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Turbulent transport in tokamak plasmas: linear-,
quasi- and non-linear simulations
Emil Fransson
Department of Space Earth and Environment
Chalmers University of Technology

Abstract
An attractive energy source is nuclear fusion with its abundance of fuel, intrinsic
safety and limited environmental impact. Although the concept of fusion energy
was established in the 1920s, to develop fusion as an energy source has been chal-
lenging. The most developed concept for fusion is the tokamak, a torodial shaped
chamber where a plasma, a hot ionized gas, is confined with a strong magnetic field.
The feasibility and efficiency of the future fusion power plants depend critically on
the energy confinement properties of the tokamaks which are mainly determined
by micro turbulence. The turbulent transport is driven by different instabilities in
the plasma, especially the Ion Temperature Gradient (ITG) mode, Trapped Elec-
tron Mode (TEM) and Electron Temperature Gradient (ETG) mode. The work
presented in this thesis focuses on a number of key aspects of turbulent transport
using advanced numerical modelling tools.
In today’s experiments, measurements have shown the plasma’s densities to be
peaked towards the centre of the plasma. Research into this peaking has uncov-
ered two key mechanisms, a strong particle pinch from the turbulent transport and
a particle source from Neutral Beam Injection which is used to heat plasma. In
future tokamaks the source will be comparatively smaller, hence it is important to
distinguish which of the two provides the dominant contribution. Which is one of
the aspects analysed in the thesis.
From basic considerations, the turbulent transport should exhibit so called gyro-
Bohm scaling, i.e. the transport should increase with the ionic mass. However,
this is not observed experimentally and the discrepancy is called the isotope effect.
Several mechanism has been suggested as the cause, such as collisions, ExB shear, β-
effects, edge effects and contribution of the ETG mode. A number of JET discharges
design to study this isotope effect have been analysed to asses the relative importance
of these effects,
Calculation of the turbulent transport can be computationally expensive, therefore
reduced quasi-linear models that are computationally less intensive have been devel-
oped. These models use linear relations between perturbed quantities combined with
a saturation rule for the electrostatic potential to determine the turbulent fluxes. A
saturation rule adapted to a quasi-linear model has been developed and validated
against non-linear gyro-kinetic simulations which are characterized by a high degree
of physics fidelity.
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CHAPTER 1

INTRODUCTION

The sun has always had a special place in human history, first as a God later as the
center of the solar system but always as a source of warmth and energy. To emulate
this virtually infinite energy source have been a dream for humans since the 1950s
when research into nuclear fusion took off in earnest.

1.1 Fusion
The energy from the sun is produced by nuclear fusion which is the process of two
lighter elements fusing together into a heavier one. This process yields excess energy
for all nuclei where the product is lighter than iron, due to the binding energy of the
nuclei. The binding energy per nuclei is displayed in Figure (1.1), and the highest
binding energy is for iron, Fe.

In a similar fashion, if we split an element heavier than iron we would
release energy, this process is called fission. Fission is usually done with a neutron
as the instigator. A major challenge with fusion is that both nuclei are positively
charged and the nuclei need large kinetic energy to overcome the Coulomb repul-
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1. Introduction

sion. To achieve nuclear fusion energy here on earth the reacting nuclei need to be
contained for long enough time and at high enough temperature. This is achieved
in the stars by the means of gravitation, which is obviously not an option on earth.
The fusion process in the stars begins with the fusion of two protons. This process is
however not suitable for a fusion power plant on earth due to the low cross section of
the reaction. There are a number of processes which are more promising, specifically
the ones between two Deuterium nuclei and Deuterium and Tritium.

D +D → He3 (0.82 MeV) + n (2.45 MeV) (1.1a)
D +D → T (1.01 MeV) +H (3.02 MeV) (1.1b)
D + T → He4 (3.52 MeV) + n (14.06 MeV) (1.1c)

An important thing to notice about these processes is that they do not
create any radioactive waste product as He4 is a stable isotope. The reaction rate
of these processes are governed by their cross sections which are shown in Figure
(1.2). We can notice that the cross section is much higher for D+T than for D+D,
therefore the former process is the one that the scientific community is primarily
perusing. However, this process has some drawbacks as Tritium is an unstable hy-
drogen isotope and has a half-life of 12.3 years. As a result, the isotope is extremely
rare in nature and hard to store. A solution to this is for the fusion power plants to
breed their own Tritium. This can be done by bombarding Lithium with neutrons
created in Deuterium - Tritium reactions, according to (1.2).

Li6 + n→ T +He4 + 4.8 MeV (1.2a)
Li7 + n→ T +He4 + n− 2.5 MeV (1.2b)

This is the reason that future fusion power plants will have Lithium blan-
ket which will breed Tritium. There is estimated 80 million tons of Lithium in the
world and with a conversion rate of 0.86 GWy/ton in a fusion power plant there is
enough Lithium to fuel the world’s current energy demand for 4000 years. This time
can be considerably shorter if Lithium is being used in other applications (Lithium is
a key component in today’s batteries). However, there is a large amount of Lithium
in the world’s oceans, billions of tons. The other fuel source for the fusion process,
Deuterium is luckily much more accessible as it can be procured by extracting it from
heavy water through electrolysis. Heavy water can be extracted from fresh water.
Since it is extracted from water the deuterium reserves are vast, 1 part in 6400 in
water. As the fuel for a pure Deuterium-fueled power plant is much more accessible
the hope is that a Deuterium power plant might be feasible some day. Because D-T
is the fuel for a future power plant it would at first sight reasonable experiment with
it on a regular basis. However, the experiments with D-T are few and far between
because of the high number of energetic neutrons these experiments create. These
neutrons activate the tokamak walls and they become radioactive. Therefore, most
experiments today are run with hydrogen, deuterium and more rarely with Helium.
Even though this is a different fuel composition that will be used for a future power
plant, nevertheless these plasmas display similar behavior as to D-T plasma.
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Another major advantage of fusion reactors are that they are intrinsically
safe. The maximum energy that can be released in an accident is the total energy
stored in the reactor at any time. An accidental loss of the confinement leads to the
plasma rapidly distinguish. Moreover the amount of tritium, a radioactive element,
is very small, roughly the weight of a stamp.

1.2 Different approaches to fusion
There are several fields of research trying to obtain fusion power production for
instance inertial confinement fusion and magnetic confined fusion. In inertial con-
finement fusion the material is heated and compressed extremely quickly so that it
reaches conditions for fusion. The material is held together by the inertia of the fuel
itself, hence the name. The fuel is prepared in a small pellet with a radius of a few
millimeters and put in a so called hohlraum. There it is bombarded by high ener-
getic laser beams that compress the pellet. As the pellet is compressed instabilities
can occur and the fusion criteria might not be achieved. This is an ongoing field of
research and relies heavy on the development of more powerful laser beams.

The other approach is to use strong magnetic fields to confine the fuel,
the most researched device is the tokamak, which is also the focus for this thesis.
The tokamak is a doughnut shaped chamber where the nuclei are contained with a
strong magnetic field. This concept has shown its potential in several experiments
and much research is put into optimizing it. The nuclei are in a state called plasma in
the tokamak. Plasma is a hot ionized gas containing charged and neutral particles
that is quasi-neutral and shows collective behavior. Figure (1.2) shows that the
particles need to have a high temperature, in the order of 10-25 keV (100-300 million
degrees), to achieve fusion. In a future fusion power plant the majority of the heating
will come from the 3,5 MeV He4-particles released in the fusion process which will
be confined by the magnetic field and slowed down by collisions on the bulk plasma
and thereby heat it. However, the particles need to be initially heated for the fusion
process to start. There are a number of methods available for heating the plasma in

3



1. Introduction

a future power plant and these have been successfully tested in current experiments.
The plasma in a tokamak is heated ohmically by the current, at higher temperature
the efficiency of the ohmic heating is lowered as the resistivity gets small. Other
heating schemes are needed such as the Neutral Beam Injection (NBI) where highly
energetic beams of neutrals are injected into the plasma. NBI functions both as an
energy and particle source. Radio frequency waves heat the plasma by interactions
through resonances with the particles.

In this thesis, we will focus on magnetic confined plasma in a toroidal
geometry, specifically in a tokamak. The outline of this kappa is as follows. In
chapter (2) we will describe the plasma in four different ways. First we will dis-
cuss the single particle motion in a plasma, secondly the kinetic description of the
plasma, thirdly the two-fluid approach and finally one-fluid approach or magneto-
hydrodynamics (MHD) as it is called. We will also discuss the method of taking the
gyroaverage for particles in a magnetically confined plasma and two models which
take advantage of this, gyrokinetics and gyrofluids. In chapter (3) we will discuss
turbulent transport in more detail and its implication for the efficiency for a fusion
power plant. Finally in chapter (4) we will give a brief summary of the appended
papers.

4



CHAPTER 2

THEORETICAL DESCRIPTIONS OF
PLASMAS

In this section we will describe the plasma in four different ways, representing four
different levels of approximation. The simplest is the single particle description in
which all particles are treated separately and this will give an intuitive feeling for
some of the phenomena in the plasma. In this approximation the electromagnetic
fields are prescribed and does not change depending on the movements of the par-
ticles. In principle the evolution of a closed system of charged particles can be
determined by calculating the electromagnetic forces acting upon them from each
other and external forces (from a magnetic field ). However, even though a fusion
plasma is about 105 times less dense than air, the number of particles per cubic
meter is about 1019. The interactions between all of these particles present an un-
feasible computational problem. Hence, the need for models that treat the particles
in a more course grain terms, which is why we introduce the three main models
of plasma dynamics, the Vlasov theory (or kinetic theory), two-fluid theory and
magnetohydrodynamics (MHD). In all of these models the electromagnetic fields
are calculated self-consistently with Maxwell’s equations. The Vlasov model is the
most detailed of the models and follows the evolution of the electron and ion velocity
distribution functions. The two fluid model (or multifluid) is the intermediate of the
three and describe the plasma as two or more interacting fluids. The MHD model
is the least detailed which approximates the plasma as a single fluid. All of these
models have different benefits and drawbacks which we will discuss.

2.1 Single particle movement
It is advantageous to discuss the motion of a single particle in the plasma to get an
understanding of some of the phenomena that occurs there. Magnetic confinement
relies on a strong magnetic field which creates a Lorentz force.

F L = Ze(E + v ×B) (2.1)

5



2. Theoretical descriptions of Plasmas

Here F L is the Lorentz force acting upon a particle, Ze is the charge of
the particle, E is the electric field, v is the particles velocity and B is the magnetic
field.

As a first step we study the case with a stationary, homogeneous magnetic
field and the absence of an electric field. In this case the velocity parallel with the
magnetic field is constant as the force only act perpendicular to the field. Therefore,
the particle will not gain any energy. The equation of motion for the two directions
perpendicular to the magnetic field becomes:

..
v⊥1 +

(
qB

m

)2
v⊥1 = 0 (2.2)

..
v⊥2 +

(
qB

m

)2
v⊥2 = 0 (2.3)

here the dots denote derivatives with respect of time and ⊥1, ⊥2 denotes
the two orthogonal axis perpendicular to the magnetic field. Eq. (2.2) and Eq. (2.3)
describes a harmonic oscillator with the oscillation frequency.

