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To those who wander.





Abstract

Current trends, such as the fourth industrial revolution and sustainable manufactur-
ing, enable and necessitate manufacturing automation to become more intelligent to
meet ever new design requirements in terms of flexibility, speed, quality, and cost.

Two distinct research streams towards intelligent manufacturing exist in the sci-
entific literature: the model-based digital twin approach and the data-driven learning
approach. Research that incorporates advantages of the one into the other approach
is frequently called for.

Accordingly, this thesis investigates how machine learning can be used to mitigate
the model-system mismatch in digital twins and how prior model-based knowledge
can be introduced in reinforcement learning in the context of intelligent automation.

In terms of mitigating mismatches in digital twins, research presented in this thesis
suggests that learning is of limited usefulness when employed naively in static and
systemic mismatch scenarios. In such settings, blackbox optimization algorithms,
that leverage properties of the problem, are more useful in terms of sample-efficiency,
performance within a given budget, and regret (i.e. when compared to an optimal
controller). Learning seems to be of some merit, however, in individualized produc-
tion control and when used for adapting parameters within a digital twin.

An additional research outcome presented in this thesis is a principled method for
incorporating prior knowledge in form of automata specifications into reinforcement
learning. Furthermore, the benefits of introducing rich prior model-based knowl-
edge in form of economic non-linear model predictive controllers as model class for
function approximation in reinforcement learning is demonstrated in the context of
energy optimization.

Lastly, this thesis highlights that adaptive economic non-linear model predictive
control may be understood as a unifying framework for both research streams to-
wards intelligent automation.

Keywords: Intelligent automation, reinforcement learning, digital twin.
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CHAPTER 1

Introduction

This chapter outlines how current societal mega-trends necessitate and enable man-
ufacturing automation to become more intelligent. While the model-based digital
twin approach and the data-driven reinforcement learning approach make advances
towards intelligent manufacturing automation, it is argued in this chapter that a com-
bination of both may prove more fruitful. Therefore, the research strategy employed
in this thesis aims to extend either approach by principles of the other. To that end,
the main outcomes of the research and the thesis itself are outlined.

1.1 Research Motivation

Manufacturing systems are, broadly speaking, the arrangement of the three factors
of production – man, material, and machine – to satisfy demands of the market. Each
of these three factors on the supply side of the market, as well as customer demands
on the other, are exposed to societal mega-trends of fundamental significance for the
design of manufacturing systems. On the one hand, market demands have shifted
since the 1980s from mass production and competition via cost, towards mass cus-
tomization and competition via product variety [1]. Moreover, the customization
trend extends to personalized production and a shift towards business-to-customer
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Chapter 1 Introduction

business models, such that manufactures can better meet individual demands of their
customers. This change in the external environment requires manufacturing systems
to become more flexible, while ensuring competitive speed, quality and cost [2].
On the other hand, Fig. 1.1 depicts one of the changes affecting the internal factors
of production: the working age population is peaking within a generation (India),
stagnating (United States), about to decline (China), or declining (Europe) in major
industrial geographic regions [3]. While some of this demographic challenge may
be mitigated by a higher labour force participation and migration, the implication
for manufacturing systems design is twofold: the work environment must become
more attractive to the shrinking number of (increasingly better educated) job seek-
ers, and place lower physical demands on the aging workforce [4]. At the same time,
sustainability demands an efficient use of resources, such as material and energy. Ar-
guably, the most prominent driver of change in manufacturing system design in the
last decade has been, however, the advent of internet technology in the manufactur-
ing context. The advances in computing and networking technology have enabled
the digitization of manufacturing machines, heralding in a technological shift, which
has been coined the fourth industrial revolution, also known as Industry 4.0 [5]. Key
features of Industry 4.0 are the industrial internet of things, data analytics, and smart
manufacturing. In this technological shift, the manufacturing system is transformed
into a Cyber-Physical System (CPS) [6], in which the physical and digital world
blend into one. Taken together, these trends fundamentally change the demands on –
and possibilities in – the design of manufacturing systems.

Manufacturing automation must become more collaborative and intelligent, though,
to be capable of meeting its new requirements [7]–[9]. Firstly, automation needs
to become more intelligent to achieve the flexibility required in quickly varying
manufacturing processes for personalized production. Secondly, automation takes
a crucial role in addressing the emerging requirements by the demographic structure
through automating physically demanding and tedious work steps that have been pre-
viously beyond the reach of automation. For that, automation needs to become more
collaborative and – most importantly – more intelligent. Collaborative robots, for in-
stance, may allow for more flexible manufacturing, and physically less demanding
operations for their human collaborators, but may require more intelligent features
to ensure – for example – safety in that [7], [10]. To that end, the European Union
introduced a concept called Industry 5.0 to complement the emerging technologi-
cal enabler, Industry 4.0, with guiding values [11], [12]. Industry 5.0 strives for
human-centric automation, that puts the needs of the worker first, and sustainable

4
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Figure 1.1: Historic and estimated size of the working age population (15-64 years) of se-
lected industrial regions. Data obtained from the United Nations Population Di-
vision [3]. Projections after 2021 are based on the United Nations Medium (i.e.
baseline) Scenario.

and resilient manufacturing systems, which can cope flexibly with disruptions [11],
[13]. By that, intelligent manufacturing automation may contribute to meeting these
current and emerging requirements.

Defining intelligence in the automation context is, however, not trivial. Indeed,
researchers first circumvented the problem of defining intelligence of machines in
the early years of their scientific endeavours. Alan Turing states, for instance, in his
seminal paper “Computing Machinery and Intelligence” [14] in 1950, that a defini-
tion of machine intelligence in the normal use of the word is dangerous and instead
proposes a procedure for testing machine intelligence that is known nowadays as
the Turing Test. The Turing Test is passed if a machine can convincingly imitate a
human in written communication, such that a human interrogator is unable to distin-
guish machine and human. Similarly to A. Turing, Claude E. Shannon proposes in
the same year (1950) to use the ability of playing chess as the benchmark for assess-
ing “thinking” skills of machines [15]. Even when today’s popular term “Artificial
Intelligence” (AI) was coined in a proposal for a “Summer Research Project on Arti-
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Chapter 1 Introduction

ficial Intelligence” in 1955, its authors, McCarthy, Minsky, Rochester and Shannon,
solely circumscribed it by “every aspect of learning or any other feature of intelli-
gence” [16]. The problem of defining AI remained unsolved, leading McCarthy and
Hayes to ascertain in 1969 [17]:

“Since the philosophers have not really come to an agreement in 2500
years, it might seem that artificial intelligence is in a rather hopeless
state if it is to depend on concrete enough information out of philosophy
to write computer programs.”

Nevertheless, various researchers have put forward definitions of artificial intelli-
gence, that can be broadly categorized into the four combinations of: thinking versus
acting, and doing so humanly versus rationally [18]. Interestingly, human intelli-
gence has long been seen as the hallmark of intelligence. Indeed, the term “artificial
intelligence” may invoke, in some readers, ideas that are commonly attributed to the
concept of strong Artificial General Intelligence, which is to describe human-like
abilities in a wide range of tasks stemming from an “actual mind”. At the other
end of the spectrum lies the, practically more relevant to date, weak narrow AI, that
solely simulates intelligence in one or another specialized area [18]. In the absence of
a more grounded philosophical definition, this thesis employs the notion of weak and
narrow AI acting rationally when discussing intelligent automation. It seems impor-
tant to emphasise here that this notion is agnostic to the methods used in producing
intelligent behavior in the automation of manufacturing systems. Indeed, a critical
reader might object to the idea of “intelligent” automation once specific methods are
discussed. On that note, Marvin Minsky observes in his 1961 paper “Steps toward
Artificial Intelligence” that to him “‘intelligence’ seems to denote little more than the
complex of performances which we happen to respect, but do not understand” [19].
This causes the so-called AI effect, which describes that once the complex of perfor-
mances is understood the goalpost for what AI is is moved.

In an attempt to understand AI, M. Minsky, nevertheless, outlines the parts of
intelligence in [19]. To him, intelligence breaks down into the epistemological part,
which is the representation or model of the world, and the heuristic part, which are
the mechanisms that solve the following five problems. First, the problem of search
constitutes finding an optimal answer. Second, abstract representations of sensory
input must be formed in the problem of pattern recognition. Third is the problem of
learning from reinforcement feedback of the world. Fourth, complex tasks must be
solved through following a sequence of actions that are a solution to the problem of
planning. Fifth, general statements, which go beyond any recorded experience, must
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be inferred in the problem of induction. While this model-based approach to AI was
popular throughout the 20th century, we argue that its most likely heir is the concept
of the Digital Twin (DT).

Similar to the early years of AI, the definition of a digital twin is undergoing
frequent adjustments since its conception [20] in 2002. In Chapter 3, we work out
a definition of digital twins in system theoretic terms, but refer to an intuitive, early
description in the context of manufacturing systems by Boschert and Rosen [21] from
2016, at this point that can be summarized as:

The digital twin is a linked collection of relevant digital artefacts, in-
cluding data and models of suitable fidelity that evolve along the real
system and are used to optimize operation and service.

Whereas the epistemological (model) part is central in this definition, the heuristic
part becomes apparent at closer inspection of the description of the evolutionary and
optimal operational aspects. The digital twin concept has become increasingly popu-
lar (see Figure 1.2) also in the manufacturing context, since a digital twin is a possible
outcome of the virtual commissioning process of manufacturing systems [22]. Vir-
tual commissioning generally refers to the testing and validation of control logic in
simulation. To that end, expressive simulation models are built during the design and
development phase of the manufacturing system. These models may be repurposed
into digital twins of the system during its operational life-time. As such, digital twins
provide an excellent basis for model-based intelligent automation solutions.

A diametrical trend to the model-based approach is the learning-based approach
to AI fueled by recent breakthroughs in deep artificial neural networks in machine
learning (ML). Already in 1950, A. Turing wondered [14]:

“Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child’s? If this
were then subjected to an appropriate course of education one would
obtain the adult brain.”

This approach thus places heavy emphasis on the learning aspect. Similar to the
breakdown of AI by Minsky, one can divide the modern field of machine learning
into knowledge-based systems and machine learning as such. Machine learning itself
further separates into unsupervised, supervised, and reinforcement learning. Of these
three, Reinforcement Learning (RL) is the category concerned with acting optimally
and thus of prime interest in the context of this thesis. RL has profited from recent
developments in deep artificial neural networks leading to the first deep RL paper in
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Figure 1.2: Worldwide interest in the three topics: Industry 4.0, digital twins, and reinforce-
ment learning. Data obtained from Google Trends. The y-axis is normalized to
the maximum observed interest. Changes have been made to the data collection
procedure in January 2016 and 2022.

2013 [23], [24] and the media-effective mastering of the boardgame Go in 2016 [25].
This sparked renewed interest in RL as an AI method (see Figure 1.2). While Turing
believed that reinforcement through “the use of punishment and rewards can at best
be part of the teaching process” [14], this learning-based approach is considered a
viable alternative to the model-based approach to intelligent automation.

However, it is the author’s conviction that neither the model-based digital twin
approach, nor the learning-based RL approach will succeed on their own, because
of the needs and challenges imposed on intelligent automation by the manufacturing
application context. These needs and challenges include, but are not limited to:

1. The challenge of model-system mismatch: digital twins strive to built mod-
els of suitably high fidelity to optimize the operation of the system. Still, these
digital models always remain an abstract representation of the world. This
fundamental epistemological challenge is denoted by the model-system mis-
match. As its results, any control action derived in the digital twin may be
optimally rational with respect to the model but not with respect to the system.
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2. The need for real-time decisions: the pace of production in manufacturing
systems is ultimately governed by customer demand and the capacity of the
system. Often, this so-called tact time is only around a few minutes in e.g. au-
tomotive manufacturing. Within each tact, multiple process steps may need to
be performed to further the product in the manufacturing process. This means
that the time to come to a control decision may be fairly limited. Lengthy op-
timizations over computationally intensive digital models, may therefore not
be feasible. On the contrary, a good enough solution in time may well be pre-
ferred over an optimal one too late. This real-time requirement is a challenge
especially to the model-based approach to intelligent automation. Taken to its
extreme, this requirement may demand distributed decision making. Instead
of optimizing a monolithic model of the system on a powerful cloud server, a
decomposition into smaller optimization problems distributed throughout the
system may prove more manageable to save on communication and optimiza-
tion time. Yet, this may still require quick learning-based inference of the
solution or parts thereof to meet time constraints.

3. The need for explainability and safety: automation solutions in manufac-
turing systems need to make decisions that may have consequences for the
human operators in its proximity, the system, or the economy of the company.
Random or erratic decision making is thus difficult to justify. Instead, all auto-
mated decisions should ideally be easily explainable, such that a human could
follow the steps that were taken to arrive at a particular decision. Moreover,
when human safety is concerned, one ought not to leave the decision to chance,
but ought to take sufficient steps to minimize any risks. This is a challenge for
learning-based methods that frequently use blackbox function approximators,
such as neural networks, to identify and leverage correlations in data. More-
over, this is especially true for reinforcement learning methods that need to
take untried actions once in a while to learn better decisions. During this ex-
ploration, one ideally would wish for some estimate of the outcome of the
decision, such that safety in the system is maintained at all times. Popular
learning-based methods, however, often lack such mechanisms.

4. The challenge of small data: in the manufacturing context, each data sample
may correspond to a single instance of the product. Depending on the product’s
production rate, it may thus take considerable time to accumulate enough data
for a sufficient training set required by learning-based methods. Generally
speaking, the more complex the learning task, the more data is needed for
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learning. Beyond this rule of thumb, learning-based methods benefit from
diverse data distributions that make the learned model robust. However, in the
manufacturing context, machines are often tightly controlled within a small
operating window. If the manufacturing process is well-tuned, all data may,
thus, come from a rather small region of the possible operating conditions.
This may prove detrimental if the learned approximator is then queried in a
region that requires significant extrapolation beyond its recorded experience.

To summarize, the model-based approach to intelligent automation has the advantage
of incorporating prior knowledge from engineers in form of a digital twin, which de-
scribes the operating conditions in a possibly larger region than the one the process is
usually operated in, and helps making good and explainable decisions starting from
the first data sample. The model-based approach does suffer, however, from the fact
that high-fidelity models that try to minimize the model-system mismatch are com-
putationally expensive to simulate and optimize. Contrary to that, the learning-based
approach has the possibility to learn arbitrarily good and quick to evaluate approx-
imations given a sufficient amount of data. The learning approach may perform
poorly during its training phase, though, and may lack the desired explainability and
safety of model-based approaches. It seems a combination of both approaches may
prove fruitful in the context of intelligent automation to meet the new requirements
imposed by the ongoing societal trends.

