
A semi-implicit slip algorithm for mesh deformation in complex geometries,
implemented in OpenFOAM

Downloaded from: https://research.chalmers.se, 2024-03-13 08:21 UTC

Citation for the original published paper (version of record):
Salehi, S., Nilsson, H. (2023). A semi-implicit slip algorithm for mesh deformation in complex
geometries, implemented in
OpenFOAM. Computer Physics Communications, 287. http://dx.doi.org/10.1016/j.cpc.2023.108703

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Computer Physics Communications 287 (2023) 108703
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A semi-implicit slip algorithm for mesh deformation in complex 

geometries, implemented in OpenFOAM ✩,✩✩

Saeed Salehi ∗, Håkan Nilsson

Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg SE-412 96, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 May 2022
Received in revised form 31 January 2023
Accepted 15 February 2023
Available online 24 February 2023

Keywords:
Mesh motion
Semi-implicit slip
OpenFOAM
Kaplan turbine
Transient operation

Many engineering applications of computational fluid dynamics (CFD) comprise extensive movement 
of objects that necessitate complex dynamic mesh treatments. In particular, the mesh motion process 
frequently requires a proper slipping of mesh points on highly curved surfaces. The currently available 
implementation of explicit slip boundary conditions in OpenFOAM fails to allow large deformations 
of the mesh without severely degrading the mesh quality and inverting some of the cells. Thus, a 
robust semi-implicit slip algorithm, based on the Laplacian smoothing methodology, is developed in the 
present work to tackle this issue. The algorithm is in fact performed in two steps, one explicit and one 
implicit. The OpenFOAM implementation of the algorithm includes different mesh motion solvers and 
boundary conditions, based on the displacement or velocity of points. The method is first verified using 
simple, yet relevant, test cases, and it is shown that the developed algorithm significantly outperforms 
some of the well-known proprietary CFD codes. Then, it is applied to a complex practical CFD case 
study. An engineering application that requires the features of the developed mesh motion algorithm is 
the transient operation of Kaplan turbines. These double-regulated machines simultaneously adjust the 
guide vane and runner blade angles while changing the operating condition. CFD simulations of such 
transient operations are highly complex, as they involve mesh deformation of the guide vane passage 
and simultaneous mesh deformation and rigid-body rotation of the runner blade passage. The mesh 
deformation requires points to slip on the curved hub and shroud surfaces while preserving the cell 
quality in tiny blade clearances. Therefore, the feasibility of the developed algorithm is evaluated for a 
load rejection sequence of a Kaplan turbine model.

Program summary
Program Title: Semi-implicit slip mesh motion
CPC Library link to program files: https://doi .org /10 .17632 /wztc26vh7b .1
Developer’s repository link: https://github .com /salehisaeed /semiImplicitSlip
Licensing provisions: GPLv3
Programming language: C++
Nature of problem: CFD simulations of numerous engineering fluid flows, such as transient operation of 
hydraulic turbines, involve an immensely complicated mesh motion process consisting of simultaneous 
mesh deformation and mesh slipping on highly curved surfaces. The available standard mesh motion 
methodology in OpenFOAM lacks some features to simulate this elaborate mesh motion. The introduced 
program addresses this problem by developing a new dynamic mesh algorithm.
Solution method: The program implements a robust semi-implicit algorithm for slipping the mesh points 
on curved surfaces. The algorithm includes two steps, namely, an explicit step based on the general 
slip condition and an implicit step based on the Dirichlet condition. It employs the Laplacian smoothing 
equations to spread the mesh deformation into the domain. Additionally, a solid-body rotation may be 
added on top of the deformed mesh, which could be useful for modeling the runner region in transient 

✩ The review of this paper was arranged by Prof. Hazel Andrew.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding author.
E-mail addresses: saeed.salehi@chalmers.se (S. Salehi), hakan.nilsson@chalmers.se (H. Nilsson).
https://doi.org/10.1016/j.cpc.2023.108703
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108703
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108703&domain=pdf
https://doi.org/10.17632/wztc26vh7b.1
https://github.com/salehisaeed/semiImplicitSlip
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:saeed.salehi@chalmers.se
mailto:hakan.nilsson@chalmers.se
https://doi.org/10.1016/j.cpc.2023.108703
http://creativecommons.org/licenses/by/4.0/


S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703

operation of Kaplan turbines which contains simultaneous mesh deformation and solid-body rotation of 
the mesh.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Numerous real-life applications of computational fluid dynam-
ics (CFD) involve moving objects, such as aeroelastic modeling of 
wings, biological flows, and vibration of turbomachinery blades. 
Transient operation of hydraulic turbines is another example of 
engineering flows that involves moving surfaces. During such op-
erations, the flow rate varies through adjustable guide vanes that 
change their angle. In the case of Kaplan turbines, the runner blade 
angles are also adapted simultaneously to maintain a high effi-
ciency over a wide range of flow rates.

Three main approaches are available for CFD of flows with mov-
ing objects, namely, mesh morphing [1] (also known as Arbitrary 
Lagrangian Eulerian, ALE), overset mesh [2,3], and the Immersed 
Boundary Method (IBM) [4]. Each approach has its own advantages 
and disadvantages that will be briefly discussed here.

Mesh morphing is historically the most widely used approach 
for flow simulations with moving or deforming boundaries. It is 
based on an initial body-fitted mesh that is deformed according to 
the motion of the boundaries. The main advantage of the approach 
is that it provides precise mass conservation by maintaining the 
original mesh topology and cell connectivity, while accurately cap-
turing the boundary layer effects through the body-fitted mesh. 
A disadvantage is that large geometrical changes may significantly 
degrade the mesh quality (e.g., non-orthogonality and skewness). 
Further, although modern meshing tools are highly developed, it 
may be burdensome to generate the body-fitted meshes required 
for the mesh morphing approach, especially in the case of practical 
engineering applications with flows through complex geometries 
(such as hydraulic turbines).

The overset mesh approach is based on a background mesh 
and one overlapping body-fitted mesh for each moving object. All 
meshes that overlap exchange information during the simulation. 
The main convenience of this method is that the individual meshes 
do not deform during the simulation, even if they are moving with 
respect to each other. This allows very large mesh motion with-
out changing the mesh quality. The mesh generation may also be 
easier than for the single body-fitted mesh needed for the mesh 
morphing approach. However, the approach has the disadvantage 
of performing the challenging and costly interpolation-based cou-
pling between the meshes. It also involves complicated dynamic 
load balancing for parallel computations and elaborate priority 
management for multiple overlapping meshes [5]. The search and 
interpolation algorithms can become computationally expensive as 
the number of overset regions grows. A simulation of a Kaplan 
turbine transient sequence would for example require one overset 
mesh for each guide vane and runner blade. This could drastically 
affect the efficiency of the computations. More importantly, the 
coupling of overlapping meshes is based on an interpolation pro-
cedure which is restricted to the local information and does not 
guarantee global mass conservation. The accuracy of the interpola-
tion may also be affected by the ratio of cell sizes in the region of 
interpolation. This may be a problem when an overset mesh comes 
close to the body-fitted boundary of another overset mesh or the 
boundary of the background mesh. Völkner et al. [5] analyzed the 
non-conservative coupling of the overset mesh approach and ex-
plained that it causes nonphysical mass and pressure fluctuations. 
Nevertheless, due to the convenience of the methodology, it has re-
cently been evaluated for the simulation of guide vane movement 
2

during a load rejection process of a high-head Francis turbine [6]
and pump-turbines during startup [7] and shutdown [8].

The Immersed Boundary Method (IBM) has primarily been de-
veloped to mitigate the difficulties to generate body-fitted meshes 
for complex geometries. The method can also be employed as a 
convenient alternative for modeling flows with moving objects. 
IBM was first introduced by Peskin [9] to model cardiac blood 
flow. Since then, many variants of this method have been intro-
duced in the literature (e.g., [10–21]). In IBM, the equations are 
discretized on a background mesh. The stationary or moving ob-
ject is specified by a surface that identifies where the equations 
on the background mesh should be influenced such that the pres-
ence of the object appropriately affects the resulting flow. This 
has the potential to make mesh generation extremely easy. How-
ever, the way to manipulate the equations in the background mesh 
is not a straightforward task, and the effects of the immersed 
boundary treatment on the conservation properties of the numer-
ical models are not clear [4]. The main disadvantage of IBM is 
that the immersed boundary surfaces and their boundary layers 
are not accurately resolved, as in the other dynamic mesh ap-
proaches. To resolve the boundary layer at the immersed boundary, 
the background mesh in that region needs to be sufficiently fine. 
For a moving immersed boundary, this applies to the entire region 
where the object may appear. A remedy to this is to apply time-
varying local refinement in the background mesh, which however 
introduces additional complexity and computational cost. Although 
the background mesh is sufficiently fine, the discretization at the 
immersed boundary will in most cases still not be ideal. This may 
lead to spurious numerical oscillations in the vicinity of the mov-
ing object, which can significantly deteriorate the accuracy of the 
solution [22]. The methodology has not yet been adopted for com-
mon use in complex engineering applications such as simulation 
of transient sequences of hydraulic machines [23].

