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Abstract

We present and analyze a multiscale method for wave propagation problems, posed on spatial networks. By introducing
coarse scale, using a finite element space interpolated onto the network, we construct a discrete multiscale space using the

ocalized orthogonal decomposition (LOD) methodology. The spatial discretization is then combined with an energy conserving
emporal scheme to form the proposed method. Under the assumption of well-prepared initial data, we derive an a priori error
ound of optimal order with respect to the space and time discretization. In the analysis, we combine the theory derived for
tationary elliptic problems on spatial networks with classical finite element results for hyperbolic problems. Finally, we present
umerical experiments that confirm our theoretical findings.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Wave equation; Network model; Numerical homogenization; Localized orthogonal decomposition

1. Introduction

The modeling of physical phenomena using partial differential equations (PDEs) is a major topic in science
nd engineering. Numerical simulation of these models is often challenging due to their great complexity. In some
pplications it is possible to introduce a so called spatial network model in order to reduce complexity, while still
aintaining the main features of the original model. Flow in porous rock formations [1] and modeling of fiber

ased elastic materials [2] are two examples where this technique is commonly applied. More specifically, if we
onsider a fiber based material consisting of three dimensional cylinders, we may replace these by one dimensional
eams that together form a web like spatial network, defined by nodes, edges and edge weights. However, even if
he complexity of the model is significantly reduced, there are still challenges present when solving equations on
he resulting spatial network, in particular if the corresponding network data (edge weights) are rapidly varying in
pace. For the fiber based model, the network inherits such variations from the geometry and distribution of fibers.
n the case of flow through a porous medium, crack formations and variation in rock permeability contributes to
uch large spatial variations in the network data.
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In this paper, we study wave propagation on spatial networks. We consider a symmetric system matrix K , related
to a weighted graph Laplacian with high data variation, and a diagonal mass matrix M . The displacement u fulfills

M D2
t u + K u = M f,

iven some right-hand side f and appropriate initial and boundary data. This equation can, e.g., arise from a finite
element discretization of the acoustic wave equation posed on a web of connected one dimensional line segments, see
Fig. 3.1. If we allow vector valued solutions it may model elastic wave propagation on a fiber based material. Prior
to our work, wave equations posed on graphs have been studied thoroughly in the literature. For instance, existence
and uniqueness of solutions to linear and non-linear wave equations on graph networks are studied in [3,4] and
solution properties such as eigenvalues, stability, periodicity and propagation speed, are discussed in, e.g., [5,6].
In [7], the importance of elastic wave modeling in porous medium for seismic exploration is emphasized, and the
author defines a pore network model for the analysis of wave properties.

From a numerical point of view, complications arise when the micro-scale features in the network model
affect the solution on the macro scale, and must be resolved in order to obtain accurate approximations. In the
research on numerical methods for solving partial differential equations, there have been extensive investigations
into how to circumvent this problem, mainly by so-called multiscale methods. In short, multiscale methods aim
to construct coarse-scale spaces whose approximation properties are improved in comparison to classical finite
element spaces. This is generally achieved by incorporating problem-dependent information on a fine scale into
the coarse-scale space. Notable examples of such methods include Generalized multiscale finite element method
(GMsFEM) [8–10], gamblets [11], the Localized Orthogonal Decomposition (LOD) method [12,13], and the Super-
LOD method [14,15]. For multiscale methods specifically designed for wave equations, we refer to [16–20], and
for more information on techniques based on numerical homogenization in general, see, e.g., [21–23].

The purpose of this paper is to construct and analyze a LOD based method that efficiently and accurately
approximates solutions to a linear wave equation, posed on a spatial network. LOD is by now a well-established
methodology in the area of multiscale numerical analysis. It was first introduced in [13] and has since then been
further developed for various types of equations, such as elliptic-type in [24,25] and parabolic-type in [26–29]. In
particular, the LOD technique for wave equations is analyzed in [30–34], and its adaptation to spatial network models
was first considered in [35], with theoretical justifications in [36]. The LOD method is based on a decomposition
of the solution space into a coarse-scale and a fine-scale part respectively. In a PDE setting, the coarse and fine
scales appears naturally using nested finite element spaces. Finding coarse scales in spatial networks is less obvious.
In [36,37], the authors address this issue, and find a solution by introducing an artificial coarse scale with minimum
assumptions on its relation to the network. By incorporating fine scale features into the coarse-scale space, we
obtain a modified space with enhanced approximation properties. We remark that the construction of the modified
space is feasible in terms of computational complexity, but challenging due to the computations made on the fine
scale. However, for time-dependent problems, the LOD technique is significantly enhanced, in the sense that the
fine-scale features need only be solved for once, and can then be re-used in each time step.

In combination with the spatial discretization, an energy conserving temporal scheme is deployed to construct
the fully discretized method. For the proposed method, we state and prove a priori optimal order convergence with
respect to both space and time, under the assumption of so called well-prepared initial data. To derive a priori
error bounds, we utilize the theory established for stationary elliptic spatial network models, [36,37], and combine
these results with numerical PDE techniques for hyperbolic problems. We further present numerical experiments
that confirm our theoretical findings. In a final numerical example we consider elastic wave propagation in a spatial
network modeling a fiber based material.

The paper is organized as follows. In Section 2 we discuss the network setting, including notation and
assumptions. Section 3 introduces the linear wave equation on the spatial network as our model problem, and proves
regularity results for the solution. The derivation of the novel method is presented in Section 4, and corresponding
error analysis is done in Section 5. Finally, we provide numerical examples that confirm our theoretical findings in
Section 6.

2. Network notation and assumptions

Throughout the paper, we consider a network setting similar to the one presented in [36,37]. That is, we consider
a spatial network represented by the connected graph G = (N , E), where N ⊂ Rd is a finite set of nodes, and{ }
E = {x, y} : x and y are connected by an edge
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s an edge set of unordered edge pairs. We introduce the notation x ∼ y to imply that {x, y} ∈ E . In such cases,
we call x and y adjacent nodes, with |x − y| denoting the length (Euclidean norm) of their connecting edge. The
onsidered network is embedded into a spatial domain Ω ⊂ Rd , where we denote by Γ ⊆ ∂Ω the set of nodes on
he boundary to which we apply a Dirichlet type condition. The set Γ is assumed to be non-empty, i.e., it contains
t least one node. Moreover, for simplicity, we assume a hypercube domain Ω = [0, 1]d . Let V̂ denote the space

of real functions defined on N , and let V be the function space V̂ with imposed homogeneous Dirichlet boundary
ondition, i.e.,

V := {v ∈ V̂ : v(x) = 0, x ∈ Γ }.

iven a subset ω ⊂ Ω , we define the subset of nodes contained in ω as N (ω) := N ∩ ω, where we will use the
bbreviation N (x) = N ({x}) for any node x ∈ N . The standard inner product on V̂ on a subset ω is then defined
s

(u, v)ω :=

∑
x∈N (ω)

u(x)v(x),

ith (·, ·) = (·, ·)Ω .
We continue by defining some crucial operators that are frequently used throughout the paper. First of all, for

x ∈ N , let Mx : V̂ → V̂ be the diagonal linear operator defined by

(Mxv, v) =
1
2

∑
y∼x

|x − y|v(x)2.

For subdomains ω ⊂ Ω , we abbreviate Mω :=
∑

x∈N (ω) Mx , and for the full domain we set M := MΩ . The operator
M further defines a norm, namely

⏐⏐v⏐⏐M := (Mv, v)1/2. Here, one can interpret
⏐⏐1⏐⏐2M , i.e., the squared M-norm of

the constant function 1 ∈ V̂ , as the mass of the network.
We introduce the reciprocal edge-length weighted graph Laplacian as the operator L x : V̂ → V̂ defined by

(L xv, v) =
1
2

∑
y∼x

(
v(x) − v(y)

)2

|x − y|
,

with similar abbreviations Lω :=
∑

x∈N (ω) L x and L := LΩ . The weighted Laplacian L is a symmetric and positive
semi-definite operator, and hence defines the semi-norm

⏐⏐v⏐⏐L := (Lv, v)1/2.
At last, we introduce the symmetric and positive semi-definite linear operator

K : V → V,

which is to be used in our model problem. We assume K to be bounded and coercive with respect to the operator
L , i.e.,

α(Lv, v) ≤ (Kv, v) ≤ β(Lv, v), ∀v ∈ V, (2.1)

where 0 < α ≤ β < ∞. We further assume that K is local in the sense that it can be written as K =
∑

x∈N Kx ,
ith Kx : V̂ → V̂ being symmetric, positive semi-definite, with support on nodes adjacent to x . Since Γ ̸= ∅,

.e., there is at least one fixed node, and since G is connected, it holds that the operator L , and therefore also K , is
nvertible. The operator K moreover defines the norm

⏐⏐v⏐⏐K := (Kv, v)1/2.

xample 2.1. Let K =
∑

x∈N Kx , where

(Kxv, v) =
1
2

∑
y∼x

γxy
(v(x) − v(y))2

|x − y|
.

Here, γxy ∈ (0,∞) is a material parameter for the connecting edge {x, y}, e.g., heat conductivity in the case of heat
transfer. This operator K satisfies all assumptions made above, with α = minx,y∈N γxy > 0 and β = maxx,y∈N γxy .
We note that K corresponds to a one dimensional finite element stiffness matrix with a varying diffusion parameter
γ that is piecewise constant on the edges of the network. The matrix M corresponds to the lumped one dimensional
finite element mass matrix.
3
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emark 2.2. The model and corresponding analysis presented in this paper can further be extended to vector
alued functions, by letting

V̂ := V̂ n
= V̂ × · · · × V̂  

n times

ith elements written as v = [v(1), . . . , v(n)], where v( j) ∈ V̂ for j = 1, . . . , n, and further defining operators M
nd L by applying corresponding scalar valued operators component-wise. There is also the possibility to define
vector-valued operator K to model, e.g., elastic waves. However, we remark that a vector-valued operator has a

arger kernel, and therefore requires more nodes in Γ in order to be invertible. For more information on the vector
alued setting, we refer to the work done in [36,37]. We return to this setting in the final numerical example in
ection 6.

