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Abstract

Personalizing treatments for patients involves a period where different treat-
ments out of a set of available treatments are tried until an optimal treatment
is found, for particular patient characteristics. To minimize suffering and other
costs, it is critical to minimize this search. When treatments have primarily
short-term effects, the search can be performed with multi-armed bandit al-
gorithms (MABs). However, these typically require long exploration periods
to guarantee optimality. With historical data, it is possible to recover a struc-
ture incorporating the prior knowledge of the types of patients that can be
encountered, and the conditional reward models for those patient types. Such
structural priors can be used to reduce the treatment exploration period for
enhanced applicability in the real world. This thesis presents work on design-
ing MAB algorithms that find optimal treatments quickly, by incorporating
a structural prior for patient types in the form of a latent variable model.
Theoretical guarantees for the algorithms, including a lower and a matching
upper bound, and an empirical study is provided, showing that incorporating
latent structural priors is beneficial. Another line of work in this thesis is the
design of simulators for evaluating treatment policies and comparing algorithms.
A new simulator for benchmarking estimators of causal effects, the Alzheimer’s
Disease Causal estimation Benchmark (ADCB) is presented. ADCB combines
data-driven simulation with subject-matter knowledge for high realism and
causal verifiability. The design of the simulator is discussed, and to demonstrate
its utility, the results of a usage scenario for evaluating estimators of causal
effects are outlined.

Keywords

Treatment personalization, fixed-confidence pure exploration, latent bandits,
structural priors, historical data, policy optimization, benchmark simulators

iii





List of Publications

Appended publications

This thesis is based on the following publications:

[Paper I] Newton Mwai Kinyanjui, and Fredrik D. Johansson, ADCB: An
Alzheimer’s disease simulator for benchmarking observational estimators
of causal effects.
Conference on Health, Inference, and Learning, pp.103-118, PMLR.

[Paper II] Newton Mwai Kinyanjui, Emil Carlsson, Fredrik D. Johansson,
Fast Treatment Personalization with Latent Bandits in Fixed-Confidence
Pure Exploration
Transactions on Machine Learning Research Journal. April 2023.

v



vi

Other publications

The following publications were published during my PhD studies, or are
currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] Newton Mwai Kinyanjui, Fredrik D. Johansson, ADCB: An Alzheimer’s
disease benchmark for evaluating observational estimators of causal effects
Machine Learning for Health (ML4H) - Extended Abstract (December
2021), arXiv:2111.06811.



Acknowledgment

I would like to express my deepest appreciation to my PhD advisor, Fredrik
D. Johansson, for his helpful advice, unwavering guidance and helpful contri-
butions in my research. I’m also extremely grateful to my co-advisor Morteza
Chehreghani and my examiner Devdatt Dubhashi for their suggestions and
invaluable insight into my PhD studies.

I am thankful for my PhD colleagues at DSAI who are pleasant to work
with, among them Emil, Emilio, Hampus, Arman, Juan, Christopher, Riccardo,
Markus, David, Firooz, Peter, Tobias, Simon, Mehrdad, Mena, Alexander,
Filip, Daniel, Fazeleh, Hanna, Niklas and Hannes. Many thanks to the rest
of the division including all faculty, post-docs and administrators. I am also
grateful to have incredible office buddies Adam, Anton, Lena and Lovisa who
lighten my days at the office. Special thanks to the fellow members of the
WASP PhD council, Amandine, Anoud, Anton, Eduardo, Hooman, Mattias,
Shuangshuang, and Kristin, who have been a delight to work with.

My PhD endeavour would not have been possible without my family and
friends. I’m extremely grateful to my mum, Mumbi, for her thoughts and
emotional support. I’d also like to thank my brother Kim and my sister Njoki
for their relentless support. I very much appreciate my uncles Murimi, Muriithi,
Jeremiah, Baru and their families for their profound belief in me. Special
thanks to my cousins Shugu, Njoki, Leah, Mwai, Justin, Angela, Karen and
Muthara for being my biggest cheer leaders. I’m also thankful to all my new
friends in Gothenburg for their moral support, including Nader, Anna and
Cate.

This work was supported in part by WASP (Wallenberg AI, Autonomous
Systems and Software Program) funded by the Knut and Alice Wallenberg
foundation. The computations were enabled by resources provided by the
Swedish National Infrastructure for Computing (SNIC) at Chalmers Centre
for Computational Science and Engineering (C3SE) partially funded by the
Swedish Research Council through grant agreement no. 2018-05973. Thank
you to both organizations.

vii





Contents

Abstract iii

List of Publications v

Acknowledgement vii

I Summary 1

1 Introduction 3

2 Background 5

2.1 Multi-armed bandits for treatment personalization . . . . . . . 5

2.1.1 Contextual bandits . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Latent Bandits . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Pure exploration . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Historical data in treatment personalization . . . . . . . . . . . 9

2.2.1 Historical data and environments for evaluating sequen-
tial decision-making in healthcare . . . . . . . . . . . . . 10

3 Summary of Included Papers 11

3.1 ADCB: An Alzheimer’s disease simulator for benchmarking ob-
servational estimators of causal effects . . . . . . . . . . . . . . 11

3.2 Fast Treatment Personalization with Latent Bandits in Fixed-
Confidence Pure Exploration . . . . . . . . . . . . . . . . . . . 14

4 Discussion and Future Work 17

Bibliography 19

II Appended Papers 23

Paper I - ADCB: An Alzheimer’s disease simulator for bench-
marking observational estimators of causal effects.

ix



x CONTENTS

Paper II - Fast Treatment Personalization with Latent Bandits in
Fixed-Confidence Pure Exploration



Part I

Summary

1





Chapter 1

Introduction

With recent advances in machine learning, there is growing interest in investig-
ating how machine learning can be used in personalized medicine. Personalized
medicine entails using individual patient charactersitics (e.g. a demographic
variable, a biomarker, or a result of a diagnostic test) to identifiy the optimal
treatment among a set of treatments at a point in time. Treatment person-
alization is particularly desirable in chronic diseases like Alzheimers Disease
(AD), or Rheumatoid Arthritis (RA), where treatment and critical care is an
ongoing process, typically undertaken over long periods of time [Chakraborty
and Moodie, 2013].

An approach for exploring alternative treatments is multi-armed ban-
dit algorithms (MABs) [Gittens and Dempster, 1979; Lai, Robbins et al.,
1985]. MABs were originally motivated by medical applications in drug test-
ing [Thompson, 1933] and they have a recent history of personalization applic-
ations, with popularity growing since the proposed application in personalized
news recommendation [Li et al., 2010]. However, MABs tend to be sample-
hungry (meaning that they usually have long exploration periods), to the point
of being unsuitable for finding personalized treatments in real-world clinical
settings. Because a long treatment search phase can prolong unnecessary
suffering, it must be avoided and minimized whenever possible. Leveraging
domain knowledge, for example prior knowledge of the types of patients that
can be encountered is a possible solution to designing applicable MABs for
treatment personalization.

Evaluating treatment policies and comparing treatment personalization
algorithms is challenging, especially in the healthcare domain. Real-world
implementation is often not an option and basing evaluation on observational
data must rely on strong assumptions and access to large samples [Rosenbaum,
Rosenbaum and Briskman, 2010]. As a result, methods researchers in these areas
often turn to simulators for benchmarking [Dorie et al., 2019; Chan et al., 2021;
Kuo et al., 2022]. However, benchmark simulators rarely incorporate causally
verifiable subject-matter knowledge, which results in data that deficiently
mirrors practice, particularly in healthcare [Hernán, 2019].

This licentiate thesis will discuss treatment personalization as sequential
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4 CHAPTER 1. INTRODUCTION

decision-making in healthcare with historical data.
Here are the specific goals of this thesis:

G1: To introduce and discuss treatment personalization as an optimization
objective in sequential decision-making in healthcare with multi-armed
bandits (MABs).

G2: To introduce and discuss leveraging historical data in healthcare to design
efficent treatment personalization MAB algorithms with structural priors.

G3: To discuss a method to build a semi-synthetic benchmark simulator that
incorporates causally verifiable domain knowledge. This is to provide a
realistic environment to compare sequential decision-making algorithms
in healthcare.

Outline of Thesis: This thesis begins with a concise background introdu-
cing multi-armed bandit algorithms (MABs), and introducing how historical
data is leveraged in designing personalization algorithms. A brief summary of
the two appended papers included in this thesis is then presented. A concluding
discussion on the current work, the limitations, and directions for future work
then follows. The last section comprises the two appended papers.



Chapter 2

Background

2.1 Multi-armed bandits for treatment person-
alization

A multi-armed bandit problem is described as follows: An agent (a treatment
personalization strategy) and an environment (patient) interact in sequence
over T rounds. For each round, the agent takes an action At ∈ A = {1, ...,K}
(e.g. trial treatment) and gets a reward Rt ∈ R (e.g. treatment outcomes). The
aim of the agent is to take actions in a manner that maximizes the cumulative
reward at the end of the T rounds.

More formally, for a set of K actions, A = {1, ...,K}, the environment sets
K reward probability distributions ν1, ..., νK with their respective parameters
(which for Gaussian distributions with the same standard deviation σ are the
means µ ∈ [0, 1]K ; with µ(a) := E[νa] as the mean reward for action a). The
problem then proceeds as shown below in Algorithm 1.

Algorithm 1: Multi-Armed Bandit Problem

for each round t = 1, 2, ..., T do
at ∈ A is chosen using an exploration-exploitation strategy
a new independent, stochastic reward rt is realized drawn from νat,µ̂

updates are made for estimated parameters µ̂

The key challenge in the MAB problem is what is referred to as the
exploration-exploitation dilemma: deciding when to explore (choose new actions)
or exploit (choose actions already selected). The challenge arises because
the arm parameters µ̂(a), a ∈ A are unknown to the agent (algorithm used
interchangeably) when the rounds start. The parameters µ̂(a) have to be
estimated over the rounds, and they are never perfect, even with a large number
of rounds T [Elena, Milos and Eugene, 2021]. Therefore, a good MAB algorithm
is an algorithm that has a provably good exploration-exploitation strategy,
that optimize typically for the cumulative reward or regret. Popular MAB
algorithms are derived variations of the Upper-confidence Bound (UCB) [Auer,
Cesa-Bianchi and Fischer, 2002] and Thompson Sampling [Thompson, 1933;
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6 CHAPTER 2. BACKGROUND

Chapelle and Li, 2011; Agrawal and Goyal, 2012].
As mentioned, MAB algorithms are designed to maximize the cumulative

reward, which is defined as:

ST =

T∑

t=1

rt

Regret: To measure how well the algorithm does well across different
problem instances, a standard approach is to compare the MAB algorithm’s
cumulative reward to the best-arm benchmark, µ∗ defined as the expected
reward of always choosing the best action [Slivkins et al., 2019]. The regret at
round T for a MAB algorithm is defined as:

R(T ) = µ∗T −
T∑

t=1

µ(at)

where µ∗ := maxa∈A µ(a). Minimizing the regret is equivalent to maximizing
the reward.

To give guarantees on how well a MAB (exploration-exploitation) strategy
can perform, regret bounds are typically used. Regret lower bounds, which
quant ify how challenging a bandit problem is in the worst-case sense (property
of a policy, together with a set of environments and a horizon [Lattimore and
Szepesvári, 2020]) are used together with upper bounds which describe how
well the MAB strategy match the lower bound.

In regret minimization, there is the Ω(
√
KT ) lower bound; For any bandit

algorithm, there exists a problem instance such that E[R(T )] ≥ Ω(
√
KT ).

Variants of UCB and Thompson sampling strategies have been shown to have
theoretical worst-case guarantees E[R(T )] ≤ O(

√
KT log(T )), which match

the lower bound up to logarithmic factors [Slivkins et al., 2019; Lattimore and
Szepesvári, 2020].

2.1.1 Contextual bandits

In personalization applications, contextual multi-armed bandits (CMABs)
have been introduced, which aim to answer not which action is best, but in
what situation each action is best. CMABs follow when the MAB problem
described above is augmented with context : information about each instance, for
example individual patient characteristics. I.e, for a treatment personalization
application, at the start of the round, the agent also observes a patient’s context
covariates (e.g., lab measurements) as a draw of a random variable X ∈ Rd.
The CMAB proceeds as outlined below in Algorithm 2.

Algorithm 2: Contextual Multi-Armed Bandit Problem

for each round t = 1, 2, ..., T do
algorithm observes a context xt

at ∈ A is chosen using an exploration-exploitation strategy
a new independent, stochastic reward rt is realized drawn from
distribution (xt, at)

updates are made for estimated parameters µ̂(a|x), a ∈ A, x ∈ X
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The key challenge in contextual bandits is designing good reward models,
that sufficiently estimate the underlying distribution. Several settings with
specific assumptions on the reward models have been proposed for CMABs
strategies in the regret minimization setting, among them under: Lipschitz
assumption, linearity assumption, and others [Slivkins et al., 2019]. The
LinUCB strategy [Abbasi-Yadkori, Pál and Szepesvári, 2011] as an example, is
shown to have an expected regret upper bounded by E[R(T )] ≤ Cd

√
T log(TL),

where C > 0 is a suitably large universal constant and L is a Lipschitz
constant [Lattimore and Szepesvári, 2020].