As discussed above, the mesh morphing approach is still the 
most widely used alternative for CFD with moving or deforming 
boundaries. It is also the most mature in terms of accuracy, mass 
conservation and stability in general-purpose CFD codes. It has 
been repeatedly employed in the literature for simulations of load 
change operations of Francis turbines, i.e., load rejection [24–26], 
load acceptance [27], shutdown [28–31], and startup [32,33]. How-
ever, a thorough review of the literature reveals that very few 
studies have been dedicated to the transient operation of Kaplan 
turbines. This may be explained by the complexity of such proce-
dures in both numerical and experimental investigations. In Kaplan 
turbines, both the guide vanes and runner blades change their an-
gles while the runner is rotating, as opposed to Francis turbines 
where only the guide vanes are adjustable. Kaplan turbines also 
have special blade clearances that are not present in Francis tur-
bines which augments the mesh deformation complexity. Hence, 
the current paper focuses on the mesh morphing methodology and 
addresses the challenges in the dynamic mesh process for highly 
curved surfaces, such as those in Kaplan turbines.

A mesh morphing framework, consisting of different boundary 
conditions and mesh motion solvers, is developed in the Open-
FOAM open-source CFD code. The instabilities of an explicit point 
slip boundary condition on curved surfaces are explained in detail, 
and a novel robust semi-implicit algorithm is proposed to tackle 
this issue. The feasibility of the developed program is evaluated 
on a Kaplan turbine model subjected to load rejection. The current 

http://creativecommons.org/licenses/by/4.0/


S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703
paper extends and further improves the mesh deformation frame-
work introduced by Salehi et al. [34].

It should particularly be noted that although the current dy-
namic mesh framework is primarily developed and tested for Ka-
plan turbines, which is the application area of the authors, the 
semi-implicit slip algorithm can be utilized for any mesh motion 
problem that involves slipping points on highly curved surfaces.

The paper is organized as follows. Section 2 briefly describes 
the theory of finite volume discretization on dynamic meshes. The 
classical mesh deformation algorithms and the challenges with the 
explicit slip boundary condition are explained in Section 3. Sec-
tion 4 introduces the developed robust algorithm for mesh defor-
mation of Kaplan turbines during transient operation. The perfor-
mance of the developed numerical framework is assessed using a 
model Kaplan turbine case study in Section 5. Finally, conclusions 
are drawn in Section 6.

2. Finite volume discretization for dynamic meshes

This section discusses the theory of finite volume discretization 
for dynamic meshes, as well as its implementation in OpenFOAM. 
In the case of dynamic meshes, the surfaces of the control volumes 
(mesh faces) may move with a specific velocity and may deform 
over time. Using Gauss’ theorem, it can be shown [1] that the in-
tegral form of the general incompressible transport equation for a 
scalar φ over a moving/deforming arbitrary control volume V with 
closed surface S , is stated as

d

dt

∫

V

φ dV +
∮

S

n · (u − us)φ dS −
∮

S

γφn ·∇φ dS =
∫

V

sφ dV . (1)

Here, n is the unit normal vector of the control volume sur-
face, pointing out of the control volume. u and us represent the 
fluid and control volume surface velocities, respectively. γφ is the 
diffusion coefficient and sφ is the source term of scalar φ. One 
can see that the general conservation equation for a dynamic mesh 
can be derived by simply replacing the velocity in the convective 
term with the relative velocity in the same conservation equation 
for a fixed mesh. Finite volume discretization of Eq. (1), using the 
implicit second order time discretization for a fixed time step (re-
ferred to as backward in OpenFOAM), yields

3φn
P V n

P − 4φo
P V o

P + φoo
P V oo

P

2�t
+

∑
f

(F n
f − F n

s )φn
f

−
∑

f

(γφ)n
f Sn

f nn
f · (∇φ)n

f = sn
φ V n

P ,

(2)

where subscripts P and f denote cell-centered and face-centered 
values. Superscripts n, o and oo represent current time (at time t), 
previous time (at time t − �t), and the time before that (at time 
t −2�t), respectively. F f = n f ·u f S f is the volumetric flux through 
a stationary control volume face due to the fluid velocity, while 
Fs is the volumetric flux corresponding to the cell face moving 
through a quiescent fluid and needs to be calculated. Additionally, 
n f and S f represent the unit normal vector and area of the face, 
respectively.

The Space Conservation Law (SCL) relates the rate of change in 
volume of a control volume (V ) with the velocity of its boundary 
surfaces (us) as

d

dt

∫
dV −

∮
n ·us dS = 0. (3)
V S

3

It has been shown [35] that the SCL must be satisfied to prevent 
the generation of artificial mass sources in the continuity equation. 
Discretizing Eq. (3) using the implicit backward second order 
time scheme yields

3V n
P − 4V o

P + V oo
P

2�t
−

∑
f

F n
s = 0. (4)

It is important that this discretization is done with the same time 
scheme as the general transport equation to avoid artificial mass 
sources. That is why OpenFOAM reimplements the mesh motion 
flux for each time discretization scheme. Therefore, in OpenFOAM, 
the SCL is satisfied by the fact that the flux due to the mesh mo-
tion is calculated through the swept volumes of the cell faces and 
not the mesh face velocity us [36,37].

3. Classical mesh morphing algorithms in OpenFOAM

In this section, the classical mesh morphing algorithms, com-
monly used in OpenFOAM, are first presented. Then, the explicit 
slip boundary condition and its deficiencies are assessed, since it 
is of great importance for the applicability of mesh morphing tech-
niques in complex geometries.

In most mesh morphing problems, a certain type of motion 
is applied on one or multiple boundary surfaces. The boundary 
movement could be introduced through either a specified motion, 
prescribed as a boundary condition or a flow-driven motion calcu-
lated as a part of the solution where the solid boundary interacts 
with the fluid (fluid-structure interaction or six-degree-of-freedom 
solvers). Either way, the positions of the moving boundary mesh 
points evolve in time, which results in severe deformation of the 
first cell layer attached to the boundary unless the internal cells 
are consistently deformed to adapt to the moving boundary.

A valid computational mesh should have cells that fill the en-
tire computational domain without any overlaps. The criteria for 
mesh validity suggest that the whole computational domain can 
be considered as an elastic solid medium encountering deforma-
tion governed by the Piola–Kirchhoff stress-strain equation [36]. 
However, the non-linearity of this governing equation makes the 
dynamic mesh calculations expensive. Therefore, cheaper alterna-
tives such as the Laplace equation and the Solid-Body Rotation 
(SBR) stress equation are used in OpenFOAM for performing mesh 
deformation. The Laplacian mesh morphing method is employed 
in this study and thus explained in Section 3.1 while readers are 
referred to the literature for the SBR stress approach [38].

The mesh motion equation can solve for the displacement 
(δpoint) or the velocity (upoint) of the mesh points (referred to as 
pointDisplacement and pointMotionU in OpenFOAM, re-
spectively). The displacement approach calculates the displacement 
of the points with respect to the initial mesh at t = 0, while the 
velocity approach calculates the velocity of the points such that 
they reach their new position during the time step (similar to 
computing the displacement with respect to their position at the 
previous time step). The velocity approach is typically more stable 
for large deformations, while displacement solvers are preferred 
for oscillating motions.

Relating to elastic solid deformation, the first discretization 
strategy that comes to mind is finite-element discretization. How-
ever, since OpenFOAM is a cell-centered finite volume CFD solver, 
the same functionalities are reused also for the mesh motion. 
Therefore, OpenFOAM solves the dynamic mesh equations for the 
displacement (δcell) or velocity (ucell) of the cell centers (referred 
to as cellDisplacement and cellMotionU in OpenFOAM, 
respectively). The corresponding results for the points are then 
calculated by interpolating the cell results to the points. The in-
terpolation is usually performed using inverse distance weighting.



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703

Fig. 1. Illustration of guide vane domain for a Kaplan turbine. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)
Once the displacements or velocities of the points have been 
determined for a time step, their actual new locations must be 
calculated. For the displacement approach, the new point locations 
can be acquired by

xn
point = x0

point + δn
point, (5)

where superscripts n and 0 denote the current and initial times, 
respectively. For the velocity approach, the new point locations are 
obtained through

xn
point = xo

point + un
point�t, (6)

where superscript o indicates the point locations at the previous 
time step and �t is the time step size, assuming a fixed time step. 
As seen in Eqs. (5) and (6), the displacement solver always uses the 
original locations of the mesh points (at t = 0) to calculate the new 
locations, while the velocity solver deals with the location of the 
points at the previous time step. Thus, the displacement solver is 
usually more suitable for oscillating types of motions whereas the 
velocity solver is more appropriate for large non-oscillating defor-
mations.