For the error analysis, it will be convenient to use the Bochner spaces, with norms defined as⏐⏐v⏐⏐L1(0,T ;B) :=

∫ T

0

⏐⏐v(t)
⏐⏐
B dt,⏐⏐v⏐⏐L∞(0,T ;B) := max

[0,T ]

⏐⏐v(t)
⏐⏐
B,

here B will be replaced by M , L , or K . The Bochner space norms will be commonly abbreviated by omitting the
emporal interval, such that we write, e.g., L1(M) := L1(0, T ; M).

At last, we state necessary properties of the network for the analysis to hold. For this purpose, we first introduce
oxes BR(x) ⊂ Ω , centered at x = (x1, . . . , xd ) with length 2R. These are constructed by letting

B̃R(x) := [x1 − R, x1 + R) × · · · × [xd − R, xd + R),

nd then defining

BR(x) := B̃R(x) ∪
(
B̃R(x) ∪ ∂Ω

)
. (2.2)

In this way, BR(x) does not include its upper bound in any dimension, except for the cases when the boundary is
art of the global boundary ∂Ω . We are now prepared to introduce following assumptions on the network.

ssumption 2.3 (Network Properties). There is a homogeneity parameter, R0, on the coarse length-scale, such that
he network satisfies

1. (homogeneity) for all R ≥ R0 and any x ∈ Ω , there is a uniformity constant σ and a network density ρ,
such that

ρ ≤ (2R)−d
⏐⏐1⏐⏐2M,BR (x) ≤ σρ,

2. (connectivity) for all R ≥ R0, x ∈ Ω , there exists a connected subgraph Ḡ = (N̄ , Ē), containing

(a) all edges with at least one endpoint in BR(x),
(b) no edges with at least one endpoint not in BR+R0 (x),

3. (locality) the maximum edge length is smaller than R0, i.e.,

max
{x,y}∈E

|x − y| < R0,

4. (boundary density) for all y ∈ Γ , there exists x ∈ N (Γ ) such that |x − y| < R0.

By assuming homogeneity, we require the density of a small portion of network, i.e., on the R0-scale, to be
omparable with the density of the network on the entire domain Ω . Moreover, the locality assumption prohibits
he network from having single edges connecting over distances larger than R0. At last, the connectivity property
mplies that the network, on the R0-scale, is sufficiently connected. The connectivity assumption can further be used
o derive certain inequalities valid on the network, such as analogous versions of Friedrich and Poincaré inequalities
see [36, Lemma 3.2] for these results). They are in turn used to prove stability of interpolation onto the network,
tated later on in Lemma 4.1, which is crucial for the analysis made in this paper. For more discussion on the
ssumptions, and in particular the connectivity, see [36, Section 3].
4
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. Model problem and finite elements

We consider the problem (on strong form) to find u(t) ∈ V such that

M D2
t u + K u = M f,

u(·, 0) = g,

Dt u(·, 0) = h,

(3.1)

ith corresponding weak form

(M D2
t u, v) + (K u, v) = (M f, v), ∀v ∈ V . (3.2)

We remark that existence and uniqueness of a global solution to the model problem is guaranteed by the
Picard–Lindelöf theorem. This result follows by writing (3.1) as a system of first order differential equations, i.e.,

Dt y(t) = f̃ (t, y(t)) =

[
0 I

M−1 K 0

]
y(t) +

[
0

f (t)

]
with y(t) =

[
u(t) Dt u(t)

]T, where the right-hand side f̃ (t, y(t)) is globally Lipschitz continuous with respect to
y(t).

Before discretizing (3.2) in time and space, we begin by deriving necessary results on regularity for the solution.

3.1. Regularity

We define iteratively

w0 := g, w1 := h, w j := D j−2
t f (0) − M−1 Kw j−2, j = 2, 3, . . . , (3.3)

and consider the following equation on strong form

M Dm+2
t u(t) + K Dm

t u(t) = M Dm
t f (t),

Dm
t u(0) = wm,

Dm+1
t u(0) = wm+1,

with corresponding weak form

(M Dm+2
t u(t), v) + (K Dm

t u(t), v) = (M Dm
t f (t), v), ∀v ∈ V . (3.4)

We deduce following lemma on regularity of the solution.

Lemma 3.1. Let u(t) ∈ V be the solution to (3.4) for m = 0, 1, 2, . . .. Then u satisfies the regularity estimate⏐⏐Dm+1
t u(t)

⏐⏐
M +

⏐⏐Dm
t u(t)

⏐⏐
K ≤ 2

√
2
(⏐⏐wm+1

⏐⏐
M +

⏐⏐wm
⏐⏐

K + 2
⏐⏐Dm

t f
⏐⏐

L1(M)

)
.

roof. Choose test function v = Dm+1
t u in (3.4), and we have

1
2

d
dt

(⏐⏐Dm+1
t u

⏐⏐2
M +

⏐⏐Dm
t u
⏐⏐2

K

)
≤
⏐⏐Dm

t f
⏐⏐

M

⏐⏐Dm+1
t u

⏐⏐
M .

Integrating from 0 to t , and applying Young’s inequality, further gives⏐⏐Dm+1
t u(t)

⏐⏐2
M +

⏐⏐Dm
t u(t)

⏐⏐2
K ≤

⏐⏐Dm+1
t u(0)

⏐⏐2
M +

⏐⏐Dm
t u(0)

⏐⏐2
K + 2

∫ t

0

⏐⏐Dm
t f
⏐⏐

M

⏐⏐Dm+1
t u

⏐⏐
M ds

≤
⏐⏐wm+1

⏐⏐2
M +

⏐⏐wm
⏐⏐2

K +
⏐⏐Dm+1

t u
⏐⏐

L∞(M) · 2
⏐⏐Dm

t f
⏐⏐

L1(M)

≤
⏐⏐wm+1

⏐⏐2
M +

⏐⏐wm
⏐⏐2

K +
1
2

⏐⏐Dm+1
t u

⏐⏐2
L∞(M) + 2

⏐⏐Dm
t f
⏐⏐2

L1(M).

rom here, we can take the maximum on both sides of the inequality, and move the
⏐⏐Dm+1

t u
⏐⏐

L∞(M)-term to the
eft-hand side, to get

1 ⏐⏐Dm+1u
⏐⏐2

∞ ≤
⏐⏐wm+1

⏐⏐2 +
⏐⏐wm

⏐⏐2 + 2
⏐⏐Dm f

⏐⏐2
1 .
2 t L (M) M K t L (M)

5
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y inserting this, we find the total estimate⏐⏐Dm+1
t u(t)

⏐⏐
M +

⏐⏐Dm
t u(t)

⏐⏐
K ≤ 2

√
2
(⏐⏐Dm+1

t u(0)
⏐⏐

M +
⏐⏐Dm

t u(0)
⏐⏐

K + 2
⏐⏐Dm

t f
⏐⏐

L1(M)

)
= 2

√
2
(⏐⏐wm+1

⏐⏐
M +

⏐⏐wm
⏐⏐

K + 2
⏐⏐Dm

t f
⏐⏐

L1(M)

)
,

here the
√

2 comes from removing the squares. □

In the error analysis presented in Section 5, we derive an optimal order convergence for the novel method
presented in this paper. However, the estimate includes several higher orders of temporal derivatives of the solution,
why the result in Lemma 3.1 is of importance. The bounds are consequently stated in terms of initial data w j and
derivatives of the source function D j

t f , and we require that these functions behave nicely in corresponding norms.
For this purpose, we introduce the following definition on well-prepared and compatible data, which works as a
network analogy of [31, Definition 4.5].

Definition 3.2 (Compatibility and Well-Preparedness of Data). Let m ∈ N, and let {w j }
m+1
j=0 be as defined in (3.3).

We say that the data is well-prepared and compatible of order m, if
m∑

j=0

⏐⏐D j
t f
⏐⏐

L1(M) +

m∑
j=0

⏐⏐w j
⏐⏐

K +
⏐⏐wm+1

⏐⏐
M ≤ Cw, f ,

where Cw, f is independent of the complex features that arise from the network.

Remark 3.3. We note that if g = h = D j f (0) = 0 for j = 0, . . . ,m − 2, the well-preparedness and compatibility
of order m is trivially fulfilled. Also, by simply having initial data that makes the problem (3.1) well-posed, we
immediately have well-preparedness of order 0. In other cases, we emphasize that Cw, f is in fact computable, and
it can therefore always be examined a priori that the data satisfies the required well-preparedness for the theoretical
results to hold.

3.2. Temporal discretization

We begin the discretization by introducing the temporal scheme to be used for our method (see [38, Section 13]),
along with necessary energy conservation and estimation results. Let 0 =: t0 < t1 < · · · < tN := T be a partition
with uniform time step τ = tn − tn−1, and denote un

= u(tn). The temporally discrete version of (3.1) is defined
as: find un

∈ V such that

(M∂t ∂̄t un, v) + (K 1
2 (un+1/2

+ un−1/2), v) = (M f n, v), ∀v ∈ V, (3.5)

for n ≥ 2, with initial values u0, u1
∈ V . Here ∂t un

= (un+1
− un)/τ and ∂̄t un

= (un
− un−1)/τ denote the

forward and backward discrete derivative of un , respectively, and un+1/2
:= (un+1

+un)/2. The average taken in the
(K ·, ·)-term is done for stability and accuracy purposes. We continue by investigating how this particular average
relates to the term u(tn). By Taylor expansion,

u(tn+1/2) = u(tn) + Dt u(tn)
τ

2
+

∫ tn+1/2

tn
D2

t u(s)(tn+1/2 − s) ds,

u(tn−1/2) = u(tn) − Dt u(tn)
τ

2
+

∫ tn

tn−1/2

D2
t u(s)(s − tn−1/2) ds.

y adding these two lines, we see that the average is related to u(tn) as

1
2

(
u(tn+1/2) + u(tn−1/2)

)
= u(tn) +

1
2
Θn

D2
t u
.