ωc = |Ze|B
m

(2.4)

The cyclotron frequency describe one of the fastest phenomena in the
plasma. Because we generally are interested in processes that take place on longer
time scales, it is common to adopt a multi timescale expansion thereby the gyromo-
tion is averaged over. This simplifies the equations which we will describe in more
detail later. The particles motion becomes a helix around the magnetic field. The
radius of this motion is called the Larmor radius:

rL = v⊥

ωc

(2.5)

The Larmor radius is small compared to the size a modern tokamak ex-
periment. This means that the particles are ”bound” to the magnetic field lines,
greatly limiting the transport perpendicular to the magnetic field lines. However,
while the gyromotion limits the motion of charged particles in the direction perpen-
dicular to the magnetic field, they can freely stream along the magnetic field, i.e.
they are confined. The perhaps at first sight simplest solution would be to bend the
magnetic field lines into a torus, such that the particles would travel in circles in the
toroidal direction, i.e. along the field lines. Unfortunately, this will not work as it
exist "drifts" from the magnetic field lines. We will first introduce these drifts and
later describe a concept to handle them.

As a second step we introduce a general constant force; F . If a part of the
force is parallel to the magnetic field the particle will accelerate forever, this will of
course not happen in a real plasma as there are other mechanisms to stop that. If
the force has a component perpendicular to the magnetic field this will give rise to
a drift velocity. This velocity will drift the particle from a given magnetic field line.

vd = F ⊥ ×B

ZeB2 (2.6)

6



2. Theoretical descriptions of Plasmas

The discussion above has been done with a straight magnetic field. Before
introducing more realistic magnetic fields we first need to introduce the concepts of
guiding center and gyro-averaging. As we have seen, a charged particle gyrates
around a magnetic field line, the center of this motion is called the guidingcenter.
The position of the particle can be split up to a gyrocenter part and a fast moving
gyration part.

x = xgc + xL,v = vgc + vL (2.7)

here we have vgc as the velocity of the guiding-center which the particle
gyrates around. vL is the velocity of the gyration. The gyroaverage is defined as

⟨f⟩xgc = 1
2π

∮
f(xgc, v∥, v⊥, γ)dγ (2.8)

here γ is the gyroangle. xgc, v∥ and v⊥ are kept constant during the
averaging. When we have a constant magnetic field and no external forces, Eq.
(2.8) becomes an average over the perpendicular motion. Therefore, ⟨xL⟩xgc = 0,
⟨v⊥⟩xgc = 0 and ⟨x⟩xgc = xgc. However, with an external force we get a drift. The
velocity of the guiding-center as vgc = v∥b̂ + vd with the drift velocity from (2.6).
Here we can notice that a straight magnetic field line will not confine the particle if
an external force exist.

2.2 Slowly varying magnetic field
Up to this point, we have assumed a homogeneous, static magnetic field but we shall
now consider a spatial dependence in the magnetic field. This is important for the
tokamak as its topology makes it impossible to achieve a homogeneous magnetic
field. This is due to the fact that the coils that create the toroidal magnetic field
are much closer together on the inside than on the outside of the tokamak. We
are only going to look at the case when the magnetic field changes weakly, i.e. the
characteristic length of the change in the magnetic field must be much larger than
the Larmor radius, which is an necessity for a magnetic confined plasma. We expand
the magnetic field around the guiding center:

B(x) = B(xgc) + xL · ∇B(xgc) +O(r2
L) (2.9)

here again we have x = xgc + xL. The second term in the equation is
much smaller if the magnetic field changes slowly compared to the Larmor radius.
This can be seen by taking the ratio of the two terms and denote the characteristic
change of the magnetic field as L, then ∇ ∼ 1/L, hence

|xL · ∇B(xgc)|
|B(xgc)|

∼ rL

L
≪ 1 (2.10)

This holds in a representative fusion reactor. The effective force from the
first order change in the magnetic field can be written as:

F eff = ⟨Zev × (xL · ∇B(xgc))⟩xgc (2.11)

7



2. Theoretical descriptions of Plasmas

if we calculate the integral in Eq. (2.8) we end up with:

F eff = −mv2
∥κ− µ∇B (2.12)

here κ = b̂ · ∇b̂ is the magnetic curvature and µ = mv2
⊥/(2B) is the

magnetic moment. These two effective forces have both physical representation.
The first term, is a centrifugal force caused by the curvature in the magnetic field.
The magnetic moment is an adiabatic invariant and as such it can be interpreted
as a property of the guiding center. The kinetic energy of a particle can be written
as mv2

∥/2 + µB, thus we can look at the last term as an effective potential, U. This
potential will give rise to a force when the particle crosses from higher or lower
magnetic field, F = −∇U , which represent the second term in Eq. (2.12). This
term is called the mirror force as it reflects particles with insufficient kinetic energy
to overcome the potential of a stronger magnetic field.

From Eq. (2.6) we can calculate an associated drift velocity from the
effective force. If we also let the electric field to be non-zero, E ̸= 0, with the
assumption that the electric field is close to constant over one particle gyration.
The velocity for the guiding center becomes

vgc = v∥b̂ + vd (2.13)

where the parallel velocity v∥ is computed from the parallel component of
the force F = ZeE + F eff . We get the drift velocity from (2.6)

vd = E ×B

B2 + v2
⊥

2ωc

b̂×∇logB +
v2

∥

ωc

b̂× κ (2.14)

where the first term is the so called ExB-drift, the second term is associ-
ated with the change in the magnetic field and the third is the curvature-drift. The
second term is small due to the ratio rL/L, here L is the characteristic length of the
change in the magnetic field. An interesting thing to notice for the two magnetic
drifts, there is a charge dependence, hence the ions and electrons will drift in op-
posite directions. For the ExB-drift however we have no dependence of the charge,
thus ions and electrons will drift in the same direction and at the same speed as it
is independent of mass.

The drift is small compared to the parallel motion of the particles along
the magnetic field, however for the confinement these drifts are important.

2.2.1 Toroidal geometry
To discuss a toroidal geometry, as present in a tokamak, we first need to present
a toroidal coordinate system, as shown in Figure (2.1). The coordinate system
(Z,R,ϕ), where R is the distance from the symmetric center, Z the height from
symmetric plane and ϕ the azimuthal angle. First we will discuss a magnetic field
with only a toroidal component, B = Bϕ̂. This can be created by a current in a
long wire passing through origo in the Ẑ-direction. Amperes law gives the strength
of the magnetic field

8



2. Theoretical descriptions of Plasmas

Figure 2.1: Toroidal geometry and coordinates

B = µ0I

2πRϕ̂ (2.15)

where I is the total current in the wire and R is the length to the ẑ-
axis. It is clear that the magnetic field decays with R, B ∼ R−1. This is the same
dependency as a realistic toroidal magnetic field in a tokamak which has its toroidal
magnetic field created by external currents in coils wound around the minor radia.
We can use the discussion in the previous section to state the effective force on the
particles in this magnetic field. The effective force on the guiding center, in this
toroidal coordinate system, becomes.

F eff =
(
mv2

∥

R
+ µB

R

)
R̂ (2.16)

with this effective force we get the drift as:

vd =
(
v2

∥ + v2
⊥
2

)
m

ZeBR
Ẑ (2.17)

If we assume that v∥ ∼ v⊥, we get

vd ∼
rL

R

(
v∥ + v⊥

2

)
Ẑ (2.18)

Here we see that the drift will be just a fraction of the velocities as rL/R
is small. To get the drift we need to get an average over the whole toroidal motion.
As the particles are locked to the magnetic field lines, this is trivial in the case with
a magnetic field with only a toroidal component. In the zeroth order in rL/R we
do not get a drift and the particles are confined by a purely toroidal magnetic field.
However, as in a real tokamak the ratio rL/R is non zero it is clear that the particles
will drift from their magnetic field in the Ẑ-direction.

In order to solve this problem a poloidal magnetic field needs to be added
and the tokamaks solution to this is to create a current in the plasma that adds the
poloidal magnetic field. The current in the tokamak is created by a large transformer
at the center of the machine. The transformer creates one of the limitations on
how long an experiment in a tokamak can run as its core gets saturated. This
solution creates a helical magnetic field around the toroidal surfaces. These surfaces
are known as flux-surfaces. As these flux-surfaces by no means need to be (or are)

9
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circular we need to define a new type of coordinate system. A new radial coordinate,
the flux surface label ρt which defines a flux-surface, i.e. is constant on them and
varies between different flux-surfaces. The flux-label can be defined by the poloidal
or the toroidal magnetic flux, in this thesis we will define it as dependent on the
toroidal magnetic flux, as denoted by the ”t” in ρt. The normalized ρt is defined as:

ρt =

√√√√ Φ− Φax

Φsep − Φax

(2.19)

Here Φ, Φax, Φsep is the toroidal magnetic flux, the toroidal magnetic flux
at the magnetic axis and at the separatrix, respectively. They are defined by:

Φ =
∫

St

B · dSt (2.20)

To determine the cumulative results of the drift for these helical magnetic
fields is more difficult compared to the purely toroidal fields. We have to study the
drift over several laps around the toroidal orbits. For these drifts to cancel each
other out we need to look at the average drift over the particle path as it move on
the helical flux-surface until it ends up at its initial poloidal position. We describe
this path as the length l. If the particle is going to be confined we need to have no
net drift in the radial direction, i.e. ρt. This can be expressed with the integral.

∮
vd ·∇ρtdl = 0 (2.21)

The easiest way to explain how this equation holds true for particles in
a tokamak with helical magnetic field is to draw how a particle moves around.
In Figure (2.2) a) we plot the cross-section of a particles’ movement. The helical
magnetic field make the particle move from the outer part of the tokamak (right
part of the figure) to the inner (left part of the figure). As the drift is in the Ẑ
according to Eq. (2.18) at the upper part of the figure the particle is drifting to an
inner fluxsurface. At the bottom it drifts outwards again. Hence, the average means
that the particle end up at the same fluxsurface.

As the magnetic field strength varies across the major radius the particles
will feel a stronger magnetic force as they move closer to the center of the torus. As
previously discussed this means that some particles with insufficient parallel velocity
will turn back. This can be described as mv2

∥ < µBmax, there Bmax is the maximum
field strength along the magnetic field line. This magnetic mirror force creates two
distinct types of particles, the ones with sufficient parallel velocity, mv2

∥ > µBmax

which will make the full orbit along the field line, passing particles. The other type
of particles are the ones with too low parallel velocity, these will not make a full
orbit and will bounce back and forth, therefore they are called trapped particles.
Their orbits are displayed in Figure (2.2) b) and they are located on the low field
side of the tokamak. These particles give rise to an instability called the Trapped
Electron Mode (TEM).