1.2 Research Gap

To recap, intelligent automation aims to unlock remaining performance improve-
ment potentials and meet current design requirements in cyber-physical manufactur-
ing systems. Two diametrical trends in automation try to make progress on that front:
model-based digital twins, and learning-based AI (see also [8]). In the thesis at hand,
it is hypothesized that a combination of digital twins and learning may prove fruitful.

Digital twins address the issue by striving for high-fidelity, minimal-mismatch
digital models built by experts and are regarded as a main driver in smart and intelli-
gent manufacturing [26], [27]. Indeed, Zhuang et al. [28] conceptualize a proactive
strategy as the highest form in the evolution of shop-floor production management
and control strategies. Such a proactive strategy “can even drive and control phys-
ical entities in the real space based on CPS’ self-adaptive and self-reconfiguration
functions [through] AI and digital twin technology.” Also, Wang et al. [29] identify
digital twins and AI as key technologies of smart and intelligent manufacturing, and
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call attention to further development of these key technologies. On closer inspection,
it becomes apparent that many of the postulated properties of digital twins require in
themselves data-driven learning. Tao and Zhang [30] outline “iterative optimization,
self-learning, self-adaptation, real-time interaction and convergence” as key tech-
nologies for digital twins of shop floors. Along those lines, Tao et al. [31] raise the
use of deep learning in digital-twin-driven manufacturing as a “huge” research chal-
lenge. Zhou et al. [32] assign to the digital-twin “knowledge-based intelligent skills”
in the control of a manufacturing cell as a key feature, but also list those as a chal-
lenge ahead for researchers. Nevertheless, Zhou et al. place hope in deep-learning to
address these challenges in the future. Similarly, Zhong et al. [8] point out the com-
bination of human domain expertise and data-enabled machine learning as a pathway
to intelligent manufacturing in the context of the fourth industrial revolution.

On the other hand, reinforcement learning is a particularly popular data-driven
learning method in AI for control. In the context of smart manufacturing automation,
Lu et al. [33] emphasize the need to progress on networked self-organizing manufac-
turing system automation in which reinforcement learning is highlighted as a means
to achieve “advanced cognitive capabilities”. However, in contemporary RL, the
system is often approximated by deep neural networks, which require big data sets
to reach control performances comparable to established model-based methods. Ac-
cordingly, Kuhnle et al. [34] point out the combination of model-based and model-
free (reinforcement) learning methods as a promising research direction for control
of manufacturing systems. Similarly, Arents and Greitans [35] emphasize the need
to combine expert knowledge and reinforcement learning in the manufacturing con-
text to arrive at smart industrial robot control. However, the authors of that paper
refer to expert knowledge extracted by sim-to-real [36] and imitation learning [37]
methods. The sim-to-real approach is also identified by Li et al. [38], [39], Li et
al. [39], and Panzer and Bender [40] as a promising research avenue. These authors
furthermore highlight digital twins as a means for reducing the model-system mis-
match or sim-to-real gap inherent to this approach. In the research of Li et al. [38],
the digital twin is furthermore used as a safety supervisor, while the learned deep
neural network policy executes the task in the physical system. This approach may
prevent catastrophic failures but does not necessarily ensure “expert-level” perfor-
mance in all circumstances. The incorporation of known process constraints in the
RL formulation is moreover mentioned frequently as a future research direction in
the manufacturing context [40]–[42].

In summary, both digital twins and reinforcement learning are seen as promising
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approaches to intelligent manufacturing automation, while multiple recent publica-
tions call for combinations of both approaches. This thesis is positioned, therefore,
at the intersection of digital twins and learning-based artificial intelligence in the
context of intelligent manufacturing automation.

1.3 Research Questions

Two research streams towards intelligent manufacturing automation are observed:
(1) the model-based digital twin approach, and (2) the data-driven learning approach.
As argued in Section 1.1, a combination of both approaches is believed to be more
promising though. This thesis aims to explore this identified research gap at the
intersection of both approaches. An advance into the gap from either side seems
hence natural. Figure 1.3 illustrates the preceding sections and places the following
two research questions into context:

RQ1: How can machine learning be used to mitigate the model-system mismatch in
digital twins, while minimally altering the provided solution?
This first research question assumes an intelligent automation solution is pro-
vided already in form of a packaged digital twin. It is thus of interest how
machine learning could be used to mitigate the challenges of this model-based
approach – while minimally altering the provided solution. In that, it is fur-
thermore assumed that the provided solution is capable of making decisions in
the time frames required by the physical system. RQ1 thus focuses solely on
the use of learning to mitigate the model-system mismatch challenge.

RQ2: How can prior model-based knowledge be introduced in reinforcement learn-
ing to improve sample-efficiency, explainability, and safety of the learned con-
trol policy?
This second research question assumes the learning-based approach to intel-
ligent manufacturing automation has been selected and its challenges need to
be overcome. In particular, it is of interest how prior knowledge about the sys-
tem and its desired behavior, which is mostly available to a system engineer,
can be incorporated into the learning mechanism. The intention here is to im-
prove explainability and safety of the learned control policy, as well as sample
efficiency of the learning process itself. RQ2 thus focuses on incorporating
model-based knowledge into RL.

While it cannot be hoped for that an advance from both sides, each guided by the
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Figure 1.3: An illustration of the research context, the research gap, and the two research
questions of the thesis. Intelligent manufacturing automation is influenced by the
drivers of change on the side of the supply factors as well as on the market demand
side. Two research streams approach the topic of intelligent manufacturing auto-
mation from different angles. This thesis is positioned at the intersection of both
approaches. The two guiding research questions of this thesis aim to investigate
this intersection with either one of the approaches as point of departure.

two research questions above, will result in a unified comprehensive framework for
intelligent manufacturing automation, it is nevertheless believed by the author that
the corresponding research endeavor may be fruitful.

1.4 Research Approach

This thesis is the outcome of a five-year endeavour into a technical field. Although,
one could view the research process as a sequence of structured activities leading
to insights novel to the field, in hindsight it turned out to be less predictable, goal-
directed, and methodical than expected, but rather exploratory, serendipitous, and
iterative. Bell, Bryman and Harley [43] describe this as the “messiness” of business
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research (which includes organizational and operational research and thus extends to
research on automation). On a more philosophical note, A. Chalmers concludes in
his book What is this thing called Science? [44]:

“I reaffirm that there is no general account of science and scientific
method to be had that applies to all sciences at all historical stages in
their development. [. . . ] Although it is true that scientist themselves
are the practitioners best able to conduct science and are not in need of
advice from philosophers, scientist are not particularly adept at taking a
step back from their work and describing and characterising the nature
of that work.”

Without such a general scientific method, it seems all that philosophy has to offer are
mental crouches that aide in making sense of one aspect or another of the research
process. To that end, we may ask ourselves what the nature of intelligent manufac-
turing automation is, i.e. its ontology, and what the nature of the scientific knowledge
about it is that we can hope to obtain from our research, i.e. its epistemology.

There are two major ontological perspectives one may take when contemplating
intelligent manufacturing automation. Ontology itself refers to the general nature
of the entity in the research focus. From the ontological perspective of objectivism,
it is assumed that the entity exists separately of the social circumstances and inde-
pendent from human perception or action. It cannot be influenced by social actors.
Constructionism, on the contrary, emanates from the assumption that the entity of
research is defined by social actors and is continuously revised by their interactions.
The entity will thus constantly change, and research on it will always be biased by
the researcher’s subjective perception. Whether science should be understood from
the objectivist or constructionist, or repsectively the positivist or constructionist (in
the epsitemological sense) position cannot be argued for conclusively [45]. In the au-
thor’s opinion, intelligent manufacturing automation fits more a constructionist point
of view, since automation design is governed by user requirements, whereas the idea
of a one and only “true” intelligent manufacturing automation design seems absurd.

Our ontological considerations give rise to possible epistemological perspectives.
Epistemology is the question about the value and truth of research and knowledge
in a certain discipline. Positivism values knowledge that was gathered through the
methods of natural science and can be experienced by the human senses. There-
fore, knowledge has to always be based on facts, be objective and testable anytime.
This goes hand in hand with the ontological perspective of objectivism. Realism
acknowledges elements in a theory that are not explainable or observable with cur-
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rent scientific possibilities. Science, in this view, is a simplification of observable
phenomena, but overlooks the underlying generating structures of these phenomena.
Interpretivism departs from realism and argues that a theory is always subjective,
meaning that social phenomena are interpreted by social actors according to their
background and environment. Hence, research is always biased by the experimental
settings and the researcher’s perception. Given our definition of artificial intelligence
as acting rationally, research and knowledge in intelligent manufacturing automation
seems to fit most naturally the ontological perspective of objectivism, though. It
should be noted here that one need not subscribe to a single ontology and epistemol-
ogy within a particular field of study. Indeed, a change of one’s position may open
up new research avenues [43].

Our ontological and epistemological assumptions are of practical relevance, be-
cause these assumptions inform which research methodology would most likely pro-
duces valuable knowledge about the entity of research [43]. In a mostly deductive
research approach, hypotheses are derived from theory to be tested against reality. In
a mostly inductive approach, theory is formed from generalizations of made observa-
tions. However, any research approach is seldom purely one or the other. Indeed, one
may argue that the research presented within this thesis is both. Intelligent manufac-
turing automation is a comparably nascent field of study. When taking a dynamic
perspective on science similar to the one put forward by T. Kuhn [44], it may be
argued that this field of study is in a pre-paradigmatic phase. In such phases, re-
searchers propose competing paradigms that eventually get evaluated against each
other and from which the one new dominating paradigm emerges. In an area where
relatively little prior research has been done, a more exploratory, that is a qualitative,
research strategy may be more suitable than a quantitative one. Such a – relatively
unstructured – approach may generate new theories and hypotheses that can then be
tested quantitatively [43]. Undeniably, the research presented in this thesis has been
part of a broad exploratory research endeavour and employs for most parts a more
qualitative case study research design. This is the inductive element of the presented
research. Within each study, however, a hypothetico-deductive method [46] has been
used. As such, the research approach of this thesis fits elements of the DRM – design
research method by Blessing and Chakrabarti [47] – even though its proponents also
need to admit a lack of consensus regarding what the “right” research methodology
for design research is.

Table 1.1 provides an overview of the appended research papers. The six papers
cover multiple application areas and system types. In the DRM framework of Bless-
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Table 1.1: A Categorization of the Appended Research Papers.

Paper Application Focus System Type RQ

A Sheet Metal
Assembly

Quality Assurance Static 1

B Sheet Metal
Assembly

Quality Assurance Contextual 1

C Sheet Metal
Assembly

Quality Assurance Dynamic
(continuous)

1

D Collaborative
Robotics

Safety Falsification Dynamic
(discrete)

2

E Collaborative
Robotics

Energy Optimization Dynamic
(hybrid)

2

ing and Chakrabarti [47], research is classified into four phases: (1) the research clar-
ification, (2) the descriptive study I, (3) the prescriptive study, and (4) the descriptive
study II. This first part of the thesis may be understood as part of the research clar-
ification in which the current understanding and expectations are clarified. Paper A
may be regarded mainly as a descriptive study I, due to its comparison of established
methods. Although not the first in the temporal sequence, Paper A lends itself to
be the first appended paper, therefore. Papers B through E are more prescriptive in
nature. In them, the purpose is rather found in the next-step conceptual development
of intelligent manufacturing automation. This is reflective of the current phase that
the field of study is in according to the author’s conviction.

1.5 Contributions

In the research presented in this thesis, we make the following contributions with
regard to RQ1 – How can machine learning be used to mitigate the model-system
mismatch in digital twins, while minimally altering the provided solution?:

C1: In Paper A and Paper B, we evaluate machine learning to mitigate mismatches
in the context of direct input adaptation. We show that learning in direct input
adaptation is of limited usefulness in the systemic mismatch case (Paper A). In
such settings, blackbox optimization algorithms that leverage properties of the
problem are more useful in terms of sample-efficiency, performance within a
given budget, and regret. Our research indicates, however, that learning might
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have some (limited) merit in individualized production control (Paper B).

C2: In Paper C, we present a mitigation method for drifting mismatches in individ-
ualized production control. To that end, the mismatch problem is re-formulated
such that it can be solved by a state observation algorithm. Our method is thus
a suitable approach for mitigating mismatches through modifier learning – a
strategy in which a model of the mismatch is estimated.

C3: In Paper E, we show the connection between adaptive model predictive con-
trol and the digital twin concept. This method uses reinforcement learning to
adjust parameters within the (digital) model to achieve convergence between
observed performance and performance predicted by the model. Our research
introduces this method as a pathway to realizing the vision of the digital twin
concept.

Our contributions related to RQ2 – How can prior model-based knowledge be in-
troduced in reinforcement learning to improve sample-efficiency, explainability, and
safety of the learned control policy? are:

C4: In Paper D, we develop a principled method for incorporating prior knowledge
in the form of automata specifications into reinforcement learning. In contrast
to other comparable approaches, our method optimally balances specification
and environment rewards trough Lagrangian optimization.

C5: In Paper E, we apply a recent generic adaptive model predictive control method
into a new, specific and important application area. This method uses eco-
nomic non-linear model predictive controllers as model class for function ap-
proximation in reinforcement learning. We show the benefits of introducing
rich prior model-based knowledge in this form in the context of energy opti-
mization.

1.6 Thesis Outline and Scope

The remainder of Part I of this thesis is structured as follows:

• In Chapter 2: Applications, three application cases in this thesis are intro-
duced: geometry assurance in sheet metal joining, human-robot collaboration,
and energy optimization of robots. At the end of this chapter the reader should
have an intuitive understanding of recent developments on the three factors of
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production: digital twins and Industry 4.0 in manufacturing (machine), collab-
orative robotics and safety (man), and sustainable manufacturing (material).

• In Chapter 3: Digital Twins, the published literature is analysed with respect
to characteristics of digital twins. It is argued that three functions are required
to achieve the “twinning” key characteristic of digital twins: state observation,
system identification, and optimal control. This thesis exclusively focuses on
optimal control under poorly identified systems. At the end of this chapter the
reader should have an intuitive understanding of what a digital twin is and how
it needs (reinforcement) learning to mitigate the model-system mismatch.

• In Chapter 4: Reinforcement Learning is described. A particular focus of this
chapter is on model-based RL, sim-to-real learning, and learning with “ex-
pert” controllers, such as established model-based control methods. Research
challenges are highlighted. At the end of this chapter the reader should have
an intuitive understanding of the shortcomings of pure reinforcement learning.

• In Chapter 5: Summary of Appended Papers, our attempts of bridging the gap
between digital twins and reinforcement learning in the context of intelligent
automation are summarized.

