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A B S T R A C T   

The use of decentralized solar photovoltaic (PV) mini-grids for rural electrification is increasing in developing 
countries, but little is known about the determinants of electricity consumption of communities electrified 
through these technologies. This paper examines the factors influencing the electricity consumption of rural 
households and small businesses electrified by off-grid PV mini-grids based on actual metered load data and a 
survey of 218 customers in two isolated small towns (Omorate and Tum) in Ethiopia. Empirical analyses were 
performed using Censored Tobit models. Results showed that the load curves of the two towns have different 
characteristics and patterns. While the load curve at Omorate is regularly interrupted for 13 h a day due to load- 
shedding, the mini-grid at Tum generates enough electricity to meet demand. Empirical results showed that 
electricity consumption of households is significantly associated with household size, income, dwelling type, 
number of rooms, cooling fans, cooking with electricity and load-shedding. In contrast, the electricity con-
sumption of businesses is strongly linked with income, electricity price, number of rooms, number of cooling 
fans, refrigerators, number of other (productive use) appliances, and load-shedding/location. The findings 
suggest three key points. First, electricity demand of rural households and businesses is influenced by separate 
but interconnected sets of factors. Second, supply-side factors, appliance factors, type of end-use of electricity 
and location -specific factors influence demand more than income and price factors. Third, mini-grid policy 
making and dimensioning in rural East Africa must take into account the differing electricity demands and 
determinants across customer groups and locations.   

1. Introduction 

Over the last two decades, rural electrification has made significant 
progress in many developing countries [1]. Central to this expansion of 
rural electricity access are distributed energy systems such as mini-grids 
[2,3]. Reports show that 47 million people in 134 countries were con-
nected to mini-grids in 2019, the majority of them living in rural areas of 
developing countries [2]. Most of these mini-grids are powered by solar, 
hydro and diesel. Recent studies [4] indicate that many countries in 
sub-Saharan Africa (SSA) are also increasingly using solar photovoltaic 
(PV) mini-grids with battery storage and backup diesel generators (DGs) 
as an essential part of the solution for increasing rural electricity access. 
Despite improved access to electricity through mini-grids however, ev-
idence from emerging studies suggests that per capita electricity con-
sumption in rural communities connected to mini-grids has remained 
low [5]. For example, in a comprehensive field assessment of 24 oper-
ational community-owned PV mini-grids in India conducted by Katre 

et al. [6], it was found that rural households’ electricity consumption 
from mini-grids was generally low, with 73% of the households studied 
falling into the customer category of ‘less than 30% reduction in 
monthly kerosene usage.’ Similarly, Peters et al. [7] noted that insuffi-
cient electricity demand was one of the main issues facing the com-
mercial viability of village-level mini-grids in East Africa. In contrast, in 
their study of electricity purchased by households and businesses in an 
off-grid village in Tanzania from a community-based micro-hydro-
electric plant, Hartvigsson et al. [8] found that electricity purchased by 
households and small businesses grew significantly by 56% and 37%, 
respectively, over a period of 30 months. 

These seemingly divergent findings suggest the need for more 
knowledge on rural electrification through distributed mini-grids and 
specifically on the factors influencing the electricity usage behaviors of 
rural households (HHs), and small and medium enterprises (SMEs). 
Understanding the determinants and patterns of electricity consumption 
allows for proper sizing of techno-economically viable PV mini-grids 
and efficient usage of the electricity generated. A thorough analysis 
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and comprehensive understanding of what drives and constrains the 
electricity usage of households and businesses is also essential for 
informed policy making, energy planning and identifying appropriate 
demand side management (DSM) strategies. Yet, there is little research 
and empirical data on the major determinants of electricity consumption 
of rural households and businesses electrified through off-grid mini- 
grids. The literature on rural electrification in the developing world has 
typically focused on grid extension, feasibility of decentralized mini- 
grids, forecasts of energy demand of rural households and the socio-
economic benefits of access to electricity [9,10]. A few studies that were 
carried out to examine rural electricity demand and its determinants in 
developing countries (see Table 1) indicate that household electricity 
consumption is influenced by various economic and non-economic fac-
tors including education level, socio-demographics, dwelling factors, 
income, electricity price, appliance ownership, local economic devel-
opment, weather conditions, among factors [6,11–18]. 

However, the empirical evidence from these (Table 1) and other 
recent studies may not reflect the situation in the rather unique context 
of mini-grid-electrified communities in remote off-grid villages. One of 
the many reasons for this is that households in off-grid areas face 
additional barriers to their usage of electricity from limited access to 
commercial electricity and appliance markets. Secondly, nearly none of 
the previous works have explicitly addressed electricity usage from 
renewable mini-grids in off-grid areas based on metered data. Thirdly, 
most previous works on rural electricity usage were based on aggregated 
national survey data rather than micro-level metered data. Moreover, 
the literature to date on the determinants of rural household electricity 
consumption primarily deals with consumers powered by conventional 
grids [14,15,17,18], but distributed renewable energy systems are 
fundamentally different from conventional power grids in terms of their 
energy sources, operation, energy management and energy storage. As a 
result, the electricity consumptions of households and businesses elec-
trified through decentralized mini-grids and the variables that govern 
them remain poorly understood. This gap in knowledge and empirical 
evidence could lead to policy measures and mini-grid dimensioning that 
is misaligned with the actual demand. Against this backdrop, this paper 
aims to examine the determinants of electricity consumption of rural 
households and businesses electrified by stand-alone PV mini-grids 
using a metered dataset together with surveys from two isolated rural 
towns in Ethiopia. 

This research is novel in many ways. First, it introduces predictor 

Abbreviations 

AfDB African Development Bank 
DG Diesel Generator 
DSM Demand Side Management 
EEU Ethiopian Electric Utility(Electricity Provider) 
ETB Ethiopian Birr(Ethiopian Currency) 
GNI Gross National Income 
HHs Households 
LED Light-emitting Diode 
m.a.s.l. Meters above sea level 
MG Mini-grid 
MLE Maximum Likelihood Estimation Method 
MLR Multiple Linear Regression 
MoWE Ministry of Water and Energy of Ethiopia 
OLS Ordinary Least Square Regression 
PV Photovoltaic 
SE Standard Error 
SMEs Small and Medium Enterprises 
SSA Sub-Saharan Africa 
UEAP Universal Electricity Access Program  

Table 1 
Summary of the recent previous work on rural electricity consumption and its 
determinants in developing countries.  

Ref Country Main focus of the 
study 

Major findings 
(Pros) 

Cons 

[6] India Energy 
consumption of 
rural households 
and businesses 
from 
community- 
owned mini- 
grids. 

Energy 
consumption of 
rural households 
and businesses 
remained low and 
below 
expectations. 

Falls short of 
analyzing the 
driving factors 
for the low 
energy 
consumption. 

[11] South 
Africa 

Study on the 
determinants of 
household 
electricity 
demand. 

Household income 
and electricity 
price are major 
determinants of 
demand. 

Users were 
supplied by grid, 
not by a mini- 
grid. 

[12] Bangladesh Investigation of 
factors affecting 
households’ 
choice of 
electricity 
consumption and 
expenditure 
levels from off- 
grid mini-grids. 

Higher education 
level, gender 
(females), and 
appliance 
ownership leads to 
choice of higher 
tier clean 
electricity. 

Survey data 
were generated 
for a proposed 
MG service, not 
from actual 
operating 
electricity 
services. 

[13] Honduras Forecasting 
energy demand 
in isolated rural 
communities. 