Here, for convenience later on, we have defined

Θn
g :=

∫ tn+1/2

g(s)Λ[tn−1/2,tn+1/2](s) ds, (3.6)

tn−1/2

6
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w

N

w
c

here Λ[a,b] is a hat function in time over the interval [a, b], i.e.,

Λ[a,b](t) :=

{
t − a, t ∈ [a, a+b

2 ],
b − t, t ∈ [ a+b

2 , b],
(3.7)

such that |Λ[a,b]| ≤ (b − a)/2.
Following the calculations in [38, Lemma 13.2], the following energy conservation law is deduced.

Lemma 3.4. The solution of (3.5), with source function f = 0, satisfies⏐⏐∂t un
⏐⏐2

M +
⏐⏐un+1/2

⏐⏐2
K =

⏐⏐∂t u0
⏐⏐2

M +
⏐⏐u1/2

⏐⏐2
K , for n ≥ 0.

We furthermore derive stability estimates for the solution un of (3.5) in terms of given data. The result in the
following lemma will be useful later on for the error estimates in Section 5.

Lemma 3.5. The solution un
∈ V to (3.5) satisfies the estimate⏐⏐∂t un

⏐⏐
M +

⏐⏐un+1/2
⏐⏐

K ≤ C
(⏐⏐∂t u0

⏐⏐
M +

⏐⏐u1/2
⏐⏐

K +

n∑
i=1

τ
⏐⏐ f i
⏐⏐

M

)
.

Proof. We consider (3.5) with test function

v =
1

2τ

(
un+1

− un−1)
=

1
2

(
∂t un

+ ∂t un−1)
=

1
τ

(
un+1/2

− un−1/2).
The first term on the left-hand side can then be written as

(M∂t ∂̄t un, v) =
1

2τ
(M(∂t un

− ∂t un−1), ∂t un
+ ∂t un−1) =

1
2
∂̄t
⏐⏐∂t un

⏐⏐2
M ,

and the second as

(K ( 1
2 (un+1/2

+ un−1/2)), v) =
1

2τ
(K (un+1/2

+ un−1/2), un+1/2
− un−1/2)

=
1
2
∂̄t
⏐⏐un+1/2

⏐⏐2
K .

Inserting this, we find that
1
2
∂̄t
(⏐⏐∂t un

⏐⏐2
M +

⏐⏐un+1/2
⏐⏐2

K

)
=

1
2

(M f n, ∂t un
+ ∂t un−1) ≤

1
2

⏐⏐ f n
⏐⏐

M

⏐⏐∂t un
+ ∂t un−1

⏐⏐
M .

ow multiply both sides by τ and sum over i = 1, . . . , n, and we arrive at⏐⏐∂t un
⏐⏐2

M +
⏐⏐un+1/2

⏐⏐2
K ≤

⏐⏐∂t u0
⏐⏐2

M +
⏐⏐u1/2

⏐⏐2
K +

n∑
i=1

τ
⏐⏐ f i
⏐⏐

M

⏐⏐∂t ui
+ ∂t ui−1

⏐⏐
M . (3.8)

We furthermore note that
n∑

i=1

τ
⏐⏐ f i
⏐⏐

M

⏐⏐∂t ui
+ ∂t ui−1

⏐⏐
M ≤ max

i=1,...,n

⏐⏐∂t ui
+ ∂t ui−1

⏐⏐
M

n∑
i=1

τ
⏐⏐ f i
⏐⏐

M

≤ 2
( n∑

i=1

τ
⏐⏐ f i
⏐⏐

M

)2
+

1
8

(
max

i=1,...,n

⏐⏐∂t ui
+ ∂t ui−1

⏐⏐
M

)2

≤ 2
( n∑

i=1

τ
⏐⏐ f i
⏐⏐

M

)2
+

1
2

(
max

i=0,...,n

⏐⏐∂t ui
⏐⏐

M

)2
,

here in the second step we applied Young’s weighted inequality and in the last step the triangle inequality. We
an further estimate the last term in above inequality by passing it to the left-hand side in (3.8), and get

1
2

(
max

i=0,...,n

⏐⏐∂t ui
⏐⏐

M

)2
≤
⏐⏐∂t u0

⏐⏐2
M +

⏐⏐u1/2
⏐⏐2

K + 2
( n∑

τ
⏐⏐ f i
⏐⏐

M

)2
.

i=1

7
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n total, this yields the estimate⏐⏐∂t un
⏐⏐2

M +
⏐⏐un+1/2

⏐⏐2
K ≤ 2

⏐⏐∂t u0
⏐⏐2

M + 2
⏐⏐u1/2

⏐⏐2
K + 4

( n∑
i=1

τ
⏐⏐ f i
⏐⏐

M

)2
.

Losing the squares on each term now yields the desired result. □

3.3. Spatial discretization

We introduce a coarse finite element mesh of square shaped elements, similar to the one used for the network
models in, e.g., [36,37]. That is, let BR(x) be the boxes defined in (2.2). Moreover, let TH for H = 2−i , i ∈ N, be
a family of partitions of Ω into uniform hypercubes (i.e., squares for d = 2, cubes for d = 3, etc.) of length H .

hat is,

TH := {BH/2(x) : x = (x1, . . . , xd ) ∈ Ω and H−1xi + 1/2 are integers for i = 1, . . . , d}.

he full procedure of introducing a coarse finite element mesh of boxes is visualized in Fig. 3.1.
Next, we introduce a finite element space of first order on the mesh TH . Let Q̂ H be the space of continuous

unctions on Ω who, restricted to T ∈ TH , are linear combinations of the polynomials z = (z1, . . . , zd ) ↦→ zα for
he multi-index α with αi ∈ {0, 1} for i = 1, . . . , d . That is, for, e.g., d = 2, the space Q̂ H consists of bilinear
unctions on TH . Furthermore, let

Q H = {q ∈ Q̂ H : q
⏐⏐
Γ

= 0}

e the corresponding finite element space with incorporated boundary condition. Here we assume that the Dirichlet
oundary condition is imposed on full element edges of the finite element mesh. We moreover wish to restrict these
paces to nodes in Ω . Therefore, let V̂H denote the space of functions in Q̂ H restricted to N , and likewise for VH .

We finish the spatial discretization by introducing a basis for the above defined spaces. Let {yi }
m
i=1 denote the

odes of the mesh TH . By {φi }
m
i=1, we denote the standard Lagrange finite element basis functions that span Q̂ H ,

nd by {ϕi }
m
i=1 their restrictions to the network nodes, which in turn span V̂H . Moreover, we assume, without loss

f generality, that the m0 < m first basis functions {φi }
m0
i=1 span Q H , i.e., the space of functions with zero trace on

.
At this point, we can define the fully discretized problem corresponding to our model problem (3.1) by replacing

he function space V in (3.5) with the finite element space VH . That is, one may seek a solution un
H ∈ VH such

hat

(M∂t ∂̄t un
H , v) + (K 1

2 (un+1/2
H + un−1/2

H ), v) = ( f n, v), ∀v ∈ VH .

However, an issue with this method comes with the fact that the matrix K may contain highly varying and complex
eatures inherited by the structure of the underlying network. These features can in turn not be resolved by the finite
lement space VH , unless a sufficiently small mesh size H is considered. If these network features vary on a scale of
, we therefore require H < ε, which quickly becomes prohibitively small with decreasing ε. The main goal of this
aper is to construct an efficient method by circumventing this issue, mainly by incorporating the features of K into
he finite element space, such that the features of the network can be accurately resolved even for coarse grid sizes
H > ε. The framework, presented in the subsequent section, is based on the localized orthogonal decomposition

ethod. It was first introduced in [13] and was later developed for network models in [35].

. Localized orthogonal decomposition

This section is dedicated to the development of a localized orthogonal decomposition method for wave
ropagation on spatial networks. The main idea is to split the solution space into a coarse-scale part, onto which
unctions can be interpolated, and a fine-scale part that recovers the features not captured by the interpolant. The
ne-scale space can in turn be utilized to incorporate the complex network features into the finite element space to
onstruct a modified space, V ms

H , with the same dimension as VH , but with more accurate approximation properties.
We begin by introducing the interpolant that maps functions from the solution space V onto the finite element
pace VH . The definition is inspired by the construction of the Scott–Zhang interpolant, originally defined in [39].

8
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Fig. 3.1. Workflow of the spatial discretization. An example of fibers creating a network is seen in (A). In (B), a domain Ω has been
efined in which the network is embedded, and the intersections of threads define the node set N , visualized in red. The boxes BR(x j ) are
urther defined by introducing grid coordinates x j , depicted as black squares in (C). At last, (C) shows three examples of nodes placed on
rid boundaries, and which corresponding box they belong to by the definition (2.2). (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

ore precisely, given a basis function ϕ j , let the (unique) element containing y j be denoted by T j , and define
j ∈ V̂H such that (MT jψ j , ϕℓ) = δ jℓ. The interpolant I : V → VH is then defined as

Iv :=

m0∑
j=1

(MT jψ j , v)ϕ j . (4.1)

In [36], several useful results for I are derived. In particular, the following lemma is presented, which is of great
importance for the work in this paper.

Lemma 4.1 (Interpolation Error Bound). If Assumption 2.3 holds, and H ≥ R0, then the interpolant I in (4.1)
atisfies

H−1
⏐⏐v − Iv

⏐⏐ +
⏐⏐Iv⏐⏐ ≤ C

⏐⏐v⏐⏐ , ∀v ∈ V,
M L L

9
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here the constant depends on the connectivity and uniformity of the network, as well as the dimension d, but is
ndependent of the rapidly varying data inherited by the network.