Contextual bandits allow for complete personalization, where each instance
(patient) is considered independent and the parameters are learned from scratch
each time. However, this is naturally accompanied by long exploration periods,
undesirable for application in realistic clinical settings, motivating the work in
paper II, where a key difference is that the context considered is stationary.

2.1.2 Latent Bandits

The described contextual bandits setting assumes that all the contextual factors
relevant for the problem are explicitly known, as well as their structures and
values. However, it is plausible to think of scenarios when the rewards are
influenced by unobserved factors, henceforth referred to as the latent state,
S ∈ S = {1, ...,M}. For example, in the treatment personalization case, the
outcomes for a treatment could depend on an underlying, unobserved disease
state. In this setting, the observed context provides some information to
reduce the uncertainty of the underlying state. Under such a setting, Latent
bandits [Maillard and Mannor, 2014; Zhou and Brunskill, 2016; Hong et al.,
2020a; Hong et al., 2020b] have been proposed, where the goal of the agent is
to identify the latent state, after which it can act optimally.

With historical data of previous agent-instance interactions, a latent state
space and conditional reward models on the latent states can be constructed a
priori. In our work, we refer to this as a latent variable model (LVM), which
we assume is recovered perfectly. For new instances, this LVM can be used
for personalization, and having it improves sample efficiency, hence shorter
exploration.

More formally, in a latent bandit problem, there are |S||K| probability
distributions νs,1, ..., νs,K with respective parameters µs,1, ..., µs,K which are
estimated a-priori (the LVM). A latent bandit problem proceeds as follows;

Algorithm 3: Latent Bandit Problem

for each round t = 1, 2, ..., T do
algorithm observes a context xt

algorithm estimates latent state st
at ∈ A is chosen using an exploration-exploitation strategy
a new independent, stochastic reward rt is realized drawn from the
distribution νst,at

updates are made for estimated latent state parameters θ̂ in
p(s|ht, θ̂)
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Here, Ht = (X1, A1, R1, ..., Xt, At, Rt) denotes the history of context, ac-
tions and rewards, up to time t and ht denotes the realisation of this random
variable.

Hong et al. (2020a) provide algorithms with regret upper bounds E[R(T )] ≤
O(

√
MT log(T )) which depend on the latent state dimension M , and they

show that the bound can be tighter when M ≪ K. It is of interest to the
work presented in this thesis to see if these latent bandit ideas from the regret
minimization setting could be applied in the pure exploration setting described
below.

2.1.3 Pure exploration

In addition to the goal of maximizing the reward over the set of rounds,
discussed in the previous sections, there is also a pure exploration MAB
problem formulation where an agent aims to sample the available actions to
gain relevant information about the environment quickly, regardless of the
rewards [Kaufmann, 2020]. Two main settings in pure exploration are where an
agent aims to identify the best arm either with the fewest rounds possible with
a pre-specified probability of success (fixed-confidence setting), or where an
agent aims to identify the best arm with the highest probability of success, with
a fixed, pre-specified round horizon (fixed-budget setting). A concise elaboration
on the fixed-confidence pure exploration follows, because this thesis comprises
work in this setting.

Fixed-confidence Pure Exploration: A fixed-confidence pure-exploration
strategy ϕ comprises a sampling rule for exploring actions At at each step t,
a stopping rule to decide the time τ at which the exploration is over, and a
recommendation rule which returns the best action âτ at the stopping time
τ [Garivier and Kaufmann, 2016; Shang et al., 2020]. The goal is usually
to design a strategy ϕ to minimize the expected stopping time E[τ ] with a
pre-specified confidence parameter δ:

minimize
ϕ

Eϕ[τ ] (2.1)

subject to P (µâτ
< µ∗) ≤ δ,

For proposed fixed-confidence exploration strategies, theoretical guaran-
tees are usually provided for the expected stopping time, E[τ ]. Garivier and
Kaufmann (2016) present a general lower bound for the expected stopping time
as:

E[τ ] ≥ T ∗(µ) kl(δ, 1− δ)

where T ∗(µ)−1 = sup
w∈∑

K

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa))

and where d(.) is the KL-divergence. This implies an asymptotic ( δ → 0) lower
bound following from kl(δ, 1− δ) ∼ log(1/δ):

lim inf
δ→0

E[τ ]
log(1/δ)

≥ T ∗(µ)
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It should be noted that optimal arm playing proportions, w∗(µ), for any
strategy matching this bound can be computed by seeing the supremum above as
a maximum, so w∗(µ) := argmaxw∈∑

K
infλ∈Alt(µ)(

∑K
a=1 wad(µa, λa)) . Also,

the stopping time depends on the set of alternative states Alt(µ), which have
optimal arms that differ from the optimal arm of µ, via the inverse relation of
T ∗(µ). Alternate states with close arm parameters induce a lower divergence,
and therefore increased stopping time.

Garivier and Kaufmann (2016) also introduce the Track and Stop strategy
with an asymptotic upper bound matching the lower bound above, which
samples arms by playing arms in a manner that tracks the optimal proportions
w∗(µ). Because their goal is to estimate arm parameters, it is different from
the setting in paper II in this thesis where the optimal arm parameters are
known and fixed, and where the optimal arm proportions w∗

x,a(s) are from
solving a different optimization problem. Also, the set of alternative states
Alt(µ) is an infinite set in their setting, compared to a finite set Altx(s) of
size ≤M − 1 parameter vectors in ours. However, the track and stop strategy
motivates one of the algorithms in paper II, the LLPT, and the accompanying
asymptotic, δ → 0, sample complexity analysis.

2.2 Historical data in treatment personalization

There is extensive literature studying policy optimization with logged bandit
feedback, also called off-policy learning or off-policy evaluation (OPE) [Strehl
et al., 2010; Dud́ık, Langford and Li, 2011; Swaminathan and Joachims, 2015a,
2015b]. In this line of work, contextual agents are required to evaluate, improve
and optimize a policy wholly in the offline dataset collected under a possibly
unknown logging policy. The main challenge of evaluating policies offline is that
the logging policy could be non-uniformly stochastic, which leads to challenges
of bias in action selection, and variance in policy value estimation when there
are small action propensities [Joachims et al., 2021].

Various methods have been proposed to solve the OPE challenges including
Inverse Propensity Score(IPS) [Horvitz and Thompson, 1952; Swaminathan et
al., 2017], Direct Methods [Beygelzimer and Langford, 2009], and Doubly Robust
methods [Dud́ık, Langford and Li, 2011; Robins and Rotnitzky, 1995]. However,
these methods are highly dependent on specific environments [Voloshin et al.,
2019; Fu et al., 2021]. In addition, results with these methods require strong
overlap assumptions in action selection of the logging policy, hence they are
limited in realistic settings [Yin and Wang, 2021].

Because of the aforementioned challenges, we consider using learned latent
structural priors from historical data that can be leveraged to minimize explor-
ations in the online setting. This is in contrast to learning the policies purely
offline in the historical data.
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2.2.1 Historical data and environments for evaluating
sequential decision-making in healthcare

Success of reinforcement learning as a sequential decision-making paradigm has
been greatly facilitated by the availability of standard benchmark problems
which enable researchers to develop, test, and compare reinforcement learning
algorithms [Kuo et al., 2022]. In many healthcare systems, there is plenty of
data collected in electronic health records (EHRs) that could be valuable if
leveraged to design sequential decision-making systems to improve healthcare.
However, due to challenges of accessibility attributable to privacy concerns
regarding disclosure of private patient information, accessibility remains a
challenge. In spite of this challenge, several databases containing longitudinal
data are publicly available, for example the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database containing longitudinal data Alzheimer’s disease
(AD) patients and cognitively normal controls. Another, the MIMIC-III (”Med-
ical Information Mart for Intensive Care”) [Johnson et al., 2016] is a large,
single-center database comprising information relating to patients admitted to
critical care units at a large tertiary care hospital.

When applicable, researchers have widely used such datasets in their em-
pirical studies. However, even when available, the datasets are small, whereas
sequential decision-making techniques usually require a large number of training
samples [Yu et al., 2021]. Researchers have therefore resorted to building syn-
thetic benchmark datasets [Dorie et al., 2019] which have many advantages but
often lack the intricacies observed in reality [Hernán, 2019]. Other researchers
have constructed purely data-driven benchmarks from actual samples, either
simulating a subset or all of the observed variables using simulators fit to
data [Chan et al., 2021; Kuo et al., 2022; Neal, Huang and Raghupathi, 2020].
However, purely data-driven approaches may fail to capture the causal structure
of the systems they model. It is this thought that led to the work in paper
I in this thesis, ADCB: An Alzheimer’s disease simulator for benchmarking
observational estimators of causal effects.



Chapter 3

Summary of Included
Papers

3.1 ADCB: An Alzheimer’s disease simulator
for benchmarking observational estimators
of causal effects

In this paper, described is a method for designing a semisynthetic benchmark
simulator for longitudinal Alzheimer’s disease data that incorporates verifiable
causal domain knowledge. The goal for the project was to design an environment
for evaluating sequential decision-making algorithms with realistic healthcare
data that matches clinical statistics in EHRs and a causal structure of the
generating process from domain knowledge.

Evaluating learned decision-making policies and observational estimators of
causal effects is challenging, especially in the healthcare domain. Real-world
implementation is often not an option and basing evaluation on observational
data must rely on strong assumptions and access to large samples [Rosenbaum,
Rosenbaum and Briskman, 2010]. As a result, methods researchers in these
areas often turn to simulators for benchmarking [Dorie et al., 2019; Chan et al.,
2021].

Simulated data have many advantages but often lack the intricacies ob-
served in reality [Hernán, 2019]. For example, two of the most widely used
benchmarks in the community studying causal effects, IHDP [Hill, 2011] and
ACIC [Dorie et al., 2019], have response surfaces which are hand-crafted from
simple mathematical building blocks. To improve on this, researchers have
constructed benchmarks from actual samples, simulating a subset [Neal, Huang
and Raghupathi, 2020] or all of the observed variables using simulators fit to
data [Chan et al., 2021]. However, purely data-driven approaches may fail
to capture the causal structure of the systems they model. [Hernán, 2019]

11



12 CHAPTER 3. SUMMARY OF INCLUDED PAPERS

argued that, fundamentally, benchmarks must ”combine data analysis and
subject-matter knowledge”.

In this work, a simulator of clinical variables associated with Alzheimer’s
disease was designed, aimed to serve as a benchmark for causal effect estimation
while modelling intricacies of healthcare data. The system was fit to the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and ground hand-
crafted components incorporating results from comparative treatment trials
and observational treatment patterns. The simulator included parameters
which alter the nature and difficulty of the causal inference tasks, such as latent
variables, effect heterogeneity, length of observed subject history, behaviour
policy and sample size. In addition to generating tunable high dimensional
observational data with high realism based on a real world Alzheimer’s setting,
ADCB also generates longitudinal data that includes potential outcomes for
all treatments at each step in the longitudinal axis.

The ADCB simulator was designed based on a longitudinal structural causal
model between context, treatment and outcome variables. The design started
by positing a causal graph for the variables of interest at the baseline time point
of observation based either on models fit to the ADNI data, on hand-crafted
functions or on results from the AD literature. This causal graph is shown in
figure 3.1 below.

𝑋

FDG AV45

APOE MarriedEducation

Tau PTau

Race Sex

ADAS on treatment

𝑌 = 𝑌(𝐴)
Base ADAS

𝑌(0)

Subtype

𝑍

Diagnosis

𝐷𝑋

𝑋!

𝑋"

Treatment

𝐴
(∗)

Estimated from data
Estimated after inference of 𝑍
Designed based on literature

Figure 3.1: Assumed causal graph for the ADCB simulator at baseline. Arrows
indicate causal dependencies, with colour representing how the mechanism was
determined. Blue dependencies were completely estimated from data, green
were fit once the subtype Z was inferred, and red were designed based on the
Alzheimer’s disease literature.

Using the ADCB simulator to compare standard estimators of causal effects,
Conditional Average Treatment Effect (CATE) is then outlined, where a) a
single time point is used to estimate average and personalized treatment effects,
and b) a time series of patient history is used. This is illustrated in figure 3.2(a)
and 3.2(b) below. Based on the results of these experiments, the benefits and
limitations of our approach is discussed compared to existing simulators based
on experimental data, hand-crafted mechanisms or learned functions.

At the time of publication, the benchmark simulator had only two latent
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(b) CATE error varying with heterogen-
eity, γ. ϵ=0.1, Sample size, N = 10, 000,
µB=DX-Based, ts = 5, History length,
H = 3

states. To make the system more realistic, the latent states were further
expanded to six. In addition to this, a gym-like environment was built with
logged data from the benchmark simulator, where MAB algorithms could be
compared, and the environment was used for the experimental study in paper
II.
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3.2 Fast Treatment Personalization with Latent
Bandits in Fixed-Confidence Pure Explora-
tion

This work outlines a method formulating treatment personalization as treat-
ment search, solvable by fixed-confidence pure exploration. It also involves
incorporation of a latent structural prior in the form of a Latent Variable Model
(LVM) learnable from historical data to this setting, for fast treatment search.
Two algorithms are designed and analysed, and empirical studies on a realistic
AD environment with semisynthetic data from paper I are also given.