Stochastic demand 
prediction, in 
contrast to 
deterministic 
methods, gives 
more realistic 
results for the 
designing of MGs. 

Mainly focused 
on demand 
projection, 
rather than on 
determinants of 
demand. 

[14] China Analysis of rural 
household 
energy 
consumption 
based on survey 
data. 

Provides 
comprehensive 
analysis of the 
factors affecting 
rural household 
energy 
consumption. 

The electricity is 
supplied by a 
conventional 
power grid, not 
from a mini-grid. 

[15] India Rural household 
Electricity 
consumption 
determinants. 

Demand for 
electricity is not 
necessarily elastic 
to income and 
other 
socioeconomic 
variables in rural 
regions. 

Electricity was 
supplied by 
conventional 
grid, not by a 
mini-grid. 

[16] DR Congo Investigation of 
factors affecting 
electricity 
consumption in 
DR Congo from 
2000 to 2018. 

Economic growth, 
access to 
electricity, 
population; and 
labor force have 
positive effects on 
consumption. 

National level 
aggregated data. 
Does not 
specifically 
address rural 
communities. 

[17] Ethiopia Analysis of 
determinants of 
household 
energy choices of 
rural 
households. 

Wealthier and 
more educated 
households with 
larger family size, 
and better road 
access consume 
more electricity 
than poorer 
households in 
remote areas. 

The survey 
households were 
powered by grid, 
not by 
renewable mini- 
grids. 

[18] Cameroon Assessment of 
the drivers of 
electricity 
consumption 
based on 
household 
surveys. 

Appliances, 
household income, 
housing structure 
and weather 
conditions have 
greatest impact on 
energy 
consumption. 

The electricity is 
supplied by 
conventional 
grid, not by 
renewable mini- 
grids.  
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(explanatory) variables, rarely considered before, such as load- 
shedding, ownership of private solar home systems (SHSs) and DGs, 
productive use appliances, and cooking with electricity to explain var-
iations in electricity consumption among rural users. Second, it is 
perhaps the first study that attempted to analyze the factors determining 
electricity consumption of rural households and businesses powered by 
off-grid renewable mini-grids (intermittent energy source) in a devel-
oping country context. Third, unlike most previous studies which rely on 
national level aggregate data or simulation, this study uses micro-level 
metered hourly load and monthly consumption data together with 
data gathered through door-to-door surveys; and hence allows for a 
more thorough empirical analysis. A major strength of this paper is thus 
the depth, quality, and reliability of both the power and survey data, 
which were collected from a proportionally large sample size compared 
to the total mini-grid electrified population in the two towns. The 
research makes four important contributions.  

■ It contributes to scientific progress in the field of rural household 
energy demand theory in sub-Saharan Africa context and beyond.  

■ It provides a knowledge base for strategic planning of mini-grid- 
based rural electrification projects and the formulation of informed 
energy policies.  

■ It offers useful practical knowledge to support the design and 
dimensioning of techno-economically viable solar PV mini-grids.  

■ It gives mini-grid operators useful evidence base to identify a more 
appropriate technical, operational and management options. 

2. Methodology 

2.1. Research design 

An interdisciplinary case study approach combining quantitative and 
qualitative research methods was used in this study. An interdisciplinary 
approach allows for a comprehensive understanding of the interactions 
and influences of various factors on rural electricity consumption. The 
case study method, on the other hand, enables us to conduct an in-depth 
investigation and analysis of the relationships between the main de-
terminants and the electricity consumption of households and SMEs 
within a defined setting, using actual data drawn from multiple sources 
and methods. Consequently, the case study was conducted following six 
iterative processes, as suggested by Yin [19] and Crowe et al. [20]. Fig. 1 

presents the flow chart of these iterative processes and steps that were 
followed when conducting this interdisciplinary case study. 

2.2. Description of the case study sites 

This case study was carried out in two remote rural towns, named 
Omorate and Tum, in southern Ethiopia (Fig. 2). Both towns are pow-
ered only by stand-alone PV mini-grids (hereafter MGs). The two towns 
were purposively chosen due to similar installation design and age of 
their MGs, expected similarities in electricity demand, similar number of 
MG customers, and the fact that they were among the first 12 rural 
towns to be electrified with PV MG in Ethiopia. 

The geographic location of the mini-grids was chosen owing to their 
comparable1distance from the national grid, differing microclimatic 
conditions, and the availability of metered energy data. Omorate is 
located between 4◦80′16′′ N Latitude and 36◦3′29′′ E Longitude with an 
average elevation of 368 m above sea level (m.a.s.l.) whereas Tum is 
situated between 6◦15′16′′ N Latitude and 35◦31′18′′ E Longitude with 
an average elevation of 1439 m. a.s.l. The mean annual temperature in 
Omorate is 28.2 ◦C while in Tum it is 21.6 ◦C. In 2021, Omorate had a 
population of 3,852, with approx. 770 households, while Tum had a 
population of 4,856, with approx. 950 households. The MG in Omorate 
has a total installed capacity of 375 kWp and is equipped with a 600 
kWh storage battery. The MG in Tum, on the other hand, has an installed 
capacity of 550 kWp and is equipped with a 750 kWh battery. Both MGs 
began operating around the same time, May 01, 2021. As of June 2021, 
the total number of MG customers was 97 in Omorate and 137 in Tum. 
By December 2021, the number of customers in Omorate had grown to 
443 (a growth of over 350%); of which 301 (68%) were2ordinary 
households, 112 (25%) were3SMEs, typically household-based busi-
nesses, and 30 (7%) were4institutions. In a similar pattern, the number 
of consumers in Tum had increased to 450 by December 2021; (an in-
crease by 228%) with 384 (85%) households, 40 (9%) SMEs and 26 (6%) 
were institutions. 

2.3. Sampling and data collection 

This study uses real-time hourly load data directly retrieved from the 
energy management system of each MG and customers’ monthly elec-
tricity consumption data metered over an eight-month period (May 
1–December 31, 2021) in combination with data collected through 
surveys and field visits. Hourly load data at each MG over the 245 days 
(8-month period) were extracted on daily basis directly from the MGs. 
Metered monthly consumption data for all customers were collected 
from local EEU offices. The EEU dataset contains detailed information 

Fig. 1. A flow chart of the processes and steps followed when conducting the 
case study. 

1 Ethiopian Electric Utility (EEU) is a state-owned utility company that 
manages power distribution and sales from all power plants in Ethiopia 
including off-grid mini-grids; while its sister company Ethiopian Electric Power 
(EEP)manages power generation and transmission. In 2016, the Ethiopian 
Ministry of Water and Energy (MoWE) and the EEU identified 250 rural towns/ 
villages that are isolated from the national grid and need to be electrified using 
PV-Diesel hybrid mini-grid systems through the Universal Electricity Access 
program (UEAP). The Omorate and Tum MGs are among the first 12 MGs 
installed in the country out of the 250 planned. The construction of these MGs 
was financed by the Ethiopian Government and the World Bank. In February 
2021, a contract between SinoSoar and EEU was signed for the construction of 
another 25 mini-grids, backed by the African Development Bank (AfDB).  

2 Throughout this paper, ordinary rural households are those customers that 
use electricity primarily for household/domestic purposes; and are thus ‘non- 
productive’ users.  

3 SMEs refers to those customers that use electricity primarily for productive 
uses (business activities) but could also simultaneously use it for domestic 
purposes.  