10
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(a) Passing particles (b) Trapped particles

Figure 2.2: a) The drift of passing particles. At the top part of the tokamak the
particle is drifting towards the centre, at the bottom part it is drifting outwards. b)
The blue line depicts trapped electrons in a ”banana”-orbit

2.3 Kinetic description
The kinetic description of plasmas is a statistical description of a system of identical
particles. We introduce the distribution function, f(x,v, t) which describes the
probability to find a particle with velocity v and position x at time t in phase
space. The distribution function is closely linked to thermodynamic quantities of
the plasma, by integrating the distribution function over the velocity we get the
particle density,

n(x, t) =
∫
f(x,v, t)d3v (2.22)

This procedure is called taking velocity moments (or only moments) of the
distribution function. Eq. (2.22) is the zeroth moment, we multiply the distribution
function with v0 and perform the integrating. Other thermodynamic quantities can
be calculated by taking higher order moments:

Mean velocity = u(x, t) = 1
n

∫
vf(x,v, t)d3v (2.23a)

Pressure tensor =←→P (x, t) = m
∫

v′v′f(x,v, t)d3v (2.23b)

Heat flux vector = Q(x, t) =
∫ mv′2

2 v′f(x,v, t)d3v (2.23c)

We have decomposed the velocity: v = u(x, t) + v′(x, t), here v′(x, t)
is the random part of a given velocity, hence

∫
v′fd3v = 0. We now have the

11
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connection between the distribution function and thermodynamic quantities, we
will now proceed to create a framework to determine the distribution function. To
do this we will treat the macroscopic forces (such as the Lorentz force from the
electromagnetic fields) and microscopic forces such as from collisions. The change
of particles in a volume in phase-space is equal to the flux in (or out), which means
we do not have any sources or sinks in the box (ignoring fusion processes for now).
This can described as

df(x,v)
dt

= ∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= 0 (2.24)

which is the Vlasov or the collisionless Boltzmann equation and is the
basis for many of the models in plasma physics. The acceleration comes from the
force a = Ze

m
(E + v ×B). This force is determined by the Maxwell’s equations:

∇ ·E =
∑

σ

Zσe
∫
fσd

3v (2.25a)

∇ ·B =0 (2.25b)

∇×E =− ∂B

∂t
(2.25c)

∇×B =
∑

σ

Zσe
∫

vfσd
3v + ∂E

∂t
(2.25d)

Here we added σ to identify each particle species. For certain processes
the Vlasov equation need to be augmented by adding a collision operator on the
right hand side.

∂fσ

∂t
+ v · ∂fσ

∂x
+ a · ∂fσ

∂v
=
∑

α

Cσα(fσ) (2.26)

This is the collisional kinetic equation, called the Boltzmann equation.
Here Cσα is the rate of change for fσ due to collisions between species σ and α.

2.4 Two fluid-models
The kinetic description of the plasma can be computationally heavy. A different
approach to study the plasma is to look at it as a composite of fluids (instead of
a group of discrete particles). This can be done by taking moments of the Boltz-
mann equation, Eq. (2.26) which will create a set of partial differential equations
which will couple the mean quantities, presented in Eq. (2.22) and (2.23), such
as n(x, t),u(x, t) etc. If we take the first moment of the Boltzmann equation by
multiplying by unity and integrating over velocity space.

∫ (
∂fσ

∂t
+ v · ∂fσ

∂x
+ a · ∂fσ

∂v

)
d3v =

∑
α

∫
Cσα(fσ)d3v (2.27)

For the two terms on the left hand side the integral commutes with the
time and space derivatives as x,v and t is independent variables. We can rewrite
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the third term so we get
∫ ∂fσ

∂v
· (afσ)d3v. This is the volume integral of a divergence

in velocity space, hence we can use Gauss theorem to rewrite it:
∮

afσ · dS. It is
easy to understand that his term will vanish, fσ → 0 as |v| → ∞. This is stating
the fact that the probability to find a particle with infinite velocity is zero. The
right hand side is equal to zero as collisions can not change the number of particles.
Using this we get:

∂nσ

∂t
+∇ · (nσuσ) = 0 (2.28)

This is the continuity equation, which is the first equation that constitutes
the basis for the two fluid-model. Let us take the first moment of the Boltzmann
equation by multiplying it with v and integrating over the velocity:

∫
v

(
∂fσ

∂t
+ v · ∂fσ

∂x
+ a · ∂fσ

∂v

)
d3v =

∑
α

∫
vCσα(fσ)d3v (2.29)

We may rewrite this by using the following
1. Again use the fact the integral commutes with both the time a space derivative

for the two first terms on the left hand side
2. Write the velocity as v = u(x, t) + v′(x, t), here v′(x, t) is the random part of

a given velocity, hence
∫

v′fσd
3v = 0.

3. When integrating the third term on the left hand side use the fact that(
∂vi

∂vj

)
= δij (2.30)

Here δij is the kronecker-delta. By using this we can rewrite (2.29).

∂(nσuσ)
∂t

+ ∂

∂x
·
∫

(v′v′ + v′uσ + uσv′ + uσuσ)fσd
3v −

∫
afσd

3v =
∑

α

Rσα (2.31)

The two terms with a single mean velocity uσ in the first integral disap-
pears as

∫
v′fσd

3v = 0 and uσ is independent of v. We can also see that the first
term in the first integral is the pressure tensor, defined in Eq. (2.23b).

It is a common assumption to take fσ to be an isotropic function in v as
this simplifies the pressure tensor greatly. However this is done purely for conve-
nience and for real distribution functions isotropy is far from guaranteed. Collisions
in the system drives the distribution function towards isotropy but a sparse hot
plasma usually does not have enough collisions. We are going to leave the pressure
tensor by its definition from Eq. (2.23b). The right hand side of Eq. (2.31), Rσα

is the net frictional drag force of species σ due to collision with species α. As a
species can not exert a net force upon itself, Rσσ = 0. Due to the conservation of
momentum it follows that Rασ + Rσα = 0.

If we put this all together and assume the only acceleration is created by
the Lorentz Force we get the so called momentum equation:

13
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nσmσ
duσ

dt
= nσZσe(E + uσ ×B)−∇ ·←→P σ +

∑
α

Rσα (2.32)

Here we used the operator d/dt which is defined as the convective deriva-
tive

d

dt
= ∂

∂t
+ uσ · ∇ (2.33)

which describes the rate of change seen by an observer moving with the
mean fluid velocity uσ.

We will now briefly look at the second moment of the Boltzmann equation.
This is done by multiplying the Boltzmann equation, Eq. (2.26), with mσv

2/2

∫ mσv
2

2

(
∂fσ

∂t
+ v · ∂fσ

∂x
+ a · ∂fσ

∂v

)
d3v =

∑
α

∫ mσv
2

2 Cσα(fσ)d3v (2.34)

This is the starting point for the derivation of the energy conservation
equation, (a derivation can be found in [1] among others)

3
2
dPσ

dt
+ 5

2Pσ∇ · uσ = −∇ ·Qσ +
∑

α

[
Rσα · uσ −

(
∂W

∂t

)
Eσα

]
(2.35)

The last term on the right hand side is the rate which the species α
collisionialy transfers to species σ and is defined as:(

∂W

∂t

)
Eσα

= −
∑

α

∫ mσv
2

2 Cσα(fσ)d3v (2.36)

We also have the heat flux defined in Eq. (2.23a).
The equations (2.28), (2.32), and (2.35) are a set of coupled differential

equations. These are called the Braginskii equations [2]. One very important thing
to notice about these equations is that a pattern appears. When we took the zeroth
moment to derive an equation for the density we got a term with the mean velocity.
In the same way when we took the first moment to derive an equation for velocity
we got a term with pressure. And finally for the second moment, in the equation
for the energy we got a higher order term as well. This is an open system. To
create a system of equation which can be solved some closure is needed. This
can be done in several ways, some of them are assuming adiabatic or isothermal
processes. More advanced closures have been developed which are valid also in the
weak collisionality limit relevant to the core region of fusion plasmas. An example
is the fluid model developed at Chalmers [48] which has been successfully used to
analyze and predict tokamak experiments at JET. The equations (2.28), (2.32),
and (2.35) are the fundamental equations for two-fluid models. The aforementioned
equations can be easily generalized for more ion species, for example to take into
account a second main ion species, as in a Deuterium-Tritium plasma, or impurities.
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2.5 Magnetohydrodynamics
As the plasma is composed of ions an electrons it is natural to describe the plasma
as two fluids. We can however go one step further and describe all particles in the
plasma as one fluid. This model is the simplest we are going to look at and it is
called Magnetohydrodynamics (MHD). For this model to be valid the plasma needs
to be collision dominated and it include low-frequency, long-wavelength, magnetic
behavior of the plasma. MHD has a macroscopic point of view compared to the
kinetic theory and the two-fluid model. In the following section we will derive the
so called Grad-Shafranov equation which defines the static magnetic geometry with
nested flux surfaces. We use flux coordinate system in our transport simulations.

The characteristic properties for the MHD model are, the total mass den-
sity ρ, the total charge density ρc, the center of mass velocity U and the current
density Ip:

ρ ≡mini +mene (2.37a)
ρc ≡e(Zini − ne) (2.37b)

U ≡miniui +meneue

mini +mene

(2.37c)

Ip ≡e(Ziniui − neue) (2.37d)

Here mi,me, ni, ne,ui and ue are the masses, densities and fluid velocities
for the ions and electrons. If we use the assumption of quasi neutrality, i.e Zini ≈ ne,
we notice that the charge density vanishes.

The derivation of the equations that governs MHD are similar to the one
done for the two fluid model in the previous section. This is done by again taking
moments of the Boltzmann equation, Eq. (2.26), but now multiplying it with mσ

and take the sum over all particle species. The MHD continuity equation is trivially
derived.

∂ρ

∂t
+∇ · (ρU) = 0 (2.38)

This equations states mass conservation. The momentum equation is
derived by taking the first moment and take the sum over all species:

∂

∂t

∑
σ

mσ

∫
vfσd

3v + ∂

∂x
· Σσ

∫
mσvvfσd

3v +
∑

σ

qσ

∫
v
∂

∂v
· [(E + v ×B)fσ] = 0

(2.39)
Here we have zero on the right hand side as Rσα + Rασ = 0 , the plasma

can not add to its own momentum. In MHD we will define the relative velocities
compared to the center of mass velocity, vσ = U + v∗

σ. The integral in the second
term can then be written as,

∑
σ

∫
mσvσvσfσd

3v =
∑

σ

∫
mσ(U +v∗

σ)(U +v∗
σ)fσd

3v =
∑

σ

∫
mσv∗

σv∗
σfσd

3v+ρUU

(2.40)
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where the parts with a single v∗
σ are discarded as ∑σ

∫
mσv∗

σfσd
3v = 0.

We define the MHD pressure tensor which is given by the random velocities relative
to U .