• In Chapter 6: Conclusions and Future Work, we provide some of our insights
so far and point out possible avenues for further research.

Topics that are excluded from this thesis, include: modelling and simulation of sys-
tems as digital twins; distributed networking aspects (e.g. computation in the cloud,
fog, edge, etc.); hybrid or hierarchical control architectures (for instance model-
based control and learning on two different levels); intelligent automation as acting
humanly.
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CHAPTER 2

Applications

Three applications are introduced in this chapter. Each application illustrates cur-
rent developments on one of the factors of production: Section 2.1 centres around
Industry 4.0 and digital twins in manufacturing (machine), Section 2.2 introduces
collaborative robotics and safety in interaction with humans (man), and Section 2.3
sketches out energy-efficient control in sustainable manufacturing (material). A par-
ticular focus in their descriptions is on intelligent automation aspects to provide con-
text for the subsequent chapters.

2.1 Smart Assembly 4.0

The arrival of internet technology to the manufacturing context has been named the
fourth industrial revolution. Internet-enabled sensors can now continuously capture
data on the factory floor and stream that data to the cloud for sophisticated data
processing and analysis. This section outlines such a data processing concept in
the context of sheet metal assembly and illustrates the challenges for a model-based
approach to intelligent automation in that.

In an assembly process, two or more parts are joined together. This is a ubiquitous
task in manufacturing systems. In the automotive industry, for instance, parts of
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the vehicle body are stamped from sheet metal rolls and then joined by e.g. spot
welding to form the exterior of the vehicle. Variations in the parts as well as in the
manufacturing equipment propagate through the assembly process, and affect the
resulting geometry of the product. The assembly process has thus major influence
on the aesthetic quality, functionality and safety of the final product. The goal of
geometry assurance is to reduce the effect of these variations and thereby improve
quality. This in turn reduces cost, since geometry related issues are a major driver
for re-work and delays in the production process.

By using virtual tools, geometry related issues can be detected and mitigated ear-
lier in the product life cycle. For example, Söderberg et al. [48] outline the use
of computationally intensive simulation models, based on e.g. the finite element
method, in the product design phase to determine product tolerances and require-
ments and robust locating schemes. These simulation models are built from first
principles, historical experience, and historical data. Statistical variation simulation
can further enhance the reliability of these models in the decision making process.
Moreover, these virtual models of the product are useful in designing the assembly
process, as well as in the design of the quality inspection process, and the off-line
programming of the manufacturing equipment. Indeed, virtual geometry assurance
tools enable the detection of quality issues early in the design process rather than
during production, which saves money and time Söderberg et al. [48].

Beyond that, virtual models of the product and its assembly process, that were de-
veloped during the design phases, can be extended into digital twins for the produc-
tion phase to unlock further improvement potentials through individualized process
control [48]. This is because in a digitized and internet-of-things-enabled factory,
each individual part may be measured by inline scanners, for instance, and its as-
sembly process optimized in real-time. Thereby, individual part variations can be
accounted for through selective part matching, virtual trimming of fixture locators
and joining sequence optimization. Digital twins are seen, accordingly, as one of
the most important development areas by practitioners in the geometry assurance
field [49]. The development of a digital twin for geometry assurance in sheet metal
assembly has been the goal of the Smart Assembly 4.0 project, which is outlined in
Söderberg et al. [48] and initiated the research presented in this thesis. Its vision was
“the autonomous, self-optimizing robotized assembly factory, which maximises qual-
ity and throughput, maintaining flexibility by a sensing, thinking and acting strategy”
by means of digital twins. To that end, Bohlin et al. [50] proposed a modular sys-
tem architecture with decentralized asynchronous data streams between physical and
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virtual space, as well as between digital platforms. Data capturing for analysis and
real-time optimization in the digital twin can happen then through inline scanning
in the physical system. However, the data capturing by geometry inspection must be
sufficiently quick to keep up with the tact time of the assembly process. It is thus cru-
cial to capture the right data rather than the most data by leveraging expert domain
knowledge. This enables a certain speed in the computational analysis and keeps
data storage volumes and costs down [51]. The measured data is then used to update
the digital twins of products and processes. Virtual parts can subsequently be sorted
and matched to reduce geometry variations of the assembly. Furthermore, quality
can be improved through such a self-adjusting assembly concept without tightening
tolerances.

However, such an individualized production must be enabled by intelligent manu-
facturing automation capabilities. For instance, the weld sequencing and other geom-
etry assurance measures on the individual part level result in a unique joining scheme
for each assembly. This requires an online update of the robot control programs to
optimally coordinate the welds between robots. In that, detailed simulation models
of the robots are needed on the one hand, and on the other hand algorithms that can
arrive at a feasible solution quickly [50].

As a test bed for such algorithms, a use case has been developed, which is depicted
in Figure 2.1. The case is a sub-assembly of a reinforcement and torsional stiffness
bracket of a car body. The virtual geometry of the parts is given by their measured
point clouds of about 2.5 thousand points each. Each of the fixture’s twelve locators
are adjustable along their axes, and the two parts are joined by seven spot welds. The
overall objective is to minimize the root mean square error of the resulting assembly
from the nominal assembly by adapting the assembly process for each individual part
geometry and measurements fed back to the digital twin.

The difficulties in realizing a digital twin for the automated assembly process lay
in the sensitivity of the process and the time constraints imposed by the customer tact.
According to Wärmefjord et al. [52], several factors affect the geometric quality of
sheet metal assemblies, such as: fixture deviations; clamping force and clamping
stiffness deviations; joining point, force, and tool variations; mechanical deteriora-
tion; friction; part geometry variations; and material property variations. Even highly
sophisticated Finite Element Analyses of non-rigid deformations, thus, do not fully
capture the complete real physical behavior [52]. Such uncertainties in the manufac-
turing process and model simplifications, needed to compute model-based solutions
quickly, lead to a mismatch between the digital twin models and the physical sys-
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(a) Spot welding cell (b) Fixture detail

Figure 2.1: The use case of the Smart Assembly 4.0 project. Incoming parts are scanned for
their geometric variation (as seen color coded in (a)), matched individually with
a part of the other type, positioned in an adjustable fixture and joined by robotic
spot welding (see upper picture in (b)). The resulting assembly geometry is then
scanned and fed back to the digital twin. Locator adjustments and joining se-
quence affect geometric quality as detailed in the lower part of (b). Therefore, the
robot and fixture control programs are continuously adapted based on the individ-
ual digital twins of the parts and of the process.

tem [50]. A major focus in the Smart Assembly project is thus on improving models
of the manufacturing process (e.g. simulating of robot dress packs), extended sensing
of the process to feed said models (e.g. scanning of parts), and deciding on optimal
process inputs (e.g. locator adjustments). The result of these optimizations, however,
hinges on the quality of the model and the sensed data.

In summary, virtual models of the assembly process combined with real-time data
from the factory floor may unlock the improvement potentials of individualized pro-
duction control, but may potentially suffer from the model-system mismatch. One
possible mitigation strategy against the model-system mismatch is to incorporate un-
certainties explicitly into the model and make the control optimization robust against
them (e.g. variational analysis). A second strategy is to leverage measurements from
the system to adapt the digital twin through data-driven learning methods. This sec-
ond strategy is explored in the previously described Smart Assembly 4.0 context in
[53]–[56].
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2.2 Collaborative Robots

The workforce in major industrial regions is aging and/or shrinking. This requires
the automation of previously manual tasks to maintain and grow productivity on
the national level. This often means that automation must enter into unstructured
environments that are shared with humans. New “intelligent” features are needed in
automation therefore.

Industrial robots are the workhorses of factory automation. Traditionally, robots
have been tightly fenced off in industry to protect the human operators from physical
harm. Common safety measures have been fences, gates and safety switches that en-
sure a physical separation of the robot’s and human’s workspaces when in operation.
However, if a robot has the capabilities to share its workspace with a human, it can be
considered to be collaborative [57]. These capabilities need not be built into the robot
as such. A collaborative robot can also be a conventional industrial robot, which was
equipped with external sensors, such as cameras or lidars, combined with appropriate
control logic. Commercial retrofitting solutions are available from most major robot
manufacturers [57]. If the robot is, furthermore, equipped with appropriate inbuilt
sensors, physical collaboration of robot and human become possible. For instance,
robot and human may join forces in manipulating large objects (see e.g. [58]) or
flexibly share tasks between each other [57]. In such collaborative settings, commu-
nication between robot and human through voice, gestures, graphical user interfaces,
or physical contact (force feedback, guiding etc.) may be needed [57], [59].

Collaborative robots may partially address the present challenges in manufactur-
ing system design. Robots that do not require to be fenced off and are equipped with
additional interactive capabilities can have a smaller footprint on the factory floor and
increase flexibility of the manufacturing process [7]. Through intuitive programming
interfaces, automation of process steps becomes more adaptable and accessible also
for smaller enterprises without in-depth expertise in robotic programming [7]. Com-
bined with advanced sensing capabilities, it furthermore enables automation in small
volume manufacturing, including tasks that have been considered commonly man-
ual work, such as material logistics, handling and feeding [7]. In that, robots often
provide power, accuracy and repeatability, while the human provides flexibility and
cognitive adaptability (see e.g. [7], [10], [57]). Physical demands on human opera-
tors may be therewith lowered and workplace attractiveness increased [10], [57], for
instance by providing a sense of purpose to the human in a human robot interaction
if the human’s abilities are needed to execute the task [60].

Making collaborative robots more intelligent may generate additional improve-
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ment potential. A basic form of collaborative robots are industrial robots, retrofitted
with external sensors and control logic akin an emergency stop function when a hu-
man is in close vicinity. Although a physical fence is no longer required in this
context, this relative lack of intelligence demands industrial robots to work in vir-
tually fenced and safeguarded zones to ensure safety of the worker [10]. Without
any more autonomous and cognitive abilities, this restricts the scope of their appli-
cation in industry, since close Human Robot Collaboration (HRC) would frequently
induce safety stops and thus hamper productivity [9], [57], [61]. Ideally, however,
the collaboration between human and robot should be responsive in the sense that
the robot responds to human actions instantaneously [10], [58]. The more “intelli-
gent” capabilities needed for such a responsive collaboration may be achieved by: a
combination of reactive behavior-based control (direct mapping from sensory input
to control actions) and sense-think-act control architectures, which derive control ac-
tions from planning over a model (see e.g. [59]); learning (see e.g. [57], [59]) and
adaptation [60]; or digital twins, which provide awareness of its environment to the
collaborative robot [10]. Indeed, better environment models and predictive capabil-
ities are said to enable flexible automation [9] and more effective safety in human
robot collaboration [62].

Safety in human robot collaboration is crucial for the deployment in industry. In-
deed, automation that is perceived as unsafe, for instance because of unpredictable
or erratic movements, may reduce psychological safety of the worker, and cause dis-
comfort, stress and lower productivity (see e.g. [10], [62], [63]). Trust in the auto-
mation solution can be established for example through legible motions that com-
municate intent to the human collaborator [64], [65]. Furthermore, suitable safety
measures (see [62] for a comprehensive overview) must have been implemented and
verified [66], [67]. As a matter of fact, the commissioning of HRC solutions is a
time-consuming task and a major obstacle towards their deployment in industry [7],
[9]. Moreover, risk assessments must be repeated when the collaborative robot is
used in a new way, which becomes increasingly difficult for learning systems [61].

While traditional risk assessment methods may prove impractical, more automated
analysis methods may facilitate the uptake of flexible collaborative robots in indus-
try. Traditional methods are mostly based on human reasoning and simple tools like
checklists [66], [68]. However, these manual methods may neither be sufficient nor
scalable enough for complex system such as intelligent HRC systems [69]. Auto-
mated analysis methods categorize broadly into formal verification and simulation-
based testing. Formal verification requires formal models of the system, such as au-
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tomata, that can be checked against their specifications. Formal verification methods
can provide safety guarantees with respect to the formal model and have been applied
in the context of cyber-physical systems [70]–[74]. For complex systems that require
safety analysis on a more detailed level, for instance because an estimate of collision
forces is needed, formal methods are often intractable. In such cases, simulation-
based testing methods (e.g. [75]–[77]) may be better suited. These methods search
the input space of the simulation model for inputs that cause a given specification to
be violated or falsified. However, such simulation-based falsification methods can
at most provide counterexamples, but no safety guarantees, since the state-space of
the simulated system is often infeasible to explore exhaustively [78]. A method to
restrict exploration in simulation-based falsification through formal verification is
presented in [79]. Nevertheless, automated safety falsification may benefit from dy-
namically updated digital twins [80] and may help to overcome the safety obstacle
in the deployment of intelligent, collaborative robots in industry.

To sum up, collaborative robots may enable automation of previously manual tasks
and provide greater flexibility to the manufacturing system than previous automation
solutions. “Intelligent” features of the robots are needed to overcome the safety
obstacle when collaborating with humans. Digital twins and learning could be a path
towards such features and automated safety assessments and has thus motivated the
research presented in [81].

2.3 Sustainable Manufacturing

Manufacturing systems produce from limited resources the goods to satisfy our near
unlimited desires. As a growing population on a planet with finite resources, a smart
and sustainable usage of these resources becomes increasingly imperative. The con-
cept of sustainable manufacturing is not conclusively defined in the literature yet,
and is furthermore subjected to the same value-based political debates as sustain-
ability in general. Nevertheless, one of the first definitions of sustainability was
put forward by the 1987 UN Brundtland Commission [82] as being “development
which meets the needs of current generations without compromising the ability of
future generations to meet their own needs.” Although this definition is not directly
applicable in the manufacturing context [83], it provides sufficient context for un-
derstanding the 6R approach to sustainable manufacturing: reduce, reuse, recover,
redesign, re-manufacture and re-cycle. Of those, a reduction of waste and required
resources by zero-defect and resource-efficient manufacturing can be seen as an ob-
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vious – although hardly the sole – operational goal in the sustainability dimension of
manufacturing systems [83].

To that end, energy-efficient operation of robotic and automatic manufacturing
systems (e.g. through on-off control [84]) offer great reduction potential in resource
use [85], since robot energy use is significant in many industries [86]. Such ap-
proaches offer great potential, since they are largely organizational measures that do
not incur high investment costs [87]. In that, the fourth industrial revolution is a po-
tential catalyst in the development towards sustainable manufacturing [83] because
of simplified data collection by IoT senors and smart analysis and decision making
algorithms [88]. Indeed, smart manufacturing technologies, such as digital twins and
intelligent algorithms, have the potential to reduce the energy use in industry by up
to 30 % according to the International Energy Agency (IEA) [89]. This significant
energy saving potential has been confirmed in practical case studies of automotive
factories [90]–[92]. For instance, a reduction of about 24 % of the robot energy use
has been demonstrated in [93] for an automotive production line.