4 Institutions refer to government offices, ministries, public schools, health 
centers, churches and mosques etc. 
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about the customer’s name, address, customer type (domestic, SMEs/ 
productive, or institution). Throughout the paper, a clear distinction is 
thus made between the different customer/user groups. The EEU dataset 
also provides information about the billing month, amount of electricity 
consumed, consumption charge, tariff category and a monthly service 
charge. After obtaining the EEU dataset, detailed surveys were con-
ducted at both locations using purposive random sampling. First, all 
customers registered in the EEU billing list were identified and grouped 
into three categories (HHs, SMEs, and institutions) as per EEU’s classi-
fication. A random sampling of 20% was then applied to select sample 
HHs in each location. For SMEs, however, a snowball sampling method 
was used and data was collected from as many samples as possible until 
the data was saturated. This was done to ensure that the survey data 
captures most of the heterogeneity in electricity consumption across 
consumers and that robust empirical analysis is performed. Finally, the 
survey was carried out through face-to-face interviews from November 
22, 2021 to January 16, 2022 using a semi-structured questionnaire that 
was carefully designed, pre-tested and revised after pilot studies and 
following Yin’s [19] guidelines. 

For each sample household and SME, the data collected from the EEU 
were compared with the bill presented by the respondent and the kWh 
meter readings as illustrated in Appendix I. The data collected through 
surveys included demographic and socioeconomic information, dwell-
ing type, number of rooms, monthly consumptions and charges, 
ownership and stock of electrical appliances, productive use of elec-
tricity, frequency and duration of power interruptions per day and week, 
major cooking fuels, and a range of qualitative information. During the 
same period, in-depth interviews and discussions were held with more 
than 15 key informants in each town including MG operators, EEU staff, 
local political administrators, community leaders and SMEs and women 
groups’ representatives. The final dataset used in this study is thus 

collected from 128 households, 90 SMEs, and 10 public or state in-
stitutions (Table 2). 

2.4. Econometric model specification 

Several studies have analyzed the determinants of household energy 
consumption using ordinary least square (OLS) regression and Multiple 
Linear Regression (MLR) models [21,22]. Standard OLS models can 
provide unbiased and consistent estimates when the dependent variable 
y is unrestricted. However, in the context of distributed PV MGs, the 
power supplied by the PV plant (and therefore the customer’s electricity 
consumption) is subject to various exogenous variables including the 
PV’s generation capacity, frequency and duration of power outages, and 
capacity of the storage batteries, among others. As a result, the metered 
maximum electricity consumption value (y) may not represent the true 
(latent) energy requirement (y*) for some of the customers. In fact, the 
exact value of the maximum electricity consumption of these customers 
is unknown; then y is said to be right-censored. Electricity consumption 
values are also non-negative (the minimum value is zero), meaning that 

Fig. 2. Location map of Omorate and Tum towns in Ethiopia along with 10 other rural towns where stand-alone solar PV mini-grids have been installed for rural 
electrification (Source Ethiopian Electric Utility - EEU, 2021). 

Table 2 
Distribution of sampled households, SMEs and institutions in each town.  

Consumer 
group 

Omorate Tum Total 
samples 

Total 
number 
(N) 

Sample 
size (n) 

Total 
number 
(N) 

Sample 
size (n) 

Households 301 68 384 60 128 
SMEs 112 50 40 40 90 
Institutions 30 5 26 5 10 
Total 443 123 450 105 228  
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y is also left-censored. This makes the dependent variable both right and 
left-censored. Using standard OLS models with a restricted or limited 
dependent variable results in biased and inconsistent β estimates since 
the distribution of y, and hence the error term, is likely to be non-normal 
and heteroskedastic [23,24]. 

Let X denote the independent variables that explain household 
electricity consumption, the latent regression equation for potential 
electricity consumption of household i, yi* is given by 

yi ∗ =Xi β + εi (1)  

where εi ~ iid N (0, σ2) and i = 1,2,3 … n, β are the marginal effects of 
Xi’s on the yi*. 

When the electricity consumption values (yi) are subject to a certain 
threshold level (τ) due to load-shedding or generation capacity short-
ages, the observed yi will be defined as: 

yi =

{
yi

∗ if yi
∗ ≤ τ

τy if yi
∗ > τ (2) 

Note that the observed consumption value yi is the same as the latent 
(true) consumption yi* for observations less than or equal to the 
threshold τ; however, yi is unobservable and is restricted to be equal to 
the threshold τy when the consumption value is greater than τ. In such 
circumstances, where the dependent variable yi is constrained and the 
conditions for OLS regression are not met, the Tobit regression delivers 
unbiased and consistent estimates of the linear relationship between yi 
and exogenous predictor variables X using the Maximum Likelihood 
Estimation (MLE) method [23,24]. Combining the structural Tob it 
equation (1)with the observed measurement equation (2), the censored 

Tobit model used in this study is defined as: 

yi =

{
yi

∗ = Xiβ + εi if yi
∗ ≤ τ

τy if yi
∗ > τ (3)  

2.5. Variables used for the empirical analyses 

The dependent variable yi in this empirical analysis is the mean 
monthly electricity consumption (kWh) of households and SMEs. Since 
customers were connected to the MGs at different times, the mean 
monthly electricity consumption of each customer is calculated based on 
when they were connected using equation (4). Based on past research 
and information from the pilot studies, relevant explanatory variables 
expected to influence the dependent variable were identified. Summary 
statistics of these independent variables is presented in Table 3. The 
mean values for dummy variables represent the share of customers with 
the given characteristics. A scatterplot matrix of bivariate relationships 
between some of the key variables is shown in Appendix II. 

Yi,m =

∑N

n=1
Ei

N
(4) 

Yi is the mean monthly electricity consumption of household i, Ei is 
the household’s electricity consumption in month n, and N is the total 
number of months the household has been connected. 

2.6. Characteristics of sample households and businesses 

According to the survey data, 76% of the sampled customers were 

Table 3 
Summary statistics of the variables (N = 218).  

Variable/statistic Data type Variable definition/description Mean St. Dev Min Max 

Yi Censored Average monthly electricity consumption of the customer in kWh 65.36 86.40 3.14 800 
aGender Categorical Dummy: 1 = Female, 0 = otherwise 0.34 0.47 0 1 
aAge Continuous Age of the household head in years 40.55 12.30 20 77 
Educational level Continuous Total number of years of schooling of the household head 9.37 4.31 0 16 
Household size Continuous Total number of family members 5.27 2.31 1 16 
Monthly income Continuous Average monthly income of the customer in Ethiopian Birr (ETB) 10,890 14,035 1050 152,176 
bMonthly electricity 

expenditure 
Continuous Average monthly electricity expenditure of the customer in ETB 124.23 244.57 20.86 2275 

Price of electricity (tariff 
rate) 

Continuous Electric tariff rate applied to the customer (ETB/kWh/month) 0.70 0.59 0.27 2.5 