Next, we let the kernel of I define the fine-scale space, i.e.,

W := ker(I) = {v ∈ V : Iv = 0},

such that the features not captured by I are recovered in W . We now seek to use W to compute these fine-scale
etwork features, and in turn embed them into VH . For this purpose, let Q : V → W be the so-called correction
perator, such that Qv ∈ W solves

(KQv,w) = (Kv,w), ∀w ∈ W. (4.2)

Our modified finite element space, V ms
H , is now defined by subtracting the corrected space QVH , from the original

space VH , i.e.,

V ms
H := VH − QVH = {(I − Q)v : v ∈ VH }.

his construction yields the splitting V = V ms
H ⊕ W , such that elements from V ms

H and W are orthogonal with
respect to the K -inner product. Moreover, note that dim(V ms

H ) = dim(VH ), such that the coarse dimension of VH is
preserved, while information about the network and its fine-scale features are now taken into account in V ms

H .
We are now ready to define an ideal version of our novel method. It reads: find ums,n

H ∈ V ms
H such that

(M∂t ∂̄t u
ms,n
H , v) + (K 1

2 (ums,n+1/2
H + ums,n−1/2

H ), v) = ( f n, v), ∀v ∈ V ms
H , (4.3)

ith ums,0
H , ums,1

H being suitable approximations of u(t0) and u(t1) in V ms
H .

The ideal method above manages to approximate the solution accurately, even for coarse grid sizes. The method
owever relies on the global corrector problem (4.2), which in practice becomes prohibitively expensive in terms
f computational complexity. Fortunately, each basis correction satisfies an exponential decay away from its node,
nd can therefore be computed on a local patch surrounding its node. Consequently, the complexity of computing
basis correction is significantly reduced, and its local support moreover makes the corresponding matrix system

parse.
For the localization, we begin by introducing coarse grid patches on the mesh TH . Namely, for any subdomain
∈ Ω , we define

U (ω) := {x ∈ Ω : ∃T ∈ TH : x ∈ T, T ∩ ω ̸= ∅}. (4.4)

That is, for, e.g., an element T ∈ TH , the patch U (T ) contains all nodes in the element T , as well as the nodes in
adjacent elements. Common choices for ω often include elements T ∈ TH or nodes x ∈ N , for which we write

(x) := U ({x}). Moreover, for k ∈ N, we recursively define Uk(ω) := Uk−1(U (ω)), with U1 := U .
Given the coarse grid patches (4.4), we define the restricted fine-scale space

Wω
k := {v ∈ W : supp(v) ⊆ Uk(ω)},

for any subdomain ω ⊆ Ω . Next, we define a localized, element-restricted, corrector operator QT
k : VH → W T

k such
that QT

k v ∈ W T
k solves

(KQT
k v,w) = (KT v,w), ∀w ∈ W T

k .

In this way, the computation of QT
k v is cheap for each element T ∈ TH , due to the restricted domain Uk(T ) it is

computed on. Moreover, we obtain the corresponding global version of the localized correction by summing over
all T ∈ TH , i.e.,

Qkv =

∑
T ∈TH

QT
k v,

since the matrix KT sums up to K . We are now ready to define the localized multiscale space in a similar fashion
as V ms

H , but replacing Q by its localized version Qk . That is, we have the space V ms
H,k := VH − Qk VH , spanned by

the corrected basis {ϕi −Qkϕi }
m0
i=1. For an illustration of a corrected basis function computed on a patch Uk(x), see
Fig. 4.1.

10
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Fig. 4.1. The left figure illustrates a typical corrected basis function, ϕi − Qϕi , where H = 2−5, on U6(xi ) with xi = (0.5, 0.5). To the
ight, we see the magnitude of the function on the entire domain. The dashed square in the right figure is U6(xi ).

The localized version of (4.3), and the main method of this paper is stated as: find ums,n
H,k ∈ V ms

H,k such that

(M∂t ∂̄t u
ms,n
H,k , v) + (K 1

2 (ums,n+1/2
H,k + ums,n−1/2

H,k ), v) = ( f n, v), ∀v ∈ V ms
H,k, (4.5)

ith initial values ums,0
H,k , ums,1

H,k ∈ V ms
H,k being suitable approximations of u(t0) and u(t1) from the reference method

3.2).
We end the section by presenting following result, which shows the stability of the time-stepping scheme for

ur main method. The result follows by considering V ms
H,k as test function space in the proof of [38, Lemma 13.2].

roposition 4.2. The solution of (4.5), with source function f = 0, satisfies⏐⏐∂t u
ms,n
H,k

⏐⏐2
M

+
⏐⏐ums,n+1/2

H,k

⏐⏐2
K

=
⏐⏐∂t u

ms,0
H,k

⏐⏐2
M

+
⏐⏐ums,1/2

H,k

⏐⏐2
K
, n ≥ 0.

. Error bounds

In this section we derive error bounds for the localized method (4.5). Before proving the main results, we
ntroduce the necessary operators and their corresponding stability estimates required for the analysis.

.1. Operators and their estimates

For the error analysis, we require a projection onto the space VH with respect to the M-inner product. Therefore,
let PH : V → VH be defined such that PHv ∈ VH solves

(M PHv,w) = (Mv,w), ∀w ∈ VH . (5.1)

Moreover, we introduce the global Ritz-projection onto the multiscale space V ms
H , i.e., the operator Rms

: V → V ms
H

such that Rmsv ∈ V ms
H solves

(K Rmsv,w) = (Kv,w), ∀w ∈ V ms
H .

imilarly, we define its localized version Rms
k : V → V ms

H,k such that Rms
k v ∈ V ms

H,k solves

(K Rms
k v,w) = (Kv,w), ∀w ∈ V ms

H,k .

These operators, together with the localized corrector operator Qk , play crucial roles in the error analysis. The
following lemma on their stability will be frequently used.

Lemma 5.1. The operators Rms
k and Qk are both stable with respect to

⏐⏐ · ⏐⏐K , i.e.,⏐⏐Rms
k v

⏐⏐
K ≤

⏐⏐v⏐⏐K , ⏐⏐Qkv
⏐⏐

K ≤
⏐⏐v⏐⏐K .

Proof. For Rms
k , the stability follows straight-forwardly as⏐⏐Rms

k v
⏐⏐2

K = (K Rms
k v, Rms

k v) = (Kv, Rms
k v) ≤

⏐⏐v⏐⏐K ⏐⏐Rms
k v

⏐⏐
K ,

and similarly for Q . □
k

11
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We further require stability of the operator PH in K -norm. To prove the stability, we first require an inverse
nequality for shape-regular meshes, stated in the following lemma. In the following we use the notation ≲ to
ndicate that there may be a constant independent of the mesh size parameter H that is not explicitly stated.

emma 5.2. Any function v ∈ VH satisfies the inverse inequality⏐⏐v⏐⏐L ,T ≤ Cd,σ H−1
⏐⏐v⏐⏐M,T . (5.2)

roof. For T ∈ TH , define T̂ := {x/H : x ∈ T } as the hypercube scaled to unit size, and define for v ∈ VH the
unction v̂ by

v̂(x̂) = v(H x̂), x̂ ∈ T̂ .

We claim that the
⏐⏐ · ⏐⏐L ,T̂ -norm can be bounded by the

⏐⏐ · ⏐⏐M,T̂ -norm as⏐⏐v⏐⏐L ,T̂ ≤ Cd,σ
⏐⏐v⏐⏐M,T̂ , ∀v ∈ VH . (5.3)

To show this, we first note that

|v(x) − v(y)| =

⏐⏐⏐ 2d∑
i=1

αi (ϕi (x) − ϕi (y))
⏐⏐⏐

≤

( 2d∑
i=1

α2
i

)1/2

  
=:|α|

( 2d∑
i=1

(ϕi (x) − ϕi (y))2
)1/2

≤ |α||x − y|2d/2
√

d,

where in the final step we have used the Lipschitz continuity of ϕi (·) with Lipschitz constant
√

d. Moreover, denote
by Ξi j = (MT̂ϕi , ϕ j ) and we note that⏐⏐v⏐⏐2M,T̂ = (MT̂ v, v) = αTΞα ≥ λ1(Ξ )|α|

2
≥ Cdρ|α|

2,

where λ1(Ξ ) denotes the smallest eigenvalue of Ξ , whose bound used in the last step follows in the same way as
in the proof of [36, Lemma 3.4]. The claim now follows, since⏐⏐v⏐⏐2L ,T̂ =

∑
x∈T̂

1
2

∑
y∼x

(v(x) − v(y))2

|x − y|
≤

∑
x∈T̂

1
2

∑
y∼x

|α|
2
|x − y|2dd

≤ 2dd|α|
2
⏐⏐1⏐⏐M,T̂ ≤ 22dd|α|

2σρ ≤ Cdσ
⏐⏐v⏐⏐2M,T̂ .