←→
P MHD =

∑
σ

∫
mσv∗

σv∗
σfσd

3v (2.41)

The third term in Eq. (2.39) can be integrated by parts, which we can
use to get the following expression:

ρU

∂t
+∇ · (ρUU ) =

(∑
σ

nσqσ

)
E + Ip ×B −∇

←→
P MHD (2.42)

Here we can use the quasi neutrality criteria and see that the term with
the electric field vanishes. The two first terms can be expanded:

ρU

∂t
+∇ · (ρUU ) =

(
∂ρ

∂t
+∇ · (ρU)

)
︸ ︷︷ ︸

continuity equation

U + ρ
∂U

∂t
+ ρU · ∇U

= ρ

(
∂U

∂t
+ U · ∇U

)
(2.43)

Now we are ready to write the momentum equation for MHD in its stan-
dard from

ρ
DU

Dt
= Ip ×B −∇ ·

←→
P MHD (2.44)

with

D

Dt
= ∂

∂t
+ U · ∇ (2.45)

This is the convective derivative defined by the center-of-mass velocity
unlike the separate fluid velocities which we used for the two-fluid model. If we
assume an isotropic MHD pressure we can replace the tensor with a scalar pressure,
P. The static equilibrium, Eq. (2.44) becomes:

Ip ×B = ∇P (2.46)

This equation describes the equilibrium between the magnetic pressure
and tension, described by Ip × B and the total particle pressure, ∇P . The solu-
tion to this equation in two dimensions (an axi-symmetric cylindrical plasma) gives
rise to the so called Bennett pinch or z-pinch. It was found that, theoretically, a
small current could contain a considerable plasma pressure. However, these types
of devices are highly unstable. Although Eq. (2.46) looks simple the solution in
three dimensions is far from it. It can be written as a differential equation for the
poloidal flux function ψ, and it has two arbitrary functions p(ψ) and F (ψ). The
function p(ψ) represent the particle pressure and the function F (ψ) is related to
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the combined poloidal current flowing in the plasma plus the toroidal field coils. A
derivation can be found in [38] among others:

R2∇ ·
(
∇ψ
R2

)
= −µ0R

2 dp

dψ
− 1

2
dF 2

dψ
(2.47)

Here R is the major radius and µ0 the magnetic permeability. From the
solution for ψ the radial coordinate ρt, introduced in Chapter (2.2.1), can be deter-
mined. Numerical solutions of the equation describe the flux-surfaces and are used
in simulation codes to describe the magnetic equilibrium. There are a number of
analytical approximate solutions to the equation, one commonly used is the Miller
model. The Miller model is an approximate description of each flux surface with
nine parameters. These parameters describe different aspects of the magnetic equi-
librium and many of these are crucial to confinement of the plasma. One of the most
important is the safety factor q. The plasma current creates a poloidal magnetic
field which makes the field line bend around the torus, the sharpness of the bend
define the safety factor:

q = nt

np

= ⟨B∇ϕ⟩
⟨B∇θ⟩

(2.48)

Here nt is the number of toroidal turns compared to the number of poloidal
turns np. The brackets denote flux surface averaging and the safety factor describes
how twisted the magnetic fields are. It is a function of radial position and how rapid
it changes is described by the magnetic shear.

ŝ = 1
q

∂q

∂r
(2.49)

Other important parameters are the aspect ratio (ϵ = r/R), the elongation
(κ) which describes the difference in length of the axis, triangularity (δ) which
describes the shape of the flux-surface etc. An example of the Miller description can
be seen in Figure (2.3) a) and the major radial dependence of the toroidal magnetic
field, pressure and the magnetic current are shown in Figure (2.3) b).

2.6 Gyrokinetics
As mentioned in section (2.1), the charged particles are on average ”bound” to a
magnetic flux surface due to the Lorentz force. Hence it is sometimes more prudent
to study the evolution of the the so called guiding-centers rather than the particles
themselves. This can be taken a further step to the so called gyrocenter, as the
guiding center still follows the particle true position, but with the guiding center
as a reference. When handling gyrocenter the exact trajectory is of no interest and
instead we follow the evolution of ”charged rings”. The quick gyromotion compared
to the electromagnetic fluctuations is the basis of the so called gyrokinetic theory.
By averaging out the fast gyromotion, the number of dimensions of the problem is
reduced by one and a time step much greater than the gyroperiod is feasible. This
is a great benefit in terms of reduced computational cost.
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Figure 2.3: Miller description of the flux surfaces. The figure to the right show
the dependence of the major radial coordinate for the toroidal magnetic feld,Bϕ, the
toroidal current jϕ, and the plasma pressure, p

The modern derivation of the gyrokinetic theory is done by using canoni-
cal coordinate transformations which eventually result in equations of motion that
are independent of the gyrophase angle. This derivation uses transformation first to
the guiding-center and then to the gyrocenter by using Lie-formalism. A derivation
can be found in [3]. Earlier derivations employed perturbation expansions and a di-
rect gyrophase averaging. Both of these methods do however rely on the gyrokinetic
ordering. The Larmor radius needs to be small in comparison to the scale length
of the change in the background magnetic field, background densities and the back-
ground temperatures. The cyclotron frequency need to be much smaller than the
frequency of turbulent fluctuations, ω/ωc ≪ 1. As the particles velocities along the
magnetic field line are much greater than the drift velocities perpendicular to the
fields, the spatial scales will be very different. The turbulence along the magnetic
field lines are ”stretched out” compared to the turbulence perpendicular which is
comparable with the Larmor radius in scale. We can safely assume:|k∥|/|k⊥| ≪ 1.
We can summarize the gyrokinetic ordering:

ϵ ∼ ρi

LB

∼ ρi

Ln/T

∼ ω

ωc

∼ eδϕ

T
∼
|k∥|
|k⊥|

≪ 1 (2.50)

In gyrokinetic theory we do not study the evolution of the distribution in
phase space, f(x,v, t), but instead the study the gyrocenter distribution function in
gyrocenter phase space F(X, v∥, µ). X is the gyrocenter position, v∥ is the gyrocen-
ter parallel velocity and µ is here again the magnetic moment, µ = mv2

⊥/(2B). We
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can rewrite the Vlasov equation, Eq. (2.24), in these coordinates:

∂F

∂t
+ dX

dt
· ∇F + dv∥

dt

∂F

∂v∥
+ dµ

dt

∂F

∂µ
= 0 (2.51)

The last term will disappear as the magnetic moment is constant. We
decompose the electromagnetic fields into a background and a fluctuating part i.e.
Φ → Φ0 + Φ1, A → A0 + A1. With this we can write the drift velocities for the
gyrokinetic theory, here in Gaussian units.

• E x B drift
vχ = − c

B2
0
∇⟨Φ1⟩xgc ×B0 (2.52)

• ∇B-drift
v∇B = µ

mωc

b̂×∇B0 (2.53)

• curvature drift
vc =

v2
∥

ωc

(∇× b̂)⊥ (2.54)

Here again ⟨f⟩xgc denotes gyroaveraging. These velocity drifts are the
equivalent of the drifts presented in Eq. (2.14). The fluctuating parts need to
be much smaller than the background fields. We get the time derivative in these
coordinates:

dX

dt
= v∥b̂+ B0

B∗
0∥

(vχ + v∇B + vc) (2.55)

dv∥

dt
= −

 b̂

m
+ B0

mv∥B
∗
0∥

(vχ + v∇B + vc)
 · (Ze∇⟨Φ1⟩xgc + µ∇B0

)
(2.56)

dµ

dt
= 0 (2.57)

Using all this we can write down the gyrokinetic Vlasov equation, here
with σ denoting particle species:

∂Fσ

∂t
+
v∥b̂+ B0

B∗
0∥

(vχ + v∇B + vc)


·
(
∇Fσ + 1

mσv∥

(
−Ze∇⟨Φ1⟩xgc − µ∇B0

) ∂Fσ

∂v∥

)
= 0 (2.58)

With B∗
0∥ = B0 + B0

ωc
v∥b̂ · (∇ × b̂). In order to add collisions, we need to

add a collision operator on the right hand side of the equation.
The distribution can be decomposed into a macroscopic part and a part

describing the microturbulence with the assumption that the perturbed part is much
smaller than the background, Fσ → Fσ0 + fσ1. By using the gyrokinetic ordering
to Eq. (2.58) to the zeroth order and decompose the distribution function we can
see an interesting thing: The background distribution does not explicitly evolve in
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time. This is used in δf -codes to choose a background distribution function which
fulfills the zeroth order. As collisions drives the backgound distrubution towards
a Maxwellian distrubution, this is the choice for gyrokinetic codes. GENE is a
gyrokinetic code which uses the δf -approach [41].

In order to solve the gyrokinetic equation, a suitable coordinate system
needs to be established. Before we embark onto that subject it is important to
remind us that the many physical phenomena and structures in a plasma is highly
anisotropic. The particles move along the magnetic field lines at high speed but
move across them (due the drift velocities among other things) magnitudes slower.
Hence the correlation length in the parallel direction is much longer than the perpen-
dicular (this is also one of the assumption we used when introducing the gyrokinetic
equation). This knowledge makes it possible to use different resolutions in differ-
ent spatial coordinates and thus saving a large amount of computational cost. As
we have a distinctive direction, which is the magnetic field, a coordinate system
aligned to it is a natural construction. A good overview of flux coordinates can be
found in [11]. To study the microturbulence for an entire present day tokamak, the
required grid-size makes this simulation extremely expensive. These kind of simu-
lations are done today on supercomputers but are rare. In order to systematically
study a plasma phenomena the simulation domain is significantly reduced. This is
done with the flux tube approximation. In this approximation a magnetic field is
followed around the torus for a poloidal turn (for tokamaks, due to the axisymme-
try). A curved and sheared box is created around this magnetic field. The magnetic
geometry of this box is not calculated self-consistently with the turbulent fluctua-
tions but is a numerical or an analytical solution to the Grad-Shafranov equation,
Eq. (2.47). This box is of a small size compared to the size of the tokamak and the
investigation of the plasma is therefore a local one for the flux tube approximation.
Because it is a local investigation background quantities such as density and tem-
perature as well as their radial gradients are kept constant throughout the box. This
approximation is valid if the radial size of the box is small compared to the machine
size but large enough compared to the microturbulence. The coordinate are x for
the fluxlabel, i.e. the radial direction which is perpendicular to the flux surface,
y is the binormal direction and z is the direction along the field line. As the flux
tube approximation only covers a small part of the plasma we need to adapt proper
boundary conditions which do not interfere with the physical phenomena which we
want to study. In the radial and binormal coordinate periodic boundary conditions
are a good choice.

F (x+ Lx, y, z) = F (x, y, z) , F (x, y + Ly, z) = F (x, y, z) (2.59)

Here Lx is the box size in the x direction and Ly is the box size in the
y-direction. These boundary conditions also keep the number of particles and the
energy conserved in the x and y direction. This ensure no accumulation of particles
inside the simulation box. These periodic boundary conditions also ensure that
we can make a Fourier representation in the two perpendicular directions. As the
microinstabilities usually are localised at the bad curvature side (the low field side),
the flux tube are joined at the high field (inner) side to create the boundary condition
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in the parallel direction. Due to the helical magnetic field this boundary condition
is more complex and beyond the scope of this thesis, for more detail see Ref. [44].