Kerosene/diesel 
consumption 

Continuous Average weekly kerosene + diesel consumption (L) 0.71 2.61 0 20 

cPrice of diesel/kerosene Continuous Price of diesel/kerosene in local market (ETB/L) 37.82 30.14 35 50 
Firewood consumption Continuous Average firewood consumption in bundles/week 2.42 1.59 0.50 12 
cPrice of firewood Continuous Cost of firewood in local market in ETB/bundle 85.83 31.76 35 200 
Charcoal consumption Continuous Average charcoal consumption in bags/week 0.79 0.64 0 2.5 
Price of charcoal Continuous Cost of charcoal in local market in ETB/bag 222.05 87.68 100 350 
Load-shedding/power 

outage 
Categorical Dummy: 1 = if the customer is subject to load-shedding, 0 = otherwise 0.54 0.35 0 1 

aOwnership of TV Categorical Dummy: 1 = if the customer owns TV, 0 = otherwise 0.63 0.48 0 1 
No of refrigerators Continuous Total no of refrigerators the customer owns and uses 0.61 0.78 0 4 
No of space cooling fans Continuous Total no of space cooling fans the customer owns & uses 0.30 0.51 0 3 
No of electric cooking stoves Continuous Total no of electric cookstoves the customer owns and uses 0.35 0.50 0 2 
No of other electrical 

appliances 
Continuous No of other (productive use) appliances the customer owns and uses 0.49 0.64 0 5 

cTotal no of appliances Continuous Total no of appliances and equipment the customer owns and uses 3.58 1.51 0 7 
Private PV/DG Ownership Continuous Total no of private Solar Home Systems (SHS) and Diesel Generators (DG) the customer 

owns and uses 
0.17 0.38 0 1 

cAccess to appliance markets Continuous Distance to the nearest main road or high way in km 161.54 28.28 152 192 
cPrice of electric cooking 

stove 
Continuous Cost of a typical electric cooking stove in local market 1406 1735 1050 2600 

cPrice of refrigerators Continuous Cost of a 300 L typical fridge in local market 28,907 56,808 24,000 32,000 
cPrice of cooling fans Continuous Cost of a standard space cooling fan in local market 6265 1453 3580 7950 
Dwelling type Categorical Dummy: 1 = if the house is made of brick/concrete, 0 = otherwise. 0.64 0.55 0 1 
Number of rooms Continuous Total number of rooms in the building/house 3.94 1.74 1 12 
cLocation/site Categorical Dummy: 1 = if the customer is located in Omorate, 0 = otherwise 0.46 0.49 0 1  

a Variables omitted from the regression analyses due to very weak relationship with the dependent variable. 
b Variables omitted from the regression analyses due to endogeneity with the dependent variable. 
c Variables omitted from the regression analyses due to multicollinearity with other explanatory variables. 
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male-headed, while 24% were female-headed. In terms of education 
level, 58% of the respondents have completed secondary education. The 
average household size is 5.27 persons and the average gross monthly 
household income is Ethiopian Birr ETB 10890 (US$ 218 in 2021). This 
equates to a monthly per capita income of US$ 41, while the monthly 
gross national income (GNI) per capita in Ethiopia in 2021 was US$ 74. 
Around 17% of all customers are productive users of electricity. The 
mean monthly electricity tariff for households is ETB 0.38/kWh and 
ETB1.7/kWh for SMEs. Correspondingly, the mean monthly electricity 
expenditure per household was ETB 46 and ETB 250 for SMEs. About 
17% of all customers own private Solar Home Systems (SHS)/DGs and/ 
or rechargeable Light-emitting Diode (LED) torches in addition to the 
MG service. Most of these customers are in Omorate, where power 
outages are pervasive. A significant percentage (67%) of the customers 
own and use at least one household electrical5appliance besides basic 
devices such as mobile phones and radios; and 28% own at least two6-

other electrical appliances and equipment. Most of the latter are SMEs. 
The various types of SMEs operating in the two sites are listed in Ap-
pendix III. More than 95% of these enterprises are household-owned and 
self-managed, and about 46% of them were created after the launch of 
the MGs. The survey data also showed that 23.4% of the customers, 
mostly households, use MG electricity for cooking purposes for 2–5 days 
a week. In terms of location both Omorate and Tum are geographically 
located in remote areas, 152 km and 192 km away from the nearest 
major road or highway (see Fig. 2). 

2.7. Empirical model diagnostic tests and model respecification 

A series of diagnostic tests were performed to determine the most 
suitable estimation method that fits the data well. As depicted by the 
Kernel density function plots in Fig. 3, the sample data for electricity 
consumption of both ordinary households (3a) and businesses (3b) is 
skewed to the right and not normally distributed. In addition, the den-
sity plots for the mean monthly electricity consumptions of households 
and SMEs do not overlap as can be seen from the large difference be-
tween the two sample means (dashed lines). This suggests that the 
electricity consumption behavior of households is notably different from 
that of SMEs, and therefore separate empirical analyses are needed for 
the two customer groups. On the other hand, Fig. 4a and b shows that Yi 
has near-normal distribution for both customer groups when the vari-
able is log transformed (log-normal distribution). 

The Breusch-Pagan test for homoscedasticity of residuals showed 
heteroskedastic residuals. To address the heteroskedasticity problem we 
applied robust standard errors instead of conventional standard errors 
(SEs) following Cameron and Miller [25]. Another technique that we 
employed, particularly relevant to our dataset are clustered SEs [26]. 
Considering the potential variation in the electricity consumption be-
tween the customers in the two locations, town-level clustering of SEs 
was applied to generate a more consistent coefficient estimates. There-
fore, in this paper, two separate Tobit regression analyses with robust 
SEs that are adjusted for two clusters by location were used to examine 
the determinants of electricity consumption of ordinary households and 
small-businesses from decentralized PV mini-grids in rural remote 
Ethiopia. 

To measure the reliability of the survey data, Cronbach’s alpha (α) 
test was performed, using 28 test-items and all observations (n = 218) 
except institutions. The test yielded a Cronbach’s α value of 0.84 for the 
test scale based on all the 28 items, suggesting that the test items 

included in the survey questionnaire were internally consistent and that 
the data has a good degree of reliability [27]. Of the 28 explanatory 
variables initially considered for the Tobit analyses, 15 were included in 
the final models; others are removed due to multicollinearity, a weak 
relationship with the outcome variable or endogeneity. Since the7price 
of electricity is determined by the quantity consumed by the customer 
per month, it was suspected that price is an8endogenous explanatory 
variable (xj); i.e. higher consumption leads to higher tariff rates. To test 
the endogeneity of price, we performed two separate Hausman tests for 
the two customer groups (households and SMEs) following Davidson 
and MacKinnon [28]. The test for coefficient of residuals of price 
resulted in F (1,111) = 3.17; Prob > F = 0.077 for the households, and F 
(1, 76) = 8.36; Prob > F = 0.005 for SMEs. The results indicate that 
electricity price is indeed endogenously related to the dependent vari-
able in both models, and therefore, the original Tobit equations may not 
provide consistent estimates. Following Terza [29], we applied the 
Control Function (two stage residual inclusion - 2SRI) method to address 
the endogeneity problem of electricity price in both Tobit models. The 
reason for choosing the control function over Instrument Variable (IV) 
regression to address the endogeneity problem is due to lack of a valid 
exogenous instrument variable (Z) that is strongly correlated with ‘price’ 
but independent of the error term ε in the equations. 

3. Results and analysis 

3.1. Load curves and demand analysis 

Based on the daily load reports that were retrieved from the energy 
management system of each MG, the load curves and9electricity demand 
at each town were analyzed. The results, shown in Fig. 5, depict that the 
load curves of the two towns have a distinctly different characteristics 
and distribution patterns. Fig. 5 shows that the load curve at Omorate is 
interrupted and close to zero kW for more than half of the day i.e. be-
tween 17:00 and 19:00 and again between 22:00 and 08:00. The main 
reason for this is that following the rapid increase in the number of MG 
customers and consumption per consumer, the MG at Omorate was no 
longer able to meet the demand. As a result, a complete load-shedding of 
up to 13 h each day, in two time slots (see Fig. 5), has been in effect since 
August 2021 to save energy during low demand hours and supply it 
during the evening peak hours. By January 2022, the load in Omorate 
was routinely shed off for 13 h each day. In contrast, the MG at Tum 
produces enough power to fulfill the demand and customers have 24 h of 
electricity service with no load-shedding so far. At Omorate, the demand 
spikes to 90 kW within an hour of connection to the power feeder, and 
remains above 90 kW for most of the day time until it is shed off at 17:00. 
At Tum, in contrast, the demand is relatively low, stable and remains 
around 30 kW for most of the day time. 