Now, it remains to find the relation between the norms of v̂ on T̂ and v on T . We first note that⏐⏐v⏐⏐2M,T =
1
2

∑
x∈N (T )

∑
y∼x

|x − y|v(x)2
=

1
2

∑
x̂∈N (T̂ )

∑
ŷ∼x̂

H |x̂ − ŷ|v(H x̂)2
= H

⏐⏐v̂⏐⏐2M,T̂ ,
where the substitution x = H x̂ was applied. Similarly, we see for the remaining norm that⏐⏐v⏐⏐2L ,T =

1
2

∑
x∈N (T )

∑
y∼x

(v(x) − v(y))2

|x − y|
=

1
2

∑
x̂∈N (T̂ )

∑
ŷ∼x̂

(v(H x̂) − v(H ŷ))2

H |x̂ − ŷ|
= H−1

⏐⏐v̂⏐⏐2L ,T̂ .
nserting these expressions into (5.3) yields⏐⏐v⏐⏐L ,T ≤ Cd,σ H−1

⏐⏐v⏐⏐M,T . □

Using Lemma 5.2, we may furthermore show the stability of PH .

emma 5.3. The operator PH defined in (5.1) satisfies the stability estimate⏐⏐P v
⏐⏐ ≲

⏐⏐v⏐⏐ , ∀v ∈ V .
H K K

12
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roof. First of all, note that using (5.2), we have for v ∈ VH⏐⏐v⏐⏐2L =

∑
T ∈TH

⏐⏐v⏐⏐2L ,T ≤ C
∑

T ∈TH

H−2
⏐⏐v⏐⏐2M,T ≤ C H−2

⏐⏐v⏐⏐2M ,
where the constant C depends on the dimension d . The stability of PH in L-norm then follows, since⏐⏐PHv

⏐⏐
L =

⏐⏐PH (v − Iv) + Iv
⏐⏐

L

≤
⏐⏐PH (v − Iv)

⏐⏐
L +

⏐⏐Iv⏐⏐L
≤ C H−1

⏐⏐PH (v − Iv)
⏐⏐

M +
⏐⏐Iv⏐⏐L

= C H−1
⏐⏐v − Iv

⏐⏐
M +

⏐⏐Iv⏐⏐L
≤ C

⏐⏐v⏐⏐L ,
where the last inequality follows from the interpolation estimate in Lemma 4.1. By (2.1), stability in K -norm follows
as well. □

We continue by stating the necessary exponential decay that the localized corrector operator satisfy, in the
following lemma, proven in [36, Lemma 4.7]. The proof utilizes the same assumptions made in this paper, and
thus the result follows accordingly.

Lemma 5.4. The error between the global corrector operator Q and its localized counterpart Qk , satisfies⏐⏐(Q − Qk)v
⏐⏐

K ≤ Ckd/2 exp(−ck)
⏐⏐v⏐⏐K

for v ∈ V , where the constants are independent of the variations in the data inherited by the network model.

Remark 5.5. The constant c is proportional to σ−1µ−2αβ−1, see [36, Section 3] and [37, Section 5] for the
details. The Poincaré type constant µ is investigated for networks used in the numerical examples of this paper
n [36, Section 3.1]. It is of moderate size unless the distribution of lines is sparse compared to the scale H . Since

we aim for an overall error of order H we will henceforth pick k ∼ log(1/H ). Note that the proportionality constant
n this relation depends on 1/c ∼ µ2σβ/α. The constant C depends on

√
β/α, see proof of [36, Lemma 4.7].

We see the same effect when LOD is applied to elliptic PDEs (see, e.g., the original LOD paper [13]). The
ocalization is negatively affected by high contrast in the diffusion. However, in practice, the localization tend to
ork well even in high contrast regimes, see the numerical examples sections in, e.g., [13,27] and the final numerical

xample in this paper.

We finish the section on operators by deriving necessary estimates for the localized Ritz-projection Rms
k . For

his, we first require an estimate for the global operator Rms, deduced in the following lemma. The proof is based
n standard arguments for Ritz-projections, and is done in similarity with [27, Lemma 3.2], replacing the energy
orm by the K -norm.

emma 5.6. For a solution u ∈ V to (3.1), it holds that⏐⏐u − Rmsu
⏐⏐

K ≤
C H
√
α

⏐⏐ f − D2
t u
⏐⏐

M . (5.4)

The subsequent lemma shows similar estimates for the localized Ritz-projection. In the proof, the exponentially
decaying factor from Lemma 5.4 appears. However, we emphasize that choosing the localization parameter as
k ∼ log(1/H ) makes the exponential factor proportional to H . We show two different results, where the first part
holds for any arbitrary function v ∈ V and requires less regularity, while the second holds for any solution u ∈ V
to (3.2). The derived results are modifications of the result obtained in [31, Lemma 5.3].

Lemma 5.7. Let the localization parameter be chosen such that k ∼ log(1/H ). Then, for any function v ∈ V , the
localized Ritz-projection satisfies the estimate⏐⏐Rms

k v − v
⏐⏐

M ≲ H
⏐⏐Rms

k v − v
⏐⏐

K ≲ H
⏐⏐v⏐⏐K . (5.5)

Moreover, for the solution u ∈ V to (3.2) and its derivatives, we have for i = 0, 1, 2, . . .⏐⏐Rms(Di u) − Di u
⏐⏐ ≲ H

(⏐⏐Di f − Di+2u
⏐⏐ +

⏐⏐Di u
⏐⏐ ). (5.6)
k t t K t t M t K

13
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P
s

N

W
b

s

w

roof. We begin by deriving the estimate (5.6). Define the functions v := Di
t u and f̂ = Di

t f , and observe that v
atisfies the equation

(M D2
t v,w) + (Kv,w) = (M f̂ , w), ∀w ∈ V .

ext, analogously to the proof of [31, Lemma 5.3], define the energy

E(φH ) := (K (v − φH + QkφH ), v − φH + QkφH ), φH ∈ VH . (5.7)

e write the decomposition Rms
k v = vH,k −QkvH,k , and claim that vH,k ∈ VH minimizes the energy E(·). This can

e seen, since first of all

(K (v − Rms
k v), φH − QkφH ) = 0, ∀v ∈ VH ,

by the definition of Rms
k . Therefore, by perturbing vH,k with arbitrary η ∈ VH , and denoting ηms

k := η − Qkη, we
ee that

E(vH,k + η) = (K (v − vH,k + QkvH,k − η + Qkη), v − vH,k + QkvH,k − η + Qkη)

= (K (v − Rms
k v − ηms

k ), v − Rms
k v − ηms

k ) = (K (v − Rms
k v), v) +

⏐⏐ηms
k

⏐⏐2
K

≥ (K (v − Rms
k v), v) = (K (v − Rms

k v), v − Rms
k v) = E(vH,k),

hich shows the claim. Consequently, we can estimate⏐⏐Rms
k v − v

⏐⏐
K =

⏐⏐vH,k − QkvH,k − v
⏐⏐

K

≤
⏐⏐vH − QkvH − v

⏐⏐
K

=
⏐⏐vH − QvH + QvH − QkvH − v

⏐⏐
K

≤
⏐⏐Rmsv − v

⏐⏐
K +

⏐⏐(Q − Qk)vH
⏐⏐

K

≤
C H
√
α

⏐⏐ f̂ − D2
t v
⏐⏐

M + Ckd/2 exp(−ck)
⏐⏐vH

⏐⏐
K ,

(5.8)

where in the last step we applied (5.4) from Lemma 5.6 for the first term, and Lemma 5.4 for the second.
Furthermore, with v = vH + w for w ∈ W , we may apply the following estimate⏐⏐vH

⏐⏐
K =

⏐⏐PHvH
⏐⏐

K =
⏐⏐PH (vH + w)

⏐⏐
K =

⏐⏐PHv
⏐⏐

K ≲
⏐⏐v⏐⏐K , (5.9)

where we used Lemma 5.3 for the last inequality. Combine (5.8) with (5.9), and we have⏐⏐Rms
k v − v

⏐⏐
K ≲

C H
√
α

⏐⏐ f̂ − D2
t v
⏐⏐

M + Ckd/2 exp(−ck)
⏐⏐v⏐⏐K .

Choose k ∼ log(1/H ) and we deduce (5.6).
For the estimates in M-norm, define the error ρk := Rms

k v−v, and consider the dual problem to find z ∈ V such
that

(Kw, z) = (Mw, ρk), ∀w ∈ V,

and the similar dual problem to find zms
H,k ∈ V ms

H,k such that

(Kw, zms
H,k) = (Mw, ρk), ∀w ∈ V ms

H,k .

Subtracting the equations, we note that the Galerkin orthogonality (Kw, z − zms
H,k) = 0 holds for w ∈ V ms

H,k .
Likewise, we have the orthogonality (Kw, z − zms) = 0 in the non-localized space V ms

H , which implies that
z − zms

∈ W = ker(I). Using this, we first note that

(K (z − zms), z − zms) = (K (z − zms), z)

= (M(z − zms), ρk)

= (M(z − zms
− I(z − zms)), ρk)

≤ C H
⏐⏐z − zms

⏐⏐ ⏐⏐ρk
⏐⏐ .
K M

14
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N

M

ext, write zms
H,k = zH,k − Qk zH,k and note that it minimizes the energy E(·) in (5.7), so in a similar fashion as

before we get⏐⏐z − zms
H,k

⏐⏐
K =

⏐⏐z − zH,k + Qk zH,k
⏐⏐

K

≲
⏐⏐z − zH + Qk zH

⏐⏐
K

=
⏐⏐z − zH + QzH − QzH + Qk zH

⏐⏐
K

≲
⏐⏐z − zms

⏐⏐
K +

⏐⏐(Q − Qk)zH
⏐⏐

K

≲ H
⏐⏐ρk
⏐⏐

M + Ckd/2 exp(−ck)
⏐⏐zH

⏐⏐
K .

oreover, it holds that⏐⏐zH
⏐⏐

K =
⏐⏐PH zH

⏐⏐
K =

⏐⏐PH (zH − Qk zH )
⏐⏐

K =
⏐⏐PH zms

⏐⏐
K ≲

⏐⏐zms
⏐⏐

K ≲
⏐⏐ρk
⏐⏐

M ,

where the last two inequalities follow from stability of PH in K -norm, and the fact that
⏐⏐z⏐⏐K ≲

⏐⏐ρk
⏐⏐

M and⏐⏐z − zms
⏐⏐

K ≲ H
⏐⏐ρk
⏐⏐

M . Now, we can deduce⏐⏐ρk
⏐⏐2

M = (Kρk, z) = (Kρk, z − zms
H,k) ≲

⏐⏐ρk
⏐⏐

K (H + Ckd/2 exp(−ck))
⏐⏐ρk
⏐⏐

M , (5.10)

where we used the dual problem for the first equality, and the second follows since (K Rms
k v, zms

H,k) = (Kv, zms
H,k),

and thus (Kρk, zms
H,k) = 0. By choosing k ∼ log(1/H ) in (5.10), we get (5.5), which concludes the proof. □

5.2. Error bounds

This section is dedicated to the derivations of the main result of this paper, namely the optimal order convergence
of the novel method stated in (4.5). As a measure of error, we compare the approximate solution ums,n

H,k to the
reference solution u(tn) in K -norm, as well as the derivative ∂t u

ms,n
H,k versus Dt u(tn) in M-norm, which is analogous

to the standard measurement in the continuous setting for the linear wave equation. For convenience, we begin by
deriving the error in K -norm in Theorem 5.8, and then the error in M-norm in Theorem 5.9, separately. We then
summarize the main result as their combination, where we have additionally added certain assumptions, such as
choice of initial data and its order of compatibility and well-preparedness, to emphasize the convergence order of
the method.