2.7 Gyrofluid
In the same manner as we got the fluid equations from the Boltzmann equation
by taking moments we can get the gyrofluid equations from taking moments of
the gyrokinetic equation, Eq. (2.58). The gyrofluid equations are equivalent to
the fluid equations, Eq. (2.28), (2.32), and (2.35) and describe the evolution of
the plasma. Thanks to the manner the gyrokinetic equation is derived, with the
gyroaveraging, the gyrofluid approach has a number of gyroeffects that is not present
in fluid descriptions of the plasma. Finite Larmor Radius (FLR) effects to all orders
are naturally included in the gyrofluid equations, in the fluid models only first order
FLR effects are usually included but higher order effects have been known to be
added manually. FLR effects takes into account the average of fields over the fast
gyration of a charged particle around the magnetic field that appears due to the small
but non-zero size of the Larmor radius. Another phenomena is Landau damping
which is included in the gyrofluid description through the closure used. Landau
damping is the mechanism where a wave in the plasma lose (or gain) energy from
interacting with particles. If the distribution function is monotonically decreasing
with velocity, the plasma gains energy from the wave thereby damping the wave.
For a description of taking velocity moments of the gyrokinetic equations see [37],
among others.
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CHAPTER 3

TURBULENT TRANSPORT

In order to make fusion an economically viable energy source, the fusion triple prod-
uct, nτET , must be sufficiently large, where n is the particle density, τE is the energy
confinement time and T is the temperature. The product was first introduced by
John D. Lawson [43] and it is used to describe a lower limit for ignition of the
plasma. An ignited plasma is self-sustained by the energy released in the fusion re-
actions. Unfortunately there are limitations for the density and temperature which
limits the triple product. The density is limited by the Greenwald limit, which is an
empirical stability condition and relates the averaged density to the plasma current:
n̄/1020 = κIp, where κ is the elongation and Ip is the plasma current in MA/m3

[49]. The temperature (and density) are limited by the constrains on β = nT
B2/2µ0

which describes the ratio between the plasma pressure and the magnetic pressure. If
this values becomes too large, certain MHD instabilities will occur and disrupt the
plasma. This limitation on the β is described by the Troyon Limit which accounts
for the ballooning and kink mode-instabilities. The value of these constraints on
the density and temperature can be shifted by creating a higher plasma current
and stronger magnetic field. However, this is a challenging engineering problem.
Another approach to increase the triple product is to improve the confinement time
for the plasma. At the basic level, the diffusion (and confinement) in the plasma
is determined by Coulomb collisions, which describes classical diffusion and has a
step length comparable to the Larmor radius. Additions to this model were made
in the 1960’s when Galeev and Sagdev developed the neo-classical theory. This new
theory incorporated the effects of the particle drifts from the non-uniform magnetic
field which is inevitably in a torus shape. Neo-classical diffusion is much higher
than classical diffusion has it has a step length of the width of banana orbits. The
neo-classical theory suggested that the transport perpendicular to the flux surfaces
were relativly small and made plasma physicists hopeful that in a matter of decades
that fusion power would be on the electric grid. Unfortunately, this would not be
the case. Neo-classical theory is successful at describing the transport along field
lines, however perpendicular to the flux surface its magnitude is too low compared to
experimental values. This new transport was named anomalous transport to empha-
size its non-classical nature. Today, we know that the anomalous transport is caused
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3. Turbulent transport

by microturbulence in the plasma. Small fluctuations of the densities, temperatures
and electrostatic potential in the plasma might lead to turbulent transport. The
study of the turbulent transport is the main goal of this thesis.

In this section we will describe turbulent transport. (I) First, we will
describe the physical nature of the turbulence transport, the drift wave instabilities.
(II) Second, we will discuss the difference between non-linear, linear and quasi-linear
theory. (III) Third, we will describe linear theory in greater detail. (IV) Fourth, we
will describe quasi-linear theory which is used to achieve fluxes from linear theory.
(V) Fifth, we will discuss turbulent transport models and transport phenomena.

3.1 Drift Waves
Drift waves are an important type of microinstability which occur in the plasma
owing to the free energy associate with the temperature and density gradients. A
simple (but informative) ansatz for the transport coefficients is the mixing length
estimate which gives the scaling for the effective diffusion:

D ∼ δx2

δt
∼ γ

k2
⊥

(3.1)

Here δx and δt is the step length in space and time, γ is the growth
rate of the drift wave mode and k⊥ is the associated wavenumber. This relation
describes the spatial scale of an instability and determines the total amount of
transport. A faster growing mode might not be as important as one with lower
growthrate if its spatial scale is much smaller. This is true for the relation between
the Ion Temperature Gradient (ITG)-mode and the Electron Temperature Gradient
(ETG)-mode. These are equivalent but the ITG-mode is on ion Larmor scale and
ETG-mode on electron Larmor scale, which means that the ITG-mode is (usually)
much more significant. The nature and the origin of these instabilities will be
discussed in the following sections.

The driftwave which is responsible for most of the turbulent transport in
today’s plasma experiments is the Ion Temperature Gradient (ITG) - mode. The
ITG-mode is a Rayleigh–Taylor type instability which develops when a heavier fluid
is on top a lighter one. The mode is associated with the free energy of the ion
temperature gradient and the largest growthrate occurs at the spatial scale such
that kyρi ∼ 0.3 [32]. This is much smaller than the tokamak minor radius but large
compared with the debye-length. Therefore the quasineutrality condition holds for
the perturbed density associated with this mode, ΣjZjeδnj = 0, which we will use
when discussing the origin of mode. The real frequencies of this mode is of the same
magnitude as the diamagnetic or magnetic drift frequency.

The ITG-mode is formed by a series of physical events which creates a
positive feedback loop. A simple way to describe the ITG -mode is to start with a
small fluctuation in the ion temperature in the poloidal direction, δTi. This leads
to a difference in the magnetic drift velocity as it is dependent on the temperature,
see Eq. (2.14). The different velocities leads to compression of the ion density in
the poloidal direction, δni.
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Figure 3.1: Feedback loop for the ITG-mode

This fluctuation in the ion density is followed by a fluctuation in the
electron density as we assume the fluctuations follow quasineutrality. If we supposing
Boltzmann distributed electrons (and for the time being ignore trapped electrons):

δne = ne
eϕ

Te

(3.2)

The fluctuation in the electron density creates an electric field in the
poloidal direction. The ExB drift, the first term in Eq. (2.14), is in the radial direc-
tion. If the background temperature gradient and magnetic field gradient are in the
same direction (low field side), the ExB drift will increase the initial perturbations.
In the opposite case when the background temperature gradient and magnetic field
gradient are in the opposite direction (the high field side),drift will reduce the initial
perturbations, essentially killing the instability. This is why the low field side is
called the bad curvature region, which is where the largest fluctuations is encoun-
tered in the poloidal plane. The feedback-loop for the ITG-mode is displayed in
Figure (3.1).

As the ITG-mode is such an important instability it has been extensively
studied over the years. It has been shown both analytically and experimentally
that there is a cut-off temperature-gradient [48], [31]. If the temperature gradient
is sufficiently low the ITG-mode is stable.

Due to the higher magnetic field at the inner major radius electrons can
be trapped at the outer, low field side of the torus. These particles do not travel
around the whole torus but are trapped because of the magnetic mirror force if
they do not have a high enough velocity parallel to the magnetic field. In order to
have trapped electrons the collision frequency needs to be lower than the bounce
frequency otherwise the collisions will scatter the particles before they can complete
a bounce. As these electrons are trapped on the low field side the curvature drift,
the middle term in Eq. (2.14), is not averaged out, as it is for a passing particle
which travels to the high field side. This may give rise to the trapped Electron Mode
or TEM. The trapped particles also give rise to the particle transport in the plasma,
because for adiabatic electrons we do not get any particle transport and the trapped
electrons make the total electron population non-adiabatic.
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Figure 3.2: The linear and non-linear phase of a gyrokinetic simulation of the
DIII-D discharge 165303

3.2 Linear, Quasi-Linear and Non-Linear mod-
elling

The fluid and kinetic models, which we have described in Chapter (2), can be used
in three distinctive ways: linear, quasi-linear or non-linear. The linear-,quasi- and
non-linear simulations are different approaches to study the instabilities. In partic-
ular the quasi-linear model use results from linear simulations in combination with
plasma parameters to calculate quantities such as fluxes. Linear models cannot ac-
count for the coupling between instabilities since it is a non-linear effect, however
they are much faster to solve numerically. The easiest way to explain the difference
between the linear and non-linear models is by looking at Figure (3.2) where we
display the particle flux for a linear and non-linear simulation. The two simulations
follow a similar pattern in the initial phase, both grows exponentially and the linear
terms are much larger than the non-linear terms. However at a certain level the non-
linear terms will become of the same magnitude as the linear terms and couplings
between stable and unstable modes become important. This results in a saturated
turbulent flux as can be seen in Figure (3.2) for the non-linear simulation. In the
linear simulations the growthrate and the real frequency are the interesting results.
For the non-linear simulation the fluxes are saturated beacuse of non-linear effects.

Quasi-linear theory assume linear relations, even in the non-linear sta-
tionary turbulent state, between the fields. The theory describes the connection
between the growthrates, real frequencies and plasma parameters to the saturated
fluxes. The saturation level have been derived analytically, which is described in
Section (3.4), and by parameterisation of non-linear simulations. Even though the-
oretical understanding has helped derive quasi-linear expressions for the fluxes it
is often necessary to compare and normalise with non-linear simulations to achieve
good comparisons with experiments. As quasi-linear simulations are computation-
ally much cheaper than non-linear simulations, they are ideal for integrated model-
ing. Hence, the development of quasi-linear models are important for the scientific
community. In paper IV my co-authors and I improve the saturation model of the
fluid model EDWM [32].
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3. Turbulent transport

3.3 Linear theory
As previous mentioned, the Quasi-Linear models (or reduced models which they
are sometimes called) calculate the turbulent transport from the linear response
and the quasi-linear intensity, i.e. the saturation level for |ϕ|2. Different quasi-
linear models have different linear response depending which physics is included.
The quasi-linear intensity is determined by the linear instability, calculated from
an dispersion relation and connected to the perturbed quantities using quasi-linear
theory. QuaLiKiz [10] uses a gyro-kinetic dispersion relation, TGLF [17] a gyro-fluid
dispersion relation and EDWM a fluid dispersion relation.

Here we will briefly discuss the derivation of a dispersion relation used in
EDWM, in a simplified version. As it is a multi-fluid model it uses expressions from
the moments of the Vlasov equation which we derived in Section (2.4). We here
again express the continuity and heat flux equation.