At both locations, the maximum demand (peak load) occurs in the 
late evening hours. The reason is that at this time of the day almost all 
lighting units are switched on and most of the10businesses are open. 
Nonetheless, the peak load at Omorate (128 kW) is more than two and a 

5 Household appliances includes electrical cookers, cooking stoves, juice 
makers, coffee makers, irons, space cooling fans, refrigerators, deep freezers, 
water heaters, rechargeable LEDs, TVs etc. 

6 Other appliances and equipment refers to power intensive devices usu-
ally used by SMEs such as light electric drills, compressors, dough mixers, 
welding machines, hair dryers, straighteners, small machines. 

7 The Ethiopian Electric Utility (EEU) uses the same progressive seven-tier 
tariff structure for household and SME-level electricity services from all 
power sources, including MGs across the country, based on the amount of 
electricity consumed per user; from ETB 0.273/kWh for monthly consumption 
of up to 50 kWh to ETB 2.00/kWh for monthly consumption of up to 300 kWh 
and ETB 2.481/kWh for monthly consumption exceeding 500 kWh.  

8 An endogenous independent variable is a variable that is correlated with, or 
has non-zero covariance with, the random error term εi in the equation [40].  

9 In this paper consumption refers to the total amount of electrical energy 
(kWh) used by the consumer per day, per month or per year, while demand 
(load) is the rate of that consumption, typically per hour (kW).  
10 Because of the hot tropical climate that prevails throughout the Omo Valley, 

locals typically begin to stroll around, mingle, and drink beer in the late af-
ternoon and into the evening. 
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half times that of the peak load at Tum (49 kW). As will be discussed 
further later in this paper, the high energy demand at Omorate 
throughout the day, compared to Tum, is related to the substantial 
productive use of power by SMEs, the hotter climatic conditions and 
considerable power demand for space cooling and refrigeration, 

especially in the afternoon; the higher income level of customers and 
therefore higher ownership of electrical appliances, and better access to 
appliances. During the field visits and door-to-door surveys, we learned 
that the peak loads at both sites, both during the day and at night, were 
primarily driven by productive use customers. The minimum demand at 
Tum is 15 kW and occurs early in the morning at 05:00. The minimum 
demand at Omorate, nevertheless, is unknown since the load curve does 
not show the complete unsuppressed demand distribution. Based on the 
same dataset, the average daily total electricity consumption was 
calculated to be 1030 kWh for Omorate and 575 kWh for Tum. To 
calculate the impact of load-shedding on the power demand at Omorate, 
we used a Multiple Imputation (MI) method of predicting missing load 
data [30, p. 119–120] based on the current (December 2021) incomplete 
load dataset and the load curve in May 2021 when the supply was fully 
meeting the demand. Subsequently, a new complete unsuppressed load 
curve, shown by the broken lines in Fig. 5, was constructed. According to 
the new complete load curve, the total daily unsuppressed energy 
requirement at Omorate is 1808 kWh, indicating that about 708 kWh of 
this daily requirement is unmet due to load-shedding (generation ca-
pacity shortage). This is the sum of the area between the current 
incomplete load curve and the broken line (unsuppressed) load curve, 
which amounts to an average unmet power demand of 54 kW per hour of 
load-shedding. 

Fig. 3. Kernel density plot for monthly electricity consumption of households (a) and SMEs (b).  

Fig. 4. Kernel density plot for the log-transformed mean monthly electricity consumption of ordinary households (a) and SMEs (b) against the normal density plot.  

Fig. 5. Comparison of the average daily load curves of the two towns (based on 
data directly retrieved from the energy management systems of each MG over 
the course of 8 months of operation). 
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3.2. Monthly electricity consumption patterns by sector 

The average monthly electricity consumption by customer type over 
the eight-month period was calculated using the metered dataset to 
understand the share of each sector in the total electricity consumption 
at each location. The overall mean monthly electricity consumption per 
customer (N = 837) was calculated at 72 kWh. However, ordinary 
households typically consume 30 kWh per month, while SMEs consume 
137 kWh per month. In terms of per capita, the mean monthly per capita 
consumption was 6.4 kWh among households and 27.5 kWh among 
productive users. Table 4 presents summary statistics of monthly elec-
tricity consumption by sector at both sites. 

The mean monthly consumption of SMEs is more than three times 
that of households at both sites. In Omorate, productive users/SMEs 
consume over half of the electricity supplied by the mini-grid (54%) per 
month, while representing only 25.3% of the total number of customers. 
In Tum, they account for 28% of the total monthly electricity con-
sumption although they make up only 9% of the total customers. 
Overall, productive users/SMEs accounted for 45% of the monthly 
electricity consumption, despite representing only 17% of the total 
consumers. Similar results were reported by Sharma et al. [5] for rural 
India and Hartvigsson et al. [8] for Tanzania. 

The average monthly consumption of households in Omorate (53 
kWh) is more than twice of their counterparts in Tum (22 kWh). Like-
wise, SMEs in Omorate consume more electricity each month (159 kWh) 
than SMEs in Tum (90 kWh). The fact that the median values in Table 4 
are below the mean for all customer groups suggests that the distribution 
of the data is skewed to the right (positively skewed), and that the 
monthly energy consumption of most of the customers in each group are 
clustered around the left tail of the distribution. This is consistent with 
our survey findings where nearly 60% of the households in Omorate 
consume less than 50 kWh per month and about 70% of the households 
in Tum consume less than 20 kWh per month; while SMEs users in 
Omorate consume as much as 800 kWh per month. In accord with our 
findings, Agrawal et al. [31] found that surveyed rural households in 
India on average consumed 39 kWh per month. In contrast a study on a 
small community-based MG in Tanzania [8] showed the average 
monthly electricity consumption of households to be 7 kWh and pro-
ductive users to be 20 kWh. Another study in the same country by Scott 
and Coley [32] found the average monthly electricity consumption of 
households electrified by MGs to range from 2.4 to 3.12 kWh. 

3.3. Empirical results 

The Censored Tobit models for the electricity consumption of 
households (1) and productive use customers/SMEs (2) both showed 
satisfactory goodness-of-fit (Pseudo R2 = 0.703 and R2 = 0.699 
respectively). Some of the significant variables are common to both 
models. Yet, a few variables such as price and number of refrigerators 
influence the SMEs-model more significantly than the households- 
model. In general, many of our findings corroborate previos re-
searches, while a few others are novel and unique to this study. The 
parameters estimated by model (1) reveal that household electricity 
consumption is significantly associated with monthly income, house-
hold size, dwelling type, number of rooms, number of cooling fans, 

cooking with electricity and load-shedding/location. On the other hand, 
the parameters estimated by model (2) indicate that the electricity 
consumption of productive users is strongly correlated with income, 
price (tariff rate), number of refrigerators, number of cooling fans, 
number of ‘other (productive use) appliances’, number of rooms, and 
load-shedding/location. 

The average marginal effects of the estimated parameters explaining 
the electricity consumption of households and productive users are 
presented in Tables 5 and 6, respectively. Another way to determine the 
relative influence of the estimated parameters on the electricity demand 
is to compute their ‘marginal elasticity (ey/ex)’. This method is similar 
to the marginal effect except that instead of estimating the influence of a 
“one unit” change in the predictor variable X on the dependent variable 
yi*, it measures the effect of a 1% change in X on the dependent variable. 
The marginal elasticities (ey/ex) of the estimated parameters influ-
encing electricity consumption of households and SMEs are shown in 
Tables 7 and 8, respectively. 