Although it is the cell-centered displacement or velocity that 
is solved, the mesh motion boundary conditions are in OpenFOAM 
imposed on the point displacement or point velocity fields. These 
are automatically transferred to the cell-centered fields, which are 
the ones that are actually needed for the solution process. Both im-
plicit Dirichlet and Neumann-type boundary conditions are appli-
cable to the displacement and velocity fields. Explicit type bound-
ary conditions that are corrected after obtaining the solution of 
the linear system can also be employed in the mesh motion calcu-
lations.

3.1. Laplacian mesh morphing

One of the most widely used approaches for mesh deforma-
tion in CFD codes is the diffusion-based smoothing algorithm, 
i.e. the Laplacian equation. The Laplace equation propagates and 
smoothens the boundary conditions for the mesh motion through-
out the internal cells. The Laplace equation is linear and numer-
ically cheap to solve. However, since it is employed for a vector 
field when applied to mesh deformation, a disadvantage is that 
the spatial directions are decoupled, which can lead to failure.

The vectorial Laplace equation for an arbitrary vector field v
(may be mesh point displacement or velocity) is given by

∇ · (�∇v) = 0. (7)
4

Here, � is the mesh motion diffusivity coefficient, which specifies 
the rate of spreading of the boundary mesh motion to the inte-
rior mesh. The performance of the mesh deformation is strongly 
dependent on the diffusivity, which may be spatially varying. A 
common way of specifying a spatially varying diffusion coefficient 
is the distance-based method. For example, the diffusivity can be 
computed based on the inverse distance

� = 1

lm
, (8)

or the exponential of the distance

� = e−l, (9)

where l is the distance from the closest moving boundary. These 
approaches produce larger diffusivity close to moving boundaries, 
which makes the cells close to those boundaries behave more like 
solid bodies that follow the boundary motion and deform less than 
cells further away.

3.2. Slip condition

It is the boundary conditions that drive the mesh morphing 
equations toward their final solution. It is straightforward to set 
Dirichlet conditions for boundaries with specified mesh motion. 
However, some boundaries must allow the mesh to slip on the 
geometrical surfaces, and this is not straightforward for complex 
geometries and situations when there is both a prescribed motion 
and a slip condition at the same time.

In the present work, as a test case, we consider Kaplan tur-
bines under transient operation, with both guide vanes and runner 
blades that continuously change their angles. For the sake of sim-
plicity, we first discuss the guide vane domain. A typical guide 
vane domain of a Kaplan turbine is demonstrated in Fig. 1, where 
the gray surfaces are the guide vanes. In both Francis and Ka-
plan turbine transients, the guide vanes change their angle (ei-
ther close down or open up) around their own individual axes. 
Thereby, for the CFD simulation of such procedures, one can pre-
scribe the guide vane rotation using a Dirichlet boundary condition 
for the motion displacement or velocity field of the points, i.e., 
pointDisplacement or pointMotionU in OpenFOAM. The 
Dirichlet boundary condition is supposed to appropriately rotate 
each guide vane around its own axis. In most cases, the guide vane 
domain mesh is produced separately, requiring axis-symmetric up-
stream and downstream interfaces to the rest of the computational 
domain (not shown in Fig. 1). The flow is in OpenFOAM transferred 



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703
through those interfaces using an Arbitrary Mesh Interface (AMI), 
allowing a non-conformal connection between the meshes on both 
sides, and allowing a rotating mesh on one or both sides of the in-
terface. The points on the interfaces are kept stationary or rotating 
as a solid body to avoid problems with the coupling. Hence, the 
mesh should neither deform nor slip on those boundaries, which 
puts constraints on the nearby mesh motion.

The only remaining boundary surfaces of the guide vane do-
main are the upper and lower ones, i.e., the red surfaces in Fig. 1. 
Since the guide vanes are rotating with respect to those surfaces, 
the mesh points need to slip on those surfaces according to the 
motion of the guide vanes, the internal morphing of the mesh, and 
the shape of the surfaces. As can be seen in Fig. 1, those surfaces 
are not entirely flat in the region where the points need to slip.

Listing 1: evaluate() member function of basicSymmetry-
PointPatchField.
template<class Type>
void Foam::basicSymmetryPointPatchField<Type>::evaluate
(

const Pstream::commsTypes
)
{

const vectorField& nHat = this->patch().pointNormals();

tmp<Field<Type>> tvalues =
(

(
this->patchInternalField()

+ transform(I - 2.0*sqr(nHat), this->patchInternalField())
)/2.0

);

// Get internal field to insert values into
Field<Type>& iF = const_cast<Field<Type>&>(this->primitiveField
());

this->setInInternalField(iF, tvalues());
}

A seemingly obvious choice for slipping the points is to 
use the general slip boundary condition in OpenFOAM for 
the pointDisplacement or pointMotionU field, i.e. slip-
PointPatchField. This slip condition is however an explicit 
correction that does not influence the linear system while it is 
being solved. It is intended to make sure that the points eventu-
ally stay at the surface, although they may deviate from it during 
the solution of the linear system. After obtaining the solution of 
the motion field at a particular time step, and before moving the 
points, the slip condition removes the surface-normal compo-
nent of the motion and only keeps the tangential components. For 
instance, for the motion velocity field, the slip condition reads

upoint,‖ = upoint − upoint,⊥ = upoint − (upoint · n̂) · n̂. (10)

Here, upoint,‖ is the surface-tangential component of the point 
velocity vector, and n̂ is the unit normal vector of the bound-
ary surface at each point. Accordingly, the normal component of 
the point velocity field (upoint,⊥ = (upoint · n̂) · n̂) is subtracted 
from the full point velocity vector to maintain only the tangen-
tial component (upoint,‖). The OpenFOAM implementation of the 
slipPointPatchField boundary condition is a simple wrap-
per around the basicSymmetryPointPatchField, for which 
the evaluate function is presented in Listing 1. The normal 
vectors of the patch surface at the points (nHat) are extracted 
through the pointNormals() member function and used to find 
the tangential component of the quantity of interest. It should par-
ticularly be noted that the pointNormals() member function 
uses the neighboring points at the patch to determine the local 
5

unit normal vector, which is prone to instabilities if the points are 
not exactly at the geometric surface, if the geometric surface has 
wiggles, or if some truncation errors accumulate. The accuracy of 
the function also reduces at the edges and in the corners.

Salehi and Nilsson [26] analyzed the effectiveness of the gen-
eral slip condition for slipping points on a flat surface. It was 
shown that this type of explicit correction boundary condition, 
combined with the displacement type mesh motion solver, can be 
extremely sensitive and unstable and that it accumulates small er-
rors and distortions because the normal vectors of the distorted 
points are called and used again. This results in the divergence of 
the mesh motion equations and the destruction of the mesh. Our 
experiences show that a combination of the slip condition with 
the velocity-type mesh motion solver is more stable, and allows a 
larger mesh deformation. Nevertheless, it is still not able to pre-
serve the geometrical shape of the slip surfaces, especially in the 
presence of low-quality mesh faces on the surface. The lower and 
upper surfaces are distorted after a short while and the mesh is 
eventually destroyed.

The main reason for the instability of the general slip con-
dition is that it is not constrained, and small distortions in the 
geometry grow fast and deform the surface. Different techniques 
were proposed and investigated to tackle this problem and to 
keep the points on the geometrical surface while slipping [26]. 
For instance, one could employ the fixedNormalSlip bound-
ary condition, which calculates the tangential component using a 
prescribed normal direction and thus avoids introducing the small 
mesh distortions. However, this boundary condition is obviously 
only useful for flat surfaces. Another alternative that may also work 
on curved surfaces is the surfaceSlipDisplacement bound-
ary condition. This boundary condition, which is only available for 
displacement-type solvers, projects the points onto a specified STL 
surface and thereby constrains the motion of the points to that 
STL surface. An alternative to the use of STL surfaces is to intro-
duce the exact mathematical profiles of the geometry inside the 
dynamic mesh library and make the points follow that geometry. 
This was discussed in detail by Salehi and Nilsson [26].

Although the introduced alternatives to the slip boundary 
condition are more stable, they are still explicit corrections. These 
types of corrections may work fine for small mesh deformations or 
on surfaces with slight curvatures. However, they are not able to 
handle large mesh deformations on highly curved surfaces because 
the internal points do not adapt to the surface curvature while 
morphing. The internal points can even hit the patch surface and 
produce negative volume cells that lead to the termination of the 
CFD simulation.

4. Developed mesh motion framework

The developed numerical framework to tackle the problems de-
scribed in the previous section is explained and tested for simple 
cases in the current section.

4.1. Semi-implicit slip algorithm

In Section 3.2, it was argued that the slip condition is not 
stable and cannot perfectly preserve the geometrical shape of the 
surface. On the other hand, the other more robust alternatives are 
mostly applicable to flat surfaces or surfaces with small curvature 
having a coarse mesh in the normal direction. As a practical exam-
ple, in Kaplan turbines, the guide vane upper and lower surfaces, 
as well as the runner hub and shroud, are highly curved surfaces. 
The mesh is usually quite fine near these regions to accurately re-
solve the wall viscous effects. Therefore, one of the main purposes 
of the current study is to develop a robust algorithm for slipping 
the points on curved surfaces. The intention is to somehow inform



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703
the internal points of the mesh about the curvature of the surface 
on which the mesh points slip and make them accommodate the 
curvature while perfectly preserving the geometrical shape of the 
surface.