Personalizing treatments for patients often involves a period of trial-and-
error search until an optimal choice is found. To minimize suffering and other
costs, it is critical to make this process as short as possible. When treatments
have primarily short-term effects, search can be performed with multi-armed
bandits (MAB), but these typically require long exploration periods to guarantee
optimality. In this work, MAB algorithms are designed, which provably identify
optimal treatments quickly by leveraging prior knowledge of the types of
decision processes (patients) we can encounter, in the form of a latent variable
model. This is illustrated in figure 3.3 below.

+

Historical data

Figure 3.3: Illustration of the pure-exploration latent bandit problem and the
example of treatment personalization. A population of patients have been
observed in historical data to learn the distribution of latent states P (S),
P (X|S) and the conditional reward the distribution P (R|X,S,A). A new
patient, represented by the instance ν = (x, s) is treated with actions at,
observing rewards rt until the stopping time τ .

The goal is to design a MAB strategy ϕ to minimize the expected stopping
time E[τ ] with a pre-specified confidence parameter 1 − δ for new subjects
with context X and unknown latent state S. In the healthcare example, this
serves to minimize the search for optimal treatments, and thus minimize patient
suffering in the treatment search phase while also ensuring that the algorithm
commits to a good treatment after exploration, without treatment switches.

The main contributions are as follows: 1) We propose a formulation of
the personalized treatment search problem with known latent structure in the
fixed-confidence pure-exploration setting. 2) We prove a lower bound for the
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(a) Using latent state structural inform-
ation significantly reduces the expected
number of trials E[τ ] required to identify
an optimal treatment with confidence at
least 1− δ in a simulator of Alzheimer’s
disease progression.
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(b) Comparison of stopping time vs con-
fidence (1 − δ) for the algorithms. Our
algorithms, LLPT Explorer and Diver-
gence Explorer, have stopping times that
are consistently lower.

search time of any algorithm in our latent bandit setting, and prove a matching
upper bound for the Latent LP-based Track and Stop (LLPT) Explorer. 3)
We propose two algorithms, the LLPT Explorer and the Divergence Explorer.
4) We perform an extensive empirical evaluation on a simulator of Alzheimer’s
disease and illustrate that our formulation and algorithms lead to a significantly
reduced stopping time compared to classical pure-exploration algorithms in the
MAB framework as illustrated in figure 3.4(a) and 3.4(b) above.
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Chapter 4

Discussion and Future
Work

In this thesis, leveraging structural priors, for example structural priors learned
from historical data, in treatment personalization has been discussed. In
addition, building benchmark simulators for sequential decision-making that
incorporate subject-matter knowledge is included. The main research out-
come from paper I was the Alzheimer’s Disease Causal estimation Benchmark
(ADCB), a simulator of clinical variables associated with Alzheimer’s disease,
aimed to serve as a benchmark for causal effect estimation, policy evaluation
and algorithm comparison. The simulator is semi-synthetic: It has been de-
signed by fitting a longitudinal causal model of patient variables to real data
and also incorporating interventions with their average treatment effects, ob-
tained from Alzheimer’s Disease research literature. In paper II, the main
research outcomes include the formulation of treatment as treatment search in
the fixed-confidence pure exploration MAB setting, incorporation of a latent
structural prior in the form of a Latent Variable Model (LVM) learnable from
historical data, and two proposed MAB algorithms: the LLPT explorer and
the Divergence explorer, of which the LLPT has been analyzed for its sample
complexity. Results of an empirical study comparing the proposed algorithms
to baselines in the ADCB environment has also been provided, showing that
using the latent structure reduces the exploration period.

A limitation in the design of the simulator (paper I) and in the analysis in
paper II is the simplifying assumption that the latent state is stationary. It
is realistic to consider a dynamic latent state setting, where the latent state
evolves over time with treatment. This could provide an interesting setting for
design and analysis of algorithms in future work.

In paper II, our analysis is limited to the case in which the latent variable
model is given and exact. When forced to estimate the model from historical
data, sensitivity to misspecification or misestimation becomes a concern. Hong
et al. (2020a) analysed latent bandits in regret minimization when the reward
model is misspecified but the resulting bound suffers linear regret scaled by
the error. A setting where a learner needs to recover the true model up to
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some pre-specified precision is an interesting direction for future work. Another
potential line of follow-up from paper II is analyzing the divergence explorer.
Because the divergence explorer does not track optimal proportions like LLPT,
we cannot rely on proof techniques from Track and Stop to analyze it, and its
analysis is an interesting challenge for future work. This could also include
an adaptation of the divergence explorer strategy to the regret minimization
setting.

It would also be interesting to investigate other structural priors that can
be incorporated in the treatment search MAB problem from historical data.
An idea is to consider treatment monotonicity, for example regarding treatment
monotone response structures and incorporating these in treatment search
strategies.

In addition to studying the problem of treatment search in the best arm iden-
tification setting, it could be interesting to investigate treatment personalization
with variations of contextual bandits in the regret minimization setting. Some
interesting ideas to look into would be contextual bandits with missing data
in the contexts or in the rewards. Another could be bandits with constraints
reflecting real world scenarios, for example simulating domain guidelines, safety,
or other costs in healthcare. It could also be interesting to investigate causality
methods for off-policy learning towards enhanced contextual bandits that are
realistic in real world clinical settings in healthcare.
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Abstract

Simulators make unique benchmarks for causal effect estimation as they do
not rely on unverifiable assumptions or the ability to intervene on real-world
systems. This is especially important for estimators targeting healthcare ap-
plications as possibilities for experimentation are limited with good reason. We
develop a simulator of clinical variables associated with Alzheimer’s disease,
aimed to serve as a benchmark for causal effect estimation while modeling
intricacies of healthcare data. We fit the system to the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset and ground hand-crafted components
in results from comparative treatment trials and observational treatment pat-
terns. The simulator includes parameters which alter the nature and difficulty
of the causal inference tasks, such as latent variables, effect heterogeneity,
length of observed subject history, behavior policy and sample size. We use the
simulator to compare standard estimators of average and conditional treatment
effects.
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Abstract
Simulators make unique benchmarks for causal
effect estimation as they do not rely on unveri-
fiable assumptions or the ability to intervene on
real-world systems. This is especially important
for estimators targeting healthcare applications
as possibilities for experimentation are limited
with good reason. We develop a simulator of
clinical variables associated with Alzheimer’s
disease, aimed to serve as a benchmark for
causal effect estimation while modeling intrica-
cies of healthcare data. We fit the system to
the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI)1 dataset and ground hand-crafted
components in results from comparative treat-
ment trials and observational treatment pat-
terns. The simulator includes parameters which
alter the nature and difficulty of the causal in-
ference tasks, such as latent variables, effect
heterogeneity, length of observed subject his-
tory, behavior policy and sample size. We use
the simulator to compare standard estimators
of average and conditional treatment effects.

Data and Code Availability We make use
of publicly available longitudinal data, of both
Alzheimer’s disease (AD) patients and cognitively
normal controls, from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://
adni.loni.usc.edu). ADNI collects clinical data,
neuroimaging data, genetic data, biological markers,
and clinical and neuropsychological assessments from

1. For the Alzheimer’s Disease Neuroimaging Initiative:
Data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the in-
vestigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this re-
port. A complete listing of ADNI investigators can
be found at: http://adni.loni.usc.edu/wp-content/

uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

participants at different sites in the USA and Canada
to study cognitive impairment and and AD. The co-
horts used in this work were assembled from ADNI
1, 2, 3 and GO. We use trajectories of 870 unique
patients, taking samples in 12-month intervals. An
implementation of the simulator can be found at
https://github.com/Healthy-AI/ADCB.

1. Introduction

Evaluating learned decision-making policies and ob-
servational estimators of causal effects is challenging,
especially in the healthcare domain. Real-world im-
plementation is often not an option and basing eval-
uation on observational data must rely on strong as-
sumptions and access to large samples (Rosenbaum
et al., 2010). As a result, methods researchers in
these areas often turn to simulators for benchmark-
ing (Dorie et al., 2019; Chan et al., 2021).

Simulated data have many advantages but often
lack the intricacies observed in reality (Hernán, 2019).
For example, two of the most widely used benchmarks
in the community studying causal effects, IHDP (Hill,
2011) and ACIC (Dorie et al., 2019), have response
surfaces which are hand-crafted from simple math-
ematical building blocks. To improve on this, re-
searchers have constructed benchmarks from actual
samples, simulating a subset (Neal et al., 2020) or
all of the observed variables using simulators fit to
data (Chan et al., 2021). However, purely data-
driven approaches may fail to capture the causal
structure of the systems they model. Hernán (2019)
argued that, fundamentally, benchmarks must “com-
bine data analysis and subject-matter knowledge”.

We propose a new simulator for benchmarking
estimators of causal effects, the Alzheimer’s Dis-
ease Causal estimation Benchmark (ADCB). ADCB
combines data-driven simulation with subject-matter

© 2022 N.M. Kinyanjui & F.D. Johansson.
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knowledge by fitting a longitudinal causal model of
patient variables to real data: i) the simulator is
based on a causal structure inferred by Alzheimer’s
disease experts, ii) average causal effects are based
on published results from randomized controlled tri-
als with heterogeneity introduced through an inferred
latent variable, iii) overlap and variance in treatment
choice is controlled by different behavior policies, and
iv) the length of observed subject history is set by the
user. This design provides users with tunable param-
eters which change properties of the system and the
difficulty of the benchmark. We use the ADCB simu-
lator to compare standard estimators of causal effects
where a) a single time point is used to estimate av-
erage and personalized treatment effects, and b) a
time series of patient history is used. Based on the
results of these experiments, we discuss the benefits
and limitations of our approach compared to existing
simulators based on experimental data, hand-crafted
mechanisms or learned functions.

2. Benchmarks for observational
estimation of causal effects

Causal effect estimation studies the outcome Y (a) of
intervening with an action (treatment) a ∈ A (Rubin,
2005). Here, we define the causal effect of action a as

∆(a) := Y (a)− Y (0),

the difference between the potential outcome of A←
a and that of a baseline action A← 0. In our setting,
∆(a) represents the benefit of using treatment a over
no treatment. We consider k different actions from a
discrete set A = {0, ..., k − 1}.

Due to the difficulty of trying out different treat-
ments for the same subject under identical conditions,
∆ itself is rarely identifiable. Instead, we represent
the utility of actions using the average treatment ef-
fect (ATE), τ(a) = E[∆(a)] and the conditional av-
erage treatment effect (CATE),

τ(a | x) = E[∆(a) | X = x],

in a context or stratum x ∈ X . ATE and CATE
measure how well action a performs on average in
a population and in a stratum x, respectively. The
context X may be a single vector-valued observation
or a time-series representing patient history.

Observational estimation refers to estimating τ us-
ing samples (a, y, x) of actions, outcomes and context

variables without controlling the actions. The follow-
ing assumptions are sufficient for consistent, unbiased
estimation in this setting (Rosenbaum et al., 2010).

Assumption 1 (Identifying assumptions) Ac-
tions A ∈ A, outcomes Y ∈ R, a set of context vari-
ables X, and an adjustment set of variables C ⊆ X
are observed from a distribution p(X,A, Y ) such that
the following conditions hold for all a ∈ A, c ∈ C,

Consistency Y = Y (A)

Exchangeability Y (a)⊥⊥A | C
Overlap p(A = a | C = c) > 0

A wealth of methods have been developed for esti-
mating ATE and CATE under Assumption 1, see
e.g., (Dorie et al., 2019; Künzel et al., 2019; Wager
and Athey, 2018) for overviews. To assess the quali-
ties of each estimator, various benchmark challenges
have been developed (Dorie et al., 2019). See Sec-
tion 6 for a more in-depth survey.

Fundamentally, the validity of Assumption 1 can-
not be verified from data (Pearl, 2009), but must
be argued from domain knowledge. Moreover, the
assumptions guarantee identification of ATE and
CATE, but not necessarily good estimates when sam-
ple sizes are small. Hence, observational data alone
are insufficient to determine whether one estimate of
a causal effect is more accurate than another. This
motivates using simulators for benchmarking, where
identifying assumptions can be satisfied by design.

A good benchmark allows users to identify
strengths and weaknesses in estimators: Which es-
timators make efficient use of available data? How
does performance scale with dimensionality or sam-
ple size? How sensitive are they to (partial) viola-
tions of identifying assumptions? Which results are
robust to changes in causal structure? Answers to
these questions will not be universal, they will de-
pend on the application under study (Hernán, 2019).
In this work, we target the healthcare domain, in the
context of longitudinal data on clinical variables.

3. The ADCB simulator

Alzheimer’s disease is the most common form of de-
mentia, affecting tens of millions of people world-
wide (Association, 2019). Despite its toll on pub-
lic health and vast research investments over several
decades, there is currently no cure for AD. Neverthe-
less, drugs that have disease-modifying effects, alle-
viating symptoms such as loss of cognitive function,
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have shown promise in trials and in practice (Gross-
berg et al., 2019). For these reasons and more, AD
makes an interesting setting for benchmarking causal
effect estimators:

• AD is a progressive disorder, deteriorating the
health of subjects over time. As a result, data
is collected for the same subjects at several time
points, allowing for comparing the performance
of longitudinal models of causal effects.