3.3.1. Demographic and dwelling factors 
The parameter estimates of the household model (1) in Table 5 show 

that the uncensored mean monthly electricity consumption of 

Table 4 
Summary statistics of monthly electricity consumption by sector at the two towns.  

Sector Location Min Max Median Mean St. Dev. % Demand 

Households Omorate 3.14 200.5 41.4 52.7 22.8 44.5 
Tum 2.5 61.5 13.6 22.2 14.9 56.3 

Productive users/SMEs Omorate 12.0 800.1 110.9 158.5 170.8 53.6 
Tum 5.3 192.5 55.86 88.9 55.7 28.1 

State/public institutions Omorate 7.7 434.1 85.0 98.1 100.8 9.5 
Tum 6.2 398.3 76.6 90.4 80.1 15.6  

Table 5 
Average marginal effects of the factors influencing electricity consumption of 
HHs.  

Tobit regression Number of obs = 128 

F(16,112) = 44.27 

Prob > F = 0.000 

Log pseudolikelihood = - 62.85 Pseudo R2 = 0.703 

.margins, dy/dx (*)  

ln_consumption Delta-method 

dy/dx Robust 
Std. 
Err. 

z P> | 
z| 

[95% Conf. 
Interval] 

Household size 0.027* 0.015 1.81 0.070 − 0.002 0.057 
Education level 0.013 0.009 1.37 0.172 − 0.005 0.031 
aDwelling type 0.161** 0.080 2.00 0.046 0.003 0.319 
No of rooms 0.167** 0.082 2.03 0.045 0.004 0.328 
ln_income 0.012** 0.006 2.05 0.043 0.003 0.024 
Price/tariff rate 0.180 0.342 0.07 0.191 − 0.644 0.295 
No of refrigerators 0.025 0.088 0.28 0.777 − 0.148 0.198 
No of space 

cooling fans 
0.199*** 0.032 6.12 0.000 0.135 0.263 

No of other 
appliances 

0.063 0.051 1.23 0.217 − 0.037 0.164 

bPrivate PV 
ownership 

− 0.039 0.095 − 0.42 0.674 − 0.226 0.146 

cCooking with 
electricity 

0.182*** 0.053 3.42 0.001 0.078 0.287 

dTV ownership 0.014 0.113 0.12 0.902 − 0.208 0.236 
Fuelwood use per 

wk 
− 0.026 0.018 − 1.38 0.167 − 0.063 0.010 

Charcoal use per 
wk 

0.031 0.087 0.36 0.720 − 0.140 0.202 

eLoad-shedding/ 
location 

0.408*** 0.129 3.02 0.003 0.133 0.641  
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households is positively and significantly associated with the household 
size (p < 0.1); such that the average monthly consumption of a house-
hold increases by 2.82% for every additional member of the household, 
holding other variables constant. The result, which is in line with pre-
vious studies [14,17,22], illustrates that electricity consumption in-
creases with family size. Conversely, household size is not strongly 
correlated with electricity consumption of SMEs (model 2). Similarly, 
both models showed no evidence that the education level of the 
household head is strongly correlated with electricity consumption. The 
coefficient estimates for the variable dwelling type, however, shows that 
households who live in ‘modern’ brick/concrete houses consume 
approx. 15% more electricity per month than those that live in tradi-
tional mud houses. In both Tobit models, number of rooms is signifi-
cantly and positively correlated with electricity consumption (p < 0.01). 

3.3.2. Income and price factors 
The estimated parameters in Tables 5 and 6 show that electricity 

consumption is positively and significantly related to income for both 
customer groups; where a 1% increase in the income of a household is 
associated with a 1.28% increase in monthly electricity consumption; 
and a 1% change in income of a productive user is associated with an 
8.9% change in monthly electricity consumption. As in previous studies 
[11,12,18,31,33], this result indicates that income plays a major role in 
determining electricity consumption; however the electricity consump-
tion of SMEs is more income elastic (responsive) than that of households. 
This is further supported by the marginal elasticity estimates in Tables 7 
and 8; where a 1% increase in income is associated with 1.37% increase 
in consumption for households but a 9.09% increase for productive 
users. 

The price of electricity is positively and significantly associated with 
electricity consumption for SMEs but not for households. However, it is 
important to note that the electricity tariff rate in Ethiopia changes slab- 
wise depending on consumption level. As such, price may not neces-
sarily dictate consumption; rather increase in consumption results in 
higher tariff slab. Accordingly, the marginal effects of price/tariff rate in 

Table 6 
Average marginal effects of the factors influencing electricity consumption of 
SMEs.  

Tobit regression Number of obs = 128 

Log pseudolikelihood = - 63.687 F(16,74) = 51.31 

Prob > F = 0.000 

Pseudo R2 = 0.699 

.margins, dy/dx (*) predict (e(0,.))  

ln_consumption Delta-method 

dy/dx Robust 
Std. 
Err. 

z P> | 
z| 

[95% Conf. 
Interval] 

Household size 0.000 0.009 0.08 0.936 − 0.018 0.019 
Education level 0.005 0.005 1.11 0.268 − 0.004 0.016 
aDwelling type 0.013 0.023 0.58 0.560 − 0.031 0.058 
No of rooms 0.120*** 0.021 5.58 0.000 0.078 0.163 
ln_income 0.087* 0.270 1.74 0.082 0.056 0.101 
Price/tariff rate 0.385*** 0.127 3.02 0.003 0.132 0.639 
No of refrigerators 0.067** 0.032 2.10 0.036 0.004 0.130 
No of space 

cooling fans 
0.109* 0.058 1.87 0.061 − 0.005 0.223 

No of other 
appliances 

0.227** 0.114 1.99 0.046 0.003 0.451 

bPrivate PV 
ownership 

0.049 0.049 1.00 0.318 − 0.047 0.146 

cCooking with 
electricity 

0.139 0.100 1.39 0.164 − 0.057 0.337 

dTV ownership 0.000 0.019 0.00 0.999 − .0384 0.038 
Fuelwood use per 

wk 
− 0.030 0.037 − 0.80 0.421 − 0.104 0.043 

Charcoal use per 
wk 

0.074 0.045 1.62 0.104 − 0.015 0.163 

eLoad-shedding/ 
location 

0.401*** 0.085 4.70 0.000 0.234 0.569  

Table 7 
Marginal elasticities of the factors influencing electricity consumption of 
households.  

.margins, ey/ex (*) 

Average marginal elasticities 

Model VCE: Robust, Clustered 

ln_consumption Delta-method 

ey/ex Robust 
Std. 
Err. 

z P> | 
z| 

[95% Conf. 
Interval] 

Household size 0.048* 0.026 1.81 0.070 − 0.004 0.100 
Education level 0.039 0.028 1.36 0.174 − 0.017 0.095 
Dwelling type 0.110** 0.055 2.00 0.045 0.002 0.219 
No of rooms 0.232*** 0.037 6.17 0.000 0.158 0.306 
ln_income 0.013** 0.001 5.43 0.002 0.010 0.016 
Price/tariff rate 0.002 0.039 0.07 0.941 − 0.074 0.080 
No of refrigerators 0.002 0.007 0.28 0.777 − 0.013 0.017 
No of space 

cooling fans 
0.170*** 0.050 3.31 0.001 0.070 0.280 

No of other 
appliances 

0.010 0.008 1.24 0.217 − 0.006 0.026 

Private PV 
ownership 

− 0.001 0.003 − 0.42 0.674 − 0.007 0.005 

Cooking with 
electricity 

0.018*** 0.005 3.45 0.001 0.007 0.028 

TV ownership 0.001 0.013 0.12 0.902 − 0.024 0.027 
Fuelwood use per 

wk 
− 0.021 0.015 − 1.38 0.168 − 0.051 0.008 

Charcoal use per 
wk 

0.004 0.011 0.36 0.720 − 0.018 0.026 

Load-shedding/ 
location 

0.525** 0.150 2.69 0.021 0.400 0.640  

Table 8 
Average marginal elasticities of the factors influencing electricity consumption 
of productive users. Robust SEs are clustered by town/location.  