The implicit Dirichlet boundary condition (fixedValue in 
OpenFOAM) can potentially be utilized to make internal points 
follow a specific geometry. Instead of explicit slip, one could imple-
ment an ad-hoc Dirichlet boundary condition and make the points 
follow a specific profile in time. However, this approach cannot 
have a general implementation as the geometrical configuration 
should be introduced inside the implementation. Thus, for each 
case, a new boundary condition should be developed. Additionally, 
the implementation could be very challenging and even impossi-
ble for complex geometries. An alternative is to first predict the 
new surface point positions, using some general method, and then 
to use those surface point positions as Dirichlet conditions when 
solving the Laplace equation. This is the fundamental concept of 
the proposed method that is described and tested in the following 
sections.

4.1.1. Algorithm details
The main idea in the current novel approach is to combine the 

explicit slip and implicit Dirichlet boundary conditions to introduce 
a general semi-implicit slip algorithm that works on any surface. In 
contrast to the classical mesh morphing approaches in OpenFOAM 
that solves one motion field, we will employ two different fields 
and solve them in two steps separately. The steps are explained as 
follows.

1. Predictor step: The first step, which we call the predictor, 
includes solving the mesh morphing equations (e.g., Laplace 
equation) on an intermediate motion field (could be displace-
ment or velocity) with a specified diffusivity �0. As an exam-
ple, the Laplace equation for the intermediate motion velocity 
field can be written as

∇ · (�0∇u0) = 0.

The intermediate field (δ0 or u0) exploits the explicit slip 
boundary condition to morph the points on the curved sur-
faces. The normal component of the intermediate field on the 
slip surfaces is removed and only the tangential component is 
kept. The intermediate motion field is only responsible for cal-
culating the morphed points on the slip surfaces and will not 
be used to deform the mesh.

2. Corrector step: In the second step, called the corrector, the 
motion field of the slipped points on the curved surfaces is 
extracted and set as a Dirichlet (fixedValue) boundary con-
dition for the main motion field (δ or u). Then, the set of mesh 
motion equations is solved for this field with diffusivity � (e.g., 
similar to Eq. (7)).
The main motion field is in charge of morphing the entire 
mesh. Since a Dirichlet boundary condition is employed on the 
curved surface, the geometrical configuration of the surface af-
fects the linear system. The points inside the domain feel the 
presence of the slip boundary surface and move accordingly to 
accommodate the geometry curvature.

The key point here is to solve the mesh motion equations twice 
in which the slip and Dirichlet conditions are employed, respec-
tively. Imposing a Dirichlet type boundary condition with appro-
priate diffusivity for the main motion field allows proper mesh 
deformation that can follow the curvature of the slip surface and 
thus enables a larger and more robust mesh deformation proce-
dure. The intermediate and main motion fields (e.g., u0 and u) 
could employ two different mesh motion diffusivity fields as well 
6

Algorithm 1 Semi-implicit slip algorithm.
Predictor:
1: Calculate diffusivity �0

2: Update the implicit boundary conditions of the intermediate motion field (δ0 or 
u0)

3: Solve the mesh motion equations for the intermediate field
4: Correct the explicit slip boundary conditions of the intermediate field

Corrector:
5: Calculate diffusivity �
6: Extract values of δ0 or u0 on the slip boundary and set it as Dirichlet condition 

for δ or u
7: Update the implicit boundary conditions of the main motion field (δ or u)
8: Solve the mesh motion equation for the main field

9: Replace the internal values of the intermediate motion field by the main field 
(e.g., u0 ← u)

(�0 and �). The reason is that commonly, the diffusivity fields are 
calculated using a function which is proportional to the inverse 
distance of the points to the moving boundaries (Dirichlet condi-
tion). In the developed algorithm, the intermediate and main mo-
tion fields employ the Dirichlet conditions differently and thereby 
different diffusivities should preferably be used. Algorithm 1 lists 
the steps of the developed framework.

Since the main motion field is responsible for appropriately 
moving the points, it could serve as a better initial guess for the 
intermediate displacement field at the next time step. Therefore, 
in the last step of the algorithm, the intermediate motion field is 
assigned values from the current main field.

4.1.2. OpenFOAM implementation
The framework described in the previous section is imple-

mented in a dynamic plug-in library for OpenFOAM, as a new 
subclass to the fvMotionSolver base class. The new mesh 
motion solvers are called semiImplicitSlipDisplacement-
Laplacian and semiImplicitSlipVelocityLaplacian. 
The described algorithm is mostly carried out in its solve() 
member function. The implicit boundary conditions (e.g., Dirich-
let condition) are updated (steps 2 and 9 in Algorithm 1) with the 
construction of each discretized Laplacian equation (constructor of 
fvMatrix class) through calling the updateCoeffs() member 
function of the boundary conditions. The explicit boundary condi-
tion is updated after obtaining the solution of the linear system by 
calling the evaluate() method of the boundary conditions.

In Step 7 of Algorithm 1, the updated explicit slip boundary 
condition of u0 is extracted and set as a fixed condition for u. This 
step is conducted through a newly developed boundary condition 
for the point field of the patches (pointPatchField). It is of 
Dirichlet type and inherits from the fixedValuePointPatch-
Field. Listing 2 presents the implementation of the Dirichlet 
boundary condition. The lookupObject function is employed to 
find the intermediate displacement field and then its correspond-
ing values at the current patch are set as a fixedValue condition 
for the final displacement field. Obviously, the boundary condition 
is only applied on the final displacement field and the interme-
diate field utilizes the slip condition (or one of its more robust 
alternatives, such as surfaceSlipDisplacement).

4.1.3. Verification case studies
Two verification case studies are visited to assess the perfor-

mance and capabilities of the developed semi-implicit slip algo-
rithm. The first test case is a simple 2D case, in which the details 
of the mesh motion are better visible and understandable, whereas 
the second case is a practical study on one single passage of a Ka-
plan turbine guide vane. In the second test case, the results are 
also compared to some commercial CFD software.



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703
Listing 2: updateCoeffs() member function of DirichletBC.

void DirichletBCPointPatchVectorField::updateCoeffs()
{

if (this->updated())
{

return;
}

// Read the pointDisplacement0_ field
const pointVectorField& pointDisplacement0_ =

this->db().objectRegistry::
lookupObject<pointVectorField> ("pointDisplacement0");

vectorField displacement(this->patchInternalField());
labelList patchPoints = patch().meshPoints();

forAll(displacement, idx)//loop over all patch points
{

displacement[idx] = pointDisplacement0_[patchPoints[idx]];
}

vectorField::operator=
(

displacement
);

fixedValuePointPatchField<vector>::updateCoeffs();
}

Fig. 2. Illustration of the designed simple test case for verification of the semi-
implicit slip algorithm.

4.1.3.1. Two-dimensional bump The performance of the proposed 
semi-implicit slip algorithm is assessed using a two-dimensional 
mesh deformation test case. Fig. 2 illustrates the configuration of 
this verification case study, which is a simple structured hexahe-
dral mesh on top of a bump with a smooth curved surface. The 
left (green) boundary is moving with a constant speed from left to 
right while the right (blue) boundary is fixed. The points are sup-
posed to slip on the upper and lower boundaries (red). Although 
the designed configuration seems rather simple, it is quite chal-
lenging for a motion displacement solver due to the slipping points 
on the curved surface. This simple verification case study can be 
seen as a cheap test case that mimics the complex mesh deforma-
tion and slip procedure in Kaplan turbine transients. The curved 
lower surface may be considered as the hub or shroud of a Ka-
plan turbine, on which points should be able to slip smoothly in a 
transient sequence.

The total length of the channel is 1.2 m, whereas the bump 
length is l = 1 m. The channel and bump heights are H = 0.4 m 
and h = 0.1 m, respectively. The left boundary moves with a 
constant speed of U = 0.1 m/s. The codedFixedValue type 
boundary condition is used for the point displacement field of 
the left boundary to move the points with a constant horizon-
tal velocity of U = 0.1 m/s while accommodating their vertical 
position to the changes in the boundary length. The right bound-
ary points are fixed using a fixedValue condition. The top 
boundary is a flat surface. Consequently, the fixedNormalSlip 
boundary condition is a proper choice for this patch. However, 
the lower patch, where the points should be able to slip on 
7

the bump is the main challenge. Three different options are ex-
amined here, namely, slip (slip), slip on a prespecified sur-
face (surfaceSlipDisplacement), and the developed semi-
implicit slip. The first two options are only boundary conditions for 
the pointDisplacement field, whereas the semi-implicit slip 
approach is a combination of a new mesh motion solver and a 
new boundary condition, described in the previous section.