• There is evidence that AD is composed of mul-
tiple disease subtypes. While the details remain
unknown, disease subtypes provide a potential
source of heterogeneity in patient outcomes.

• Current treatments are believed to be
symptomatic—they affect only symptoms
and not the underlying disease cause; their
effects disappear once discontinued. This allows
for easier attribution of effect to treatment.

The ADCB simulator is based on a longitudinal
structural causal model between context, treatment
and outcome variables. The remainder of the sec-
tion describes the components of the simulator, start-
ing with the patient covariates, the assumed causal
graph, and a generalization to a longitudinal causal
model. Framed boxes are used to indicate readily
tunable parameters of the simulator.

3.1. Patient covariates X & outcomes Y

Subjects are represented by covariates X ∈ Rd con-
sisting of demographics (sex, age, education level)
and various genetic and biomarkers (Aβ plaques,
Tau, APOE, FDG, AV45) whose detailed descrip-
tions are provided in Appendix C. The specific vari-
ables used to model the time-varying context Xt in
this work are presented in Figure 1. The severity of
(suspected) Alzheimer’s disease is primarily assessed
based on cognitive function using tests such as the
Alzheimer Disease Assessment Scale (ADAS) (Rosen
et al., 1984). We use the ADAS13 variant as our
base outcome at time t, Yt(0), as it has been found to
better describe disease progression than the ADAS11
variant (Cho et al., 2021). ADAS13 scores take values
between 0-85 where higher scores indicate worse cog-
nitive function. ADNI also contains clinical diagnosis
states DXt ∈ {Cognitively normal (CN), Mild cogni-
tive impairment (MCI), Alzheimer’s disease (AD)}.

3.2. Disease subtype (latent state Z)

It is believed that there are multiple subtypes of
Alzheimer’s disease (Machado et al., 2020; Satone
et al., 2018). One of the signs of this is that in sub-
jects, the level of so-called Amyloid-β (Aβ) plaques
form a clearly bimodal distribution, on the ratio of
(Aβ42
Aβ40 ), see Figure 9 in Appendix. We posit that there

are two types of subjects, as indicated by a binary
variable Z ∈ {0, 1}, which, among other things, give
rise to the two modes in the Aβ-ratio. To this end,
we infer the subtype Z by fitting a Gaussian mix-
ture model (GMM) with 2 components as in (Dans-
son et al., 2021) for the Aβ-ratio observations of pa-
tients at baseline. We assume that Z is stationary
and use the value inferred by the GMM to label all
observed trajectories. These values are then used to
fit models of downstream variables.

3.3. Baseline Causal Graph

We start by positing a causal graph for the variables
of interest at the baseline time point of observation,
t = 0. A causal graph is a model of the (conditional)
dependence structure of variables encoded in a di-
rected acyclic graph, G = (V, E) consisting of nodes
V and edges, E (Koller and Friedman, 2009). The
causal graph, illustrated in Figure 1, was inspired
by the structure inferred from data in (Sood et al.,
2020) and further verified by a clinically active do-
main expert in Alzheimer’s disease. The graph rep-
resents causal relationships among random variables
R ∈ {X(1), ..., X(d), A, Y,DX}, (where X(j) is a co-
variate in the set X), each associated with a node in
the graph, VR ∈ V . An edge (VR, VR′) ∈ E exists if
R is a direct cause of R′, and R is therefore a parent
of R′, R ∈ Pa(R′).

The mechanism for generating each variable is
based either on models fit to the ADNI data, on hand-
crafted functions or on results from the AD literature.
The graph is also presented as a table in the Appendix
Table 5.

3.4. Longitudinal Model

The longitudinal model is formed by first repeating
each variable, except the disease subtype Z, at each
time step t = 1, 2, ..., T , maintaining the causal struc-
ture of the single-time graph in Figure 1. Then, each
variable is connected to the previous instance of itself;
e.g. Taut is assumed to be a direct cause of Taut+1,
and so on. The parents of a variable X at time t is
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Figure 1: Assumed causal graph for a single time
point at baseline. Arrows indicate causal
dependencies, with color representing how
the mechanism was determined. Blue de-
pendencies were completely estimated from
data, green were fit once the subtype Z was
inferred, and red were designed based on
the Alzheimer’s disease literature.

therefore the set defined as: Pa(Xt) = Pat(X0) ∪
{Xt−1} where Pat(X) = {pt : p0 ∈ Pa(X0)}. When
used as a benchmark, the user may choose the causal
effect of actions at any time point t as their target.
The length H ≤ t of history used for estimation is a
tunable parameter.

History Length, H. History of previous
treatment records of a patient is valuable for
causal effect estimators that incorporate history,
because a longer horizon can increase the capac-
ity to capture heterogeneity in causal effects.

3.5. Treatment assignment A

ADNI does not include significant data on treat-
ments and treatment response, which prevents direct
data-driven design of the treatment assignment. In-
stead, we design policies for treatment assignment
and treatment effects based on i) surveys of com-
mon treatments and ii) randomized controlled trials
(RCT) of their effect. We begin with the former.

Existing AD drugs have been shown to have at
least symptomatic cognitive effects (Livingston et al.,
2017; Farlow et al., 2008). In this work, we model a
range of such drugs a = 1, ..., 7, for which RCT re-
sults on treatment effects are available: Donepezil
5mg, Donepezil 10mg, Galantamine 24mg, Galan-
tamine 32mg, Rivastigmine 12mg, Memantine 20mg,
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Covariates
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Covariates

𝑋!"#

Outcome
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Outcome
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Diagnosis

𝐷𝑋!
Diagnosis
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Figure 2: Temporal dependence between variables in
the simulator. Each variable obeys the
causal dependencies of Figure 1 in addi-
tion to depending on the previous value of
itself. The small box in the set of covari-
ates X indicates that each variable in the
set depends only on the previous value of
that specific variable. For example, Tau at
time t+1 depends only on APOE and Race
at time t + 1, the subtype Z, and Tau at
time t. Z is assumed stationary.

Memantine+ChEI, see (Grossberg et al., 2019) for
an overview. We assume that the no-treatment op-
tion, a = 0, corresponds to observations in ADNI.
We simulate treatments from two simple policies µB ,
described further below, whose characteristics are
shown in Figure 3:

Diagnosis (DX)-based policy With this policy,
treatments are assigned based on the diagnosis (DX)
observed at the previous time step. We group treat-
ments into 3 classes based on their treatment effect.
Patients with mild diagnosis are assigned a randomly
chosen treatment from the class with smallest ATE,
those with moderate from the class with moderate
ATE, and those with the most severe diagnosis from
the class with the largest effect.

Hernandez Policy Having access to treatments in
ADNI data would have enabled modeling of treat-
ment propensities over the whole covariate set, deriv-
ing purely data-driven behavior policies using a much
larger subset of covariates. In lieu of this, we draw
from Hernandez et al. (2010) who similarly modeled
the propensity of the treatments Cholinesterase in-
hibitors (ChEIs) and Memantine based on clinical
variables with a multivariate logistic regression mod-
els, with ChEI or Memantine use as the outcome—
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Figure 3: Treatment assignment characteristics of
behavior policies over time. Same colour
indicates treatments are considered to be
in the same treatment assignment class.

we define a policy directly using the coefficients they
learned. Treatments are grouped based on drug
class ∈ {ChEIs, Memantine, Combination therapy}.
The learned policy depends also on cognitive scores
MMSE and CDRSB, which are available in the ADNI
database. We generate them in the same way as
ADAS13.

Overlap strength ϵ The tuning parameter
ϵ ∈ [0, 1] interpolates between a random policy
(ϵ = 1) and the policies above (ϵ = 0) by assign-
ing a random action with probability ϵ. Note
that ϵ = 0 does not always imply a lack of treat-
ment group overlap, depending on the behavior
policy.

3.6. Treatment effects ∆

Consistent with the AD literature, we assume that
the effects of each existing drug a are primarily symp-

tomatic and temporary, attenuating when treatment
is stopped (Grossberg et al., 2019). In addition, we
assume that the effect is stationary in time. To this
end, we endow each treatment a with an additive ef-
fect ∆(a, Z), depending on the disease subtype Z,
and posit that the cognitive function when on drug a
is given by Yt(a) = ∆(a, Z) + Yt(0) + ϵt. This gives
us the response surface on Yt = Yt(At). Yt(0) is esti-
mated from observations of the ADAS13 score and is
simulated according to the causal graph. We discuss
more general forms of treatment effects in Section 6.

To ground our model in domain knowledge, we
design ∆(a, Z) such that the average effect τ(a) =
E[∆(a, Z)] is consistent with real-world effects on cog-
nitive function (in the ADAS-Cog scale) estimated in
RCTs (Grossberg et al., 2019). Recall that we define
ATE relative to the no-treatment option. For a list of
the estimated ATEs τ(a), for a = 1, ..., k, taken from
the literature, see Appendix D.

Given the ATE τ(a) for a treatment a, heterogene-
ity is introduced through the subtype z ∈ Z. In this
work, Z is binary, and we let each subtype-action pair
(a, z) have high or low effect, with multiplicative
margin γ, such that the opposite subtype (a, 1 − z)
has high effect, if (a, z) has low effect and vice versa.

∆(a, z) =





τ(a)
p(Z=z)+p(Z ̸=z)γ , if ∆(a, z) low

γτ(a)
p(Z=z)γ+p(Z ̸=z) , if ∆(a, z) high

.

Whether ∆(a, z) is high or low for a, z is deter-
mined by a look-up table that we designed which is
presented in the Appendix, Table 3.

Treatment effect heterogeneity γ. The pa-
rameter γ ≥ 1 controls heterogeneity in effect
such that ∆(a, z) = γ∆(a, 1 − z) if ∆(a, z) is
high and vice versa. γ varies heterogeneity with-
out changing the average treatment effect τ(a).
γ = 1 results in no heterogeneity.

4. Fitting the simulator

Based on the causal the graph presented in Figure 1,
we learn a joint distribution of the full set of set of
observed variables X,Y (0), DX by fitting each com-
ponent of the Bayes factorization separately using
a variable’s parent set, Pa(Xt). For each continu-
ous (or discrete) attribute, a regression (or stochastic
classification) model is fit with respect to its parents
in the causal graph.
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These models are first fit for the baseline time-
step (t = 0) in patient trajectories for the purpose
of i) generating the first time step further down-
stream in the generation process and ii) data imputa-
tion for missing values, as described in Appendix B.
The marginal root nodes are sampled from a distri-
bution inferred using the statistics observed in the
data. Continuous covariates are further modeled
with additive noise ζ sampled from a skewed nor-
mal distribution fit to the residuals of the regression,
ri = yi − f(xi) where f(x) ≈ E[Y |X = x] is learned
from data.

The longitudinal model—the transition models for
each variable—is fit similarly. For each covariate at
time t, we assume that i) its value is dependent only
on its parents in the causal graph at the time t as well
as its previous value in the trajectory at time t−1. ii)
the autoregression is stationary in time. A summary
of the different models and their fit characteristics is
described in Table 2.

For each time step, classifiers fit P (Xt|Pa(Xt)) and
generation is done by sampling from this. The re-
gressors fit f(Pa(Xt)) = E[Xt|Pa(Xt)] and samples
are generated by f(Pa(Xt)) + ζ. With these mod-
els fit, hand-crafted components designed and tun-
able parameters {H,N, γ, ϵ, T, µB} set, we generate
N patient trajectories of T time steps with all vari-
ables (Z,Xt, Yt(0), At, Yt(At), DXt) through ances-
tral sampling.

4.1. ADNI and ADCB cohort statistics

Trajectories of 2254 subjects were downloaded from
the ADNI database in December 2020. The full
cohort was filtered for availability of measurements
of Aβ40 and Aβ42 biomarkers at some point in
their trajectory, leaving n = 870 subjects for fitting
the simulator, 844 of which were observed at base-
line. Overview statistics of these subjects at baseline
are presented in Table 1. Trajectory lengths varied
greatly among subjects, ranging from a single visit
at baseline to a total of 8 visits (mean 1.7 visits).
The longest trajectory length was 120 months (mean
14 months). Only subjects with observations for all
simulator variables (except Z, A and Y (a)) were used
for fitting baseline and autoregression covariate mod-
els. For longitudinal modeling, models were fit based
on transitions between pairs of visits (0, 12), (12, 24),
(24, 36), (36, 48) for observations present in both time
points in the transition in the original data, which
was a total of 127 samples.

Table 1: Cohort statistics for the first timestep (t =
0) for simulated (ADCB) and observed real-
world subjects (ADNI). Continuous vari-
ables are described by mean (standard de-
viation) and categorical variables by count
(frequency in %). Complete cohort statis-
tics are provided in the Appendix table 4

ADCB t = 0, ADNI, t = 0

Demographics

Gender
Female 4807 (48.1%) 395 (46.8%)
Male 5193 (51.9%) 449 (53.2%)

Biomarkers

Tau 286.0 (117.3) 279.6 (130.0)
PTau 27.9 (12.7) 26.7 (14.2)
FDG 1.3 (0.2) 1.2 (0.2)
AV45 1.2 (0.2) 1.2 (0.2)
APOE4
0.0 4196 (42.0%) 460 (54.5%)
1.0 4460 (44.6%) 303 (35.9%)
2.0 1344 (13.4%) 81 (9.6%)

Outcomes

ADAS13 16.4 (8.4) 15.4 (9.5)

4.2. Model fit for variables in causal graph

We evaluate the model fit on held-out data inde-
pendently for each variable, as summarized in Ta-
ble 2. The test split was always 20%. The over-
all predictability for baseline variables was low, with
non-trivial accuracy attained only for a handful of
the covariates, including diagnosis and AV45 levels.
However, we remind the reader that accurate predic-
tion is not the main goal of this step, but to learn a
simulator with similar characteristics as the observed
data. In Table 1 and Appendix Table 4 we show the
first-order statistics for observed and generated data.