∂nσ

∂t
+∇ · (nσuσ) = 0

3
2nσ

(
∂

∂t
+ uσ

)
Tσ + nσTσ∇ · uσ +∇ ·Q = 0 (3.3)

uσ = uE + u⋆,σ + up,σ + uπ,σ + B̂u∥,σ

The velocities are the drift velocities presented in Section (2.2) and they
are as follow:

uE = B̂ ×∇ϕ/B (ExB drift)

u⋆,σ = B̂ ×∇pσ

ZσenσB
(diagmagnetic drift)

up,σ = dE

dt
/(Bωc,σ) (polarization drift)

uπ,σ = B̂ ×∇πσ

ZσenσB
(stress tensor drift) (3.4)

In order to end up with the linear dispersion relation we need to linearize
the equations, assuming a single Fourier harmonic, f = f (0)(r) + δfeik·r−iωt. Here,
f represents density or temperature and the frequency is generally complex, ω =
ωr + iγ. ωr is the real frequency of the mode and γ is the growthrate. A mode
is unstable if γ > 0. The first part of f, represent the slow changing background
value and the second term is perturbed part. In the proper derivation using a
minimal number of assumptions which is used by EDWM we end up with a 10th
order dispersion relation. This includes electromagnetic effects and parallel motion.
We will make a simpler derivation which nonetheless is informative. The goal is
to formulate the problem as an eigenvalue problem [45]. We make a couple of
simplifications for our derivation, with ñ = δneik·r−iωt

• ∇ñσ/nσ is assumed small as we are in the linear case
• Assume no background electric field, only perturbed
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3. Turbulent transport

• Assume that the parallel motion term, ∇ · (nσB̂u∥,σ) is zero
• Assume electrostatic case

The continuity equation in Eq. (3.3) for the perturbed part of the density
with these assumptions reduces to:

−iωδnσ = −∇n(0)
σ ·δuE−n(0)

σ ∇·δuE +−∇ · [nσ(up,σ + uπ,σ)]−∇ · (nσu⋆,σ)︸ ︷︷ ︸
Approximate to first order

(3.5)

The derivation of all terms on the right hand side is too long for con-
venience to display here. An derivation can be found in Appendix of [46]. The
expressions are shown below:

−∇nσ · δuE = −ω⋆enσ
eϕ

Te

− nσ∇ · δuE = −iωDene
eϕ

Te

−∇ · [nσ(up,σ + uπ,σ)] = inσk
2ρ2

s(ω − ω⋆,σT )eϕ
Te

(3.6)

−∇ · (nσu⋆,σ) = −ωD,σ

(
δnσ + nσ

ω

ω − 5ωD,σ/3

[
2
3
δnσ

nσ

+ ω⋆,e

ω

(
ησ −

2
3

)
eϕ

Te

])

Here we introduced ησ = Lnσ/LTσ and Lnσ/Tσ is the gradient length for
the density/temperature. We can use these terms in Eq. (3.5) and arrive at an
expression for the ion density perturbation. Here times i/nσ,

δnσ

nσ

(
ω − ωD,σ −

2
3

ωωD,σ

ω − 5ωD,σ/3

)
=

= eϕ

Te

[
k2ρ2

s(ω − ω⋆,σT + ωD,σω⋆,e

ω − 5ωD,σ/3

(
ησ −

2
3

)
+ ω⋆,e − ωD,e

]
(3.7)

We can get an expression for the normalizes perturbed density by multi-
plying with ω − 5ωD,σ/3 and dividing with Nσ = ω2 − 10ωωD,σ/3 + 5ω2

D,σ/3

δnσ

nσ

= eϕ

Te

1
Nσ

1
εn

ω2
D,e

[
−ω̂2k2ρ2

sεn + ω̂
(

1− εn −
5
3k

2ρ2
s

εn

τ
− k2ρ2

s

1 + ηi

τ

)
+

−1
τ

(
ησ −

7
3 + 5

3εn

)
− k2ρ2

s

5
3τ 2 (1 + ησ)

]
(3.8)

Here we have introduced the normalized frequency ω̂ = ω/ωD,e, normal-
ized N N̂σ = N/ω2

D,e and εn = 2Ln/LB. A similar expression for the perturbed
trapped electron density exists:

δne,t

ne,t

= eϕ

Te

1
N̂e

1
εn

[
ω̂(1εn) +

(
ηe −

7
3 + 5

3εn

)]
(3.9)
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The passing electrons are Boltzmann distributed as previously mentioned.
The last step to derive this version of the linear dispersion relation is combining the
perturbed densities in the quasi-neutrality condition:

δnσ

nσ

− ft
δne,t

ne,t

− (1− ft)
δne,p

ne,p

= 0 (3.10)

Here ft is the fraction trapped electrons. Using Eq. (3.8), Eq. (3.9) and
the ratio for Boltzmann distributed electrons in this expression we end up with our
dispersion relation:

N̂e

[
−ω̂2k2ρ2

sεn + ω̂
(

1− εn − k2ρ2
s

5
3
εn

τ
− k2ρ2

s

1 + ησ

τ

)
+

−1
τ

(
ησ −

7
3 + 5

3εn

)
− k2ρ2

s

5
3τ 2 (1 + ησ)

]
=

= (1− ft)N̂σN̂eεn + ftN̂σ

[
ω̂(1− εn) +

(
ηe −

7
3 + 5

3εn

)]
(3.11)

As N̂σ and N̂e includes ω squared this equation is a 4:th order linear
dispersion relation. The proper expression for EDWM corresponds to a 10:th order
dispersion relation when electromagnetic effects are included [32], for a plasma with
one impurity species. The expression for N̂σ and N̂e are resonances and their relation
determines in what direction the mode propagates, i.e. the sign of the real frequency.
If N̂σ < N̂e the mode moves in the ion direction, indicating an Ion Temperature
Gradient (ITG) -mode. If N̂σ > N̂e the mode moves in the ion direction, indicating
a Trapped Electron -Mode (TEM). Eq. (3.11) can have both these modes unstable
at the same time and the equation displays coupling between the modes. During
resonance, i.e. N̂σ = 0 or N̂e = 0, the modes becomes decoupled and we get a pure
ITG-mode or TEM.

We will now make the assumption, N̂e << N̂σ, which will result in a pure
TEM. We will do this to be able to highlight the importance of critical temperature
gradients. A critical gradient is where a mode becomes unstable, if a plasma has a
temperature gradient lower than the critical, the associated mode is stable. These
critical gradients are dependent on the plasma parameters. In our simplified version,
the critical gradient will only depend on two plasma parameters. If we assume that
N̂e << N̂σ the LHS in Eq. (3.11) and if the solution has an imaginary part, it looks
like:

γ̂ =
√

ft

εn(1− ft)
√
ηe − ηcr (3.12)

ηcr = 9f 2
t + εn(24ft − 42f 2

t ) + ε2
n(40− 80ft + 49f 2

t )
36εnft(1− ft)

(3.13)

To make the dependence on the temperature gradient clear we express
these equations as temperature gradients. As B ∼ R−1 then LB = R and ηe/εn =
R/2LT e. We rewrite Eq. (3.12) and Eq. (3.13).
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Figure 3.3: The growthrate for the TEM for an electron temperature gradient-
scan with the fluid model EDWM. The dotted vertical line represent the theoretical
critical gradient from our simplified equation which finds a similar value as EDWM.
The left figure is the case with R/Lne = 1.0 ft = 0.35 and the right with R/Lne =
1.5 ft = 0.50.

γ̂ =
√

ft

2(1− ft)

√
R

LT e

− R

Lcr

(3.14)

R

Lcr

=
9f 2

t + R
Lne

(24ft − 42f 2
t ) + R2

L2
ne

(40− 80ft + 49f 2
t )

18 R2

L2
ne
ft(1− ft)

(3.15)

Eq. (3.14) makes it clear to have an instability the electron temperature
gradient needs to be larger than the critical gradient. As previously mentioned
this instability is the Trapped Electron Mode, hence we have a critical electron
temperature gradient. We have calculated a couple critical gradients from Eq. (3.15)
and compared them with simulations with EDWM. In Figure (3.3) we study the
growthrate of the TEM over an electron temperature gradient scan. The dotted
vertical line represent the value calculated by Eq. (3.15). We exemplify this for two
cases: R/Lne = 1.0 ft = 0.35 (left) and R/Lne = 1.5 ft = 0.50 (right). We can
notice in both cases that for low electron temperature gradient the mode is stable.
At a certain gradient the growthrate becomes non-zero, this is where the mode is
excited and thus the critical gradient of EDWM. In both figures in Figure (3.3) this
occurs close to the value determined from our simplified equation implying even our
simple model capture the physics in a satisfactorily way.

A critical gradient exist for the Ion Temperature Gradient in a similar
fashion, here taken from [21] in the η - from.
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γ = (ϵn/τ)1/2

1 + k2ρ2
s

ω∗e

√
ηi − ηi,th (3.16)

ηi,th = 1
2

(4
3 − τ

)
+ 1

4ϵn

(
τ + 40

9τ

)
+ τ

4ϵn

(3.17)

− k2ρ2

2ϵn

[5
3 −

τ

4 + τ

4ϵn

−
(10

3 + τ

4 −
10
9τ

)
ϵn +

(5
3 + τ

4 −
10
9τ

)
ϵ2

n

]
As presented, linear theory solves the linear dispersion relation and deter-

mines the growthrate for each mode. However, to be able to calculate the fluxes due
to the turbulence in the plasma we need to connect the growthrates, real frequency
and other plasma parameters to the saturated quantities, such as the electrostatic
potential which determines the fluxes. This is achieved by quasi-linear theory.

3.4 Quasi-linear theory
Quasi-linear theory connects the linear growthrates, real frequency and other plasma
parameters to the saturated quantities, such as the electrostatic potential. The
turbulent fluxes in the plasma are caused by the interaction between the electrostatic
potential and the perturbed quantities (density, temperature). The turbulent fluxes
are given by the linear phase difference between the perturbed quantities (density,
temperature) and the ExB-drift.

Γi = ⟨δnivExB⟩
Qi = ⟨δTivExB⟩ (3.18)

here vExB is the ExB-drift velocity presented in Chapter (2) and δn the
fluctuating part of the density. The brackets denote flux surface averaging. These
parameters can be calculated numerically or can be expressed analytically to gain a
better understanding of the transport. An analytical expression consist of two parts,
a linear response (or quasilinear weight) and a quasi-linear intensity (or saturation
level). The linear response govern the relation between the fluctuating part of the
density, δn and the electrostatic potential ϕ. The quasilinear intensity describes the
saturation of the electrostatic potential, which usually consist of a mixing-length
assumption. The linear response is different for different models, here we present
the expression for TGLF [8]:

Γi =Σk

〈
kyc

2
s

ωci

∫
FM

(γ̂k + ν̂k)[R/L⟨n⟩ + (E/Te − 3/2)R/L⟨Te⟩]− (γ̂kω̂Gk + ω̂rkν̂k)
(ω̂rk + ω̂Gk)2 + (γ̂k + ν̂k)2

×J0(k⊥ρs)2|ϕ̂|2k
〉

(3.19)

Where γ is the growthrate of the mode and ky is the associated wave
number. ν̂k is the collision-frequency, FM is the equilibrium Maxwellian distribu-
tion function and all quantities with a hat in Eq. (3.19) are normalized with the

31



3. Turbulent transport

0 1 2 3 4 5 6 7
R/LTe

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Q
e

[G
B]

R/Lne = 1.0 ft = 0.35

0 1 2 3 4 5 6 7
R/LTe

0

5

10

15

20

Q
e

[G
B]

R/Lne = 1.5 ft = 0.50

Figure 3.4: Electron heat flux for the TEM for an electron temperature gradient-
scan with the fluid model EDWM. The dotted vertical line represent the theoretical
critical gradient from our simplified equation which finds a similar value as EDWM.
The fluxes increase rapidly after the critical gradient. The left figure is the case with
R/Lne = 1.0 ft = 0.35 and the right with R/Lne = 1.5 ft = 0.50.

fluid perpendicular drift frequency, ωDk = kyρscs/R. We have introduced the gra-
dient length: L⟨Xe⟩ := −

(
⟨|∇ρt|⟩ ∂

∂ρt
ln⟨Xe⟩

)−1
. The brackets denote flux surface

averaging.
The sum is over all wavenumbers but only a limited part of the spectrum

at low wavenumber has a significant contribution to the fluxes as discussed later.
The last part of Eq. (3.19) describes the saturation level, also called quasi linear
intensity, which is discussed later in detail. It is clear that it is essential that
the linear phase differences calculated by turbulent transport models have similar
values as the non-linear counterpart. This is one of the two main criteria for quasi-
linear theory. This criteria has been extensively studied by comparing non-linear
and quasi-linear simulations and generally holds [6] [15]. Secondly, the random
walk assumption need to hold and a condition for this is that the Kubo number
[42] needs to be smaller than 1. The Kubo number represent the ratio between
the decorrelation time for the electrostatic potential and the turbulent eddy turn
over time. The Kubo number has been calculated for several plasmas in different
machines and different turbulence regimes and it has consistently been lower than
1 [7] [26]. Hence, it has been shown that for typical plasma parameters the random
walk assumption is valid.