Nevertheless, an obstacle to achieving the desired energy reduction is the often
conflicting criterion of productivity (the number of produced products per unit of
time). Productivity frequently holds precedence over energy reduction (see e.g. [94]).
Productivity often manifests as hard deadlines in the production system that need to
be met in order to avoid production disruptions. Meeting deadlines becomes espe-
cially challenging if there exist uncertainties in the production system. Examples
are uncertainties in execution times, breakdowns and arrival times of parts or orders.
Robustness to such stochastic disturbances conflicts with energy reduction objec-
tives [95]. Highly detailed digital simulation models may thus facilitate the develop-
ment and testing of new energy-efficiency procedures [83]. Especially online meth-
ods, which react to events in dynamic manufacturing systems, are a promising devel-
opment direction, to improve gains from energy-efficient operations further [96].

To conclude, a sustainable usage of material and resources in manufacturing be-
comes ever more important. Intelligent automation solutions that can optimize man-
ufacturing processes online using the latest process data seem promising for realizing
efficiency potentials. Such a method has thus been developed in [97].

2.4 Opportunities for Intelligent Automation

Man, machine, and material constitute the three factors of production. Societal mega-
trends affect each one of them. At the same time, market demands have shifted to-
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wards requiring personalized production in many industries. Intelligent automation
may leverage – and help to meet the challenges of – these ongoing changes. The on-
going digitisation of manufacturing systems enables new automation capabilities,
such as individualized production control to improve quality and flexibility, human
robot collaboration to meet demands by an aging and/or shrinking workforce, or
energy-efficient control of processes to use resources sustainably. Two approaches
towards intelligent automation have been identified: the model-based digital twin ap-
proach and the data-driven reinforcement learning approach. These are described in
the two subsequent chapters.
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CHAPTER 3

Digital Twins

The emergence of the internet of things, big data and cloud computing has given
rise to the concept of the digital twin in manufacturing. The digital twin is seen as
a core enabler for smart and autonomous manufacturing systems [98]. In essence,
it is a sufficiently realistic digital model of the product or system, linked by a bidi-
rectional automated data exchange, used for simulation, optimization, and control.
At the end of this chapter the reader should have an intuitive understanding of the
model-based digital twin approach to intelligent manufacturing automation, and how
it needs (reinforcement) learning to mitigate the model-system mismatch.

3.1 Historical Development of the Concept

The idea of the digital twin concept dates back to 2002 when M. Grieves presented
a conceptual ideal for product lifecycle management, that “did have all the elements
of the digital twin: real space, virtual space, the link for data flow from real space
to virtual space, the link for information flow from virtual space to real space and
virtual sub-spaces.” [20]. It took a further 10 years, however, for the term “digital
twin” to be coined and for the concept to gain wide-spread attention. In 2012, Shafto
et al. [99] at NASA defined the term in the context of aeronautics as follows:
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“A digital twin is an integrated multiphysics, mulitscale simulation of
a vehicle or system that uses the best available physical models, sensor
updates, fleet history, etc., to mirror the life of its corresponding flying
twin."

Subsequently, various researchers put forward slightly differing visions of the digital
twin in the manufacturing context. For instance, Boschert and Rosen [21] describe
in 2016 the digital twin for manufacturing as a collection of relevant digital artefacts,
including data and models of suitable fidelity that evolves along the real system and
is used to optimize operation and service.

In 2017, Söderberg et al. [48] envisioned a digital twin for the assembly of sheet
metal parts. In their concept, the digital twin is built successively throughout the
product life cycle. First, a digital model of the product is built from nominal and his-
torical data. This model aids in the design of, for instance, robust locating schemes
for the sheet metal assembly. Then, the digital model is used to develop the assembly
and quality control process, centred around inline scanning of the sheet metal geome-
tries. The outcome of these product and process design phases are digital models that
can be re-purposed in the production phase for real-time optimization and control. In
this last phase, the virtual model is updated with individual part geometries for online
joining sequence optimization and virtual trimming of fixture locators. Inspection
data of the final product is then used to identify errors in the physical process and
possibly for capturing unmodeled effects through machine learning. The presented
use of the digital twin is intended to reduce quality related design changes and costs.

In the same year, Tao et al. [31] outline the benefits of a digital twin in all product
life-cycle phases from design to recycling. The digital twin in the manufacturing
phase is further detailed in [30]. In this phase, the digital twin consists of four parts:
(1) the physical shop-floor, (2) the virtual shop-floor, (3) the shop-floor service sys-
tem, and (4) the shop-floor digital twin data. In this concept, the physical shop-floor
generates data that update the state and the models of the virtual shop-floor. The vir-
tual shop-floor generates control inputs for its physical counterpart. In that, the shop-
floor service system acts as platform for various algorithms that adapt the models of
the virtual shop-floor and verify control decisions in the virtual shop-floor before
they are applied in the physical system. The shop-floor service system is therefore
seen as an enabler for better reliability and productivity of the manufacturing system.

In 2021, the International Standard Organisation defines a digital twin for manu-
facturing in the standard ISO23247 [100] as follows:

“A digital twin in manufacturing is a fit for purpose digital representa-
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tion of an observable manufacturing element with synchronization be-
tween the element and its digital representation.”

Synchronization is described here as bi-directional updates of the physical and dig-
ital elements, such that the manufacturing system is constantly optimised based on
real-time information from it. The standard is nonrestrictive in the objective of these
optimizations and list for instance real-time control, predictive maintenance, and dy-
namic risk management as possible applications.

Although these digital twin concepts heavily emphasise the control aspect, other
authors rather highlight – particularly in the earlier years of the concept – the fidelity
of the digital model. For example, Grieves and Vickers [20] revise in 2017 their ear-
lier description of the concept and instead write: “The digital twin is a set of virtual
information constructs that fully describes a potential or actual physical manufac-
tured product from the micro atomic level to the macro geometrical level, [operated
in] an integrated, multi-domain physics application space." Also, Zhuang et al. [28]
summarize the literature available in 2018 by stating that a “digital twin is a virtual,
dynamic model in the virtual world that is fully consistent with its corresponding
physical entity in the real world and can simulate its physical counterpart’s char-
acteristics, behavior, life, and performance in a timely fashion." This may be an
expression of the fact that aspects of optimization and control are often neglected in
reports on digital twin implementations [101], [102]. Recent reviews of the litera-
ture by Kritzinger et al. [101] (2018) and Fuller et al. [103] (2020) also highlight
the absence of a common and clear definition of the digital twin to date, resulting in
debatable implementations. Both reviews unsurprisingly call for additional work on
the definition and conceptual basis of digital twins. In the hope of providing a clearer
picture of the concept, the following section outlines the formal properties of digital
twins as described in the scientific literature.

3.2 Formal Properties of Digital Twins

Despite slightly differing descriptions of the conceptual details, the main elements
remained mostly constant since M. Grieves conceived the idea of a digital twin in
2002. Accordingly, the following text is organized around the information flow from
physical to virtual space, the virtual space itself, and the information flow from vir-
tual to physical space.
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Fully Observing

Rosen et al. [98] write that “the digital twin at any time represents the full environ-
ment and process state”, and also Tao et al. [26] propose that digital twins “can
visualize and update the real-time status [. . . ] for monitoring a production process”.
To understand this aspect of the digital twin concept, the information flow from the
physical to the virtual space is thus investigated first. Formally, the state of a system
is the information required to predict the output of the system at the next time in-
stance given the history of control inputs to the system. Commonly, the output of a
system is captured by sensors, which in theory may be all the information needed to
exactly determine the state of the system. The information measured by the sensors
and the information contained in the system state need not to coincide though. In
addition, the sensor readings may be corrupted by noise. Nevertheless, the system is
said to be observable, if its state can be inferred in retrospect from the history of con-
trol inputs and measured system outputs by means of a state observation method (e.g.
Kalman filtering). Observability is thus assumed when describing the digital twin as
“mirroring” [20] the information of the physical space. Note that observability only
requires the ability to reconstruct the state in retrospect. However, the specification
of the digital twin as reflecting the real-time state (see e.g. [28], [31], [104]) leaves
little room for prolonged data collection and reconstruction. The information flow-
ing from physical to virtual space must thus be sensor data of sufficient quantity and
quality to determine the state of the physical system in a timely fashion.

The state of the physical system is a function of time, i.e. the state variables
change with time. The synchronization of the states of the virtual and the physical
space is thus a key property of the digital twin [105]. To model a continuous system
digitally, the state variables must be discretized and their values sampled at discrete
time instances. Such a sampling event may take place in a synchronous fashion.
Models that are updated solely with synchronous and regular sampling events are
called time-driven. However, when sensors change value at arbitrary times (e.g. like
a relay in a conveyor system), an event-driven approach is more suited, where state
changes are induced asynchronously. Both approaches are in use and Lu et al. [27]
call for further scientific evaluations of each in the context of digital twins, while
the DT standard ISO23247 [100] remains nonrestrictive on the use of either. We can
understand event-driven models as the more generic ones, since those may include
the timed sampling events of a time-driven model. The information flow between
physical and virtual space may hence be understood as an event-driven flow of sensor
data required to fully observe the state of the physical system.
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Adaptive

At the core of the virtual space is a collection of simulation models [21], [28], [99].
Tao and Zhang [30] postulate moreover that this collection comprises models of var-
ious types, such as geometrical, physical, behavior and rule-based models, and de-
scribe the use of virtual and augmented reality as one aspect of the digital twin to
provide “vivid three dimensional images” of the physical space. This vision of vivid
virtual models is in line with Shafto et al. [99] calling for the “best available physi-
cal models” and Grieves and Vickers [20] describing “information constructs [. . . ]
from the micro atomic level to the macro geometrical level.”

One of the ways the digital twin concept attempts to tackle the complexity of such
high-fidelity models, is through modularization of the digital twin. Each compo-
nent of the physical system is supposed to come with its own simulation model that
can be plugged into the overarching simulation of the system [6], [21], [28], [98],
[106]. Such a modular architecture may be realized through Functional Mock-up
Units (FMUs). FMUs are models, created according to the FMI (Functional Mock-
up Interface) standard [107]. FMU models have a predefined set of inputs and out-
puts that are set by the model creator. This allows for a simple and transparent way
of connecting multiple models. An issue of having a distributed simulation, though,
is that the dynamics of one model might affect another one. Time delays between the
simulation models result in reactions of one model to past states of another one. This
interaction can introduce a self-reinforcing feedback loop and cause the simulation
to become unstable. The stability of this interaction depends on the whole system
dynamics, and not only on each separate model. This is a challenge for a digital
twin model, which is to be generic and valid regardless of the simulated system it is
placed in, since it is not possible to guarantee that the digital twin will be stable in
all interactions [108].

The digital twin is furthermore a hybrid model. Tao et al. state that the digital twin
includes behavior models and rule models [31]. Behaviour models may be, for in-
stance, physics simulations. Such simulations are models of a continuous state space,
that is, state variables are real-valued. Rule models, on the other hand, are of discrete
nature in the sense that their state variables change value if certain conditions are met.
An example of this would be if button = pressed then machine state ←
off, where the state variable may also take discrete values. A combination of con-
tinuous behavior models and discrete rule models leads to a combined model that is
piece-wise continuous, also known as a hybrid system.

In addition, the physical system will be subject to disturbances, such as faults

33



Chapter 3 Digital Twins

(e.g. [28], [98]). Vice versa, the digital twin may also be used to predict faults and
other events before they occur [20]. To that end, probabilistic models in the digital
twin are asked for [31], [104]. These may be used to compute Bayesian probabilities
of future failures and mitigate undesired behaviours [20].

In general, a model is the mathematical description of a system in the physical
space. Models of dynamic systems are often expressed in state-based form as a
parameterized function that relates the current system state and its control input to
the next state or the derivative of the state. A digital twin differentiates itself from
just any type of (simulation) model by the existence of a corresponding part in the
physical space [27], [108]. Such a one-to-one relation between physical space and
virtual space “can be considered as the core elements of a digital twin” [6]. More-
over, while simulation models are developed usually for exploring what-if scenarios,
digital twins are deployed to capture what is currently happening [27]. However,
digital twin models of such high fidelity as commonly envisioned are generally still
too computationally expensive for a real-time execution in parallel to the physical
system. Wright and Davidson [108] thus state that:

“In general, a model for a digital twin should be: sufficiently physics-
based that updating parameters within the model based on measurement
data is a meaningful thing to do; sufficiently accurate that the updated
parameter values will be useful for the application of interest; and suf-
ficiently quick to run that decisions about the application can be made
within the required timescale.”

Also, Huang et al. [109] call for lightweight – and yet – high-fidelity models that can
be incorporated as prior knowledge in data-driven approaches in the context of digi-
tal twins. Such models are thought to be able to transcend the limitation of conven-
tional and computationally-expensive models in the context of manufacturing pro-
cesses [109].

Indeed, a data-driven convergence of digital and physical space is key to dig-
ital twin-based smart manufacturing [30]. It is achieved – both – by disturbance-
rejection control of the physical space based on digital twin models, as well as
model-calibration in case of inconsistencies in the virtual space [30]. This requires
“technologies including iterative optimization, self-learning, self-organization and
self-adaption mechanisms” [30]. Once convergence is achieved, evolution of the
digital twin alongside the physical system is a second adaptive characteristic of the
digital twin [105]. Evolution implies a time-varying dynamic of the system, as for
instance reported in [98], where wear and tear in the process is named as reason
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for drifting process parameters. If that is to be captured in a parameterized model,
such as the digital twin model, its parameters need to be identifiable. A parameter
is said to be identifiable if its value can be uniquely determined eventually from the
history of control inputs and system outputs. Identifiability is assumed when con-
vergence and evolution of the digital and physical space is desired in the sense of
model calibration, such as in [30], [98] for instance. Adaptive systems are inherently
non-linear, limiting the choice in optimization and control methods [110]. However,
non-linearity of the digital twin is unavoidable if convergence and evolution of virtual
and physical space are desired.

Since convergence and co-evolution of digital twin and physical system are fre-
quently listed as research challenge (e.g. [20], [28], [30], [98]), its main principles
are briefly outlined here. Assuming a particular parameterized model structure is
given, the convergence of digital and physical space is the problem of assigning the
right values to the parameters. A good choice of parameter values would ideally
result in a small error between true outputs of the system and outputs predicted by
the digital twin model. Finding such parameter values can be expressed as a mini-
mization problem of some loss function of the prediction error over a set of observed
data. This minimization of the loss function is typically achieved through a numer-
ical search method such as gradient descent or the Gauss-Newton method [111]. In
that, the particular structure of the model is not necessarily relevant. For instance,
artificial neural networks are a potent class of universal function approximators. As
such, they can be used in principle as model structure, or as model structure for the
residual errors of another (digital twin) model. Supervised learning of neural net-
works occurs then in the same way through a minimization of some loss function of
the prediction error.