Autoregressors achieved significantly better results
due to some variables being more or less static in time
or varying very slowly. AV45 had surprisingly poor
R2 fit results for autoregression although the RMSE
error was in the range of the standard deviation of
the original data. The hyperparameters for the mod-
els were obtained by doing a grid search over com-
binations of parameters over Linear, Random Forest
and Gradient Boosting estimators for each variable.
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Table 2: Fit statistics for baseline and autoregression models on held-out data. Overall predictability was
low at baseline and in autoregression for some continuous variables. This indicates that parents
in the causal graph explain only a small amount of variance in the affected variables.. First-order
statistics were well matched, see Table 1 and Appendix Table 4.

Target variable Model Baseline Autoregression

Classifiers Acc F1 # Classes Acc F1 # Classes

APOE4 KNN 45% 0.42 3 96% 0.94 3
Education (years) Logistic Regression 21% 0.09 13 100% 1.00 10
Marital status Logistic Regression 73% 0.62 5 96% 0.94 4
Diagnosis Logistic Regression 63% 0.63 3 88% 0.87 3

Regressions R2 RMSE σY R2 RMSE σY

Tau Random Forest -1.13 105.35 133.43 0.73 47.81 117.95
PTau Random Forest -0.55 11.0 14 0.91 3.69 14
FDG Gradient Boosting -3.79 0.14 0.15 0.09 0.06 0.09
AV45 Random Forest 0.20 0.15 0.23 -82.03 0.12 0.12
ADAS13 Random Forest 0.21 6.36 9.6 0.55 4.09 6.3
CDRSB Gradient Boosting -0.06 1.26 1.5 -0.61 1.20 2.2
MMSE Gradient Boosting -0.56 2.03 2.6 -0.26 1.63 1.4

5. Using the benchmark

We run experiments aimed at exploring the utility of
the simulator and its generated sequential trajecto-
ries in benchmarking causal effect estimators. The
experiments compare estimators of the Conditional
Average Treatment Effect (CATE) at a given time-
point 0 < ts ≤ T . We run them in settings with
decisions with single-time context Xts and in set-
tings where context comprises a H-length history of
context, treatment and outcome variables, and com-
pare the mean-squared error in estimated CATE (also
called precision of estimating heterogeneous effects
(PEHE) (Hill, 2011)). Unless otherwise stated, As-
sumption 1 is satisfied in all experiments by giving es-
timators access to a valid adjustment set. The adjust-
ment set includes all the covariates in the current de-
mographics, the current biomarkers, the most recent
outcome and most recent diagnosis for the DX-policy.
A similar adjustment set is used for the Hernandez-
based policy, without the most recent diagnosis and
with CDRSB and MMSE scores, for validity.

The estimators presented are S-learners (treatment
as a covariate) and T-learners (separate regression for
each treatment) (Künzel et al., 2019) with Linear Re-
gression, Gradient Boosting or Random Forest base
learners, as well as a Sequential T-learner with an
RNN base learner to enable incorporation of history.

S- and T-learners are trained single-step and the se-
quential T-learner trained using a history sequence of
time points {t = ts −H, ..., t = ts}.

We investigate the effects of sample size, overlap,
heterogeneity, history length and confounding as out-
lined below. Results are from 10 repetitions in each
configuration.

Sample size, N : Under Assumption 1, it is ex-
pected that the CATE estimation error shall decrease
with higher sample sizes as the variance should de-
crease with more samples, until bias (model misspeci-
fication) dominates the error. Estimating CATE with
different numbers of samples generated from ADCB
is consistent with this across the estimators, as shown
in Figure 4 where the base estimator for the T- and
S-learners is a Gradient Boosting Regressor. The
CATE error with 50,000 samples is comparable with
the error using 10,000 samples, so the rest of the ex-
periments have been run with 10,000 samples.

Overlap, ϵ: ADCB enables investigation of over-
lap with the tunable parameter ϵ, which varies the
treatment assignment propensity characteristics of
the treatment policies in Figure 3. As ϵ increases
and selection bias decreases, the behavior policy ap-
proaches a uniform policy and it’s expected that the
CATE estimation error should decrease. This is ob-
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Figure 4: CATE mean squared error varying with
sample size, N . ϵ=0.1, γ=2, µB=DX-
Based, ts = 5, History length, H = 3

served in the T-learner and the sequential learner
(RNN), but the S-learner is constant through the
three ϵ settings, as shown in Figure 5.

Heterogeneity, γ: With the tunable parameter γ,
we can also vary the heterogeneity characteristics of
the treatment policies. It is expected that the er-
ror should increase as the heterogeneity increases as
higher heterogeneity may increase the variance, and
the outcomes of actions become harder to predict.
Our results in Figure 6 show this across two differ-
ent base estimators (Gradient boosting and Random
forest) in the T- and S- Learners.

History length, H: A key property of the ADCB
simulator is access to history. Because physicians
usually have access to historical records of a patient,
they can use the historical records to personalize their
treatment decisions. It is expected that using the his-
tory should decrease the error of the estimated CATE
for the sequential learner that can incorporate his-
tory. This is because access to more history gives the
estimator a higher chance of capturing heterogeneity.
In Figure 7, the error for the T- and S- learners re-
mains constant because they cannot make use of the
history. The error is lowest with a history of length 2,
possibly because the DX-based policy uses only the
previous diagnosis. It would be interesting to inves-
tigate if other sequential estimators are better with
longer histories.

Confounding: Because we know the causal graph
of the simulator, we can also investigate confounding
effects, e.g. by adding current diagnosis in the adjust-
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Figure 5: Average (bars) and treatment-specific
(dots) mean squared error in estimated
CATE, varying with overlap multiplier, ϵ.
γ=2, Sample size, N = 10, 000, µB=DX-
Based, ts = 5, History length, H = 3

ment set, which is a post-treatment collider variable,
as shown in Figure 8. The estimators are affected
differently by this confounding, with the sequential
learner showing the highest error increase due to con-
founding. The T- and S- learners seem to be more ro-
bust with the T-learner being slightly more affected.

6. Discussion & Related work

The possibility of producing confounded evaluation
metrics prevents using only observational data for
benchmarking causal effect estimation, without re-
lying on strong assumptions. There are two main
approaches which do not rely on such assumptions:
a) making use of data from randomized experiments,
and b) simulating all or part the system under inves-
tigation, also called the Empirical Monte Carlo Study
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Figure 6: CATE error varying with heterogeneity, γ.
ϵ=0.1, Sample size, N = 10, 000, µB=DX-
Based, ts = 5, History length, H = 3
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Figure 8: Excess error due to confounding, relative
to CATE error of corresponding estima-
tor, when post-treatment covariate DX is
added to the adjustment set. ϵ=0.1, γ=2,
Sample sizem, N = 10, 000, µB=DX-
Based, ts = 5, History length, H = 3

Wunsch, 2013). See Gentzel et al. (2019) for a dis-
cussion of the pros and cons of each design.

Both methods have limitations that ADCB seeks
to remedy. With randomized experiments data, as
used in the Jobs dataset (Shalit et al., 2017) or by
Neal et al. (2020), the data are guaranteed to be rep-
resentative of the real world, but it is not possible to
vary all characteristics of it, like the sample size or
longitudinal horizon length. In contrast, for simula-
tors, it is important to pay attention to the causal
structure and mechanisms of the system which most
often requires domain knowledge, without which high
realism is not easily achievable.

If the goal of a benchmark is to evaluate individual-
level or fine conditional treatment effects, access to
counterfactual outcomes is required. The only way
to reliably achieve this is to simulate the mecha-
nism determining the outcome of interventions, which
can be done in isolation or in addition to simulat-
ing the treatment assignment, as in the Causal In-
ference Benchmarking Framework by Shimoni et al.
(2018), the Medkit-Learning environment (focused on
reinforcement learning) (Chan et al., 2021), and in
IHDP (Hill, 2011). Since the outcome mechanisms
are often the main target of estimation, these sim-
ulations should be as realistic as possible for the
domain they aim to represent. To this end, re-
searchers have considered building their simulators
on models fit to observational data (Neal et al., 2020;
Chan et al., 2021). To incorporate domain knowl-
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edge in simulating the outcomes and counterfactual
outcomes, ADCB extends these approaches by us-
ing treatments and their corresponding effects from
Alzheimer’s literature, paired with causal generation
of a common outcome measurement for cognitive
function (ADAS13).

A drawback of simulated data is that, in many
cases, simulators “tend to match the assumptions of
the researcher” (Gentzel et al., 2019). This is espe-
cially problematic in cases where they are introduced
to evaluate one particular estimator which may also
match those assumptions. As a result, it is impor-
tant that simulator-based benchmarks contain set-
tings that tweak assumptions to appropriately test
the robustness of estimators to these. ADCB en-
ables settings with different configurations for over-
lap, sample size, patient heterogeneity, behaviour pol-
icy and longitudinal history length. Knowledge of the
causal graph also enables investigation of estimator
performance with confounding. It is also possible to
violate consistency by introducing a probability that
patients take the assigned treatment.

Limitations

Limitations of ADCB include the following. First,
although the treatments, and treatment propensi-
ties in the case of the Hernandez policy (Hernandez
et al., 2010), are obtained from literature, they are
still simulated treatments not originally included in
the ADNI data. As such, they may not reflect how
subjects in the ADNI cohort would be treated under
current practice. Further, behavior policies used only
a single time-step context and not patients’ entire
history. Second, for the treatment effects, we use a
simple bi-modal model of heterogeneity and the het-
erogeneity simulation assumes that heterogeneity is
only due to latent covariates Z. A more expressive
model would let heterogeneity depend also on X.

As pointed out earlier, several of the autoregressive
models (for covariate transitions) had poor accuracy,
in three cases with negative R2. We believe that this
could be improved in a future version of the simulator
by changing the handling of missing data so that only
the target variable for a particular edge in the causal
graph is required observed when fitting the model.
Currently, transition models are fit to complete cases.

For the presented usage scenario of comparing esti-
mators, we only investigated a handful of simple esti-
mators among a vast array of causal effect estimation
methods. Finally, although the assumed causal graph

was informed both by conversations with a domain
practitioner and by data-driven estimates in (Sood
et al., 2020), it would be of interest to test the sen-
sitivity of treatment effect estimates to different ad-
justment sets or changes to the causal graph such as
the addition of new links between covariate nodes.

7. Conclusion

We have introduced the Alzheimer’s Disease Causal
estimation Benchmark (ADCB), a simulator of clin-
ical variables associated with Alzheimer’s disease,
aimed to serve as a benchmark for causal effect es-
timation and policy evaluation. The simulator is fit
to covariates and outcomes from the ADNI database
and uses models of treatments and treatment ef-
fects derived using subject-matter knowledge in the
Alzheimer’s disease literature. In addition to gen-
erating tunable high dimensional observational data
with high realism based on a real world Alzheimer’s
setting, ADCB also generates longitudinal data that
includes potential outcomes for all treatments at each
step in the longitudinal axis. We also present a
method to build semi-synthetic datasets by incor-
porating results from Alzheimer’s literature which is
highly effective in attaining realism, and encourages
incorporation of inter-disciplinary domain-specific re-
sults in building synthetic datasets in machine learn-
ing and causal inference.

Usage scenarios for evaluating estimators of causal
effects have been presented for varying configura-
tions. Since ADCB generates longitudinal samples
of all variables (patient covariates, treatments and
outcomes) in the system, it can function as a gener-
ator of arbitrarily large observational (batch) data,
as an online policy learning environment and for de-
sign and evaluation of causally adaptive treatment
policies. More complex confounding models based
on the AD literature will be explored in future it-
erations of the simulator, increasing the difficulty of
the benchmark. To improve the predictability of the
fitted models, the sample sizes will be increased in
future iterations by expanding the filtering strategy
for the samples included in the training sets.

Institutional Review Board (IRB)

All data collection by ADNI were approved by the
Institutional Review Boards of all participating insti-
tutions. Written informed consent was obtained from

112



ADCB

every research participant according to the Declara-
tion of Helsinki and the Belmont Report.
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Appendix A. Empirical distribution of
the Aβ ratio

The the ratio of (Aβ−42
Aβ−40 ) in subjects showing

Amyloid-β (Aβ) plaques form a clearly bimodal dis-
tribution;

Figure 9: Empirical distribution of the Aβ ratio,
used to infer latent disease subtype at base-
line.