The output from quasi-linear models are the fluxes but they are deeply
influenced by the growthrate from the instabilities in the plasma. This is made clear
by the comparison of Figure (3.3) and Figure (3.4). Again, Figure (3.3) displays
the growthrate from EDWM for a electron temperate gradient scan and Figure (3.4)
display the electron heat flux for the same simulations. If the mode is not unstable it
does not contribute to the fluxes which is why we have no flux when the growthrate
is zero. As the growthrate becomes larger, the fluxes follow suit.

The value of critical gradient is crucial for the profiles in the plasma.
When the mode is excited a small increase can lead to a massive increase in the
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fluxes, which is most easily seen in Figure (3.4) (left). This means even a larger
input of (additional) heating might not change the profiles in a significant way.
This phenomena is described as the profile stiffness. They do not react to a large
change in input heating.

3.4.1 Mixing length assumption
The connection between the electrostatic potential and the linear growthrate is
expressed by the mixing length assumption which will result in an expression for the
saturation level, the last part in Eq. (3.19). It is derived by assuming the convective
ExB non linearity in the energy equation is balanced by the linear growthrate:

γδTj ∼ vExB · ∇δTj (3.20)

A similar expression for the perturbed part of the density exists which
gives the same saturation level. One approach for the mixing length is to assume
that the relevant physics occur at certain correlation length scales, described by kx,a

and ky,a and use it in Eq. (3.20). The correlation length is the typical length scale
for the turbulent transport where we have the highest transport and (a) indicates
the wavenumbers at this length scale. We end up with the mixing length assumption
which may be written as:

eϕa

Te

= ϕ̂a = γ

kx,aky,a

1
ρscs

(3.21)

In principle this equation is only valid for kx,a and ky,a, hence only for
a quasi-linear model which uses a single poloidal wavenumber, such as the Wei-
land model. An improved treatment of the mixing length can be found by looking
more thoroughly at Eq. (3.20). The gradients in the ExB-drift velocity and of the
perturbed quantities are easily calculated if we express them and the electrostatic
potential as Fourier series. Here for a slab geometry with x as the radial coordinate
and y the poloidal.

δT (x, y) =
∑

kx1,ky1

δTkx1,ky1e
ikx1xeiky1y

ϕ(x, y) =
∑

kx2,ky2

ϕkx2,ky2e
ikx2xeiky2y (3.22)

here, δTkx1,ky1 and ϕkx2,ky2 are Fourier coefficients and are independent of
the spatial coordinates. The RHS of Eq. (3.20) becomes:

∑
kx1,ky1
kx2,ky2

(
kx1ky2

B
− kx2ky1

B

)
δTkx1,ky1ϕkx2,ky2e

ix(kx1+kx2)eiy(ky1+ky2) (3.23)

We notice that we get two similar terms, one from the radial direction
and one from the poloidal from the inner product in Eq. (3.20). We can remove
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the spatial dependency by multiplying with test functions eikx3 and eiky3 , thereafter
integrating over the slab-geometry. We end up with an expression:

γkx3,ky3δTkx3,ky3 ∼∑
kx2,ky2

(
kx3ky2 − kx2ky3

B

)
δTkx3−kx2,ky3−ky2ϕkx2,ky2 (3.24)

This equation express the balance between the linear growth and the non-
linear mode coupling. The linear term for each poloidal wavenumber is balanced
by a sum over wavenumber for the non-linear interaction term. This summation
is referred as the Drift Wave Mixing. The expression for the mixing length, Eq.
(3.21), express the same physics as Eq. (3.24), although in a more rudimentary
version. The mode-coupling in Eq. (3.24) can not properly be represented in a
quasi-linear model and as the Eq. (3.21) is only valid at the correlation length. An
approach to circumvent this conundrum is presented in Paper IV: We propose that
the saturation level is taken at the correlation length scale and all dependence of
the poloidal wavenumber is contained in a filter f, representing the mode-coupling.
We write the electrostatic potential as:

|ϕ̂|2 = 4γ2
a

ωDeaR2k2
a

f 2(ky) (3.25)

Here normalized with ωDe, the electron diamagnetic drift frequency. The
fraction is calculated at the correlation length and the function f determines the
spectral shape. Paper IV determines the spectral filter for the fluid model EDWM.
With an expression for electrostatic potential we can use Eq. (3.19) to determine
the fluxes form the turbulent transport.

3.5 Transport modeling
In this section we are presenting the models which have been used in the papers.

3.5.1 EDWM
EDWM (Extended Drift Wave Model) is based on the Weiland model created at
Chalmers University of Technology in the 90s [48] and it is applicable for turbulent
transport in conventional tokamaks. It is a fluid model which was initially developed
only for the Ion Temperature Gradient mode [21] and subsequently expanded to
include the Trapped Electron-Mode [22]. EDWM only considers instabilities at
ion scales and does not include instabilities at smaller scales, such as the Electron
Temperature Gradient (ETG)-mode. EDWM can handle an arbitrary number of
ions and all their possible charge states [28]. Higher order Finite Larmor Radius-
effects has been added to the later version of EDWM. The derivation of the multi
fluid model starts with the Braginskii equations coupled to Maxwells equations.
It is electromagnetic and as a consequence, the free electrons are not Boltzmann
distributed due to the correction from the vector potential parallel with the magnetic
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field. Another electromagnetic effect is the stabilization of the Ion Temperature
Gradient (ITG)-mode, which usually is the dominant turbulent instability in current
experimental devices. EDWM uses a toroidal slab geometry and the ExB-shearing
rate is taken into account as a reduction in the linear growth rate in the Hahm-
Burell formalism [39]. As EDWM uses an eigenvalue solver, all unstable modes not
just the most unstable, account for the total flux.

3.5.2 TGLF
The Trapped-Gyro Landau-Fluid model or TGLF [17] for short includes effects that
are not present in the fluid models. Landau damping and Finite Larmor Effects
are not added in fluid models accurately. TGLF uses Miller geometry [34] and
includes electromagnetic effects. TGLF is a quasi-linear model which by taking
moments of the gyrokinetic equations, as described in Sec. (2.7), results in a set of
coupled equations. These equations are solved for the linear eigenmodes of the ion
and electron temperature gradient (ITG,ETG), trapped ions and electrones modes
(TI, TE) and electromagnetic balloning mode (KB modes). A wide spectrum is
used for the wavelengths, including both ion scales (kθρs < 1 ) and electron scales
(1 < kθρs < 24). The saturation level for the TGLF is fitted to a database of
nonlinear gyrokinetic simulations. The saturation used in the papers are SAT1
[19, 18].

3.5.3 GENE
The GENE-model uses a Eulerian δf -method to solve the nonlinear gyrokinetic
Vlasov equation [41]. GENE solves for the fluctuating part of the distribution func-
tion δf(R, v∥, µ, t), the parallel component of the vector potential, A∥(x, t), the
parallel component of the magnetic field perturbations, B∥(x, t) and the electro-
static potential ϕ(x, t). The model uses a magnetic field aligned flux coordinate
system where x is aligned to the radial coordinate, y the binormal coordinate and z
parallel to the magnetic field and it can handle an arbitrary number of ion species.
We have used the linearized Landau-Boltzmann operator [44] for the collisionality
and in the papers we used a realistic geometry geometry by using an EFIT-file to
calculate the magnetic equilibrium.

3.5.4 Integrated modeling
In the previous section we discussed specific turbulent transport models which uses
plasma parameters and calculate the particle fluxes, heat fluxes, growthrates of
the modes etc. These codes can be used together with other models, such as for
heating, magnetic equilibrium, neoclassical transport, to simulate the whole plasma,
this is called integrated modeling. Integrated modeling can be used in two ways,
interpretative and predictive modeling. Interpretative modeling uses given plasma
profiles as input to the codes and calculates a number of different quantities such as,
particle deposition, linear growth rates, particle fluxes etc. Predictive simulations
evolve the plasma profiles (n, T, J, vtor) in time, self-consistently.
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One integrated model which have been used in Paper A, B and C is the
JETTO-code [4]. Experimental profiles are taken from quasi-steady state, where
the outward fluxes are in balance with the internal sources, as a starting point
and the predictive simulations are evolved in time until they find the theoretical
quasi-steady-state. These theoretical quasi-stedy states are compared with the ex-
perimental (physical) steady state to asses the validity of the theoretical models.
With integrated modeling it is feasible to determine the response of the plasma due
to external changes (for example increase of the NBI particle source). During the
evaluation of the plasma profiles the turbulent transport models are consistently cal-
culated as they are significantly affected by changes in the profiles.JETTO performs
these predictive simulations by solving the particle (i.e. continuity) and energy bal-
ance equations and evolving it in time. Here as flux surface averaged equations
[4]:

∂

∂t
⟨n⟩+ 1

v′
∂

∂ρt

(v′⟨Γρt⟩) = ⟨Sn⟩ (3.26)

3
2
∂⟨Pj⟩
∂t

+ 1
v′

∂

∂ρt

[v′⟨qi ·∇ρt⟩] = ⟨Qj⟩ (3.27)

Sn is the NBI particle source and Q represent the power gain and losses
from NBI-particles, electron-ion thermal equilibration, radiation and Ohmic heating.
Both Sn and Q is dependent on the radial position and both can be calculated with
various degree of accuracy. It is preferable to calculate the source profiles several
times during a simulation as changes in the profiles affect the deposition of the
sources.

3.6 Turbulent transport phenomena
In this section we discuss some turbulent transport phenomena which is discussed
in greater detail in the articles.

3.6.1 Density Peaking
Because the densities are constrained by the empirical Greenwald limit, which mainly
limits the density at the plasma edge, in order to achieve high fusion power it is
favorable to have a peaked density profile.