Theorem 5.8. Let the localization parameter be chosen such that k ∼ log(1/H ). Then, the error between the
solution u(t) ∈ V to (3.2) and the solution ums,n

H,k ∈ V ms
H,k to (4.5) satisfies

max
1≤n≤N−1

⏐⏐ums,n+1/2
H,k − u(tn+1/2)

⏐⏐
K

≲ H
(⏐⏐ f

⏐⏐
L∞(M) +

⏐⏐D2
t u
⏐⏐

L∞(M) +
⏐⏐u⏐⏐L∞(K ) + T

⏐⏐D2
t u
⏐⏐

L∞(K )

)
+ τ 2(⏐⏐D4

t u
⏐⏐

L1(M) +
⏐⏐D2

t f
⏐⏐

L1(M) + H
⏐⏐D2

t u
⏐⏐

L1(K )

)
+
⏐⏐∂t u

ms,0
H,k − Rms

k ∂t u(t0)
⏐⏐

M
+
⏐⏐ums,1/2

H,k − Rms
k u(t1/2)

⏐⏐
K
.

(5.11)

Proof. Define the error as

en
:= ums,n

H,k − u(tn) = ums,n
H,k − Rms

k u(tn) + Rms
k u(tn) − u(tn) = θn

k + ρn
k .

For ρn
k , we know from Lemma 5.7 that⏐⏐ρn+1/2

k

⏐⏐
K =

⏐⏐Rms
k u(tn+1/2) − u(tn+1/2)

⏐⏐
K

≲ H
(⏐⏐ f (tn+1/2) − D2

t u(tn+1/2)
⏐⏐

M +
⏐⏐u(tn+1/2)

⏐⏐
K

)
.

For θn
k , we note that it satisfies the equation

(M∂t ∂̄tθ
n
k ,v) + (K 1

2 (θn+1/2
k + θ

n−1/2
k ), v)

= (M∂t ∂̄t u
ms,n
H,k , v) − (M∂t ∂̄t Rms

k u(tn), v) + (K 1
2 (ums,n+1/2

H,k + ums,n−1/2
H,k ), v)

1 (u(t ) + u(t )), v)
− (K 2 n+1/2 n−1/2

15
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w

M

w

a

w

= (M f n, v) − (M∂t ∂̄t Rms
k u(tn), v) − (K u(tn), v) − (K 1

2Θ
n
D2

t u
, v)

= (M D2
t u, v) − (M∂t ∂̄t Rms

k u(tn), v) + (M 1
2Θ

n
D4

t u−D2
t f
, v)

= (Mωn
1 , v) + (Mωn

2 , v) + (M 1
2Θ

n
D4

t u−D2
t f
, v)

where ωn
1 := D2

t u(tn) − ∂t ∂̄t u(tn), ωn
2 := ∂t ∂̄t u(tn) − ∂t ∂̄t Rms

k u(tn), and Θ is the function defined in (3.6). Therefore,
by Lemma 3.5, we have that

⏐⏐∂tθ
n
k

⏐⏐
M +

⏐⏐θn+1/2
k

⏐⏐
K ≤ C

(⏐⏐∂tθ
0
k

⏐⏐
M +

⏐⏐θ1/2
k

⏐⏐
K +

n∑
i=1

τ
(⏐⏐ωi

1

⏐⏐
M +

⏐⏐ωi
2

⏐⏐
M +

⏐⏐Θ i
D4

t u−D2
t f

⏐⏐
M

))
.

At first, we note that by Taylor expansion, we have⏐⏐ωi
1

⏐⏐
M =

⏐⏐∂t ∂̄t u(ti ) − D2
t u(ti )

⏐⏐
M =

⏐⏐⏐⏐ 1
6τ 2

∫ ti+1

ti−1

D4
t u(s)Λ3

[ti−1,ti+1](s) ds
⏐⏐⏐⏐

M

≤
τ

6

∫ ti+1

ti−1

⏐⏐D4
t u(s)

⏐⏐
M ds,

ith Λ[ti−1,ti+1] as defined in (3.7), so that the first sum can be bounded as

n∑
i=1

τ
⏐⏐ωi

1

⏐⏐
M ≤

τ 2

6

n∑
i=1

∫ ti+1

ti−1

⏐⏐D4
t u(s)

⏐⏐
M ds ≤

τ 2

3

∫ tn+1

0

⏐⏐D4
t u(s)

⏐⏐
M ds.

oreover, we can write⏐⏐ωi
2

⏐⏐
M =

⏐⏐∂t ∂̄t u(ti ) − ∂t ∂̄t Rms
k u(ti )

⏐⏐
M =

⏐⏐(I − Rms
k )∂t ∂̄t u(ti )

⏐⏐
M

=
⏐⏐(I − Rms

k )(D2
t u(ti ) + Θ i

D2
t u

)
⏐⏐

M
≤
⏐⏐D2

t ρ
i
k

⏐⏐
M +

⏐⏐(I − Rms
k )Θ i

D2
t u

⏐⏐
M
,

here we can bound the corresponding first sum using Lemma 5.7 as

n∑
i=1

τ
⏐⏐D2

t ρ
i
k

⏐⏐
M ≲ H

n∑
i=1

τ
⏐⏐D2

t u(ti )
⏐⏐

K

nd the second as
n∑

i=1

τ
⏐⏐(I − Rms

k )Θ i
D2

t u

⏐⏐
M

=

n∑
i=1

τ

⏐⏐⏐⏐(I − Rms
k )

∫ ti+1/2

ti−1/2

D2
t u(s)Λ[ti−1/2,ti+1/2](s) ds

⏐⏐⏐⏐
M

≤

n∑
i=1

τ 2

2

⏐⏐⏐⏐ ∫ ti+1/2

ti−1/2

(I − Rms
k )D2

t u(s) ds
⏐⏐⏐⏐

M

≤
τ 2

2

n∑
i=1

∫ ti+1/2

ti−1/2

⏐⏐D2
t u(s) − Rms

k D2
t u(s)

⏐⏐
M ds

≲ τ 2 H
∫ tn+1/2

t1/2

⏐⏐D2
t u(s)

⏐⏐
K ds,

here Λ is the function defined in (3.7). The last part is bounded straight-forwardly as

n∑
i=1

τ
⏐⏐Θ i

D4
t u−D2

t f

⏐⏐
M

=

n∑
i=1

τ

⏐⏐⏐⏐ ∫ ti+1/2

ti−1/2

(D4
t u(s) − D2

t f (s))Λ[ti−1/2,ti+1/2](s) ds
⏐⏐⏐⏐

M

≤
τ 2

2

n∑
i=1

∫ ti+1/2

ti−1/2

⏐⏐D4
t u(s) − D2

t f (s)
⏐⏐

M ds

≤
τ 2

2

∫ tn+1/2

t1/2

⏐⏐D4
t u(s) − D2

t f (s)
⏐⏐

M ds.
16
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I

W

N

T
s

P

F

F

T

n total, θn satisfies the estimate⏐⏐∂tθ
n
k

⏐⏐
M +

⏐⏐θn+1/2
k

⏐⏐
K ≤ C

(⏐⏐∂tθ
0
k

⏐⏐
M +

⏐⏐θ1/2
k

⏐⏐
K +

τ 2

3

∫ tn+1

0

⏐⏐D4
t u(s)

⏐⏐
M ds

+ H
n∑

i=1

τ
⏐⏐D2

t u(ti )
⏐⏐

K

+ τ 2 H
∫ tn+1/2

t1/2

⏐⏐D2
t u(s)

⏐⏐
K ds

+
τ 2

2

∫ tn+1/2

t1/2

⏐⏐D4
t u(s) − D2

t f (s)
⏐⏐

M ds
)
.

e combine the estimates for ρn
k and θn

k , and obtain the total error⏐⏐en+1/2
k

⏐⏐
K ≲ H

(⏐⏐ f (tn+1/2)
⏐⏐

M +
⏐⏐D2

t u(tn+1/2)
⏐⏐

M +
⏐⏐u(tn+1/2)

⏐⏐
K +

n∑
i=1

τ
⏐⏐D2

t u(ti )
⏐⏐

K

)
+ τ 2

(∫ tn+1

0

⏐⏐D4
t u(s)

⏐⏐
M +

⏐⏐D2
t f (s)

⏐⏐
M + H

⏐⏐D2
t u(s)

⏐⏐
K ds

)
+
⏐⏐∂tθ

0
k

⏐⏐
M +

⏐⏐θ1/2
k

⏐⏐
K .

ow take the maximum over n = 1, . . . , N − 1, and we arrive at (5.11). □

heorem 5.9. Let the localization parameter be chosen such that k ∼ log(1/H ). Then, the error between the
olution ums,n

H,k ∈ V ms
H,k to (4.5) and u ∈ V to (3.2) satisfies

max
1≤n≤N−1

⏐⏐∂t u
ms,n
H,k − Dt u(tn+1/2)