Appendix B. Imputation of missing
data

The patient trajectories have significant missing-
ness along the observation intervals. We im-
pute the missing values based using a method
inspired by Multivariate Imputation by Chained
Equations(MICE) (Van Buuren and Groothuis-
Oudshoorn, 2011), but the chaining is done with re-
spect to a variable’s parents in the causal graph. For
each attribute with a missing value along the time
trajectory, we use the model learned at baseline, from
the causal graph, to impute the value for that partic-
ular attribute at a given timestep.

Appendix C. Patient covariates
description

The subset of covariates used in this work includes the
following and their descriptions as outlined in (Mari-
nescu et al., 2018)

1. FDG PET ROI averages: Measure cell
metabolism, where cells affected by AD show re-
duced metabolism

2. AV45 PET ROI averages: Measure amyloid-
beta load in the brain, where amyloid-beta is a
protein that mis-folds (i.e. its 3D structure is
not properly constructed), which then leads to
AD

3. CSF biomarkers: Amyloid and TAU levels in
the cerebrospinal fluid (CSF)

4. Others:

• APOE status: A gene that is a risk factor
for developing AD

• Demographic information: Gender,
age, education, race, marital status

• Diagnosis: Either Cognitively Normal
(CN), Mild Cognitive Impairment (MCI) or
Alzheimer’s disease (AD).

Appendix D. Average Treatment
Effects from Literature

Table 3: Average treatment effects (ATE), in terms
of change in ADAS-Cog compared to no
treatment, of various therapies from meta-
analyses of clinical trials (Grossberg et al.,
2019). Also shown is a look-up table for
whether ∆(a, z) is high or low

a Treatment ATE τ(a) ∆(a, z = 0)

0 No treatment 0 -

1 Donepezil 5 mg –1.95 L
2 Donepezil 10 mg –2.48 L
3 Galantamine 24 mg –3.03 H
4 Galantamine 32 mg –3.20 H
5 Rivastigmine 12 mg –2.01 L
6 Memantine 20 mg –1.29 H
7 Memantine + ChEI –2.64 L

Appendix E. Cohort statistics

Complete Cohort statistics for synthtetic and real-
world cohorts are presented in Table 4.
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Appendix F. Causal Graph

The expanded table for the causal graph in Figure 1
is presented in Table 5.
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Table 4: Cohort statistics for the first timestep (T=1) for simulated (ADCB) and observed real-world sub-
jects (ADNI). Continuous variables are described by mean (standard deviation) and categorical
variables by count (frequency in %).

ADCB T=1, n=10000 ADNI T=1, n=844

Demographics

Gender
Female 4807 (48.1%) 395 (46.8%)
Male 5193 (51.9%) 449 (53.2%)

Marital status
Divorced 7572 (75.7%) 634 (75.1%)
Married 387 (3.9%) 29 (3.4%)
Never married 1098 (11.0%) 96 (11.4%)
Unknown 889 (8.9%) 80 (9.5%)
Widowed 54 (0.5%) 5 (0.6%)

Ethnicity
Hisp/Latino 341 (3.4%) 30 (3.6%)
Not Hisp/Latino 9605 (96.0%) 809 (95.9%)
Unknown 54 (0.5%) 5 (0.6%)

Race
Am Indian/Alaskan 9269 (92.7%) 783 (92.8%)
Asian 384 (3.8%) 31 (3.7%)
Black 148 (1.5%) 13 (1.5%)
Hawaiian/Other PI 17 (0.2%) 1 (0.1%)
More than one 137 (1.4%) 12 (1.4%)
Unknown 18 (0.2%) 2 (0.2%)
White 27 (0.3%) 2 (0.2%)

Education 13.2 (2.7) 13.3 (2.6)

Biomarkers

Tau 286.0 (117.3) 279.6 (130.0)
PTau 27.9 (12.7) 26.7 (14.2)
FDG 1.3 (0.2) 1.2 (0.2)
AV45 1.2 (0.2) 1.2 (0.2)
APOE4
0.0 4196 (42.0%) 460 (54.5%)
1.0 4460 (44.6%) 303 (35.9%)
2.0 1344 (13.4%) 81 (9.6%)

Outcomes

ADAS13 16.4 (8.4) 15.4 (9.5)
MMSE 27.5 (2.0) 27.6 (2.5)
CDRSB 2.0 (1.3) 1.5 (1.7)
Diagnosis
CN 2700 (27.0%) 275 (32.6%)
Dementia 5817 (58.2%) 438 (51.9%)
MCI 1483 (14.8%) 131 (15.5%)

Subtype, Z

Subtype, Z 4282 (42.8%) - (-)
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Table 5: Expanded table for the causal graph in Figure 1 at baseline (t=0). For each time step, classifiers
fit P (Xt|Pa(Xt)) and generation is done by sampling from this. The regressors fit f(Pa(Xt)) =
E[Xt|Pa(Xt)] and samples are generated by f(Pa(Xt)) + ϵ. The models are the best performers
after a grid search over hyperparameters.

Target variable (X) Model Direct causes at baseline (Pa(Xt=0))

Classifiers

APOE4 KNN Ethnicity, Race, Gender
Education (years) Logistic Regression Ethnicity, Race, Gender
Marital status Logistic Regression Gender
Diagnosis Logistic Regression Ethnicity, Race, Gender, Z, Tau, PTau, APOE4, FDG, AV45,

ADAS13

Regressions

Tau Random Forest Ethnicity, Race, Gender, Z, APOE4
PTau Random Forest Ethnicity, Race, Gender, Z, APOE4
FDG Gradient Boosting Ethnicity, Race, Z, Tau, PTau, APOE4
AV45 Random Forest Ethnicity, Race, Z, Tau, PTau, APOE4
ADAS13 Random Forest Ethnicity, Race, Education, Gender, Marital status, Z, Tau,

PTau, APOE4, FDG, AV45, ADAS13
CDRSB Gradient Boosting Ethnicity, Race, Education, Gender, Marital status, Z, Tau,

PTau, APOE4, FDG, AV45, ADAS13
MMSE Gradient Boosting Ethnicity, Race, Education, Gender, Marital status, Z, Tau,

PTau, APOE4, FDG, AV45, ADAS13
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Abstract

Personalizing treatments for patients often involves a period of trial-and-
error search until an optimal choice is found. To minimize suffering and other
costs, it is critical to make this process as short as possible. When treatments
have primarily short-term effects, search can be performed with multi-armed
bandits (MAB), but these typically require long exploration periods to guarantee
optimality. In this work, we design MAB algorithms which provably identify
optimal treatments quickly by leveraging prior knowledge of the types of
decision processes (patients) we can encounter, in the form of a latent variable
model. We present two algorithms, the Latent LP-based Track and Stop
(LLPT) explorer and the Divergence Explorer for this setting: fixed-confidence
pure-exploration latent bandits. We give a lower bound on the stopping time
of any algorithm which is correct at a given certainty level, and prove that the
expected stopping time of the LLPT Explorer matches the lower bound in the
high-certainty limit. Finally, we present results from an experimental study
based on realistic simulation data for Alzheimer’s disease, demonstrating that
our formulation and algorithms lead to a significantly reduced stopping time.
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Abstract

Personalizing treatments for patients often involves a period of trial-and-error search until
an optimal choice is found. To minimize suffering and other costs, it is critical to make this
process as short as possible. When treatments have primarily short-term effects, search can
be performed with multi-armed bandits (MAB), but these typically require long exploration
periods to guarantee optimality. In this work, we design MAB algorithms which provably
identify optimal treatments quickly by leveraging prior knowledge of the types of decision
processes (patients) we can encounter, in the form of a latent variable model. We present
two algorithms, the Latent LP-based Track and Stop (LLPT) explorer and the Divergence
Explorer for this setting: fixed-confidence pure-exploration latent bandits. We give a lower
bound on the stopping time of any algorithm which is correct at a given certainty level, and
prove that the expected stopping time of the LLPT Explorer matches the lower bound in
the high-certainty limit. Finally, we present results from an experimental study based on
realistic simulation data for Alzheimer’s disease, demonstrating that our formulation and
algorithms lead to a significantly reduced stopping time.

1 Introduction

There is growing interest in using machine learning for personalizing medical treatments to account for
heterogeneity in patients’ responses. Finding a suitable choice for an individual often involves a phase of
trial and error before settling on a therapy that works for them, especially in the treatment of chronic
diseases (Fraenkel et al., 2021; Stern, 2009). In rheumatoid arthritis, for example, when first and second-line
treatment fails, there is large variability in the choice of next therapy, and several drugs may be considered
equally good choices a priori (Zink et al., 2001). Further, switching therapies has associated costs: every
time a therapy is changed, the patient has to get used to the new therapy and its potential side effects. It is
therefore desirable to minimize such switches, even if changes are to other equally good treatments after a
treatment has been identified in the search phase. Learning algorithms could improve the efficiency of this
search, reducing the number of avoidable trials (Chakraborty and Moodie, 2013).

A classical framework for exploring alternative treatments is Multi-armed Bandits (MAB) (Gittens and
Dempster, 1979; Lai and Robbins, 1985), originally motivated by reducing suffering in drug testing (Thompson,
1933). However, MABs tend to be sample-hungry to the point of being unsuitable for finding personalized
treatments in real-world clinical settings. Because a long search phase can prolong unnecessary suffering, it
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+

Historical data

Figure 1: Illustration of the pure-exploration latent bandit problem and the example of treatment personal-
ization. A population of patients have been observed in historical data to learn the distribution of latent
states P (S), P (X|S) and the conditional reward the distribution P (R|X, S, A). A new patient, represented
by the instance ν = (x, s) is treated with actions at, observing rewards rt until the stopping time τ .

must be avoided and minimized whenever possible. Existing methods for the fixed-confidence pure exploration
setting in MABs, which aim to minimize the time it takes to find an optimal treatment at a given certainty
level (Even-Dar et al., 2006; Garivier and Kaufmann, 2016; Russo, 2016; Shang et al., 2020) also yield long
exploration phases.

One reason for the long exploration of bandit algorithms is that each instance—each patient, in our example—is
treated as independent, learning parameters from scratch each time. This allows for complete personalization,
often incorporating contextual or side information (Li et al., 2010; Chu et al., 2011), but disregards any
similarities between instances. For many conditions, differences in responses (rewards) to treatment between
patients are believed to be explained by a small number of disease subtypes (Devi and Scheltens, 2018; Borish
and Culp, 2008). Thus, for a patient with a known subtype, an optimal treatment could be identified from
the treatment responses of previous patients with the same subtype.

The subtype of a patient may be viewed as a latent state, as it is unobserved at the start of treatment, but
manifests in a patient’s responses to different therapies. With access to data on the treatment of previous
patients, it is possible to fit a model of the distribution of latent states and their association with actions
and rewards, for instance with variational inference methods (Kingma and Welling, 2013; Jang et al., 2016).
Given such a model, for a new patient (bandit instance), our task becomes to identify which latent state
they belong to, see Figure 1. Latent Bandits and recent iterations formalize this idea but are limited to
regret minimization, aiming to minimize the regret compared to optimal actions over a possibly infinite
period (Maillard and Mannor, 2014; Zhou and Brunskill, 2016; Hong et al., 2020a;b; Kwon et al., 2021). This
differs from our goal of finding the optimal treatments within a desirably short exploration period, while also
ensuring that the algorithm commits to a good treatment after exploration, without treatment switches.

In this work, we derive fixed-confidence pure-exploration bandit algorithms which aim to minimize the
number of trials required to find an individual-optimal treatment by incorporating existing knowledge of
latent structure.

Main contributions. 1) We propose a formulation of the personalized treatment search problem with
known latent structure in the fixed-confidence pure-exploration setting (Section 2). 2) We prove a lower
bound for the search time of any algorithm in our latent bandit setting and prove a matching upper bound
for the Latent LP-based Track and Stop (LLPT) Explorer (Section 3, 5). 3) We present two algorithms, the
LLPT Explorer and the Divergence Explorer (Section 4). 4) We perform an extensive empirical evaluation on
a simulator of Alzheimer’s disease and illustrate that our formulation and algorithms lead to a significantly
reduced stopping time compared to classical pure-exploration algorithms in the MAB framework (Section 6).
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2 Problem formulation

We think of a treatment personalization strategy as an agent which interacts with a patient over t ∈ N rounds,
aiming to try as few treatments as possible before the best possible treatment has been identified with a
confidence level of at least 1− δ, for a pre-specified δ > 0. At the start of the sequence, the agent observes
a patient’s context covariates (e.g., lab measurements) as a draw of a random variable X1 ∈ Rd. Then, at
each step t = 1, 2, ..., the agent takes an action At ∈ A = {1, ..., K} (trial treatment) and gets a reward
Rt ∈ R (treatment outcomes). When an optimal treatment has been found, exploration stops and the agent
recommends this treatment. The setting is illustrated in Figure 1. In the multi-armed bandit literature this
setting is called fixed-confidence pure exploration (Garivier and Kaufmann, 2016; Shang et al., 2020).

A fixed-confidence pure-exploration strategy ϕ comprises a sampling rule for exploring actions At at each
step t, a stopping rule to decide the time τ at which the exploration is over, and a recommendation rule
which returns the best action âτ at the stopping time τ . Our goal is to design a strategy ϕ to minimize
the expected stopping time E[τ ]. In our healthcare example, this serves to minimize the search for optimal
treatments, and thus minimize patient suffering in the treatment search phase while also ensuring that the
algorithm commits to a good treatment after exploration, without treatment switches.