While the views on what represents a suitable level of modelling fidelity and mod-
ularity seem to vary among researchers, the adaptive property of digital twins is
frequently reported as crucial to the concept. It inspired thus the research question
RQ1 posed in Chapter 1. However, parameter identification, as described above, is
complicated by the property of the digital twin that is described in the following.

Optimally Controlling

The information flow from virtual to physical space consists of control inputs com-
puted by the digital twin and sent to the physical system [6]. For instance, “the
virtual model can analyze, evaluate, and optimize a scheduling scheme through self-
organizing and self-learning” [26] that is then applied in the physical space. Several
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authors (e.g. [27], [28], [98], [104]) highlight such direct and autonomous feedback
control from the digital twin to the physical system as an important development di-
rection for smart manufacturing. A system is said to be autonomous if its control
input is a function of the system’s state. Further, the digital twin may be operated
in a model-predictive control style, in which the digital model is used to forecast
possible system trajectories [20], [28], [31], [98]. These forecasts are then used to
derive autonomously and “intelligently” [28], [104] the optimal control input. To be
able to select the better of two possible system trajectories, one needs to evaluate the
trajectories’ performance based on an objective or cost function. The digital twin,
hence, requires a performance criterion that maps input and output to a scalar value
– for instance a monetary figure – that is to be optimized.

Optimization of dynamical systems can be approached in two ways: as a static
problem or as a dynamic problem [112]. Static optimization is also known as para-
metric optimization, because it optimizes the parameters of the control function.
Those parameters remain static while controlling the system. In a dynamic formu-
lation, the control input is optimized dependent on the state of the system. For both
problem formulations, model-based and model-free algorithms exist. Model-based
algorithms have access to a model of the system to be optimized, and are gener-
ally preferable, since they can exploit the structure of the problem to solve it effi-
ciently [113]. Given the structure of the problem, these algorithms combine methods
of search, inference and relaxation to arrive at a solution quickly [114].

Optimally controlling a system based on its digital twin model is complicated,
though, by the adaptive property of the digital twin, described in the previous section.
The research field of adaptive – or real-time – optimization deals with optimal control
under model-system mismatches. Chachuat et al. [115] divide adaptation strategies
for real-time optimization into three categories: the two-step approach, the modifier
approach, and direct input adaptation. In the two-step approach model parameters
are repeatedly identified through parameter identification methods and the estimated
model is then used to determine suitable control inputs, often based on optimization
strategies. In the modifier approach, the actual system model is left as is. Instead,
an error model of the mismatch is identified, such that the optimization over system
model and error model results in system-optimal control inputs. In addition to being
applicable to the system model and its objective function, both these approaches
can also be applied to any (other) constraints in the optimization problem. Direct
input adaptation turns the optimization problem into a feedback control problem, in
which the control inputs are optimized through an online search in the system (see
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for instance [55] for a comparative study of various search strategies). Each of these
adaptation strategies is subject to the dual control problem, which is to describe the
trade-off between selecting control inputs that help to identify an accurate model of
the system and inputs that are optimal to the model.

3.3 Digital Twins Refined

To summarize the preceding subsections, we refine the digital twin as a collection
of digital artefacts, comprised of a modular, parameterized, identifiable, adaptive,
stochastic, and non-linear hybrid dynamics model, an event-driven sensing function
capable of fully observing the state of the digital twin’s physical counterpart, and an
autonomous control function that minimizes a given cost function under constraints
of the modeled system dynamics. While our definition tries to capture the properties
of the digital twin in all its theoretical generality, in practice, digital twin implementa-
tions may not posses all of those properties. The digital model might not be modular,
stochastic or hybrid, but monolithic, deterministic, or simply continuous or discrete.
These alternative properties can be seen as special cases of their more generic coun-
terpart. Similarly, a sampled sensor function is a special case of an event-driven
one. True optimality of the autonomous control function might also be difficult to
achieve in practice. On the other hand, we can conclude that identifiability of the
digital model’s parameters is a must for the desired adaptive characteristic, resulting
in a time-varying, non-linear digital twin. Furthermore, observability and autonomy
seem to be non-optional to the digital twin.

For the above reasons, the digital twin requires besides a digital model:

1. a state observer that reconstructs the state of the physical space from the history
of control inputs and system outputs,

2. a mechanism to identify the model parameters,

3. an optimization mechanism for solving the optimal control problem.

These three rather obvious functionalities were recently summarized by the authors
in [116]. They resemble the three key characteristics defined by Tao et al. [31]: (1)
real-time reflection, (2) interaction and convergence, and (3) self-evolution. More
recently, Ma et al. [117] arrived at similar conclusions and raised “control issues and
interaction methods (i.e. model parameter updating methods in the context of [117])
in AI-enhanced shop floor digital twins” as a future research challenge.
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3.4 Challenges for Digital Twin-Based Intelligent
Automation

Digital twins are envisioned as digital models of complex systems, such as manu-
facturing systems, extended by functionality to fully observe the system state at all
times, to adapt themselves to the system, and to optimally control it. As such, they
include a representation of (a part of) the world, interpret sensory input to the digi-
tal twin to construct its current state, improve their system representation from data,
and plan sequences of optimal actions based on that representation. By that, they
contain most elements of artificial intelligence outlined by Minsky [19]. If they are
used in the automation of manufacturing processes, one can understand digital twins,
therefore, as model-based intelligent automation.

However, underlying each of the three required functionalities to turn a digital
model into a digital twin, is an optimization problem that needs to be solved in a
timely fashion. Each additional variable in the system state makes the problem of
state observation, parameter identification and optimal control in principle harder
and more time-consuming to solve. Yet, for many digital twin applications, a rapid
solution of these problems is crucial [108]. This calls for research into domain-
specific approaches that leverage specific system properties and heuristics to enable
adaptation and autonomous optimal control in the digital twin.

Indeed, the problems of state observation, parameter identification and optimal
control have already been worked on in the field of control theory for several decades.
The main difference to the research on digital twins is the lower dimensionality of
most control applications to enable exact solutions with the available methods. Real-
istic models of large, complex systems that are synchronized, updated, and optimized
in real-time are at the edge of the currently possible. To that end, the digital twin faces
two fundamental questions: Is it possible to get such accurate models as frequently
desired? And is it possible to compute and optimize them quickly enough? The for-
mer is a question of epistemological belief, the later an open research question. Its
answer may very well lay in the the control theorist’s approach of using lower-fidelity
models and mitigating the model-system mismatch through feedback and adapta-
tion. However, to fully realize the digital twin concept, its complex model-based
challenges must be overcome in novel ways – for instance by data-driven learning.

38



CHAPTER 4

Reinforcement Learning

In Chapter 3, the digital twin has been introduced as the model-based approach to
intelligent manufacturing automation, in which adaptive system models are used to
optimally control the manufacturing system. Optimal control problems are, beside
tracking problems, a major class of control problems. The goal of optimal control
is to optimize some performance criterion of the system. Accurate and high-fidelity
models of the system’s dynamics are helpful for that purpose. When such models
are not available in the required quality, adaptive control techniques may be applied.
Two main classes of adaptive control exist: direct and indirect adaptive control. In-
direct methods continuously estimate a model of the system and derive a controller
from the current model. Direct methods estimate the controller directly from sys-
tem interactions. Conventional reinforcement learning can thus be considered a form
of direct adaptive optimal control [118]. Sparked by breakthroughs in deep artificial
neural networks, reinforcement learning is increasingly seen as a promising approach
to optimally controlling complex systems purely from sampled data, i.e. in the di-
rect adaptive control manner. A particular focus of the second half of this chapter
is, however, on model-based RL, sim-to-real learning, and learning with “expert”
controllers, such as established model-based control methods.
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4.1 Foundations of Reinforcement Learning

Underlying any reinforcement learning algorithm is the assumption that the system
to be controlled can be seen, and interacted with, as an Markov Decision Process
(MDP). An MDP is a tupleM = 〈X ,U , ρ, f, γ〉, where X is the set of states (state
space), U is the set of actions (action space), ρ(x, u) : X × U 7→ P(R) is the
stochastic reward function for each (x, u) ∈ X × U , f(x, u) : X × U 7→ P(X )
is the stochastic transition function for each (x, u) ∈ X × U (i.e. dynamics model
xk+1 = f(xk, uk)), γ is a discount factor (alternatively: planning horizon H). In
the MDP model, time advances in discrete steps k = 0, 1, 2, . . . . Each state has
the Markov property, meaning that the current state vector together with the control
input contains all information necessary to predict the associated reward rk+1 and
next state xk+1. In other words, the state is representative of the control history. If
that assumption does not hold, e.g. because the state of the system is only partially
observable, the state definition must be the history of observations to enable optimal
control. This significantly increases the reinforcement learning complexity, because
no such history state is visited more than once [119]. In the following, we generally
assume the underlying state to be directly observable and that the Markov property
is thus satisfied.

The goal in RL is then to maximize the expected return R (that is the expected
sum of discounted future rewards), i.e.:

maximize R = Eπ

[ ∞∑
k=0

γkrk+1

]
(4.1)

subject to xk+1 = f(xk, uk) ∀k ∈ [0,∞) , (4.2)

by learning a control policy π(x) : X 7→ U for all x ∈ X that fulfills this goal.
For that purpose, it is helpful to define the value functions of an MDP. The state-
value function V π(x) of a control policy π(x) is the expected return R if following
π from state x. The state-action-value function Qπ(x, u) of π(x) is the expected
return R if taking action u in state x and following π from the next state x′ on-
wards. Value function define a partial ordering over policies. Policies that achieve the
maximal expected return in all states are called the optimal policies π∗ and yield the
optimal value functions. Those can be defined recursively by the Bellman optimality
equations:

V ∗(x) = max
u∈U

∑
x′

puxx′ [ruxx′ + γV ∗(x′)] , (4.3)
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Q∗(x, u) =
∑
x′

puxx′

[
ruxx′ + γmax

u∈U
Q∗(x′, u′)

]
, (4.4)

where x′ is the next state, puxx′ is the probability of transitioning to x′ from x after
applying u, and ruxx′ is the reward received in that transition. These equations are at
the core of most RL algorithms [120]. Note here that these standard RL equations
are based on the expected, i.e. the average, future reward. In controlling a system,
this average reward need not to exist. For instance, a particular control action may
result in a reward of 0 in 90 % of the time and 100 in the remaining 10 %. The con-
trol action’s reward expectation of 10 will never be observed though. Risk-sensitive
reinforcement learning [121] and distributional reinforcement learning [122] address
this issue.

RL algorithms can be primarily categorized into model-based (such as Dynamic
Programming) and model-free methods that learn purely based on data sampled from
the MDP (e.g., the physical system to be controlled). An exact (tabular) and an ap-
proximate (‘deep’) version exists for most algorithms. Model-free methods can be
further divided into temporal-difference (TD-learning) methods (such as Q-learning,
see Algorithm 1) that exploit the estimation errors in the value functions, and policy
optimization methods (such as REINFORCE, see Algorithm 2) that tune the param-
eters of the policy directly. Actor-Critic methods combine policy optimization and
TD-learning. Further information can be found in [120], [123] and [124].

Algorithm 1 Q-learning

Initialize Q(x, u) arbitrarily
for all episodes do

Initialize x
for all steps of episode do

Choose u from x using policy derived from Q
Take action u, observe r, x′

Q(x, u)← Q(x, u) + α [r + γmaxu′ Q(x′, u′)−Q(x, u)]
x← x′

end for
end for
return π(u) = arg maxuQ(x, u)
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Algorithm 2 REINFORCE

Require: A differentiable policy parameterization π(u|x, θ), ∀u ∈ U , x ∈ X , θ ∈ Rd
Initialize π with random weights θ
repeat

Generate trajectory x0, u0, r1, . . . , xK−1, uK−1, rK following π
for all steps of episode k = 0, . . . ,K − 1 do
G← return from step k
θ ← θ + αγkG∇θ log π(uk|xk, θ)

end for
until F
return π(·|·, θ)

4.2 Multi-Agent Reinforcement Learning

In larger systems, it can make sense to distribute its control across multiple actors.
Three distinct communication structures can be chosen for that purpose [125]. In
a centralized control approach, actors (or agents) communicate with a central actor
that aggregates state information across agents and determines control actions for
each agent. In a distributed approach, each single agent interacts with the system
independently of other agents. In a networked approach, control is distributed across
agents, but the agents can exchange information between each other that can be used
to determine the optimal action of each single agent. In such distributed control
approaches, it is further differentiated whether agents cooperate, compete with each
other, or largely pursue goals independent of each other [125]. In the context of
intelligent manufacturing automation of large-scale systems, the distributed control
with networked and cooperating agents may be most favourable.

However, the networked and cooperative setting may not necessarily be most prac-
tical, since single agents may be developed by different vendors without knowledge
of the complete system and all interactions between its sub-systems. In such a sit-
uation, each RL-agent may try to solve its own MDP-view of the systems. The
dynamics of that MDP are potentially changing, however, due to the learning of
other agents. That means the stationarity assumption of standard RL algorithms does
not hold [126]. Hernandez-Leal et al. [126] identified five strategies in the litera-
ture to address this issue: (1) ignore the non-stationarity, (2) forget earlier data and
continuously re-train on the latest one, (3) act “robustly" by accounting for all pos-
sible changes, (4) learn a model of the non-stationarity, or (5) optimize against other
agents’ behavior while knowing that they will do the same. The practical simplicity
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in designing such large-scale distributed systems may thus be counterbalanced by a
decrease in optimality and/or sample-efficiency.

4.3 Challenges of Reinforcement
Learning-Based Intelligent Automation

The generality of the Markov decision problem formulation allows for the application
of reinforcement learning to a wide range of systems, including manufacturing auto-
mation systems. And despite the relative simplicity of most reinforcement learning
algorithms, impressive results have been achieved in various domains. As such, re-
inforcement learning is a promising research avenue towards intelligent automation.
However, this generality comes at a price. The following outlines a few issues of re-
inforcement learning that need to be considered not only in the manufacturing auto-
mation context, but in most real-world applications of RL.

Like many other optimization problem formulation and solution methods, RL also
suffers from the curse of dimensionality. States of the MDP are usually described
using state features (e.g. x ∈ Rd). The size of the state space |X | is exponential in
the dimensionality d of the state features. This is especially acute, since the MDP
formulation generally does not assume any structure on the state or action space that
could be exploited by the learning algorithm. The data sample complexity of model-
free RL algorithms, hence, becomes worse with each additional state feature that is
added to the problem formulation. Exact (i.e., tabular) RL algorithms, thus become
quickly intractable when the problem size grows beyond a few state features.