For the first two options (slip and surfaceSlipDisplace-
ment), in which the classical Laplacian smoothing mesh deforma-
tion is employed, the diffusivity field (�) is calculated using the 
inverse distance to the moving boundary (left). However, the semi-
implicit slip algorithm utilized two different diffusivity fields. �0

is obtained using the inverse distance method with respect to the 
left boundary, whilst � is calculated using the inverse distance to 
the bottom boundary.

Fig. 3 displays the mesh motion solution for the employed op-
tions at different times (every 0.65 s). As explained in Section 3.2, 
the slip condition (slip) combined with the displacement-based 
solver is very sensitive to small errors, and tiny distortions in 
the mesh grow drastically which leads to early destruction of the 
mesh. The lower boundary wrinkles soon after the start of the sim-
ulation and the mesh is destroyed with negative volumes.

The most appropriate originally available option in OpenFOAM 
seems to be the slip-on-surface boundary condition (surface-
SlipDisplacement). The points are always projected to the 
specified surface. Thus, they will always remain on the surface 
during the morphing process and the surface geometry is perfectly 
preserved. However, as previously described, this is an explicit cor-
rection and does not affect the linear system of the mesh motion 
equations. The solution shown in Fig. 3 exhibits the main problem 
with the explicit correction. Although the points remain on the 
lower surface, the internal points do not follow its curvature and 
hit the surface which destroys the mesh with negative volumes as 
a consequence.

In contrast, the developed semi-implicit slip algorithm provides 
a very stable and smooth mesh deformation. Not only do the mesh 
points stay on the lower curved surface, but the internal points feel 
the presence of the bump and follow its curvature. The points on 
the left-hand side of the bump move upwards, while those on the 
right-hand side move downwards.

The performance of the developed mesh motion algorithm 
is further assessed using some mesh quality measures, namely, 
the maximum aspect ratio of the cells and the maximum non-
orthogonal angle. The non-orthogonal angle is defined as the angle 
between a vector connecting two neighboring cell centers and the 
face normal vector. For a valid mesh, the angle should be less than 
90◦ , and higher values indicate the existence of inverted cells (with 
negative volume). Fig. 4 illustrates the variation of maximum as-
pect ratio and maximum non-orthogonal angle during the mesh 
motion sequence of the bump case for all investigated approaches. 
The vertical dotted lines denote the creation of the first negative 
volume cell of the approach shown with the same color. None of 
the first two approaches can reach t = 3 s with a valid CFD mesh. 
On the other hand, the developed methodology does not produce 
any inverted cells up to t = 6.7 s.

Fig. 4 shows that the slip and slip-on-surface boundary condi-
tions give poor quality measures shortly after the start of the simu-
lation. The semi-implicit slip algorithm accomplishes a remarkably 
smooth mesh morphing in which the studied mesh quality mea-
sures only slightly increase during the simulation. The maximum 
aspect ratio and the non-orthogonal angle at t = 6.7 s are 3.3 and 
36.3◦ , respectively. These quality measures are noticeably larger for 
the first two studied cases, even before the generation of inverted 
cells.



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703

Fig. 3. Performance of the slip, slip on a prespecified surface, and the developed semi-implicit slip on the bump verification case study.

Fig. 4. Evolution of the mesh quality measures during mesh deformation for different approaches. The vertical dotted lines indicate appearance of the first negative-volume 
cell. Colors of the dotted lines are similar to the legends.
8



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703
Fig. 5. Unmorphed mesh of the guide vane passage at Best Efficiency Point (BEP) 
condition with guide vane angle of αGV = 26◦ . The blue square highlights the trail-
ing edge clearance as the guide vane hangs over the edge of the curved lower 
surface.

4.1.3.2. Kaplan turbine guide vane The performance of the devel-
oped methodology is further assessed using one single guide vane 
passage of a Kaplan turbine, in comparison with two of the widely 
used proprietary CFD software, i.e., Ansys Fluent and Ansys CFX. 
The unmorphed original mesh of the current case study is dis-
played in Fig. 5. As seen, a small clearance exists near the lower 
surface of the guide vane. Both the lower and upper surfaces on 
which the points should be able to slip are highly curved. These 
geometrical details make the mesh deformation procedure im-
mensely challenging.

Four different approaches are employed to solve this mesh 
deformation problem. The developed methodology in OpenFOAM 
utilizing the motion velocity solver (i.e., semiImplicitSlip-
VelocityLaplacian) is adopted as the first approach and is 
compared to three other strategies, namely, OpenFOAM standard 
(built-in) motion velocity (i.e., velocityLaplacian), Ansys Flu-
ent, and Ansys CFX. The Laplacian smoothing equations are solved 
in all the studied approaches.

The diffusion method is employed in Fluent, which solves the 
Laplacian equations for the velocity vector of the points (similar 
to Eq. (7)). On the other hand, CFX solves the same set of equa-
tions for the displacement field. However, it is possible to choose 
whether this displacement should be calculated with respect to 
the initial mesh or the previous time step mesh. In the current 
study, the mesh displacement is solved with respect to the previ-
ous mesh which resembles the motion velocity solver. The guide 
vanes are rotated with a constant angular speed of 2◦/s around 
their axis. The same time step size is used for all investigated ap-
proaches.

The non-orthogonality of the cells is utilized to study the per-
formance of the four employed strategies in the mesh deformation 
of the guide vane passage. Fig. 6 plots the number of severely non-
orthogonal cells (cells with the non-orthogonal angle of more than 
70◦) with guide vanes rotation. Although, as expected, this number 
increases with guide vane rotation for all approaches, the growth 
rate is remarkably lower for the developed methodology. Obvi-
ously, the introduced method can largely deform the guide vane 
mesh without significantly degrading the mesh quality.

The vertical dotted lines indicate the destruction of the mesh 
with the creation of the first negative volume (inverted) cell of 
the method with the same color as in the legend. The OpenFOAM 
built-in solver can only deform the mesh for 0.72◦ of guide vane 
rotation. Ansys Fluent and CFX can morph the mesh up to 6.15◦
9

Fig. 6. Number of severely non-orthogonal cells (non-orthogonal angle > 70◦) dur-
ing guide vane rotation for the different approaches. The vertical dotted lines indi-
cate the appearance of the first negative-volume cell. Colors of the dotted lines are 
similar to those in the legend.

and 7.45◦ , respectively. The CFX mesh quality rapidly degrades 
after 6◦ and the number of non-orthogonal cells increases. The 
presently developed methodology is able to smoothly deform the 
mesh up to 13.5◦ without producing any inverted cells.

The unmorphed (initial) and deformed mesh at the lower sur-
face in the guide vane clearance after 6◦ of rotation is exhibited in 
Fig. 7. The view corresponds to the blue box shown in Fig. 5. The 
standard OpenFOAM, Fluent, and CFX approaches fail to smoothly 
deform the mesh and slip the points on the curved lower surface 
whilst keeping the surface geometry intact. Although the Fluent 
mesh quality measures are acceptable after 6◦ of rotation, the 
lower surface geometry is not preserved and the surface is notice-
ably distorted. In contrast, CFX maintained the geometrical shape 
of the lower surface (even though it may look distorted in the fig-
ure) at the expense of degrading mesh quality. Hence, the present 
developed methodology is the only alternative that can robustly 
deform the mesh, slip the points on the lower surface, and pre-
serve the geometrical shape.

4.2. Simultaneous solid body rotation and mesh deformation

Many CFD applications require more complex dynamic mesh 
processes such as multiple types of movements. For instance, the 
CFD model can involve concurrent solid-body motion and mesh 
deformation. A practical example is Kaplan turbines working in a 
transient sequence which involves a simultaneous variation of both 
guide vane and runner blade angles at the same time as the run-
ner is rotating as a solid body around the turbine axis. Accordingly, 
the mesh motion of the runner domain includes simultaneous ax-
ial solid-body rotation and mesh deformation.

In the developed methodology, the point motion field is al-
ways calculated with respect to the initial position of the mesh 
points (i.e., the points inside the OpenFOAM constant directory). 
Therefore, in order to combine a general solid-body motion with 
the developed mesh deformation algorithm, the point motion field 
also needs to be mapped with the same solid-body transformation. 
For instance, if the solid body rotation is to be combined with the 
mesh deformation, not only the mesh points should be rotated in 
each time step, but the point motion field (i.e., the deformation 
field) should also be rotated.

A new mesh motion solver is developed in OpenFOAM to ad-
dress this issue. In each time step, the solver first morphs the 
initial mesh by obtaining the point motion field (either through 
displacement or velocity solvers) and adding it to the locations of 
the initial points. Subsequently, a solid-body transformation (in the 
Kaplan turbine case, a solid-body rotation around the turbine axis) 



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703

Fig. 7. Zoomed view of the lower surface in the guide vane clearance (the blue box shown in Fig. 5) of the unmorphed and morphed meshes after 6◦ of rotation (αGV = 20◦) 
for different approaches. The red and gray surfaces represent the guide vane blade and lower surface, respectively.
is performed on the morphed mesh to obtain the final location of 
the points.