Even for state-of-the-art pure exploration algorithms, the necessary exploration tends to be long in realistic
settings (see Figure 2). To overcome this, we will make structural assumptions about contexts, actions and
rewards regarding patient similarity. In our healthcare example, it is plausible that a new patient (bandit
problem instance) shares significant similarity with historical patients (logged bandit data), and that the
optimal treatment for them is the same as for similar patients. However, in many domains, the context X is
not sufficient to identify optimal treatment since it does not account for all individual variation (Håkansson
et al., 2020). To account for remaining individual variation between patients with the same X, we will assume
that there is a finite number of latent states S ∈ S = {1, ..., M}, e.g., patient types, which cannot be directly
observed. Thus, the optimal treatment is determined by the context X and the latent state S: two instances
(e.g., two patients) are similar if they have the same context and latent state (e.g., disease subtype).

Identifying the true latent state S is sufficient but not strictly necessary to solve our problem. For successful
treatment, we are only interested to identify the optimal treatment at exploration stop, âτ . Therefore, it is
not necessary to estimate the correct latent state, but the set of latent states that have the same optimal arm.
Having context X is desirable as it helps reduce the number of trials if it is informative of the underlying
latent state S, with unexplained variation further discoverable by trying different treatments.

A latent variable model (LVM) of the distribution of latent states S, contexts X, actions A and rewards R
can be estimated from historical data and used to speed up exploration for a new subject. Maillard and
Mannor (2014) and Hong et al. (2020a) made use of LVMs for “Latent Bandits” in the related setting of
regret minimization. As these algorithms do not come with stopping and/or recommendation rules, they are
not applicable to the fixed-confidence setting where the goal is to terminate search as quickly as possible.

In the MAB formalism, our problem can be defined as fixed-confidence pure-exploration latent bandits with
a single initial context. In doing so, we assume that the latent subtype and the distributions of rewards is
unaffected by time and previous actions. This is plausible for conditions treated with symptomatic therapies,
such as for chronic degenerative disease like AD or Rheumatoid Arthritis (RA), where treatments typically
target the symptoms and not the underlying disease pathology (Fish et al., 2019). Under these assumptions,
the optimal choice of treatment remains fixed through exploration.

2.1 Fixed-confidence pure-exploration latent bandits

Given a state s, a context x, and an action a, let

µa,x,s := E[R | A = a, X = x, S = s]

1By convention, we use capital letters for random variables and lowercase for observed variables
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denote the expected reward for that action, and let

µ∗
x,s = max

a
µa,x,s and a∗

x,s = arg max
a

µa,x,s

denote, respectively, the optimal expected reward and arm in latent state s and observed context x. We
assume that the maximizer a∗

x,s is a single action for each state-context pair (x, s), but our arguments can be
generalized to the case with multiple optimal actions. Further, let Ht = (X, A1, R1, ..., At, Rt) denote the
history of context, actions and rewards, up to time t, letting H0 = (X). The utility of the context X is in
computation of the likelihood P (s|Ht) and this is agnostic of either finite or infinite context assuming that a
good model of the likelihood is known.

Our goal is to design a search strategy ϕ to minimize the expected number of trials τ required to identify an
optimal action, with confidence at least 1− δ, for new subjects with context X and unknown latent state S.

minimize
ϕ

Eϕ,S,Hτ
[τ ] (1)

subject to P (µâτ ,x,s< µ∗
x,s | X = x, S = s) ≤ δ, ∀x, s

We say that a search strategy ϕ is δ-PAC if the error probability is bounded by δ. Here, this is captured by
our constraint, ∀x, s : P (µâτ ,x,s< µ∗

x,s | X = x, S = s) ≤ δ, as long as the probability model is correct.

In equation 1, we minimize the expected stopping time (e.g., over a population of patients) while satisfying
instance-dependent constraints (per patient). We justify this formalization by noting that, in our running
example, any single patient will have a single random stopping time, which we can estimate and analyze only
in expectation. However, it is desirable and possible to guarantee, per patient, that our confidence exceeds
1− δ whenever we stop.

We assume that a model Mθ = {pθ(S), pθ(X | S), pθ(R | A, X, S)} of the marginal state probability p(S)
and the likelihood of observed variables under S, including the set of reward means µa,x,s, is available when
search begins, akin to Hong et al. (2020a). This means that once s is known, so is the optimal arm in s, and
no further exploration is necessary. Such a model can be learned from logged bandit instances, for example,
using a variational autoencoder (Kingma and Welling, 2013), but this is outside the scope of this work.

For simplicity, we will assume that all reward distributions are stationary in time and Gaussian with equal
variance σ2, that is, given At = a, X = x, S = s, for all t

Rt ∼ N (µa,x,s, σ2) .

The algorithms presented in Section 4 are applicable in the non-Gaussian case as well, assuming that the
reward distribution is known through Mθ, but our analysis in Section 5 is limited to Gaussian rewards for
now. Our analysis makes heavy use of the Kullback-Leibler (KL) divergence, and we will adopt the notation
KL(µa,x,s ∥µa,x,s′) = KL(p(R | a, x, s) ∥ p(R | a, x, s′)) for the KL-divergence between the two Gaussian
rewards for arm a under states s, s′ with equal variance σ2 and means as indicated.

3 Lower bound on stopping time

To serve as benchmark for our algorithms, we derive a lower bound on the worst-case solution to objec-
tive equation 1 for any algorithm which satisfies its constraints.

The seminal work of Kaufmann et al. (2016) presented a general inequality from which one can derive lower
bounds for δ-PAC algorithms in the best-arm identification framework. In lemma 1, we present a variant of
their key result, adapted to our latent bandit setting. For brevity, we let

ρ(x; s, s′) = log[p(x | s)/p(x | s′)]

denote the log-likelihood ratio of the observed context x under latent states s and s′, and use the shorthand

KLR,a,x
s,s′ = KL(µa,x,s ∥µa,x,s′) ,
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for the KL-divergence between rewards under states s, s′. Our bounds and algorithms use a state s as
reference point for the set of alternative states s′ with different optimal arms,

Altx(s) := {s′ : a∗
x,s′ ̸= a∗

x,s} .

We can now derive the following result.
Lemma 1. Given a problem instance with latent state s and observed context x, any δ-PAC algorithm ϕ
must satisfy for any alternative state s′ ∈ Altx(s),

∑

a

Eϕ[Na | x, s]KLR,a,x
s,s′ + ρ(x; s, s′) ≥ kl(δ||1− δ), (2)

where Na is the number of plays of arm a drawn under ϕ and kl(δ||1− δ) is the KL-divergence between two
Bernoulli random variables with parameters δ and 1− δ.
Proof summary. The proof follows the argument of the original Lemma in Kaufmann et al. (2016). We
start from the KL-divergence between the distribution of histories H, under s and s′ and expand this using
the chain-rule of the KL-divergence. We then apply the information-processing inequality to lower bound this
by kl(δ||1− δ). The difference from Kaufmann et al. (2016) is that we get an additive term which depends on
the context distribution under different latent models. For a full proof, see Appendix A.1.

From lemma 1, we can derive a lower bound on the expected stopping time. Here, we assume that the optimal
arm is unique for each state-context pair (s, x), that is, Altx(s) = S \ {s}. This assumption is not necessary
to run our proposed algorithms.
Proposition 1. For any δ-PAC learner ϕ with δ ∈ (0, 1/2) and any latent state s and context x, the expected
stopping time satisfies

Eϕ[τ | s, x] ≥ 1
C∗

δ (s, x)kl(δ||1− δ)

where 1/C∗
δ (s, x) =

∑
a γ∗

x,a(s) with γ∗
x,a(s) the minimizers of the following linear program,

minimize
γx,a≥0

∑

a

γx,a (3)

subject to
∑

a

γx,aKLR,a,x
s,s′ + ρ(x; s, s′)

kl(δ||1− δ) ≥ 1, ∀s′ ∈ Altx(s)

Proof summary. By lemma 1, we have a constraint on the sum of the expected number of times each arm
is played by any δ-PAC algorithm ϕ. By dividing each side of equation 2 by kl(δ||1− δ) and minimizing the
the stopping time under the resulting constraint, we obtain the linear program (LP) in equation 3. For a new
bandit instance, x is observed before search begins. Thus, given a model Mθ, the only unknowns in equation 3
are γx,a. As we have a finite set of latent states s , we can construct a finite set of linear constraints and
solve for the minimal stopping time. A full proof is given in appendix A.1.
Remark 1. As a sanity check, we verify that the contextual information makes the pure-exploration problem
fundamentally easier. Indeed, when an observation x clearly separates the true latent state s from s′, ρ
increases, the constraint in equation 3 is satisfied by a larger set of parameters γx,a, and the lower bound
attains a smaller value. However, as we require increasing certainty and δ → 0, the influence from contextual
information X on C∗

δ (s, x) vanishes. This is expected since we don’t collect more information through x as
our requirement on certainty increases—it remains constant.

As a consequence of proposition 1, we can obtain a bound for the population (marginal) search time. If we
assume that 1

C∗
δ

= EX,S [
∑

a γ∗
x,a(s)] exists, with γ∗

x,a the minimizers as in proposition 1, we have

Eϕ,X,S [τ ] ≥ 1
C∗

δ

kl(δ||1− δ)

The lower bound indicates that the optimal worst-case solution to equation 1 is limited by the hardest-to-
separate states s, s′. We make use of this insight next to develop algorithms.
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Algorithm 1 LLPT Explorer and Divergence Explorer
Input δ, T,S, K,Mθ

Output τ, îτ

1: Observe h1 = (x)
2: if LLPT Explorer then
3: Compute w∗

x,a(s) for all a, s ▷ See equation 4, equation 3
4: end if
5:
6: while Zt < 1− δ and t < T do
7: if LLPT Explorer then
8: st = arg maxs∈S p(s|ht)
9: at+1 = arg maxa∈[K] t · w∗

x,a(st)−Nat
(t)

10: else if Divergence Explorer then
11: st ∼ p(s|ht)
12: ft(a) =

∑
s′ pθ(s′|ht)KL(µa,x,st ∥µa,x,s′)

13: at+1 = arg maxa∈[K] ft(a)
14: end if
15: Choose at+1, and Observe rt+1
16: Update ht = ht−1 ∪ (at+1, rt+1)
17: Update Nat+1(t)← Nat+1(t) + 1
18:
19: Update ŝt = arg maxs∈S pθ(s | ht)
20: Update ât = arg maxa∈[K] µa,x,ŝt

21: Update Zt =
∑

s pθ(s|ht)1[ât = a∗
x,s]

22: end while
23:
24: Return ât

4 Algorithms

We present two best-arm identification strategies, each comprising a sampling rule for selecting arms At,
a stopping rule for determining τ , and a recommendation rule for selecting âτ . Both algorithms, defined
in Algorithm 1, are given access to an already estimated latent variable model Mθ including all reward
means µa,x,s ∀ s ∈ S, a ∈ A given a context x and differ only in their sampling rules; the stopping and
recommendation rules are equivalent. Either algorithm starts by observing the random context X, and
proceeds from there.

4.1 Sampling rule 1: Latent LP-based Track and Stop (LLPT) explorer

Our first sampling rule is based on the Track-and-Stop method (Garivier and Kaufmann, 2016), where arm
allocations are determined by tracking proportions w∗, obtained by solving the lower bound optimization
problem in equation 3. Since we have finite sets of states and actions, and x is observed at the start of the
search, we can compute γ∗

x,a(s) for all s ∈ S, a ∈ A directly. Then, we define playing proportions w∗
x(s), for

each possible state s ∈ S, as
w∗

x,a(s) = γ∗
x,a(s)/(

∑

a

γ∗
x,a(s)) . (4)

At each time step t, the algorithm picks a latent state st = arg maxs p(s|ht) from the (known) posterior given
the current history ht, and plays the arm which most closely tracks w∗

x,a(st). Let Na(t) be the number of
times arm a has been played up until and including t. Then, the LLPT Explorer sampling rule is defined by

At+1 = arg max
a∈[k]

t · w∗
x,a(st)−Na(t) .
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The LLPT Explorer aims to play the minimum total number of trials using arms which distinguish latent
states the most, as given by the KL term in the constraint of equation 3. It aims only to distinguish latent
states with different optimal arms, as the goal is to identify the best action, not the state.

4.2 Sampling rule 2: Divergence explorer

The LLPT Explorer plays according to the optimal proportions for the worst-case alternative state given
the current estimate. This is because the constraint in equation 3 will be hardest to satisfy (require largest
γx,a) for states s′ which are the most similar to s. A drawback of this idea is that it ignores the likelihood of
said alternative state under the posterior. If there is strong evidence that s′ is unlikely to be the true state,
collecting more evidence to rule it out may be suboptimal. In the extreme case, a state s′ with posterior
probability p(S = s′ | ht) ≈ 0 may still (unnecessarily) inform the sampling rule for the LLPT Explorer.

As an alternative, we define the Divergence Explorer sampling rule. This algorithm aims to play arms
according to how much information is gained by playing an arm in expectation given the current posterior
probability of states in Altx(s). At each time t, a latent state st ∼ Pt(s|ht) is sampled as reference. Then,
the sampling rule uses the expected divergence between st and alternative states s′

t,

ft(st, a) =
∑

s′
t∈Altx(st)

P (s′
t|ht)KL(µa,x,st

∥µa,x,s′
t
) .