The density peaking is determined by two factors, the particle sources and
the particle transport. Previous work have studied the importance of the particle
sources for the density peaking, and the results are inconclusive. Some studies have
shown the particle sources to have a high impact [30, 20] while others have shown
a low (around 20 % of the density peaking from the particle sources) or negligible
impact [23, 29, 8]. Furthermore, more recent studies at JET [36, 14] showed that
the particle sources had a large effect on the peaking while other studies at DIII-
D [35] and AUG [13] showed a small or negligible contribution from the particle
sources. Because the density peaking is important for the effectiveness of a future
power plant, it is imperative to clarify the relative contributions from the particle
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sources and transport to the density peaking. Density peaking can be defined in
two different ways, global or local. Global density peaking describes the normalized
density difference between the core and the top of the H-mode pedestal. Local
density peaking is defined by the normalized density gradient at a certain radial
position in the plasma. In this thesis the focus is on the local density peaking and
its origins.

In order to discuss density peaking properly we need to introduce the
concept of diffusion and pinch. If we look at Eq. (3.19) we notice that the expression
is divided into three specific parts. We have one part which is explicitly proportional
to the density gradient, this is the diffusive part and it is directed outwards. A second
term explicitly proportional to the temperature gradient and it is called the thermo-
diffusion pinch. The last part is not explicitly dependent on any of the gradients of
the density or temperature and is the convective pinch. Both the pinch terms can
be directed inwards or outwards. The thermo-diffusion and the convective pinch
can be added together which we will do from here on. From these concepts we can
define a decomposed particle flux of a diffusive and pinch part, here in a non-circular
geometry as we included the metric components ⟨|∇ρt|⟩ and ⟨|∇ρt|2⟩. (for details
see Paper III)

⟨Γρt
e ⟩ = −DP B

⟨ne⟩⟨|∇ρt|2⟩∂ρt⟨ne⟩+ V P B
⟨ne⟩⟨|∇ρt|⟩⟨ne⟩ (3.28)

Here ∂ρt = ∂/∂ρt, DP B
⟨ne⟩ is the diffusion and V P B

⟨ne⟩ is the pinch. To quantify
local density peaking we will start with the flux surface averaged continuity equation
from (3.26):

∂

∂t
⟨n⟩+ 1

v′
∂

∂ρt

(v′⟨Γρt⟩) = ⟨Sn⟩ (3.29)

Here Γ is the particle flux shown in Eq. (3.28). The density peaking
has two sources, the turbulent transport and the particle source due to the Neutral
Beam Injection. This can clearly be seen by inserting the decomposed particle flux
in Eq. (3.29) and assume quasi steady-state.

a

L⟨ne⟩
= −a⟨|∇ρt|⟩2

⟨|∇ρt|2⟩
V P B

⟨ne⟩

DP B
⟨ne⟩

+ a⟨|∇ρt|⟩
v′⟨|∇ρt|2⟩⟨ne⟩DP B

⟨ne⟩

∫ ρt

0
v′⟨Sn⟩dρt (3.30)

Here v’ is the the derivative of the plasma volume, ⟨Sn⟩ is the particle
input from the particle source per flux surface/s. The left hand side is the total
local peaking factor for the plasma. The first term on the RHS is the peaking
that comes from the turbulent transport. This term is entirely determined by the
ratio of the particle balance pinch and diffusion. The second term on the right
hand side is the source term and reduces as the particle balance diffusion increases.
A discharge with high particle balance diffusion can still be peaked through the
turbulent transport, if the particle balance pinch is of the same magnitude as the
diffusion or stornger.
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Figure 3.5: Growhrates for different isotopes, all normalized with hydrogen. Taken
from [32], with permission.

3.6.2 Isotope effect

The isotope mass affects the turbulent transport in the plasma in several ways.
Heavier elements have a larger gyro-radius (ρL ∝

√
M) for the same charge and as

the gyro-radius is closely linked to the scale of the turbulence. The effect of the
gyro-radius on the ITG growth rate is displayed in Figure (3.5) which show the
growth rates for the different isotopes. Because the tritium is the heaviest isotope
it has the largest scale for its turbulent, i.e. lowest wave number, and hydrogen the
smallest scale, i.e. highest wave number. We can also notice the difference in the
maximum value of growth rates which decreases for heavier isotopes. These two
effects, different scale and different growthrates, are dependent of the mass in the
same way, kmax ∝ M−0.5, γ ∝ M−0.5. This to effects combined make the turbulent
flux scale with mass as Γ ∝ γ/k2 ∝

√
M as presented Eq. (3.1). However, this is not

that is generally observed experimentally. This discrepancy is referred the ”isotope
effect”.

Experimentally studies have shown that global stored energy scale as M0.2

for a multi-machine database [25]. A key factor that could alter the scaling was first
proposed by Cordey et al [5], who observed that the core and the edge transport
in the plasma can be very different, i.e. it is not necessary that transport in the
edge scale in the same way as in the core. For instance, it is possible the imagine
that core transport is gyro-Bohm like while the global stored energy scales with a
positive exponent of M because of the edge pedestal. Experimentally, it has been
well established in several devices that the edge plasma in a tokamak H-mode has
a strong dependency on the isotope, e.g. in JET [27], AUG [33], JT-60U [47] etc.
In a recent regression analysis of a large JET (ILW) pedestal database, a significant
dependency was found for the pedestal stored energy, ∝ M0.5 [27], where both the
density and temperature at the top of the pedestal where found to increase with
isotope mass. An increased pedestal should usually lower the normalized gradient
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and thereby lower the turbulent transport. Hence, what is perceived as an anti-
gyro Bohm effect in the core turbulent transport may be caused by the change in
pedestal.

There are plenty of mechanism that could break the gyro-Bohm depen-
dence for the turbulent transport in the core. These includes (i) collisions [9]; (ii)
ExB shear [24], [12], (iii) β-effects and contribution of the Electron Temperature Gra-
dient (ETG) mode. The isotope effect is explored in some detail for JET dsicharges
in Paper V.
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CHAPTER 4

BRIEF SUMMARY OF THE PAPERS

The common feature through papers I-III is the assessment of the relative impor-
tance of the particle source for the density peaking in current tokamak devices with
the aim of improving the extrapolation to future machines. Paper IV focuses on the
development of the saturation rule in the fluid model EDWM and Paper V studies
the isotope effect for three JET H-mode discharges.

In Paper I, interpretative and predictive simulations with JETTO for four
collisionality scans at JET are presented each with three discharges: Deuterium L-
mode with Carbon wall, hydrogen H-mode with Iter Like Wall (ILW), deuterium
H-mode with ILW and deuterium H-mode with high β and ILW. In the predictive
simulations, the electron density, electron and ion temperature profiles were evolved
until a quasi-steady state was found. In each collisionality scan, important dimen-
sionless parameters were kept constant such as β, normalized gyro-radius, safety
factor, magnetic shear, normalized temperature gradients and Zeff . To identify the
effect of the NBI-source on the density peaking, simulations were performed with
the NBI particle source and in a second case were it was artificially removed while
maintaining the power input from the NBI. The simulations were carried out with
JETTO using TGLF as transport model. The results showed that the turbulent
pinch was the major cause of the density peaking for the L-mode discharges while
the H-mode discharges showed a strong dependency on the NBI-source. As dis-
charges with carbon wall has a higher impurity content these discharges were also
simulated with a 2% carbon content which did not affect the density peaking in
a significant way. The TGLF model predicts the experimentally profiles relatively
well.

In Paper II, a collisionality scan performed at DIII-D was studied. The
perturbative transport coefficients were measured using a gas puffing techniques and
results showed larger values for these coefficients for the low collisionality discharge,
both for the diffusion and pinch coefficients. The ratio of the two transport coeffi-
cients represents the turbulent transport contribution to the density peaking. The
calculated ratios were close to the measured density peaking indicating that the NBI
fueling had a small impact on the peaking. Studies were done with TGLF to deter-
mine the linear stability properties. The medium and high collisionality discharges
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had a dominant ITG-mode and the low collisionality discharge displayed a TEM
as the most unstable mode which might explain the large difference in transport
coefficients.

In Paper III is focused on the comparison of the particle transport and
density peaking between JET and DIII-D. This was done by comparing two H-
mode collisionality scans, one at JET and one at DIII-D. The perturbative particle
transport coefficients were calculated by performing density gradient scans for the
discharges with TGLF. Particle balance transport coefficients were also calculated
and where found to be lower than the perturbative values which suggest that one
generally can not make the assumption that the perturbative and particle balance
transport coefficients are equal. The ratio between between the particle balance
pinch and diffusion coefficients were calculated since its values represent the turbu-
lent transport contribution to the density peaking. Results showed that in the DIII-
D discharges the majority of the density peaking was due to the turbulent transport
while the JET discharges had strong contribution from the particle source. This
conclusion was also supported by linear and non-linear GENE simulations. Sensi-
tivity studies were performed to determine which parameters were responsible for
the large difference in the contribution to the density peaking in DIII-D and JET.
The largest effect came from the differennce temperature gradients.

In Paper IV, we focus on enhancing the physics fidelity of the quasi-linear
fluid model EDWM (Extended Drift Wave Model). We have developed a new sat-
uration model and calibrated several other features. As one of the computationally
fastest first-principle based core transport models, EDWM can include an arbitrary
number of ions and charge states. This feature is especially important for experi-
mental devices with plasma facing components made of heavy elements, such as JET
and the upcoming ITER-device. Because EDWM is a quasi-linear model it solves a
linear dispersion relation to obtain the instabilities driving the turbulence. Further-
more, it combines the linear description with an estimation of the saturation level of
the electrostatic potential. A new saturation rule at the characteristic wavenumber
combined with a spectral filter for the poloidal wavenumber dependency were devel-
oped. The shape of the filter has been adapted to the poloidal wavenumber spectra
obtained from non-linear gyrokinetic simulations. Additionally, EDWMs collision
frequency and safety factor dependencies, as well as the electron heat flux level have
been calibrated against gyrokinetic and gyrofluid results. Finally, the saturation
level of the turbulence has been normalized against non-linear gyrokinetic simula-
tions and later validated against experimental measured fluxes from 12 discharges
at JET.

In Paper V, we studied the isotope effect in three discharges at the Joint
European Torus (JET). The term isotope effect is used to label the deviation be-
tween experimental measurements and the simple gyro-Bohm scaling. The latter
postulates that the stored energy in the plasma scale as 1/M1/2

eff , where Meff is the
effective mass of the fuel isotope(s). This phenomena has received considerable at-
tention in recent years. However, a complete understanding of the deviation from
gyro-Bohm scaling is still lacking. The plasma species used in the JET experiments
were a mixture of hydrogen and deuterium, Meff varying between 1 and 2. The
discharges were matched in terms of engineering parameters, with a plasma current
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of 2.3 MA, a magnetic field of 2.3 T and Neutral Beam Injection (NBI) heating
power of 22 MW. We have analysed the discharges with linear and non-linear gy-
rokinetic simulations as well as with the integrated modelling framework ETS. In
particular, the analysis was concentrated on four effects that could lead to a devia-
tion from gyro-Bohm scaling of the core confinement: (i) the "boundary condition"
presented by the H-mode pedestal for the core confinement; (ii) E × B shearing
because of the external rotation induced by Neutral Beam Injection; (iii) collisions;
and (iv) contribution of Electron Temperature Gradient modes (ETG modes) to the
plasma transport. It was found that the first two make the main contribution to
the deviation of the core confinement from gyro-Bohm scaling in the analysed JET
discharges.
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