

[18] H.-Y. Kwak, J.-W. Kim, H. Park, and J.-S. No, “Optimization of SC-
LDPC codes for window decoding with target window sizes,” IEEE
Trans. Commun., vol. 70, no. 5, pp. 2924–2938, May 2022.

[19] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and
V. Stemann, “Practical loss-resilient codes,” in Proc. Annu. ACM Symp.
Theory Comput. (STOC), El Paso, TX, USA, 1997, pp. 150–159.

[20] D. G. M. Mitchell, A. E. Pusane, and D. J. Costello, “Minimum distance
and trapping set analysis of protograph-based LDPC convolutional
codes,” IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 254–281, Jan. 2013.

[21] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Finite-length con-

struction of high performance spatially-coupled codes via optimized
partitioning and lifting,” IEEE Trans. Commun., vol. 67, no. 1, pp. 3–16,
Jan. 2019.

[22] S. Naseri and A. H. Banihashemi, “Construction of time invariant
spatially coupled LDPC codes free of small trapping sets,” IEEE Trans.
Commun., vol. 69, no. 6, pp. 3485–3501, Jun. 2021.

[23] H. Hatami, D. G. M. Mitchell, D. J. Costello, and T. Fuja, “Perfor-
mance bounds for quantized spatially coupled LDPC decoders based on
absorbing sets,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO,
USA, Jun. 2018, pp. 826–830.

[24] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, Feb. 2001.

[25] M. Stinner, L. Barletta, and P. M. Olmos, “Finite-length scaling based on
belief propagation for spatially coupled LDPC codes,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Barcelona, Spain, Jul. 2016, pp. 2109–2113.

[26] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Phys. Rev., vol. 36, pp. 823–841, Sep. 1930.

[27] G. A. Pavliotis, Stochastic Processes and Applications. Springer, New
York, NY, USA, 2014.

[28] E. Benedetto, L. Sacerdote, and C. Zucca, “A first passage problem for
a bivariate diffusion process: Numerical solution with an application
to neuroscience when the process is Gauss-Markov,” J. Comput. Appl.
Math., vol. 242, pp. 41–52, 2013.

[29] J. E. Guyer, D. Wheeler, and J. A. Warren, “FiPy: Partial differential
equations with Python,” Comput. Sci. Eng., vol. 11, no. 3, pp. 6–15,
2009. [Online]. Available: http://www.ctcms.nist.gov/fipy