⏐⏐
M

≲
⏐⏐∂t u

ms,0
H,k − Rms

k ∂t u(t0)
⏐⏐

M
+
⏐⏐ums,1/2

H,k − Rms
k u(t1/2)

⏐⏐
K

+ τ 2(⏐⏐D4
t u
⏐⏐

L1(M) +
⏐⏐D2

t f
⏐⏐

L1(M) + H
⏐⏐D2

t u
⏐⏐

L1(K ) +
⏐⏐D3

t u
⏐⏐

L∞(M)

)
+ H

(
T
⏐⏐D2

t u
⏐⏐

L∞(K ) +
⏐⏐Dt u

⏐⏐
L∞(K )

) (5.12)

roof. We can split the error as

∂t u
ms,n
H,k − Dt u(tn+1/2) = ∂t u

ms,n
H,k − ∂t Rms

k u(tn) + ∂t Rms
k u(tn) − ∂t u(tn) + ∂t u(tn) − Dt u(tn+1/2)

= ∂tθ
n
k + ∂tρ

n
k + ∂t u(tn) − Dt u(tn+1/2).

rom the proof of Theorem 5.8, we already know that⏐⏐∂tθ
n
k

⏐⏐
M ≲

⏐⏐∂tθ
0
k

⏐⏐
M +

⏐⏐θ1/2
k

⏐⏐
K + H

n∑
i=1

τ
⏐⏐D2

t u(ti )
⏐⏐

K

+ τ 2
(∫ tn+1

0

⏐⏐D4
t u(s)

⏐⏐
M +

⏐⏐D2
t f (s)

⏐⏐
M + H

⏐⏐D2
t u(s)

⏐⏐
K ds

)
.

or ρn
k , we first note that

∂t u(tn) = Dt u(tn) +
1
τ

∫ tn+1

tn
D2

t u(s)(tn+1 − s) ds.

herefore we have, using Lemma 5.7 with k ∼ log(1/H )⏐⏐∂tρ
n
k

⏐⏐
M =

⏐⏐(I − Rms
k )∂t u(tn)

⏐⏐
M

≤
⏐⏐Dt u(tn) − Rms

k Dt u(tn)
⏐⏐

M +
1
τ

⏐⏐⏐⏐(I − Rms
k )

∫ tn+1

tn
D2

t u(s)(tn+1 − s) ds
⏐⏐⏐⏐

M

≤
⏐⏐Dt u(tn) − Rms

k Dt u(tn)
⏐⏐

M +

∫ tn+1 ⏐⏐D2
t u(s) − Rms

k D2
t u(s)

⏐⏐
M ds
tn

17
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T
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M
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w

P

T
r
c

B
g

≲ H
(⏐⏐Dt u(tn)

⏐⏐
K +

∫ tn+1

tn

⏐⏐D2
t u(s)

⏐⏐
K ds

)
≤ H

(⏐⏐Dt u(tn)
⏐⏐

K + τ max
[tn ,tn+1]

⏐⏐D2
t u(s)

⏐⏐
K

)
.

For the last part, we can once again use Taylor expansion to get⏐⏐∂t u(tn) − Dt u(tn+1/2)
⏐⏐

M =

⏐⏐⏐⏐ 1
2τ

∫ tn+1

tn
D3

t u(s)Λ2
[tn ,tn+1](s) ds

⏐⏐⏐⏐
M

≤
τ

8

∫ tn+1

tn

⏐⏐D3
t u(s)

⏐⏐
M ds ≤

τ 2

8
max

[tn ,tn+1]

⏐⏐D3
t u(s)

⏐⏐
M .

ogether we have the estimate⏐⏐∂t u
ms,n
H,k − Dt u(tn+1/2)

⏐⏐
M
≲
⏐⏐∂tθ

0
k

⏐⏐
M +

⏐⏐θ1/2
k

⏐⏐
K + τ 2 max

[tn ,tn+1]

⏐⏐D3
t u(s)

⏐⏐
M

+ τ 2
(∫ tn+1

0

⏐⏐D4
t u(s)

⏐⏐
M +

⏐⏐D2
t f (s)

⏐⏐
M + H

⏐⏐D2
t u(s)

⏐⏐
K ds

)
+ H

( n∑
i=1

τ
⏐⏐D2

t u(ti )
⏐⏐

K + τ max
[tn ,tn+1]

⏐⏐D2
t u(s)

⏐⏐
K +

⏐⏐Dt u(s)
⏐⏐

K

)
.

ake the maximum over n = 1, . . . , N − 1 and we obtain (5.12). □

We finish this section by proving the main result of this paper, which follows by a combination of Theorems 5.8
nd 5.9, together with additional assumptions on the initial data.

orollary 5.10. Let the localization parameter be chosen such that k ∼ log(1/H ), and assume the initial values
f the proposed method, ums,0

H,k , ums,1
H,k , are chosen such that⏐⏐∂t u

ms,0
H,k − Rms

k ∂t u(t0)
⏐⏐

M
+
⏐⏐ums,1/2

H,k − Rms
k u(t1/2)

⏐⏐
K

≤ C(H + τ 2). (5.13)

oreover, assume the data is well-prepared and compatible of order 3 in the sense of Definition 3.2. Then, the
rror between the approximate solution ums,n

H,k to (4.5) and the reference solution u(tn) to (3.2), satisfies⏐⏐∂t u
ms,n
H,k − Dt u(tn+1/2)

⏐⏐
M

+
⏐⏐ums,n+1/2

H,k − u(tn+1/2)
⏐⏐

K
≤ C(H + τ 2),

here the constant C is independent of the complex features inherited by the network structure.

roof. Combining the results from Theorems 5.8 and 5.9, we have the full expression

max
1≤n≤N−1

(⏐⏐∂t u
ms,n
H,k − Dt u(tn+1/2)

⏐⏐
M

+
⏐⏐ums,n+1/2

H,k − u(tn+1/2)
⏐⏐

K

)
≲
⏐⏐∂t u

ms,0
H,k − Rms

k ∂t u(t0)
⏐⏐

M
+
⏐⏐ums,1/2

H,k − Rms
k u(t1/2)

⏐⏐
K

+ τ 2(⏐⏐D4
t u
⏐⏐

L1(M) +
⏐⏐D2

t f
⏐⏐

L1(M) + H
⏐⏐D2

t u
⏐⏐

L1(K ) +
⏐⏐D3

t u
⏐⏐

L∞(M)

)
+ H

(⏐⏐ f
⏐⏐

L∞(M) +
⏐⏐D2

t u
⏐⏐

L∞(M) +
⏐⏐u⏐⏐L∞(K ) + (T + τ )

⏐⏐D2
t u
⏐⏐

L∞(K ) +
⏐⏐Dt u

⏐⏐
L∞(K )

)
.

(5.14)

he first two terms in the right-hand side expression are immediately bounded by the assumption (5.13). For the
emaining terms, we will rely on the regularity result from Lemma 3.1, together with the well-preparedness and
ompatibility of the data. First of all, the result in Lemma 3.1 can be extended to the Bochner space norms as⏐⏐Dm+1

t u
⏐⏐

L1(M) +
⏐⏐Dm

t u
⏐⏐

L1(K ) ≲ T
(⏐⏐wm+1

⏐⏐
M +

⏐⏐wm
⏐⏐

K +
⏐⏐Dm

t f
⏐⏐

L1(M)

)
,⏐⏐Dm+1

t u
⏐⏐

L∞(M) +
⏐⏐Dm

t u
⏐⏐

L∞(K ) ≲
⏐⏐wm+1

⏐⏐
M +

⏐⏐wm
⏐⏐

K +
⏐⏐Dm

t f
⏐⏐

L1(M).

y applying this result to all relevant terms in (5.14), together with the bound from the initial data assumption, we
et the simplified error estimate

max
(⏐⏐∂t u

ms,n
H,k − Dt u(tn+1/2)

⏐⏐ +
⏐⏐ums,n+1/2

H,k − u(tn+1/2)
⏐⏐ )
1≤n≤N−1 M K

18
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F
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o

Fig. 6.1. The network used in the numerical examples. The entire network is shown in the center figure, with smaller areas (illustrated by
the colored frames) presented in detail on the sides.

≲T C(H + τ 2) + H
(⏐⏐ f

⏐⏐
L∞(M) +

2∑
j=0

(⏐⏐w j+1
⏐⏐

M +
⏐⏐w j

⏐⏐
K +

⏐⏐D j
t f
⏐⏐

L1(M)

))

+ τ 2
3∑

j=2

(⏐⏐w j+1
⏐⏐

M +
⏐⏐w j

⏐⏐
K +

⏐⏐D j
t f
⏐⏐

L1(M)

)
.

inally, by the assumption that the data is well-prepared and compatible of order 3, the sought result follows by
efinition 3.2. □

emark 5.11 (Choice of Initial Data). The assumption made in (3.3) on the convergence of the initial data can be
btained by, e.g., choosing ums,0

H,k = Rms
k g and ums,1

H,k = Rms
k g + τ Rms

k h +
τ2

2 D2
t u(0) with D2

t u(0) = f (0) − M−1Kg.
This can be shown by inserting these expressions into (3.3) and writing u(t1) as a Taylor expansion in terms of
u(0).

6. Numerical examples

The LOD method (4.5) and the error bound in Corollary 5.10 are evaluated numerically for three different
problems on the form (3.1). In all three numerical examples, the same two-dimensional network is used. The
first two problems evaluate the method for the operator presented in Example 2.1. Both a homogeneous and an
inhomogeneous wave equation are considered. The third example is related to elastic wave propagation.