4.3. Final correction of the point locations

Although the explained framework works well for the mesh 
motion of complex geometries (such as Kaplan turbines), our ex-
periences reveal that adding an extra correction step to the final 
calculated location of the points in each time step increases the 
stability of the dynamic mesh procedure. A more stable mesh mo-
tion provides the capability to deform the mesh to a larger extent 
without any mesh quality problems.

The final correction step makes sure that all the slipped points 
on the curved surfaces (which in the case of the Kaplan turbines 
would be the runner hub and shroud, and the guide vane lower 
and upper surfaces) follow the exact geometrical profile of those 
3D surfaces. This correction is performed as the final step be-
fore updating the mesh at each time step. To implement such a 
10
correction, one can use the mathematical equations of the geom-
etry inside the dynamic mesh class. Alternatively, predefined STL 
surfaces could also be utilized to project the points onto the de-
sired surface to avoid hard-coding ad-hoc geometrical details. In 
this study, the former approach is employed as the final correction 
step.

4.4. Flowchart

Fig. 8 summarizes the complete implementation of the devel-
oped mesh motion algorithm inside OpenFOAM. The framework 
is employed inside the PIMPLE pressure correction algorithm. The 
mesh motion calculations are performed at the beginning of the 
first outer correction of the PIMPLE loop.

5. Kaplan turbine case study

In this section, the developed mesh motion framework is 
adopted to simulate a load change operation in a real Kaplan 



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703

Fig. 8. Flowchart of the developed mesh motion framework inside the OpenFOAM PIMPLE algorithm. The mesh motion computations are performed in the first outer 
correction loop of each time step.
turbine model. One should note that the main intention of the 
current section is to investigate the capability and accuracy of the 
developed numerical framework for CFD simulation of transient 
operations of complex models such as Kaplan turbines. Therefore, 
a detailed analysis of the transient flow field will not be presented 
here and the chapter is mainly focused on the performance of the 
numerical framework.

5.1. The U9 model turbine

A Kaplan turbine model known as U9 was chosen as the in-
vestigated test case in the present study. The U9 model turbine is 
a new 1:3.875 scaled-down model of a prototype Kaplan turbine 
located in Porjus, Sweden. The previous U9 model, studied exper-
imentally and numerically by different researchers (e.g. [39,40]), 
was a 1:3.1 scale model of the Porjus Kaplan turbine. The new 
model scale is under construction and no experimental data are 
yet available.

Fig. 9 displays a zoomed section view of the U9 model tur-
bine assembly. The full computational domain consists of five re-
gions, namely, spiral casing, stay vanes, guide vanes, runner, and 
draft tube. The model is assembled with 18 fixed stay vanes and 
20 adjustable angle guide vanes. The diameter of the runner is 
D = 0.4 m and has 6 adjustable blades. At the Best Efficiency Point 
(BEP), the guide vanes and runner blades are at the opening of 26◦
and 32.8◦ . The angles are measured with respect to the fully closed 
position (blades touching each other). Each region is meshed sep-
arately and then merged together to create the full computational 
mesh with 12.7 × 106 cells.
11
5.2. Steady and transient operation

The new U9 model with a diameter of D = 0.4 m has a head of 
H = 6.97 m, a flow rate of Q = 0.426 m3/s, and a runner rotational 
speed of ω = 839 rpm at the BEP operating condition. Several of 
our previous studies on the same Kaplan turbine case study show 
that OpenFOAM produces comparable results to the experimen-
tal measurements at the steady operating condition [34,40–42], so 
we do not present the experimental validation at steady condition 
here.

The experimental research on the transient operation of the 
new U9 model is still ongoing. The exact transient sequences in the 
experiments are yet to be defined. Therefore, in the current paper, 
a transient sequence corresponding to the turbine load rejection is 
chosen for study purposes. It is assumed that the guide vane and 
runner blade angles decrease by six and five degrees, respectively, 
initiating from the BEP operating condition. The guide vanes and 
runner blades start to rotate around their own individual axes, and 
thus the flow rate reduces. It is assumed that the guide vane and 
runner blade angles change linearly in time from αGV = 26.0◦ and 
αRB = 32.8◦ at BEP to αGV = 20.0◦ and αRB = 27.8◦ at part load 
condition. The runner rotational speed is constant at ω = 839 rpm
during the whole sequence. The flow rate decreases throughout 
the transient sequence due to the closure of the guide vane and 
runner blades.

5.3. Computational details

This section briefly describes the computational framework and 
numerical aspects of the investigated case study. More information 



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703

Fig. 9. A zoomed view of the U9 Kaplan turbine computational domain at best efficiency point. The red line, as well as the green and blue points are used for monitoring 
results.

Fig. 10. Variation of guide vane and runner blade angles during the load rejection operation.
is provided by Salehi et al. [29] as similar numerical schemes were 
employed.

The Shear Stress Transport based Scale-Adaptive Simulation 
model (SST-SAS) [43] is used for turbulence modeling.

All the temporal derivatives were discretized using the implicit 
second-order backward scheme [44]. The transient flow is simu-
lated using a fixed time step of �t = 5 ×10−5 s, which corresponds 
to 0.25◦ runner rotation. The convective terms are discretized us-
ing the Linear-Upwind Stabilized Transport (LUST) scheme [45], 
blending 75% of the second-order linear scheme with 25% of the 
second-order upwind scheme, to enhance the stability of the sim-
ulations.

The pressure is coupled to the velocity field through the PIM-
PLE pressure correction algorithm with a maximum of 10 outer 
and two inner correction loops. To fully converge the explicit term 
in the non-orthogonal correction, two additional non-orthogonal 
correctors are carried out in each inner correction loop (also see 
Fig. 8).

A fixed total pressure boundary condition is used for the inlet 
of the spiral casing. The corresponding value is calculated through 
some preliminary stationary simulations at BEP to ensure the cor-
rect flow rate at the design condition. During the transient load 
rejection procedure, the inlet total pressure remains constant and 
the flow rate reduces adjusting the increasing pressure drop of the 
closing guide vanes and runner blades. The outlet boundary condi-
tion is set to constant static pressure.
12
The motions of the guide vanes and runner blades are im-
posed through a rotating boundary condition. It is assumed that 
the guide vanes and runner blades close down 6◦ and 5◦ degrees 
with a constant rotational speed. Fig. 10 presents the variation of 
the angle of both guide vanes and runner blades during the load 
rejection operation.

The cyclicAMI boundary condition is employed to transfer 
information on the non-conformal mesh interfaces between the 
different domains.

The typical average y+ values in the domain are less than 84.7, 
and thus wall functions are employed to calculate the turbulence 
quantities at walls.

5.4. Load rejection sequence

As shown in Fig. 10, the simulated transient sequence starts 
with 2 s stationary operation at the BEP condition (0 ≤ t ≤ 2 s), 
followed by a 3 s load rejection (2 ≤ t ≤ 5 s), reaching the PL con-
dition where it stays at stationary operation for 5 s (5 ≤ t ≤ 10 s). 
To reach a statistically stationary condition, before the start of this 
transient sequence, the flow field is simulated for 4 s at the BEP 
condition, corresponding to 56 runner revolutions.

The mesh deformation of the guide vane and runner regions 
are displayed in Figs. 11 and 12, respectively. It is seen that the 
mesh morphing in both regions happens quite smoothly and the 
mesh quality is not severely affected. The guide vane and run-



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703

Fig. 11. Initial (BEP) and morphed (PL) meshes of the U9 model guide vanes.

Fig. 12. Initial (BEP) and morphed (PL) meshes of the U9 model runner.
ner tip clearances are also shown in these two figures. Clearly, the 
clearances get smaller during the transient operation which makes 
the load rejection mesh motion more challenging. Fig. 13 assesses 
the non-orthogonality of both the runner and guide vane meshes 
during the transient sequence. The average non-orthogonal angles 
of the runner and guide vane meshes increase by 1.35◦ and 2.90◦ , 
which indicates a smooth mesh deformation.

The closing of the guide vanes and runner blades increases the 
overall pressure loss of the turbine. Since a total pressure bound-
ary condition is employed at the inlet, the flow rate is expected to 
decrease during the load rejection sequence. The variation of the 
13
flow rate throughout the whole sequence is illustrated in Fig. 14. 
The guide vane angle is also shown in this figure for better un-
derstanding. The flow rate starts to decrease as the closing of the 
guide vanes and runner blades initiate. The flow rate reduction is 
linear, which can be explained through the fact that both the guide 
vanes and runner blades close down linearly (see Fig. 10). The flow 
rate decreases from 0.426 m3/s at BEP to 0.321 m3/s at PL, reach-
ing a PL condition of 75%.

The unsteady static pressure is monitored at two different 
probe locations, namely, between the guide vanes and the run-
ner near the shroud (Probe 1) and at the center of the draft tube 



S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703
Fig. 13. Variation of average non-orthogonal angles during load rejection for runner 
and guide vane regions.