Since a model of the transition dynamics is usually not given, the reinforcement
learning controller faces the exploration/exploitation dilemma. The controller must
explore the system to acquire new information, but it must also exploit what it knows
to behave optimally. The exploration/exploitation dilemma is a fundamental problem
in RL. Even with the best possible exploration strategy, model-free RL algorithms
will always need a minimum amount of exploration, during which the controller acts
sub-optimally.

In physical systems, such as manufacturing systems, the transient control perfor-
mance during the exploration phase may be, though, more crucial than the final op-
timal performance. In the RL literature, however, algorithms are often judged on
their final performance after having sampled millions of data points. In a real-world
setting, the transient performance, while learning, might be more important, since
sampling data from a physical system is often expensive and subject to safety con-
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straints [127], [128]. Simplifying the learning problem by selecting a reward func-
tion design that provides frequent informative feedback is thus tempting. However,
reward function design is difficult for many applications [129]. A poorly specified
reward function might cause the RL algorithm to game the reward function instead
of solving the intended problem [128], which is also known as reward hacking. This
may result in unexpected and undesired – even unsafe – “optimal” control behaviors
that may not immediately be distinguishable from the transient performance during
learning.

Naive exploration strategies are, in addition, often favoured over “smart” explo-
ration strategies because of their simplicity in implementation and their elegant the-
oretical properties. A common naive exploration strategy is ε-greedy, which selects
a random action with probability ε and acts greedily otherwise. “Smarter” explo-
ration strategies that make use of Bayesian confidence bounds are common in the
multi-armed bandit (i.e., the state- and dynamics-free RL setting) literature. For in-
stance, Auer et al. [130] introduce the UCB1 exploration method for multi-armed
bandits. UCB1 estimates an upper confidence bound on the mean of the reward of an
arm based on the current sample mean and an exploration bonus based on the num-
ber of times an arm has been played. A well explored arm will have an exploration
bonus that tends to 0, whereas an arm that has not been played as often obtains an
exploration bonus that increases with every round the arm has not been played. Such
approaches are only slowly extended to the full MDP context. Tijsma et al. [131], for
example, add weighted UCB1 terms to the Q-values when deriving the policy from
the Q-function. This method shows to be relatively easy to tune and performs better
than ε-greedy in experiments. However, the exploration bonus in this formulation
is only considered in the one-step action selection, but not in the Q-function itself.
Such count-based techniques are even harder to extend to large state spaces common
to deep reinforcement learning problems. A potential solution is proposed by Tang
et al. [132], who employ static hashing functions to transfer count-based exploration
to the deep learning context. The hash function abstracts the high-dimensional state
vector into a low-dimensional representation for which a state visitation count can
be maintained. It is shown that this technique produces efficient exploration and
near state-of-the-art performance in multiple continuous control tasks as well as in
Atari video games. Smart exploration strategies are, nevertheless, still an important
research avenue, especially for real-world applications, such as in intelligent manu-
facturing automation, in which data samples often come at a cost.

When the state-action space of the learning problem is large, function approxima-
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tion for the value and/or control policy functions must be used. Much of reinforce-
ment learning’s recent success in controlling complex systems can be attributed to
the ability of artificial deep neural network function approximation to learn lower-
dimensional representations of the state space. A controller in form of a deep neural
network is, however, hard to interpret or analyze. Moreover, the combination of
function approximation (e.g. neural nets), bootstrapping (e.g. TD-learning), and off-
policy learning (training on data collected under a different policy) is known as the
deadly triad [120]. All three elements are used in most deep RL algorithms, but the-
oretically can lead to divergence of the learning process. In practice, a less severe
form of divergence occurs, in which state and action values are severely overesti-
mated but likely maintain their relative ordering [133]. Such overestimated values
loose their informative value over expected future control performance, which might
be of interest in real-world applications.

Lastly, results achieved by RL algorithms and reported in the literature, can be hard
to reproduce due to their sensitivity to for example: random seeds, hyperparameter
settings, implementation details, reward design or local optima [134]. So, even if a
suitable algorithm has been selected, considerable time and data may be needed for
experimentation before the desired results materialize. In summary, reinforcement
learning requires often a considerable amount of data for learning, during which
certain performance aspects like optimality and safety may not be guaranteed. If
function approximators like neural networks are used, explainability, in addition,
may not be given.

4.4 Solution Approaches

Several sub-fields within reinforcement learning research aim to address the practi-
cal shortcomings of standard reinforcement learning: sample-complexity, optimality,
and safety. The approaches discussed in this section are summarized in Table 4.1.

Reinforcement Learning from Demonstrations

When reinforcement learning is used to replace the controller of an existing system,
data of the system under the previous control often exist. This data may be used
to initialize the RL policy [135]. For that purpose, an off-policy algorithm, such as
Q-learning, must be chosen, which can learn from data generated by a different pol-
icy than its current own one. In the deep RL scheme, algorithms like for instance
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Table 4.1: An overview of the presented solution approaches.

Approach Applied To Prior Knowledge Issues Addressed

RL from Demon-
strations

Policy & Value
Functions

Sampled Transi-
tion Data

Data Sample Com-
plexity, (Safety)

Apprenticeship
Learning

Reward Func-
tion

Sampled Transi-
tion Data

Reward Hacking,
(Safety)

Imitation Learning Policy Expert Policy
Function

Data Sample Com-
plexity, (Safety)

Model-based RL Policy & Value
Functions

Transition & Re-
ward Functions

Data Sample Com-
plexity, Safety

Deep Q-learning from Demonstrations [136] or Deep Deterministic Policy Gradient
from Demonstrations [137] pre-train the neural network in a supervised manner on
demonstrated state-action-reward-next-state data samples. When the RL controller
then takes control of the system, it is thereby hoped that its policy performs reason-
ably well from the start. Ideally, a costly and near random sampling at the beginning
of learning can be skipped by such methods. The RL controller then tries to improve
its performance based on standard RL techniques. Additional modifications of the
RL algorithms are, however, often needed to prevent the RL agent from “catastroph-
ically” forgetting the demonstrated performance.

Alternatively, the demonstration data may be used for inverse reinforcement learn-
ing. Inverse reinforcement learning concerns identifying an unknown reward func-
tion given demonstrations of corresponding optimal behavior. It is therefore the dual
to reinforcement learning [138]. An issue in inverse reinforcement learning is de-
generacy, i.e. the issue that the observed policy may be optimal for many reward
functions [139]. To address this issue, most algorithms either aim to infer a reward
function that makes the demonstrated policy by a margin better than alternatives or
to find a distribution of reward functions with maximum entropy that explains the
demonstrations, such that as few as possible assumptions are made [140]. In a sub-
sequent step, the learned reward function may be used for learning a policy through
reinforcement learning, also known as apprenticeship learning [141]. Apprenticeship
learning circumvents some of the challenges associated with reward function engi-
neering (such as reward hacking) but may lead to policies that do not generalize to
unseen parts of the state space [140].
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Learning with Expert Controllers

In contrast to learning from demonstrations, learning-with-expert approaches assume
that a sufficiently good “expert” control policy is available instead of demonstrated
system trajectories only. One such approach is imitation learning [37]. The goal of
imitation learning is to train a novice controller to imitate the behaviour of an expert,
which, for example, may be a human or a computationally expensive algorithm.

A popular benchmark method in imitation learning is, because of its simplicity,
the Dataset Aggregation (DAgger) algorithm [142]. DAgger trains a novice con-
troller online by applying a supervised learning algorithm to an aggregated set of
state observations, each of which is labelled with the expert’s control action. The
expert’s control of the task is annealed and the novice is given successively more
control. The expert then labels all observations with the optimal control action in
retrospect, which is used to update the learner. Such imitation learning aims for
more robust learned policies compared to policies learned in a supervised manner
from demonstrations (compare to the previous Subsection 4.4 – RL from Demonstra-
tions). Safety and expert query-efficiency during training and deployment are crucial
in that and have been addressed in extensions such as [143]–[146]. For instance, a
Bayesian neural network is used in [146] to estimate potential errors of the novice
policy, and by that safety and query-efficiency is improved.

Often, the performance of policies learned through imitation learning algorithms
is upper bounded by the performance of the expert policy [147]. Algorithms such
as [148] and [149] combine, for that reason, imitation learning with subsequent rein-
forcement learning. By that, a robust initial policy is learned in a relatively safe and
sample-efficient way before RL is used to optimize the policy further.

Model-based Reinforcement Learning

In model-based RL, the reinforcement learning makes use of models of the system
dynamics (i.e. its transition function) and its reward function. These models can
either be given as prior knowledge or learned from previous interactions with the
system. In the DYNA framework [150], [151], for instance, a dynamics model is
estimated from recorded data. The reinforcement learning then trains simultane-
ously on observed and generated data. Such approaches have the potential to reduce
data sample complexity [152]. They can furthermore improve estimates of value
functions [153]. Improved value function estimates have been key to the success of
AlphaGo [25], where a combination of given rule models and estimated transition
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probabilities (i.e. “self-play” in Monte Carlo Tree Search) supported the RL agent
in its decision making. Prior knowledge in form of given models can additionally
enable safe reinforcement learning in previously unknown situations [154], [155].

Fitting high-capacity models for complex dynamics based on small data sample
sizes is challenging though [156]. In such situations, the risk of over-fitting the model
is significant. The resulting model errors, biases, and uncertainties can be detrimen-
tal for the final performance of model-based RL algorithms [157]. The sim-to-real
approach in reinforcement learning addresses the model-system mismatch in multi-
ple ways. On the one hand, minimal-mismatch simulation models are strived for that
enable any RL algorithm to learn a control policy in simulation that can be directly
transferred to the real system. On the other hand, domain randomization techniques
for the sensory input or the system dynamics aim for robust policies by generating
data distributions from imperfect simulation models that contain data observed in
the real system [36]. Robust reinforcement learning algorithms, moreover, explicitly
consider the model-system mismatch in the learning procedure [36]. Robustness of
the control policy interferes, however, often with control performance.

An alternative approach has been recently introduced by Gros and Zanon [158],
who showed that economic non-linear model predictive control (ENMPC) formu-
lations [159], [160] may be used as function approximators in RL. Here, the value
function V (x) is the optimal solution to the ENMPC problem. Similarly, the state-
action value Q(x, u) is the solution of the ENMPC problem, if the first control u0 in
the ENMPC is constrained to equal u. When using function approximation in RL,
such as in deep Q-learning, parameter updates frequently take the form:

θ ← θ + ατk∇θQθ(xk, uk) , (4.5)

where α is the learning rate and the temporal difference error is

τk = ρ(xk, uk, xk+1) + γVθ(xk+1)−Qθ(xk, uk) . (4.6)

The gradient ∇ of Q with respect to its function parameters θ is then the gradient of
the optimal solution to the Lagrangian relaxation L of the ENMPC scheme:

∇θQθ(x, u) = ∇θLθ(x, u, λ∗) , (4.7)

where λ∗ are the optimal Lagrangian multipliers [158]. This approach offers thus a
principled way to incorporate rich prior knowledge and has been evaluated in [97].
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Summary of Included Papers

This chapter provides a summary of the included papers that aim to answer the two
research questions of this thesis. The research questions are: RQ1 – How can ma-
chine learning be used to mitigate the model-system mismatch in digital twins, while
minimally altering the provided solution? and RQ2 – How can prior model-based
knowledge be introduced in reinforcement learning to improve sample-efficiency, ex-
plainability, and safety of the learned control policy?.

5.1 Paper A

Constantin Cronrath, and Bengt Lennartson
How Useful is Learning in Mitigating Mismatch between Digital Twins and
Physical Systems?
Published in IEEE Transactions on Automation Science and Engineering,
(Early Access), Dec. 2022.
©2022 IEEE DOI: 10.1109/TASE.2022.3231386 .

Given a highly accurate digital twin model and sufficient computational resources,
virtually any off-line optimization algorithm could be used to derive optimal control
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inputs from the twin to improve the performance of the physical system. For very
practical reasons, however, this accuracy may prove elusive, inducing a mismatch
between digital twin and physical system and, hence, render such control poten-
tially sub-optimal. In Paper A, we are interested in the mitigation of model-system
mismatches through learning-based algorithms in the direct input adaptation scheme
(see Section 3.2 or [115]). In an observational study, we juxtapose the usefulness of
16 learning-based and blackbox optimization algorithms for the purpose of restor-
ing optimal control under system-twin mismatches in high-dimensional, continuous,
smooth, and non-linear static systems.

More concretely, we base our experiments on a geometry assurance task in the as-
sembly of automotive sheet metal parts, previously described in [48] and Section 2.1.
Here, adjustable locators of the assembly fixture position two or more sheet metal
parts for subsequent joining through welding or clinching. The parts are depicted in
Figure 5.1. The locators of the physical fixture may deviate from their digital twin
due to wear and tear, damages, or effects of changing process parameters. We aim to
optimize geometric quality by compensating for this system-twin mismatch through
direct input adaptation. To that end, we formulated the problem as an online opti-
mization problem with a control architecture as shown in Figure 5.2. In our evalua-
tion, we randomly sample problem instances from this geometry assurance context
and measure the usefulness of 16 different algorithms (BOBYQA, Bayesian Opti-
mization, Conjugate Gradients, COBYLA, DDPG, DIRECT-L, Differential Evolu-
tion, HOO, L-BFGS-B, MMA, Nelder-Mead, PRAXIS, Powell’s Method, SLSQP,
SPSA, and Subplex). We denote an algorithm to be more useful than another al-
gorithm based on three aspects: 1) it requires less data samples to reach a desired
minimal performance, 2) it achieves better performance for a reasonable number of
data samples, and 3) it accumulates less regret.