The network used in the numerical examples is created by randomly placing straight line segments in the unit
square. The network generation is performed in four steps. First, line segments of length r = 0.07 are randomly
placed with their midpoints in the extended domain [−0.5r, 1 + 0.5r ]2, with a random rotation. The placement of
the line segments and their orientation are chosen from a uniform distribution, and anything placed outside of the
unit square is removed. These segments are added until the total length of the line segments placed is 700. After
this step, the intersections of the line segments are found. These segments are then connected by placing nodes
in all intersections, with any disconnected parts of the network removed. Then, any nodes closer than 10−3r are
merged to get a lower bound on the lengths of the edges. The final step removes all edges that do not have a fixed
endpoint and are connected at only one point to the bulk. This process results in networks with around 150 000
nodes. An illustration of the network is presented in Fig. 6.1. In [36,37], it is numerically shown that this type of
network satisfies Assumption 2.3.

For all numerical examples, the LOD method used to approximate the problems has localization parameter
k = log2(1/H ), and the performance is evaluated for grid sizes H = 2−i , i = 2, 3, 4, 5. In the numerical examples
we use a slightly modified interpolation operator. When computing the nodal variables we evaluate (MT jψ j , v) for
all elements T in the support of the basis function ϕ j , rather than just picking one, and then take the average.
Since the interpolation bound in Lemma 4.1 holds for any choice of element T j in the construction of the nodal
variables, it also holds for the average. This choice of interpolant gives better results when H is fairly large, to a
small additional cost.
19
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T

p

Fig. 6.2. The exact solution to (6.1) at t = απ/
√
λ6, α = 0, 1

3 ,
2
3 , 1.

Fig. 6.3. The convergence of the LOD method. In the left figure, the error bound in Theorem 5.8 is observed with H convergence in the
K -norm, and in the right figure, the error bound in Theorem 5.9 is surpassed with H2 convergence in the M-norm.

6.1. Scalar wave equation

In the first two examples, the operator K defined in Example 2.1 is used with each edge coefficient, γxy , chosen
at random in the interval [0.1, 0.9].

6.1.1. The homogeneous wave equation
In order to get a problem with a known exact solution, we pick the initial value of u to be the solution to the

corresponding generalized eigenvalue problem, Kw = λw. We pick the sixth eigenvalue λ6 ≈ 16 with corresponding
eigenvector w6. Through this construction, we also get well-prepared initial data. We consider⎧⎪⎨⎪⎩

M D2
t u + K u = 0, t ∈ [0, π/

√
λ6]

u = 0, x ∈ Γ = {x ∈ N : x1 ∈ {0, 1}},

u(0) = w6, Dt u(0) = 0.
(6.1)

he solution to this problem is u(t) = cos(
√
λ6t)w6, which has half a period in the given time interval. An illustration

of the exact solution in this time interval can be found in Fig. 6.2.
The solution to this problem is approximated using the LOD method (4.5) with a fine time discretization of

τ = 10−3. The two initial conditions are chosen with the formula presented in Remark 5.11, i.e.,

ums,0
H,k = Rms

k u(0) = Rms
k w6, ums,1

H,k = Rms
k

(
w6 − λ6

τ 2

2
w6

)
,

using that M−1 K u(0) = M−1 Kw6 = λ6 M−1 Mw6 = λ6w6. The convergence results for these simulations are
resented in Fig. 6.3. We see optimal order convergence in both M-norm and K -norm. Note that we present absolute

values of the errors. In order to understand the relative size of the error compared to the solution, we note that the
(preserved) energy of the solution fulfills

|Dt u(t)|2M + |u(t)|2K = |Dt u(0)|2M + |u(0)|2K = |w6|
2
K = λ6|w6|

2
M = λ6 ≈ 16.
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Fig. 6.4. The reference solution un of (6.2) at t = 0, 2
3 ,

4
3 , 2.

Fig. 6.5. The convergence of the LOD method to the reference solution un of (6.2). In these results, it is evident that the LOD approximation
converges linearly with respect to H in the K -norm and quadratically in the M-norm.

6.1.2. The inhomogeneous wave equation
The second numerical example uses the same network and K as in (6.1). Whereas the LOD approximations

in the previous example were compared to an exact solution, the following problem is compared to a reference
solution un computed on the full network discretization. We consider the problem⎧⎪⎨⎪⎩

M D2
t u + K u = M (sin(2π t) · 1) , t ∈ [0, 2]

u = 0, x ∈ ∂Ω ,

u(0) = 0, Dt u(0) = 0,
(6.2)

where 1 ∈ V .
The reference solution un used for this problem is the discretization scheme presented in (3.5). Again, the time

iscretization has high resolution with τ = 2 ·10−3. This reference solution is presented in Fig. 6.4 at four different
imes. The problem is also approximated using the LOD method (4.5) with the same τ . In the LOD method the
nitial conditions ums,0

H,k = ums,1
H,k = 0 are used and motivated by Remark 5.11. The convergence of the LOD method

o the discrete solution un can be found in Fig. 6.5. Again we detect optimal order convergence in both M-norm
nd K -norm.

.2. Elastic wave equation

An elasticity problem is evaluated in the last numerical example using the same network as in the previous two
xamples. In this example, the network is interpreted as a 1 m × 1 m mesh of steel cylindrical wires with radius
w = 0.5 mm. The linear operator K : V → V maps three-dimensional displacements of nodes to three-dimensional
orces resulting from the displacement. Bold notation is used to emphasize vector-valued spaces, operators, and
unctions as presented in Remark 2.2, and for this specific case, the solutions space is V = V 3.

The operator K is composed of two additive parts, the first (KE) modeling the tensile forces resulting from strain
nd compression, and the second (KB) the forces resulting from bending the fibers. Here, we present the definitions
f the operators. For a more detailed explanation of this model, we refer to [35].

.2.1. Elasticity model
The tensile forces are modeled using a linearized version of Hooke’s law as

(KEx v, v) =
1
2

∑
γKE

((v(x) − v(y))T ∂xy)2

|x − y|
,

y∼x
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here ∂xy = (x − y)/|x − y| is the direction of the edge, and the coefficient γKE = E · A is Young’s modulus of
the wire times its cross-section area. In this example, Young’s modulus is 210 GPa.

For the second component, bending stiffness is modeled using a linearized Euler–Bernoulli model. This operator
is composed of two parts, KB = KB(1)

+ KB(2), where KB(1) models forces resulting from bending in the plane of
he network, and KB(2) models forces resulting from bending out of the plane. These two operators are defined as

(KB(k)
x v, v) =∑

y∼x∧z∼x
y ̸=z

γxyz
|x − y| + |x − z|

2

(
(v(y) − v(x))Tη

y,(k)
xyz

|x − y|
+

(v(z) − v(x))Tηz,(k)
xyz

|x − z|

)2

,

or k = 1, 2, where η
y,(2)
xyz = ηz,(2)

xyz = [0, 0, 1]T , ηy,1
xyz = [0, 0, 1]T

× ∂xy, η
y,1
xyz = [0, 0, 1]T

× ∂xz , and
γxyz = E I (|x − y| + |x − z|)−2 where I = 0.25πr4

w = 0.25Ar2
w is the second moment of area of the wire.

The two types of coefficients γxy and γxyz satisfy the relation

γxyz = E A
r2
w

4(|x − y| + |x − z|)2 = γKB
r2
w

4(|x − y| + |x − z|)2 ,

here the magnitude of the forces resulting from bending compared to tensile forces depends on the radius of the
ire and the lengths of the edges, which is expected.
With these operators defined, we can define the operator K used in this numerical example as

(Kv, v) =

∑
x∈N

(Kx v, v), (Kx v, v) = (KEx v, v) + (KB(1)
x v, v) + (KB(2)

x v, v). (6.3)

The coercivity assumption on K for this operator is true depending on the geometry of the network, with the
etwork required to be rigid. Moreover, at least 3 nodes spanning a plane need to be in Γ . We can compute α and
numerically by considering the generalized eigenvalue problem (Kv,w) = λ(Lv,w). By inverse power iteration

nd power iteration respectively, the smallest eigenvalue was found to be α = 11.6343 and the largest β = 642 657.
his spread can be compared to the coefficients γKE ≈ 40 000 and γxyz that are bounded by:

13 ≤ γxyz = E A
r2
w

4(|x − y| + |x − z|)2 ≤ 135 000,

sing that 7 · 10−5
≤ |x − y| ≤ 7 · 10−3. An LOD method has been numerically validated for this model for elliptic

roblems in [36].

.2.2. The inhomogeneous elastic wave equation
The following numerical example interprets the network as a mesh of steel wires fixed at one side with varying

pplied force. We consider the equation⎧⎪⎨⎪⎩
MD2

t u + Ku = M
(
105x2

1 sin(0.4π t) · 1z
)
, t ∈ [0, 10]

u = 0, x ∈ Γ = {x ∈ N : x1 = 0},

u(0) = 0, Dt u(0) = 0,
(6.4)

with K defined as in (6.3), M represents an application of the mass matrix in each coordinate direction, and
1z(x) = [0, 0, 1]T . Similarly to the second numerical example, we measure the error with respect to a reference
solution un computed on the full network with the same time discretization. In this example, we set τ = 0.01. The
reference solution un is presented at three times in Fig. 6.6.

The reference solution un of (6.4) is compared to the approximation calculated using the LOD method (4.5)
with the same τ . Both the ums,0

H,k and ums,1
H,k terms vanish. The convergence rate between reference solution and

approximation with respect to mesh size H , is depicted in Fig. 6.7. We again detect optimal order convergence in
both M-norm and K-norm.

We conclude that the LOD method can be extended to the network setting and be used for efficient solutions to

acoustic and elastic wave propagation problems posed on spatial networks.
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p

Fig. 6.6. Reference solution un of (6.4) at t = 0, 5, 10. The surface is the network model overlaid on a transparent triangularization for
visualization purposes. The square outline is the boundary of the non-displaced network.

Fig. 6.7. The convergence of the LOD method to the reference solution un of (6.4). Similarly to the convergence results for the inhomogeneous
roblem (6.2), the LOD approximation converges linearly with respect to H in the K-norm and quadratically in the M-norm.
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