.margins, ey/ex (*) 

Average marginal elasticities 

Model VCE: Robust, Clustered 

ln_consumption Delta-method 

ey/ex Robust 
Std. 
Err. 

z P> | 
z| 

[95% Conf. 
Interval] 

Household size 0.000 0.010 0.08 0.936 − 0.020 0.022 
Education level 0.012 0.011 1.10 0.270 − 0.009 0.035 
Dwelling type 0.007 0.012 0.58 0.559 − 0.017 0.032 
No of rooms 0.109*** 0.019 5.62 0.000 0.071 0.147 
ln_income 0.103* 0.059 1.74 0.082 − 0.013 0.220 
Price/tariff rate 0.252*** 0.012 10.42 0.000 0.106 0.155 
No of refrigerators 0.011** 0.005 2.11 0.035 0.000 0.022 
No of space 

cooling fans 
0.007* 0.003 1.89 0.059 − 0.000 0.014 

No of other 
appliances 

0.013** 0.006 2.00 0.046 0.000 0.027 

Private PV 
ownership 

0.002 0.002 1.01 0.314 − 0.001 0.005 

Cooking with 
electricity 

0.015 0.010 1.39 0.165 − 0.006 0.036 

TV ownership 0.000 0.008 0.00 0.999 − 0.017 0.017 
Fuelwood use per 

wk 
− 0.003 0004 − 0.80 0.423 − 0.012 0.005 

Charcoal use per 
wk 

0.0204 0.012 1.63 0.103 − 0.004 0.045 

Load-shedding/ 
location 

0.340*** 0.070 4.61 0.000 0.200 0.490  

Y.T. Wassie and E.O. Ahlgren                                                                                                                                                                                                                



Energy 274 (2023) 127351

10

Tables 5 and 6 can be interpreted as ‘a 20 kWh increase in monthly 
consumption results in a one slab increase in the tariff rate for house-
holds (p = 0.19); while a 47 kWh increase in monthly consumption 
results in a one slab increase in the tariff rate for SMEs (p = 0.003). This 
suggests that consumption does not necessarily change with price (price 
inelastic) but price changes significantly with consumption for SMEs. In 
the same vein, the marginal elasticity of price in Table 8 is interpreted as 
‘for every 28% increase in monthly consumption of SMEs, the tariff rate 
increases by one slab’ (p < 0.01). In contrast, for households, the change 
in monthly consumption has not, once again, led to significant change in 
tariff rate (Table 7). This is probably because the increase in monthly 
household consumption is negligible, and that it only slightly raises the 
tariff slab. 

3.3.3. Appliance ownership/stock and use 
Customers’ ownership and stock of electrical appliances is positively 

and significantly associated with electricity consumption in both 
households and SMEs. Both models agree that appliance-rich customers 
have significantly higher consumption than appliance-poorer ones. Yet, 
there appears to be a difference in the influence of different appliances 
on electricity consumption of households and SMEs. For households, 
number of space cooling fans (p < 0.01) and cooking with electricity (p < 
0.01) are positively and significantly correlated with electricity con-
sumption. For SMEs, number of refrigerators (p < 0.05), number of other 
appliances (p < 0.05) and number of space cooling fans (p < 0.1) are 
positively and significantly related with electricity consumption. Note 
that ‘other appliances’ denotes the various appliances and machines that 
are mostly used by SMEs but not regressed separately in the models 
including compressors, electric drills, welding machines, hair dryers and 
other productive use machines. According to the parameter estimates of 
the household model (1), for every space cooling fan owned, the house-
hold’s mean monthly electricity consumption increases by 22%. Simi-
larly, households who use electricity for cooking consume 20% more 
than those that do not. The marginal effect estimates for appliance 
factors for SMEs (Table 6), by contrast, indicate that for every additional 
refrigerator, cooling fan and other appliances, the mean monthly electricity 
consumption of SME increases by 7%, 11.6%, and 25.6% respectively. 
These findings demonstrate that appliances ownership and stock plays a 
crucial role in determining the electricity usage of both households and 
SMEs. 

Private SHSs and DGs ownership has a negative relationship with 
electricity consumption in the households model, though insignificant 
coefficients. This is likely due to the limited contribution of SHS and 
limited use of DGs and, thus, their marginal role of reducing electricity 
consumption. As a result, MG electrified households with their own SHS 
and DG are almost as dependent on electricity from the MG as those 
without. However, it was also found that some productive users in 
Omorate with private SHS and DGs were able to access 24-h and suffi-
cient electricity by combining the MG power supply with their private 
SHSs and DGs. It should be noted that the metered data in this study does 
not include electricity derived from private SHSs and DGs. The total 
electricity consumption of those households and SMEs using private 
SHSs and DGs may hence be higher than those relying on MG alone, as 
shown by a recent study in Bangladesh [12]. 

3.3.4. Load-shedding and location factors 
Another important finding of this study is the significant and positive 

association between load-shedding and electricity consumption in both 
models. Contrary to previous research [31,34], households and SMEs 
faced with extended load-shedding hours and power outages consumed 
significantly more electricity than those with uninterrupted power 
supply. The empirical results suggest that, compared to households in 
Tum (where there is no load-shedding), households in Omorate consume 
a significantly higher (50% more) amount of electricity per month (p <
0.1). Similarly, SMEs in Omorate consume a significantly higher (33% 
more) amount of electricity per month (p < 0.01) than SMEs in Tum 

(reference category). The findings suggest two probable phenomena. 
The first is that the electricity requirement of rural households and SMEs 
is significantly influenced by local context-specific demand factors 
including the local climatic conditions, economic and business activities, 
and accessibility of appliances. The second could be that faced with 
prolonged daily power outages, consumers in Omorate go into a con-
sumption spree (energy hoarding) during the hours when power is 
available. To maximize their energy consumption and hoarding when it 
is available, these customers have equipped themselves with a variety of 
high power appliances including freezers, refrigerators, compressors 
and rechargeable LEDs. This behavior of ‘energy hoarding’ was also 
confirmed during our field visits and door-to-door surveys. 

Location is also a major confounding factor in this research. It em-
bodies the local sociocultural setting, temperature, livelihoods, security 
and the differences between the two sites in terms of access to electrical 
appliances, appliance markets, cost of appliances and price of fuels. 
Location is also a proxy variable for many other variables omitted from 
the Tobit regression models due to their multicollinearity. In this sense, 
the empirical results in Tables 5 and 6 confirm the findings of the con-
sumption analysis presented in Table 4. In Omorate, where appliances 
are relatively cheaper and more accessible, and the mean annual tem-
perature is above 28 ◦C, many households and SMEs own and use space 
cooling fans, refrigerators and deep freezers, therefore consume more 
electricity. A concern repeatedly expressed by most households and 
SMEs in Tum, in contrast, was the extremely high cost and general lack 
of access to appliances in local markets. 