Our results indicate that local gradient-based blackbox optimization algorithms
outperform learning-based algorithms in terms of sample-efficiency, accuracy within
a limited sampling budget, and regret, even in the presence of white measurement
noise. These local algorithms are most useful for direct input adaption in all re-
spects in the deterministic setting, but perform mostly worse when white output
measurement noise is present. However, the stochastic, local algorithm SPSA out-
ranks almost all other algorithms on all criteria in the stochastic setting. Stochastic
algorithms generally perform comparably better in the stochastic setting. This ap-
plies to the learning-based algorithms too. Yet, learning-based algorithms cannot be
considered most useful in neither the stochastic nor the deterministic setting of our
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(a) Bracket (b) Door (c) Pillar

Figure 5.1: The three use cases for our experiments: (a) shows a sub-assembly of a car rein-
forcement bracket. Its two parts are positioned in space by twelve locators (shown
in red). (b) shows the frame of a car door. Its two sheet metal parts are positioned
in space by 19 locators. (c) shows a pillar of a car, consisting of three parts held
in place by 20 locators. A digital twin computes the geometric quality after the
assembly process (positioning, clamping, joining, releasing, scanning) based on
several detailed Finite Element Method calculations, including elastic deforma-
tions and springback under the assembly forces. The final geometric quality may
be influenced by adjusting each single locator along its axis.

arg minuQm(u)

π(u0, y0, . . . , yk)

∆u

Q(u+∆u)

∆y

Physical SystemDigital Twin

u0

u y

Figure 5.2: A block diagram of the system under consideration. We are interested in control
policies π capable of determining a high-dimensional control input u, that min-
imizes a performance or objective function Q of the physical system. A model,
or digital twin, of this function is accessible, that may be queried for its mini-
mizer u0. While we assume this model to be sufficiently accurate in the neighbor-
hood of the minimum, the model is assumed not to capture input disturbances∆u,
and output disturbances ∆y.
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experiments, since they perform generally worse than other types of blackbox opti-
mizer. An exception is Bayesian Optimization, which is considered a learning-based
algorithm in our context, and ranks highly in our comparisons, except for in the com-
parison on the regret metric.

The usefulness ranking is fairly consistent across algorithmic classes and user-
determined tolerance levels in minimal performance and regret metrics. This applies
to both the deterministic and the stochastic setting. Beside that, we observe the same
dominance of the local optimization algorithms across all values of the sampling bud-
get. The dominance of gradient-based algorithms and Bayesian Optimization may be
traced back to a smarter exploration strategy compared to the near “random” strategy
of others. Technically, our conclusions can not be generalized to the larger set of
all existing blackbox and learning-based algorithms, since they result from a fixed
factor experiment. A different choice of algorithms may have resulted in a different
conclusion. However, this is unlikely since our results indicate general trends. First,
we observe that local algorithms are generally more useful than global algorithms
in the direct input adaptation context. Second, we note that stochastic algorithms
are more competitive in the setting with noise compared to the deterministic setting.
A different selection of algorithms is likely to reproduce these trends. Our results
may also extend to static system-twin mismatches that can be described as linear or
nonlinear continuous input our output disturbances. The effect of such disturbances
would be a “warping” of the optimization manifold over the search space in u. As
long as the local convexity and smoothness property of the optimization manifold is
maintained, such a warping would most likely be without significant impact. It is
important to emphasise here, though, that Wolpert and Macready [161] proved math-
ematically that all blackbox optimization algorithms perform in average equally well
across all optimization problems. The dominance of quasi-Newton algorithms on
the deterministic problems and their complete failure in the presence of output noise
is likely the most illustrative example of this no free lunch theorem in the paper at
hand. Accordingly, we consider the empirical observation of this theorem as yet
another reason to research into adaptive optimisation algorithms in the context of
system-twin mismatch that leverage properties of the specific problem class.

In conclusion, we find that gradient-based blackbox optimization is better suited
to compensate for system-twin mismatches of high-dimensional, continuous, smooth
and static performance functions than learning-based algorithms. However these
gradient-based methods do not learn from available data, which can be a drawback
in the long run. This highlights the need to extend the search for algorithms, which
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can restore optimal control in digital twin governed autonomous systems, beyond
generic machine-learning algorithms to include for instance smart exploration and
uncertainty estimation methods.

5.2 Paper B

Constantin Cronrath, Abolfazl Rezaei Aderiani, and Bengt Lennartson
Enhancing Digital Twins through Reinforcement Learning
Published in Proceedings of the 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE), Vancouver, Canada,
pp. 293–298, Sept. 2019.
©2019 IEEE DOI: 10.1109/COASE.2019.8842888 .

Similar to Paper A, we assume the digital twin as given in this paper. Specifi-
cally, the digital twin controls the fixture in a sheet metal joining task to improve the
geometric quality of each individual assembly. The considered nominal assembly
is shown in Figure 5.1 (a). The digital twin and the emulated physical system only
differ in a single locator position that was picked to introduce a noticeable mismatch.
Different to Paper A, however, individual part geometries are considered in Paper
B. In this case study, we are thus interested in developing a direct input adaptation
algorithm that mitigates against the mismatch and utilizes the side information given
by the part geometries.

We formulate the task as a contextual bandit problem, which is a reduced rein-
forcement learning formulation without state dynamics, but in which the side in-
formation is considered to be the observed state in each round. To account for the
manufacturing context, a focus in Paper B is on safe exploration strategies that main-
tain on average with high probability a given level of performance during learning.
Garcia and Fernandez [121] identified teacher advice as one common approach to
incorporate external knowledge in the exploration process to make the same safer.
With the availability of the digital twin, we have access to a default policy πd that
can be regarded as such teacher advice. The default policy πd is the original control
policy of the digital twin, before we apply deep learning to compensate for model
inaccuracies. This default policy may be sub-optimal, but arguably superior to the
agent’s policy πa in the initial learning period. We assume the performance of the
digital twin’s default policy πd is known from prior operation of the system. A
problem formulation similar to Wu et al. [162] then suits our manufacturing case.
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πd πa
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Figure 5.3: The architecture of our EDiT algorithm. The digital twin observes a state xt and
decides on a control action dt based on its default policy πd. Our RL algorithm
EDiT observes, both, xt and dt. It decides then whether to apply dt or ut =
πa(xt) to the physical system G. The system then generates a feedback signal
(reward) rt and a next state xt+1 that is observed by the digital twin. rt is used to
improve the EDiT policy πa.

Accordingly, we define a cumulative performance constraint with respect to the dig-
ital twin’s default performance and constrain exploration further by introducing a
per part constraint for additional safety. Since the expected reward of the learning
agent’s action is unknown a priori, we employ a Bayesian approach and compute
upper and lower confidence bounds on the expected reward of the action. In each
round, our proposed exploration strategy then decides whether the agent’s proposed
action is likely to improve performance while maintaining the cumulative and per
part performance constraints – and if not chooses to apply the digital twin’s default
policy. The resulting algorithm for Enhancing digital twins is named EDiT and its
control architecture is depicted in Figure 5.3.

Our particular test case consists of two sheet metal parts of a car body shown in
Figure 5.1 (a). The geometry of the parts is given by their point clouds of ∼ 2.5k
points each and represent the side information given to our learning algorithm. We
evaluate the algorithm on 250 part instances. Each of the fixture’s twelve locators
are adjustable along their axes and constitute the action space. In our experiments
we observe an overall improvement in performance compared to the digital twin’s
default policy as listed in Table 5.1. In the best case, this improvement is realized
just after a few rounds. In the worst case, the learning requires up to 2k rounds of
exploration until improving upon the default policy. In average, though, we see an
improvement of about 0.25% over 10k rounds. This is likely due to the particular
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Table 5.1: Performance of our proposed EDiT algorithm over 10 Repetitions of 10k Rounds.

Measure Mean Range

Mean Reward ru 1.0025 [0.385− 1.682]
Number of Constraint Violations

Per Part (≥ 95 % of πd) 207 [187− 229]
Cumulative Performance (≥ 99.5 % of πd) 2 [0− 10]

mismatch that was introduced in our test case and because of the high-dimensional
state-action space. We expect the algorithm to take many more rounds in this case,
before the optimal policy is fully learned. We further notice a number of violations
of the safety constraints. Future research directions may include extensions of the
algorithm to improve safety and sample-efficiency. The behaviour of deep neural
network estimates can be unpredictable while learning. Although we employ a per-
formance constraint and Bayesian neural networks to estimate uncertainty, we see
further safety guarantees needed for the application of deep reinforcement learning
in industry.

To conclude, we have introduced the learning algorithm EDiT for enhancing the
control policy of digital twins in continuous domains, based on a contextual bandit
formulation. It utilizes the digital twin as safety policy to maintain constraints im-
posed on the learners performance. While this formulation has been shown suitable
for the manufacturing context, the behaviour of the learning algorithm in the direct
input adaptation scheme may be unpredictable in that the performance constraints
may nevertheless be violated occasionally.

5.3 Paper C

Anders Sjöberg, Magnus Önnheim, Otto Frost, Constantin Cronrath, Emil Gus-
tavsson, Bengt Lennartson, and Mats Jirstrand
Online Geometry Assurance in Individualized Production by Feedback Con-
trol and Model Calibration of Digital Twins
Published in Journal of Manufacturing Systems,
vol. 66, pp. 71–81, Jan. 2023.
DOI: 10.1016/j.jmsy.2022.11.011 .

As in Paper A and B, a digital twin controls the fixture in a sheet metal joining
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task to improve the geometric quality of each individual assembly. The considered
nominal assemblies are shown in Figure 5.1 (a) and (b). In this paper, a drifting mis-
match is introduced for one, as well as three, locators, and individual part geometries
are considered. A modifier adaptation approach is chosen here to learn a model of
the drifting mismatch.

More specifically, we re-frame the mismatch problem between digital twin and
system as a state observation problem. A dynamic modifier model for the drifting
mismatch is introduced and adapted by a parameterized controller that balances ex-
ploration (tracking ability of the drifting mismatch) and exploitation (single-assembly
quality improvements). An Unscented Kalman Filter (UKF) is used in that as a state
estimator, providing a state estimate of the drifting mismatch along with an uncer-
tainty measure in the form of the posterior covariance of the UKF. Our proposed
control method has access to the current assembly, along with the control signal
computed by the digital twin, the state estimate of the mismatch and the uncertainty
measure of the UKF. Using those data, the controller is implemented as a one-step
look-ahead minimizer of a weighted combination of the expected next-step quality
and the next-step uncertainty of the UKF-estimator, denoted as the exploitation and
exploration loss, respectively. The exploration loss is designed to promote the esti-
mation of the mismatch, as measured by the (future) state covariance of the UKF, in
order to maximize the expected average quality of future assemblies. We denote this
control scheme as the w-controllers, due to the weighting parameter w that balances
exploration and exploitation. In our digital twin context, the w-controller adjusts
the control signal computed by the digital twin, which optimizes fixture locators for
each individual assembly. After welding, the assembly is scanned to measure the
geometric quality and that is in turn fed back to our controller. The controller thus
incorporates both the digital twin and the feedback signals of the physical system.
This control concept is depicted in Figure 5.4.

In our simulated experiments, we evaluate the exploration-exploitation trade-off
on the individual geometry assurance task depicted in Figure 5.1 (a) and (b), and
show that significant quality improvements are possible with our proposed approach.
To acquire an evaluation environment with ground truth, i.e., known discrepancy be-
tween the physical system and the digital twin, we also simulate the physical system
equivalently as our digital twin. In the first case (Figure 5.1 (a)), the w-controllers
demonstrate significant gains in quality of the produced assemblies, while in the sec-
ond case (Figure 5.1 (b)) they show negligible to small improvements. The second
case is, however, rather insensitive to mismatches, which enables only small gains.
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Figure 5.4: An overview of the whole chain of events. Given a set of assembly parts, which
are about to be welded, the individualized controller computes the optimal clamp
locator adjustment with help of the digital twin, i.e., the RD&T software, and
proposes that as a control signal. Due to noise, e.g., drift in sensor reading, in
the welding cell the clamp locator might need to be adjusted according to that
offset, which is the purpose of our proposed (assistant) controller. After welding,
the assembly is scanned to measure the geometric quality and that is in turn fed
back to our controller. This controller incorporates both the digital twin and the
feedback signals of welded assemblies’ quality. In our numerical evaluation of
the proposed control scheme, the physical system is simulated in accordance with
the digital twin.

As expected, higher exploration results in better estimations. However, adequate esti-
mations come with a cost, since the quality is negatively affected for higher values of
exploration rate. On the other hand, by only optimizing the expected next-assembly
quality, the model loses track of the offset. That in turn may result in extremely poor
quality and often ultimately in the controller diverging. Thus, we see a clear trade-off
between exploration and exploitation in the quality.

Often a combination of exploration and exploitation is most beneficial. However,
it is not a trivial task how to choose the weight w. The exploitation limit, where
controllers start to diverge, differs depending on which locators are considered. This
is likely in part due to an equal weighting of the uncertainty corresponding to each
component of the mismatch regardless of how easy or hard that component is to esti-
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mate. Furthermore, the proposed w-controllers come with significant computational
overhead, especially as the dimension of the state-space increases, which may limit
the practical usefulness of our approach. It does not scale well due to the curse of
the dimensionality – both as a consequence of the increased number of Sigma points
needed in the UKF and the increased number of evaluation points needed to approx-
imate them.

In summary, we re-framed the mismatch problem between digital twin and system
as a state observation problem. A dynamic modifier model for the drifting mismatch
was introduced and adapted by the w-controller method that balances exploitation
and exploration. While our evaluations illustrated the difficulty of balancing ex-
ploitation and exploration, they also showed that this method can significantly im-
prove performance under drifting model-system mismatches.

5.4 Paper D

Constantin Cronrath, Tom P. Huck, Christoph Ledermann, Torsten Kröger,
and Bengt Lennartson
Relevant Safety Falsification by Automata Constrained Reinforcement Learn-
ing
Published in Proceedings of the 2022 IEEE 18th International Conference on
Automation Science and Engineering (CASE), Mexico City, Mexico,
pp. 2273–2280, Aug. 2022.
©2022 IEEE DOI: 10.1109/CASE49997.2022.9926460 .

In Paper D, the aim is to introduce model-based knowledge into reinforcement
learning. For that purpose, a safety falsification application in the context of collab-
orative robotics is investigated. Simulation-based falsification is a testing method for
uncovering safety hazards of complex safety-critical cyber-physical systems, such as
collaborative robots. One particular challenge in reinforcement learning-based falsi-
fication is that it should identify scenarios which are safety-critical and relevant at
the same time. These two goals do not always go hand in hand, in some cases, they
may even be opposed to each other. One approach to address this is to use different
reward components to encourage both high risk and relevance. Yet, this raises the
questions of (1) how to define and prescribe what is “relevant" and (2) how to bal-
ance the reward components in a principled manner. This paper proposes automata
constrained reinforcement learning, in which rewards for relevant behavior are tuned
via Lagrangian relaxation.
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(a) (b)

Figure 5.5: (a) The principle of simulation-based falsification: the falsification algorithm (FA)
chooses actions a to adapt the simulation environment which excites the system
under test (SUT) and receives rewards r (e.g. risk or coverage metrics). (b) The
SUT used for testing the proposed automata constrained reinforcement learning:
the nominal operating conditions are to walk from A to B to pick parts from the
shelf, walk back, and assemble the parts in collaboration with the robot (C).