Fig. 14. Variation of turbine flow rate during load rejection sequence.

downstream of the runner (Probe 2). The probes are shown in 
Fig. 9 with green and blue colors, respectively.

In transient sequences, like turbine shutdown or startup, the 
pressure signals consist of both a variation due to the change of 
operation and fluctuations due to rotor-stator interaction and flow 
instabilities. Therefore, one must employ a signal analysis method 
to obtain the instantaneous mean and the fluctuations with respect 
to that instantaneous mean. In the present study, the Savitzky-
Golay finite impulse response filter [46] is utilized to smooth out 
the captured pressure signals and acquire the pressure instanta-
neous mean.

The pressure data for both probes are depicted in Fig. 15. The 
instantaneous mean indicates the pressure variation due to the 
change in the operating condition. Distinct pulsations due to Rotor-
Stator Interaction (RSI) are visible in Probe 1, which is placed 
right upstream of the runner. Therefore, as expected, the pres-
sure mainly oscillates with the runner blade passing frequency at 
this probe location. However, the draft tube pressure shows low-
frequency pulsations, due to complex flow structures in the draft 
tube, during the part-load condition. In-depth time-dependent fre-
quency analysis can reveal important information such as variation 
of the amplitude of dominant frequencies, which is not the scope 
of the present study and can be proposed as future work.

6. Conclusion

Many practical applications of computational fluid dynamics 
require elaborate mesh motions that include points slipping on 
highly curved surfaces. The explicit slip boundary condition was 
elaborated on in detail, and it was shown that the boundary con-
dition is unstable and unable to preserve the geometrical shape of 
the target surface. As a remedy, a novel semi-implicit algorithm 
was developed and implemented in OpenFOAM to robustly spread 
14
the boundary deformation into the mesh while slipping the mesh 
points on highly curved surfaces. The algorithm solves the mesh 
motion equations in two steps. First, the Laplacian mesh motion 
equations are employed to morph the points explicitly on the slip 
surfaces. Then, the same set of equations is solved again using the 
motion field of the morphed points as a Dirichlet condition. A fur-
ther explicit correction step is also used to make sure that points 
remain on the intended surface. The full framework also includes 
a solid-body motion that is applied on top of the mesh morphing 
process to mimic the dynamic mesh processes with the concurrent 
mesh deformation and solid-body movement.

The developed framework was first verified on two computa-
tionally cheap test cases, namely, a 2D bump case and one guide 
passage of a Kaplan turbine. The mesh motion of the guide vane 
passage was also investigated using two proprietary CFD codes and 
it was demonstrated that the developed framework significantly 
outperforms the tested CFD codes and can deform the mesh to a 
larger extent without any mesh problems.

Finally, a load rejection sequence of a Kaplan turbine model was 
successfully studied using the developed program. It was shown 
that the developed methodology can preserve the mesh quality 
throughout the complex mesh motion of Kaplan turbines during 
transient operation. Numerical results of the transient flow field 
were presented and briefly discussed.

CRediT authorship contribution statement

Saeed Salehi: Conceptualization, Investigation, Methodology, 
Software, Writing – review & editing. Håkan Nilsson: Concep-
tualization, Funding acquisition, Supervision, Writing – review & 
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The current research was carried out as a part of the “Swedish 
Hydropower Centre - SVC”. SVC is established by the Swedish 
Energy Agency, EnergiForsk and Svenska Kraftnät together with 
Luleå University of Technology, The Royal Institute of Technol-
ogy, Chalmers University of Technology and Uppsala University, 
www.svc .nu.

The computations were enabled by resources provided by the 
Swedish National Infrastructure for Computing (SNIC) at NSC, par-
tially funded by the Swedish Research Council through grant agree-
ment no. 2018-05973.

References

[1] J.H. Ferziger, M. Perić, R.L. Street, Computational Methods for Fluid Dynamics, 
Springer, 2020.

[2] J.L. Steger, F.C. Dougherty, J.A. Benek, in: K. Ghia, U. Ghia (Eds.), Advances in 
Grid Generation, ASME FED, vol. 5, 1983, pp. 59–69.

[3] W.M. Chan, Comput. Fluids 38 (3) (2009) 496–503, https://doi .org /10 .1016 /j .
compfluid .2008 .06 .009.

[4] R. Mittal, G. Iaccarino, Annu. Rev. Fluid Mech. 37 (1) (2005) 239–261, https://
doi .org /10 .1146 /annurev.fluid .37.061903 .175743.

[5] S. Völkner, J. Brunswig, T. Rung, Comput. Fluids 148 (2017) 39–55, https://doi .
org /10 .1016 /j .compfluid .2017.02 .010.

http://www.svc.nu
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib3CE57D12E30C8CF040BB584B70191BCDs1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib3CE57D12E30C8CF040BB584B70191BCDs1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib1377817A694E2327D05FA8E4A2E1F7C5s1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib1377817A694E2327D05FA8E4A2E1F7C5s1
https://doi.org/10.1016/j.compfluid.2008.06.009
https://doi.org/10.1016/j.compfluid.2008.06.009
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1016/j.compfluid.2017.02.010
https://doi.org/10.1016/j.compfluid.2017.02.010


S. Salehi and H. Nilsson Computer Physics Communications 287 (2023) 108703

Fig. 15. Variation of pressure at two probes during load rejection.
[6] L. Sun, P. Guo, J. Yan, Renew. Energy 171 (2021) 658–671, https://doi .org /10 .
1016 /j .renene .2021.02 .151.

[7] Z. Li, H. Bi, Z. Wang, Z. Yao, Proc. Inst. Mech. Eng. A, J. Power Energy 230 (6) 
(2016) 570–585, https://doi .org /10 .1177 /0957650916646911.

[8] Z. Li, H. Bi, B. Karney, Z. Wang, Z. Yao, J. Hydraul. Res. 55 (4) (2017) 520–537, 
https://doi .org /10 .1080 /00221686 .2016 .1276105.

[9] C.S. Peskin, J. Comput. Phys. 10 (2) (1972) 252–271, https://doi .org /10 .1016 /
0021 -9991(72 )90065 -4.

[10] D. Goldstein, R. Handler, L. Sirovich, J. Comput. Phys. 105 (2) (1993) 354–366, 
https://doi .org /10 .1006 /jcph .1993 .1081.

[11] E. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, J. Comput. Phys. 161 (1) (2000) 
35–60, https://doi .org /10 .1006 /jcph .2000 .6484.

[12] J. Kim, D. Kim, H. Choi, J. Comput. Phys. 171 (1) (2001) 132–150, https://doi .
org /10 .1006 /jcph .2001.6778.

[13] Y.-H. Tseng, J.H. Ferziger, J. Comput. Phys. 192 (2) (2003) 593–623, https://doi .
org /10 .1016 /j .jcp .2003 .07.024.

[14] M. Uhlmann, J. Comput. Phys. 209 (2) (2005) 448–476, https://doi .org /10 .1016 /
j .jcp .2005 .03 .017.

[15] R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, A. von Loebbecke, J. 
Comput. Phys. 227 (10) (2008) 4825–4852, https://doi .org /10 .1016 /j .jcp .2008 .
01.028.

[16] A. Mark, B.G. van Wachem, J. Comput. Phys. 227 (13) (2008) 6660–6680, 
https://doi .org /10 .1016 /j .jcp .2008 .03 .031.

[17] S. Tenneti, R. Garg, S. Subramaniam, Int. J. Multiph. Flow 37 (9) (2011) 
1072–1092, https://doi .org /10 .1016 /j .ijmultiphaseflow.2011.05 .010.

[18] T. Kempe, J. Fröhlich, J. Comput. Phys. 231 (9) (2012) 3663–3684, https://doi .
org /10 .1016 /j .jcp .2012 .01.021.

[19] W.-P. Breugem, J. Comput. Phys. 231 (13) (2012) 4469–4498, https://doi .org /10 .
1016 /j .jcp .2012 .02 .026.

[20] H. Yu, C. Pantano, J. Comput. Phys. 459 (2022) 111125, https://doi .org /10 .1016 /
j .jcp .2022 .111125.

[21] K. Kingora, H. Sadat-Hosseini, J. Comput. Phys. 453 (2022) 110933, https://doi .
org /10 .1016 /j .jcp .2021.110933.

[22] A.E. Giannenas, S. Laizet, Appl. Math. Model. 99 (2021) 606–627, https://doi .
org /10 .1016 /j .apm .2021.06 .026.

[23] D. Li, X. Fu, Z. Zuo, H. Wang, Z. Li, S. Liu, X. Wei, Renew. Sustain. Energy Rev. 
101 (2019) 26–46, https://doi .org /10 .1016 /j .rser.2018 .10 .023.

[24] C. Trivedi, J. Hydraul. Res. 58 (5) (2020) 790–806, https://doi .org /10 .1080 /
00221686 .2019 .1671514.

[25] N. Sotoudeh, R. Maddahian, M.J. Cervantes, Renew. Energy 151 (2020) 238–254, 
https://doi .org /10 .1016 /j .renene .2019 .11.014.