4. Discussion and policy implications 

Findings from the load curve and demand analyses show that the 
daily load profiles of the two towns have distinctly different character-
istics and patterns. While the load (demand) curve at Omorate is inter-
rupted by load-shedding for more than half of the day (due to the 
discrepancy between the MG’s generation capacity and the demand), 
the load curve at Tum is complete and uninterrupted throughout the 
day. Yet, MG customers at Omorate are consuming almost twice as much 
as those at Tum, in spite of the fact that the MG at Omorate has a lower 
installed capacity (375 kWp) than the MG at Tum (550 kWp); and that 
both MGs have similar number of customers. This is because the energy 
demands of both households and SMEs at Omorate are significantly 
higher than those of households and SMEs at Tum (see Fig. 5). The main 
explanation for this is that the two locations have different character-
istics when it comes to energy demand variables such as consumer’s 
income level; stock of electrical appliances, access to appliance markets, 
type and number of productive users, local climatic conditions and 
lifestyle. These differences have direct impact on the load (demand) 
profiles of the two towns. 

The high energy consumption even with protracted load-shedding in 
Omorate and conversely the low consumption in Tum have important 
policy implications. It underscores that PV based rural electrification in 
SSA should be based on adequate knowledge and practical under-
standing of the main drivers of demand for electricity, and accurate 
assessments of the load profile of customers. The large share of SMEs in 
the total electricity consumption relative to their number, on the one 
hand, shows the important role of productive use in ensuring sufficient 
electricity demand for the proliferation of commercially viable MGs. On 
the other hand, it underlines the need to identify and implement tar-
geted policies and suitable demand side management strategies (such as 
load-shifting, differential and time based pricing, energy efficiency) to 
ensure reliability of electricity supply for SMEs without compromising 
the demands of households and public institutions. At present, the price 
of electricity in rural Ethiopia is determined irrespective of the time of 
the day. 

The empirical results show that the energy consumptions of ordinary 
households and businesses are influenced by distinct yet interconnected 
sets of factors. However, the significance of effect of each factor differs 
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markedly between the two user groups. While income and price are key 
factors, it seems that electricity consumption is income-inelastic for 
households but elastic for SMEs, and price-inelastic (not necessarily 
elastic) both for households and SMEs. The income inelasticity of 
household electricity consumption suggests that rural households in 
Ethiopia are increasingly seeing electricity as a basic need (essential 
good), to the point where they are willing to meet their demand 
regardless of the price. The price inelasticity of consumption, on the 
other hand, could be in part because, being a developing nation, 
Ethiopia uses a progressive seven-slab tariff structure for household and 
SMEs-level electricity services based on the amount of energy consumed 
per user per month. Hence, an increase in consumption is rather an 
indication of an increase in affordability, provided that supply is reli-
able. As a result, SMEs end up paying higher prices than ordinary 
households since they consume more electricity. Similar income and 
price inelasticities in electricity demand were reported by previous re-
searches in rural villages in India [15] and South Africa [35]. 

The large coefficient estimates for appliance ownership in both 
models indicates that appliances ownership is a key influencing factor of 
electricity consumption, as was reported by prior studies [18,35,36]. 
Interestingly however, the influence of space cooling fans and electric 
cookstoves was more significant for households; while refrigerators, 
cooling fans and other (productive use) appliances were more significant 
for SMEs. These results in turn point to the important role of businesses 
and local climate in determining demand for electricity. While the 
availability of electricity is a requirement, the findings demonstrate that 
the quantity of electricity consumed is more a function of the type of end 
use of the electricity (productive or domestic), the customer’s stock of 
appliances, and other relevant demand variables including the cost of 
appliances and local climate. In line with our findings, Gaunt et al. [37] 
documented that the cost of appliances is one of the main obstacles to 
electricity consumption in rural areas of SSA. Mudakkar et al. [38] re-
ported that extreme temperatures were major drivers of electricity 
consumption in South Asian countries. Along similar lines, Luo et al. 
[39] in Tanzania reported on the significant influence of location on 
household electricity consumption. 

In addition, the findings of this study point to a unique behavior of 
distributed renewable MG customers where, when faced with prolonged 
hours of load-shedding, they tend to hoard as much electricity as they 
need during those hours when electricity is available using various 
electrical appliances and power storage devices. Although consumers’ 
tendency to hoard when an essential good becomes scarce is not a new 
occurrence, we believe that the observed behavior of planned daily 
electricity hoarding in response to load-shedding by these off-grid 
communities in SSA is a little-known and interesting finding of this 
study that is worth modelling theoretically in further studies. Further-
more, despite the widely held belief that decentralized MGs might not be 
economically viable in SSA due to insufficient demand for electricity 
[7], the high consumption levels and unmet demands found at Omorate 
suggest otherwise. 

The empirical results presented in this study are mostly based on 
cross-sectional data, and hence are explanatory rather than causal. Since 
data was available only for 8 month period of the mini-grids’ operation, 
the study was unable to capture the dynamic nature of electricity de-
mand over a longer time period. This is significant since electricity 
consumption is typically linked to changes in the customers’ socio- 
demographics, awareness, appliance stock and accessibility, and over-
all economic development in the region. 

5. Conclusions and future work 

In summary, findings from this study show that most of the variation 
in electricity consumption of customers of distributed PV mini-grids in 
the study area is driven by the user type (household or SMEs), stock of 
electrical appliances, income level, tariff rate and location-specific 
variables, including climatic conditions and access to appliances. The 
study has demonstrated that in the context of off-grid rural East Africa, 
electricity consumption from mini-grids is influenced more by supply- 
side and context-specific non-income factors than traditional income 
and price factors. In particular, the study has revealed the significance of 
influence of location and productive use on the demand for electricity, 
and the need to account for these factors in mini-grid sizing. The study 
also suggests that harnessing the potential of off-grid mini-grids requires 
guaranteeing accessibility and affordability of appliances. 

Future research work might include in-depth investigation of the 
electricity consumption behaviors of customers vis-à-vis energy hoard-
ing and other load-shedding coping mechanisms; study on the contri-
bution of load-shifting and other DSM strategies to mitigate power 
outages and interruptions in Omorate during peak demand hours. If not, 
how can the generation capacity of the MG in Omorate be expanded in 
most optimal way to achieve the twin objectives of lowest cost and 
reliable supply? 
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Appendix I 

Photos of the PV mini-grid infrastructure in Omorate, with electricity usage measurements from a small bar and restaurant owner with an EEU bill 
invoice and a refrigerator stocked with cool beers ready to be served (Photo by Yibeltal T. Wassie, 2021).
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Appendix II 

A scatterplot matrix of bivariate relationships between combinations of the key variables used in the econometric analyses.

Appendix III. Types of small and medium productive users/enterprises (SMEs) in the study area  

SMEs/productive users (sample size = 90) Freq. % 

Retail goods and cold drinks stores 24 26.7 
Fast food, beverages and traditional coffee shops 12 13.3 
Bars, restaurants, and traditional ‘beer-like’ beverage makers 11 12.2 
Beauty salons for men and women 10 11.1 
Hotels and pensions 7 7.8 
Mobile phone charging and electronic shops 5 5.6 
Garage, wood and metal workshops 3 3.3 
Motorcycle and bicycle repair service 3 3.3 
Juice bars and sport/game zones 3 3.3 
Bakeries 3 3.3 
Photo studios 3 3.3 
Photocopy, computer and printing services 2 2.2 
Tailoring 2 2.2 
Private clinic/pharmacy 2 2.2  
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