More specifically, automata specifications are introduced in this paper as prior
knowledge to describe the nominal operating conditions of the System Under Test
(SUT). These specifications are run synchronously with the SUT and issue rewards
when the falsification algorithm operates close to the nominal conditions (the basic
principle of algorithmic falsification is shown in Figure 5.5 (a)). The underlying
assumption here is that the discovery of hazards close to the nominal conditions is
more relevant, since these are more likely to occur in practice. Additional rewards
are given for high-risk behavior. To balance the reward components, the technique
of Lagrangian relaxation is used. In our approach, the reward function of the speci-
fication is tuned in the dual problem of the Lagrangian optimization by SPSA [163],
while reinforcement learning is used in the primal problem to learn a relevant falsifi-
cation policy, which considers both MDP rewards and specification rewards. In that,
the specifications help to guide the exploration process, but are tuned in such a way
that they only alter the learned behaviour as little as required.

The proposed method is demonstrated in an application example from the do-
main of Human-Robot Collaboration (HRC), where the objective is to identify po-
tentially safety-critical human errors in a collaborative assembly task, while avoiding
to deviate unrealistically far from the nominal assembly sequence. This use-case is
illustrated in Figure 5.5 (b). Compared to random sampling and conventional approx-
imate Q-learning, we show that the proposed method generates equally hazardous,
but at the same time more relevant testing conditions that expose safety flaws.
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While the presented use-case study has clearly indicated the benefits of the newly
proposed method, it fundamentally relies on a trial-and-error approach that necessi-
tates violating the specifications to learn about them. In addition, the SUT in this case
had relatively weak safety measures, meaning that even the unsophisticated random
sampling found a considerable amount of hazardous situations. It would be interest-
ing to compare the approaches in test scenarios with stronger safety measures, where
unsafe situations are more rare. Another issue to consider is that safety analyses are
typically performed iteratively, meaning that after a hazardous situation is found, new
safety measures are introduced and the search is then repeated on a slightly modified
SUT. Investigating how different algorithms cope with such modifications is also a
possible area for future research.

To sum up, we presented a principled method for introducing behavioral specifica-
tions into the RL performance criterion to guide and restrict the exploration process.
By introducing additional reward components on the basis of a nominal behavior
specification, we introduced an incentive for the reinforcement learning algorithm
to not only identify safety-critical behaviors, but also remain in a certain vicinity
of the nominal behavior, thus making the results more relevant and more valuable
from a practical safety analysis standpoint. As is often the case with multiple reward
components, finding an appropriate balance between the components can present a
challenge. The naïve approach of using a weighted sum of reward components raises
the problem of choosing appropriate weights, which are difficult to determine a pri-
ori. The Lagrangian relaxation approach demonstrated in this paper provides a more
principled approach to balancing the reward components.

5.5 Paper E

Mattias Hovgard, Constantin Cronrath, Kristofer Bengtsson, and Bengt Len-
nartson
Adaptive Energy Optimization of Flexible Robot Stations
Revised version submitted to IEEE Transactions on Automation Science and
Engineering, Mar. 2023 .

The aim in Paper E is to use additional prior model-based knowledge in reinforce-
ment learning that goes beyond behavioral specifications. To that end, it has recently
been shown by Gros and Zanon [158] that Economic Non-linear Model Predictive
Controllers (ENMPC) can be used as function approximators in reinforcement learn-
ing. In Paper E, we investigate the application of this promising method in the context
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of energy optimization of flexible robot stations. For that purpose, we formulate an
approximate model of the optimization task, select an appropriate model-based opti-
mal control method, and adapt the control scheme by reinforcement learning. In that,
we extend the method by event-driven online scheduling.

In specific, a generic and adaptive method for energy optimization of flexible robot
systems is proposed. The method takes practical requirements into considerations
when minimizing energy use by including performance constraints (i.e. meeting
deadlines) and by learning unknown system parameters from measurements. For
that purpose, the energy optimization problem has been decomposed into: (1) its
integer part, for which a graph search algorithm determines the operation sequence
that maximizes the capacity for energy reduction based on an approximate extended
finite automaton system model; (2) its non-linear part, for which an event-driven
model predictive controller tunes the motion parameters of the sequenced operations
online to minimize energy use, while ensuring to meet the deadlines; and (3) its on-
line adaptation, for which a reinforcement learning algorithm continuously estimates
unknown parameters in the optimization model. This decomposition is depicted in
Figure 5.6. In that, the sequence and timing optimizations act as model class of the
function approximator for the Q-function in the reinforcement learning. By that,
prior knowledge about the reward function, system dynamics, and behavioral spec-
ifications can be introduced in the learning. The proposed approach may be also
understood as a converging digital twin for energy optimization, in which feedback
and learning reduce the model-system mismatch. This is, because a dynamic model
of the system is used to predict future states and to optimize performance of the
system based on its current state, while the parameters of that model are adapted to
reduce any mismatch.

The method is evaluated in a numerical example based on a robotic kitting station
(see Figure 5.7), which contains several difficulties commonly found in practical
applications, such as stochastic variations, hard deadline constraints and operation
failures. In the numerical evaluation, the method works as expected for all tested
experimental settings; it is able to quickly and significantly reduce the energy use
compared to the unoptimized case, while fulfilling the performance constraint. When
comparing optimization with true parameter values to optimization with learned pa-
rameter values, we observe only small differences in energy use and no significant
differences in probability. This shows that the reinforcement learning finds suitable
parameter values, which enables the optimum to be found in the energy optimiza-
tion. Note here, that the learned model parametrizations are fairly accurate but do
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Figure 5.6: Block diagram of the control architecture. Robot operations for dispatched or-
ders are first scheduled to determine the necessary sequence of operations. Then,
a model-predictive controller (MPC) optimizes robot motion parameters of each
operation to minimize energy use. A reinforcement learning (RL) algorithm mon-
itors the performance criterion ρ (energy use and productivity penalties) of the
system and adapts parameters θ of the MPC from that information.

not completely coincide with the true ones. This is because, the goal of the parame-
ter learning is not to find the true values, but to find values that allows the minimum
energy use to be achieved.

However, several properties of the proposed control architecture may lead to sub-
optimal control actions. For instance, the anytime property of the used scheduling
algorithm ensures that a solution is always available when needed, but feasibility is
prioritized over optimality in that. In real-time systems, there is often a trade-off
between solution time and goodness of solution, such that a good enough solution
in time is preferred over the optimal solution too late. In addition, inaccurate model
parameters and exploration during learning inevitably mean sub-optimal control ac-
tions. As the learning progresses, sub-optimality due to these aspects will decrease.
On the other hand, it is tempting to select the most expressive available system model
for optimizing energy use, such as high-fidelity digital twin models or flexible uni-
versal function approximators. However, ENMPC formulations, that include some
form of predictive system model, can be computed quickly, and can be adapted by
reinforcement learning, may prove to be a practical compromise between expressive
models and flexible function approximation. In [116], the authors argue that a digital
twin should be capable of supporting such a formulation in order to fulfill the desired
properties of prediction, convergence, and co-evolution.

In conclusion, adaptive economic non-linear model predictive control seems a
promising method for combining model-based and data-driven control. The method,
investigated in this paper, uses a system model to enforce behavioral constraints
while identifying system parameters through reinforcement learning. The result
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Figure 5.7: An example of a robotic kitting station. The collaborative robot is mounted on
a horizontal gantry to be able to pick parts from all areas of the rack. A cam-
era is used to identify the position of the rack and parts within each box. The
configuration and state of the system are mirrored at all times in its digital twin.

showed that the system performance was optimized, the unknown parameters were
effectively estimated, and the constraints were fulfilled. These results indicate, fur-
thermore, how convergence and co-evolution of digital twin and physical system
could be achieved in autonomous and optimal control of manufacturing systems.
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CHAPTER 6

Concluding Remarks and Future Work

This thesis is based on the premise that manufacturing automation must become
more intelligent to meet current demands on production systems in terms of flex-
ibility, speed, quality, and cost. Two distinct methodical approaches to intelligent
automation have been identified in the scientific literature: (1) the model-based digi-
tal twin approach, and (2) the data-driven reinforcement learning approach. A review
of both approaches in previous chapters of this thesis found that: (1) the digital twin
approach faces the model-system mismatch challenge, while (2) the reinforcement
learning approach must overcome the performance challenge in small data regimes
common to manufacturing. The research presented in this thesis was thus guided by
the idea to incorporate principles of either approach into the other to leverage their
respective advantages.

In Paper A – How Useful is Learning in Mitigating Mismatch between Digital
Twins and Physical Systems?, we, hence, compared the usefulness of learning for
restoring optimal control under model-system mismatches in terms of sample effi-
ciency, best performance within a limited sampling budget, and regret. In the context
of direct input adaptation for static, high-dimensional, continuous, and smooth per-
formance functions, it was shown that standard reinforcement learning is easily out-
performed by gradient-based blackbox optimizers and Bayesian Optimization, which
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explore the system in a smarter way.
In Paper B – Enhancing Digital Twins through Reinforcement Learning, we, ac-

cordingly, proposed a deep RL algorithm to adapt the digital twin’s control policy de-
rived from an erroneous model. Key feature of the algorithm is a smart exploration
method that uses Bayesian artificial neural networks, which estimate uncertainties
about the system’s performance criterion to address safety and quality concerns.

In Paper C – Online geometry assurance in individualized production by feedback
control and model calibration of digital twins, we re-framed the mismatch problem
between digital twin and system as a state observation problem. A dynamic modi-
fier model for the drifting mismatch was introduced and adapted by a novel Kalman
filtering-based method that balances exploitation and exploration. While our evalua-
tions illustrate the difficulty of balancing exploitation and exploration, they also show
that this method can significantly improve performance under drifting model-system
mismatches.

In Paper D – Relevant Safety Falsification by Automata Constrained Reinforce-
ment Learning, we presented a principled method for introducing behavioral speci-
fications into the RL performance criterion to guide and restrict the exploration pro-
cess. Although, the proposed method leads to control policies that eventually satisfy
the specifications, it fundamentally relies on a trial-and-error approach that necessi-
tates violating the specifications to learn about them.

In Paper E – Adaptive Energy Optimization of Flexible Robot Stations, we demon-
strated a promising state-of-the-art method for combining model-based and data-
driven control in the context of energy optimization under static model-system mis-
matches. This method uses a system model to enforce behavioral constraints while
identifying system parameters through reinforcement learning.

6.1 Conclusions

To concisely answer RQ1 – How can machine learning be used to mitigate the model-
system mismatch in digital twins, while minimally altering the provided solution?, we
recapitulate the three possible strategies found in the literature: for (1) direct input
adaptation, (2) modifier learning, and (3) model parameter identification. Direct in-
put adaptation and modifier learning may be implemented as extensions of the digital
twin model, which may be advantageous under some circumstances. Our research
suggests that learning-based direct input adaptation is of limited usefulness, though,
in the systemic mismatch case (Paper A), but that it might have some merit in in-
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dividualized production control (Paper B). Modifier learning appears promising for
individualized production control under dynamically drifting mismatches (Paper C).
Model parameter identification, in contrast, requires the mismatch mitigation mech-
anism to have access to adjustable parameters within the digital twin model. In Paper
E, we indicate the connection between the digital twin concept and a recent adaptive
MPC method, that uses RL to identify model parameters that result in a good control
performance. Judging from our research, this method seems promising.

In turn, our answer to RQ2 – How can prior model-based knowledge be introduced
in reinforcement learning to improve sample-efficiency, explainability, and safety of
the learned control policy? is twofold in this thesis: (1) as specification, and (2)
as model class in function approximation. In Paper D, we presented a principled
method for incorporating automata specifications into RL. Note here that this method
also extends to specifications given in temporal logic, if they can be converted into
an automaton by any available method. While our application in Paper D benefits
from the trial-and-error nature of our proposed approach, in general, this method
may quickly show its limitations in physical systems such as in manufacturing, due
to the possibly required repeated violations of the specification during learning. The
method used in Paper E, in contrast, is capable of incorporating prior model-based
knowledge about the system’s dynamics, constraints, and its performance function
as model class in RL function approximation. Our research highlights the benefit of
this method in a new application area.

In summary, the adaptive model predictive control method of Paper E seems promis-
ing for both the model-based and the learning-based approach to intelligent auto-
mation. It is in order to emphasize here that these research findings have been the
outcome of a research approach that has predominantly relied on case studies as re-
search design. The presented findings may thus possess only limited generalization
power. This research design appeared appropriate, however, for exploring the identi-
fied research gap of this thesis more qualitatively and has led to the development of
methods that are believed to be generic to a large extend. Still, the findings are pro-
visional to a more comparative evaluation of all approaches on a representative set
of engineering problems within intelligent automation. This could be understood as
the outstanding final descriptive study II phase in the design research methodology
by Blessing and Chakrabarti [47]. Its outcome may very well be – as so often in de-
sign research – that the right tool needs to be chosen for the right task. Based on the
author’s understanding at the time of writing, though, the adaptive model predictive
control method may be the right tool for many tasks within intelligent automation.
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6.2 Future Work

Beside the previously mentioned comparative evaluation of the presented approaches
in the style of a descriptive study II (see [47]), three other areas for future work are
evident.

Firstly, the convergence and co-evolution of modular digital twins may be an in-
teresting area for future work. Digital twins are comprehensive models of complex
systems, and it is thus often proposed in the literature to build digital twins as collec-
tions of modular components. When several of these components pursue an adaptive
or learning approach to “twinning”, the system appears as time-varying and drifting
for each single learning module. This poses an additional challenge to the learning
algorithm. The adaptation of a modular digital under model-system mismatches may
thus be an interesting multi-agent control problem to explore further.

Secondly, further research may be aimed at developing practical guidelines as to
when to use which mismatch mitigation approach. This thesis touched upon three
mitigation strategies: direct input adaptation, modifier learning, and model parameter
identification. The adaptive MPC method within model parameter identification may
be considered the method truest to the digital twin concept. However, this method
requires the computation of gradients of the digital twin. This may be a challenge to
some digital twin implementations. Direct input adaptation methods, in contrast, can
be implemented independently of the digital twin, but it is not clear how they may
extend to dynamic systems or varying mismatch scenarios. The modifier learning
approach seems well suited for varying mismatch scenarios, but may be too compu-
tationally costly in static mismatch scenarios. These considerations may be further
investigated and elaborated on.

And thirdly, hybrid architectures might be further explored that combine the delib-
erative advantages of a model-based approach with the quick inference capabilities
of data-driven function approximation. Research suggests that this is prevalent also
in human decision making [164]. The model-based part in that may be, for instance,
an expressive, but computationally heavy, adaptive model predictive controller (e.g.
a digital twin), whereas the data-driven inference could be a deep policy network,
trained, for example, in the imitation learning flavour presented in [146]. Such an
approach could give good control performance, while gradually and safely reducing
the computational burden over time.
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