[26] S. Salehi, H. Nilsson, OpenFOAM J. 1 (2021) 47–61, https://doi .org /10 .7910 /
DVN /31JGOM, https://journal .openfoam .com /index .php /ofj /article /view /26.

[27] Y. Dewan, C. Custer, A. Ivashchenko, J. Phys. Conf. Ser. 782 (2017) 012003, 
https://doi .org /10 .1088 /1742 -6596 /782 /1 /012003.

[28] P. Mössinger, R. Jester-Zürker, A. Jung, J. Phys. Conf. Ser. 782 (2017) 012001, 
https://doi .org /10 .1088 /1742 -6596 /782 /1 /012001.

[29] S. Salehi, H. Nilsson, E. Lillberg, N. Edh, Renew. Energy 179 (2021) 2322–2347, 
https://doi .org /10 .1016 /j .renene .2021.07.107.

[30] S. Salehi, H. Nilsson, E. Lillberg, N. Edh, IOP Conf. Ser. Earth Environ. Sci. 774 (1) 
(2021) 012060, https://doi .org /10 .1088 /1755 -1315 /774 /1 /012060.

[31] S. Salehi, H. Nilsson, Renew. Energy (2022), https://doi .org /10 .1016 /j .renene .
2022 .04 .018.

[32] J. Unterluggauer, V. Sulzgruber, E. Doujak, C. Bauer, Renew. Energy 157 (2020) 
1212–1221, https://doi .org /10 .1016 /j .renene .2020 .04 .156.

[33] S. Salehi, H. Nilsson, Renew. Energy 188 (2022) 1166–1183, https://doi .org /10 .
1016 /j .renene .2022 .01.111.

[34] S. Salehi, H. Nilsson, E. Lillberg, N. Edh, IOP Conf. Ser. Earth Environ. Sci. 774 (1) 
(2021) 012058, https://doi .org /10 .1088 /1755 -1315 /774 /1 /012058.

[35] I. Demirdžić, M. Perić, Int. J. Numer. Methods Fluids 8 (9) (1988) 1037–1050, 
https://doi .org /10 .1002 /fld .1650080906.

[36] H. Jasak, Z. Tukovic, Trans. FAMENA 30 (2) (2006) 1–20.
[37] H. Jasak, in: 47th AIAA Aerospace Sciences Meeting Including the New Hori-

zons Forum and Aerospace Exposition, 2009, p. 341.
[38] F.M. Bos, B.W. van Oudheusden, H. Bijl, Comput. Fluids 79 (2013) 167–177, 

https://doi .org /10 .1016 /j .compfluid .2013 .02 .004.
[39] B. Mulu, An experimental and numerical investigation of a Kaplan turbine 

model, Ph.D. thesis, Luleå tekniska universitet, 2012.
[40] A. Javadi, H. Nilsson, Int. J. Heat Fluid Flow 63 (2017) 1–13, https://doi .org /10 .

1016 /j .ijheatfluidflow.2016 .11.010.
[41] O. Petit, B. Mulu, H. Nilsson, M. Cervantes, IOP Conf. Ser. Earth Environ. Sci. 12 

(2010) 012024, https://doi .org /10 .1088 /1755 -1315 /12 /1 /012024.
[42] A. Javadi, H. Nilsson, IOP Conf. Ser. Earth Environ. Sci. 22 (2) (2014) 022001, 

https://doi .org /10 .1088 /1755 -1315 /22 /2 /022001.
[43] Y. Egorov, F. Menter, in: S.-H. Peng, W. Haase (Eds.), Advances in Hybrid 

RANS-LES Modelling, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, 
pp. 261–270.

[44] H. Jasak, Error analysis and estimation for the finite volume method with ap-
plications to fluid flows, Ph.D. thesis, Imperial College London, 1996.

[45] H. Weller, Mon. Weather Rev. 140 (10) (2012) 3220–3234, https://doi .org /10 .
1175 /MWR-D -11 -00221.1.

[46] A. Savitzky, M.J.E. Golay, Anal. Chem. 36 (8) (1964) 1627–1639, https://doi .org /
10 .1021 /ac60214a047.
15

https://doi.org/10.1016/j.renene.2021.02.151
https://doi.org/10.1016/j.renene.2021.02.151
https://doi.org/10.1177/0957650916646911
https://doi.org/10.1080/00221686.2016.1276105
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1006/jcph.1993.1081
https://doi.org/10.1006/jcph.2000.6484
https://doi.org/10.1006/jcph.2001.6778
https://doi.org/10.1006/jcph.2001.6778
https://doi.org/10.1016/j.jcp.2003.07.024
https://doi.org/10.1016/j.jcp.2003.07.024
https://doi.org/10.1016/j.jcp.2005.03.017
https://doi.org/10.1016/j.jcp.2005.03.017
https://doi.org/10.1016/j.jcp.2008.01.028
https://doi.org/10.1016/j.jcp.2008.01.028
https://doi.org/10.1016/j.jcp.2008.03.031
https://doi.org/10.1016/j.ijmultiphaseflow.2011.05.010
https://doi.org/10.1016/j.jcp.2012.01.021
https://doi.org/10.1016/j.jcp.2012.01.021
https://doi.org/10.1016/j.jcp.2012.02.026
https://doi.org/10.1016/j.jcp.2012.02.026
https://doi.org/10.1016/j.jcp.2022.111125
https://doi.org/10.1016/j.jcp.2022.111125
https://doi.org/10.1016/j.jcp.2021.110933
https://doi.org/10.1016/j.jcp.2021.110933
https://doi.org/10.1016/j.apm.2021.06.026
https://doi.org/10.1016/j.apm.2021.06.026
https://doi.org/10.1016/j.rser.2018.10.023
https://doi.org/10.1080/00221686.2019.1671514
https://doi.org/10.1080/00221686.2019.1671514
https://doi.org/10.1016/j.renene.2019.11.014
https://doi.org/10.7910/DVN/31JGOM
https://doi.org/10.7910/DVN/31JGOM
https://journal.openfoam.com/index.php/ofj/article/view/26
https://doi.org/10.1088/1742-6596/782/1/012003
https://doi.org/10.1088/1742-6596/782/1/012001
https://doi.org/10.1016/j.renene.2021.07.107
https://doi.org/10.1088/1755-1315/774/1/012060
https://doi.org/10.1016/j.renene.2022.04.018
https://doi.org/10.1016/j.renene.2022.04.018
https://doi.org/10.1016/j.renene.2020.04.156
https://doi.org/10.1016/j.renene.2022.01.111
https://doi.org/10.1016/j.renene.2022.01.111
https://doi.org/10.1088/1755-1315/774/1/012058
https://doi.org/10.1002/fld.1650080906
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib0DA8A62C588F599F65E36713CC537FFAs1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib6F60A0C907BD2B678F876BAAFE8E2D66s1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib6F60A0C907BD2B678F876BAAFE8E2D66s1
https://doi.org/10.1016/j.compfluid.2013.02.004
http://refhub.elsevier.com/S0010-4655(23)00048-6/bibD33EA72393E6DF46AE93D2E65EA5E065s1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bibD33EA72393E6DF46AE93D2E65EA5E065s1
https://doi.org/10.1016/j.ijheatfluidflow.2016.11.010
https://doi.org/10.1016/j.ijheatfluidflow.2016.11.010
https://doi.org/10.1088/1755-1315/12/1/012024
https://doi.org/10.1088/1755-1315/22/2/022001
http://refhub.elsevier.com/S0010-4655(23)00048-6/bibA28541506BAD5B8A39578277FA2946B9s1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bibA28541506BAD5B8A39578277FA2946B9s1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bibA28541506BAD5B8A39578277FA2946B9s1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib2A47BB35825736C337D1D259FEE2E3EAs1
http://refhub.elsevier.com/S0010-4655(23)00048-6/bib2A47BB35825736C337D1D259FEE2E3EAs1
https://doi.org/10.1175/MWR-D-11-00221.1
https://doi.org/10.1175/MWR-D-11-00221.1
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047

	A semi-implicit slip algorithm for mesh deformation in complex geometries, implemented in OpenFOAM
	1 Introduction
	2 Finite volume discretization for dynamic meshes
	3 Classical mesh morphing algorithms in OpenFOAM
	3.1 Laplacian mesh morphing
	3.2 Slip condition

	4 Developed mesh motion framework
	4.1 Semi-implicit slip algorithm
	4.1.1 Algorithm details
	4.1.2 OpenFOAM implementation
	4.1.3 Verification case studies
	4.1.3.1 Two-dimensional bump
	4.1.3.2 Kaplan turbine guide vane


	4.2 Simultaneous solid body rotation and mesh deformation
	4.3 Final correction of the point locations
	4.4 Flowchart

	5 Kaplan turbine case study
	5.1 The U9 model turbine
	5.2 Steady and transient operation
	5.3 Computational details
	5.4 Load rejection sequence

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