The arm At+1 = arg maxa∈A ft(st, a) is played next.

Because KL(µa,x,st
∥µa,x,s′

t
) measures the information distance between the reward distribution of arm a

under the two latent models st and s′
t, ft(st, a) does a one-to-many test assuming st is the true model and s′

t

is another latent model with probability P (s′
t|ht).

4.3 Recommendation rule

Both algorithms recommend the best arm in the state most believed to be correct in a given instance, so the
recommendation rule is âτ = arg maxa∈A µa,x,ŝτ where ŝτ is the most probable state under the posterior, as
defined in Algorithm 1.

4.4 Stopping rule

It is natural to stop search at t when we are confident enough that the recommended arm ât is optimal under
the posterior over latent states. Since we assume to have access to the full posterior over S, we can use the
simple stopping rule

τ := min
t
{t : Zt ≥ 1− δ} where Zt =

∑

s

P (s|ht)1[ât = a∗
x,s] (5)

and the threshold 1 − δ is the desired confidence level. Whenever this rule is satisfied, so is Chernoff’s
stopping rule based on a threshold log( 1−δ

δ ) on the log-likelihood ratio between states, as used by Garivier
and Kaufmann (2016). See the proof of proposition 2 in appendix A.2 for a derivation.

In many applications, it us sufficient to identify a action which is ϵ-optimal with respect to the best possible
action in the true latent state. We can accommodate this in our algorithm by redefining the set of alternative
states s′ to include only those for which the optimal arm in s is more than ϵ worse than the optimal arm in s′,

Altx(s) := {s′ : µa∗
x,s,x,s′ < µ∗

x,s′ − ϵ} .

This change involves only a minor modification to the stopping criterion in equation 5 and could also be used
in the Divergence explorer sampling rule.

5 Upper bound on the expected stopping time of LLPT explorer

Next, we show that the lower bound derived in Section 3 is matched by an upper bound on the stopping time
for the LLPT Explorer algorithm in the high-confidence limit, δ → 0. Similar to the lower bound, we make
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the simplifying assumption that each latent state has a unique optimal arm, shared with no other states,
Altx(s) = S \ {s}. As a consequence, finding the optimal arm equates to finding the true underlying state.
We have the following result.
Proposition 2. Let τ be the stopping time of LLPT Explorer ϕ, as defined in Algorithm 1. With s the true
state and C∗(s, x) the optimum in equation 3 with the ρ-term removed, there is a constant α > 0 such that

lim
δ→0

Eϕ[τ | s, x]
log(1/δ) ≤ α

C∗(s, x) . (6)

Proof summary. The proof combines and expands arguments from Garivier and Kaufmann (2016) and
Chernoff (1959) to show that after sufficently many samples, a) the true latent state is identified, b) the
tracked proportions are near optimal for the identified state, c) the probability that the stopping criterion
is not satisfied decays exponentially quickly. As a result, the expected stopping time can be bounded using
concentration arguments. For a proof, see appendix A.2.

As stated, proposition 2 applies to the LLPT Explorer, as defined in Algorithm 1, in which the MAP state ŝt is
used for tracking. We have also implemented a slight variation of LLPT with a sampled state ŝt ∼ p(s|ht) and
found that the latter worked slightly better empirically. We report only results for the version in Algorithm 1.

Similarly to the lower bound, we obtain an upper bound on the population search time by taking the
expectation of equation 6 with respect to S and X.
Remark 2. Comparing the result in equation 6 to bounds for pure-exploration without latent variable models;
e.g., Russo (2016); Garivier and Kaufmann (2016), superficially, they appear very similar. However, the
critical quantity in the classical setting is the smallest separation of reward means for alternative, free vectors
of arm parameters. Here, the equivalent quantity is the set of parameters of the discrete latent states, which
is generally much smaller than the set of free parameters, leading to a tighter bound.

More precisely, the sample complexity term C∗(s, x) shrinks when we have knowledge of the latent state
structure because the set of plausible alternative parameters Altx(s) is smaller compared to the case with no
structure in, for example, Garivier and Kaufmann (2016). In our case, Altx(s) comprises a finite set of
parameters, whereas the case where parameters are estimated online without latent structure corresponds to
an infinite set of alternative parameters. As a result, the worst-case (supremum) over alternative parameter
sets shrinks, as do the lower and upper bounds on the stopping time.

6 Experimental study

We evaluate our proposed algorithms in a series of experiments, comparing them to baseline algorithms for
fixed-confidence pure exploration.

6.1 Baseline algorithms

Previous work incorporating latent states in pure exploration was not available at the time of writing, so
to get comparable baselines, we adapted the Top-Two Thompson Sampling (TTTS) rule (Russo, 2016) to
compare to our algorithms.

Top-Two Thompson Sampling (TTTS) TTTS operates with the goal of estimating parameters Πt

(e.g., mean vectors of arms with Gaussian distribution) that yield the best arm for a given confidence level
1− δ. It proceeds as follows; at each time step t either; (i) with probability p, sample a parameter vector
θt ∼ Πt and play the arm at

(1) = arg maxa∈A θt or (ii) with probability 1− p resample θt
′ ∼ Πt until it gets

and subsequently plays arm at
(2) ̸= at

(1). We implemented the T3C (Shang et al., 2020) variant of TTTS
which finds at

(2) ̸= at
(1) faster. TTTS does not make use of a latent variable model.

TTTS-Latent Explorer This is an adaptation of TTTS to our setting where, instead of estimating arm
parameters, the goal is purely to identify the latent state. It does not account for the case where there is
a shared optimal arm over different states which is accounted for in the LLPT and Divergence Explorer.
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At each time step t, the sampling rule samples a latent state s
(1)
t ∼ Pt(s|ht) and either (i) with a Bernoulli

parameter p evaluates the latent state, st = s
(1)
t or (ii) with a Bernoulli parameter 1− p resamples Pt(s|ht)

until it gets a latent state st = s
(2)
t ̸= s

(1)
t . It then plays the arm At = arg maxa∈A µa,x,st

.

Greedy Explorer This is a naïve sampling rule which plays the reward-optimal arm in a state sampled
from the current posterior, akin to TTTS-Latent but without the re-sampling step. At each time t, it picks
st = arg maxs p(s|ht) and then plays the locally reward-maximizing arm At = arg maxa∈A µa,x,st . It is
naïve in the sense that it only considers the rewards from a state, but this is not always informative for
distinguishing alternative states. It also corresponds to standard Thompson Sampling (Thompson, 1933)
which has been shown to perform poorly for pure exploration tasks, hence the motivation for TTTS.

6.2 Experimental environment

As treatment personalization task, we use the Alzheimer’s Disease Causal estimation Benchmark (ADCB)
environment (Kinyanjui and Johansson, 2022). In this environment, simulated subjects go through cognitive
decline, eventually progressing into Alzheimer’s disease. Outcomes Yt represent their cognitive abilities and
treatments At are symptomatic, affecting only immediate outcomes. Both treatment responses and an initial
33-dimensional observed context X ∈ Rd, are affected by a latent state S, representing the disease subtype.

In the ADCB environment, the number of actions is K = 8 and the number of latent states, S = 6. The
outcome Yt at time t is generated as Yt(A, X, S) := Φ(X, S) + ∆(At, S) + ξ, where ξ ∼ N (0, σ2) and Φ is an
non-linear function fit to real data to model the cognitive function of subjects when not treated. For the
environment we are using, Φ is a Random Forest Regressor fit to observed outcomes of untreated patients.
∆ is a function that is defined to moderate the heterogeneity of simulated treatment effects over the latent
dimensions. Here, ∆ := υ1S + 1S(ηυβT ) where υ ∈ RK is the average treatment effect of the treatments,
η > 0 is a heteregoneity scaling parameter, and β ∈ RK×S is a factor matrix whose rows sum to 0.

We define two alternative reward settings (see below), both with Gaussian rewards, based on the ADCB
outcomes of treatments, Y . We give algorithms which make use of latent variables perfect knowledge of the
true latent variable model, as defined by the simulator. Hence, for each context x ∈ Rd, latent state s ∈ [S]
and action a ∈ [K], the corresponding posterior p(s | ht) and reward means, µa,x,s are known.

Reward setting 1: Non-contextual rewards Here, for each latent state we define the reward R :=
−(Y (A, X, S)− Y (0, X, S)). From the definition of the outcome Y above, this removes the effect of context
from the reward, by cancelling Φ(X, s), and takes us closer to a typical best arm identification setting with
additional latent state structure, where the structure is given by ∆. In appendix B.1, Figure 5(a) shows the
structure of the mean rewards µa,x,s under the different latent states s ∈ S, a ∈ K for this setting.

Reward setting 2: Contextual rewards Here, we define the reward R := −Y (A, X, S), thus preserving
the effect of context in the reward. As seen from appendix B.1, Figure 5(b), which is an example of the mean
rewards structure µa,x,s s ∈ S, a ∈ K for some given context x, the reward structure stays the same as in
the previous setting, but the scale is shifted depending on the context. The similarity is a property of the
environment. The results presented in the results section below are for this setting, and those of setting 1
above are appended in the supplementary materials.

Repeated experiments Each experiment proceeds as follows; A new patient is sampled from the envi-
ronment (sampled patients have potentially different latent states and contexts). The algorithms do not
observe the latent state and they proceed as described in Section 4 and Section 6.1. For a run, all algorithms
are provided with the same context. All results are presented for 100 different patients and averages are
computed for the different quantities compared. Errorbars represent the standard deviation across patients.

Evaluation metrics We compare empirical estimates of the expected stopping time E[τ ], convergence of
the posterior probability p(ŝt | ht) with t, and the average correctness level, E[1[âτ = a∗]], of the different
algorithms for i) different levels of confidence δ ∈ (0, 1/2) under a fixed noise level σ > 0 and ii) different levels
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of noise σ for a fixed δ. Results for correctness are presented in Figure 6 in the Appendix, and correspond
closely with the parameter δ.

6.3 Results

In Figure 2, we see an example of the drastic effect that incorporating latent structure can have on the
stopping time of pure-exploration algorithms. All latent-variable methods outperform the non-latent baseline
TTTS by a substantial margin.

0.7 0.8 0.9 0.95 0.99
1

0

50

100

150

200

E[
]

LLPT (With latent structure)
TTTS (No latent structure)

Figure 2: Using latent state structural information significantly reduces the expected number of trials E[τ ]
required to identify an optimal treatment with confidence at least 1− δ in a simulator of Alzheimer’s disease
progression.

Moreover, in Figure 3a, we see that, even for the worst-case instances, the LLPT algorithm is faster than
the average for standard TTTS observed in Figure 2. This supports our hypothesis that exploiting latent
structure between instances (patients), which could be estimated from historical data, contexts, is useful to
design sample-efficient pure-exploration algorithms.

In the graph of latent state posterior convergence, Figure 3b, we see that LLPT Explorer and Divergence
Explorer converge quicker in their belief of the inferred latent state. We also observe less variance across
bandit instances (shaded area) compared to the Greedy and TTTS-Latent baselines. The implication for this
is that these algorithms stop exploration earlier thus attaining our goals outlined in Section 2.

In Figure 3c, we study the average stopping time, Ê[τ ] for all algorithms with access to the same latent variable
model, under changing certainty level 1− δ. LLPT Explorer and Divergence Explorer are consistently more
efficient than baselines, demonstrating benefit of the insights derived from the lower bound in proposition 1.
The difference is especially pronounced in the high-certainty regime, δ ≈ 0, which is the regime that would be
ideal for safety-critical healthcare applications. Interestingly, we find that the Divergence Explorer performs
consistently better than the LLPT Explorer and its average stopping time approaches the lower bound as
δ → 0. We believe this is due to selecting actions based on comparison with alternative states on average
under the current posterior, rather than the worst-case alternative state - some latent states are ruled out by
the posterior and no longer affect the action selection of the divergence explorer.

Studying our algorithms with respect to noise in the rewards, Figure 3d, shows that our proposed methods
are also more robust to noise compared to the baseline algorithms. At σ = 10, which is comparable to the
marginal standard deviation of rewards due to X and S, we see that our algorithms perform better. We also
observe that they are also more robust to over- and under-estimation of the noise level in the rewards as
shown by E[τ ] at other noise levels.

7 Related work

The problem of finding optimal decisions under uncertainty has a long history (Thompson, 1933; Chernoff,
1959; Gittens and Dempster, 1979; Jennison et al., 1982; Lai and Robbins, 1985; Glynn and Juneja, 2004)
and has recently been studied as a pure exploration problem in the multi-armed bandit framework under

2The small discrepancy seen in the case where σ = 1 is due to the exclusion of the ρ term in the computed lower bound.
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(a) Density of stopping times under LLPT(ours) showing
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posteriors for our algorithms, LLPT Explorer and Divergence
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(c) Comparison of stopping time vs confidence (1 − δ) for the
algorithms. Our algorithms, LLPT Explorer and Divergence
Explorer, have stopping times that are consistently lower.
The dashed line shows the lower bound from Proposition 1.
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Figure 3: Selected results from our experimental study.

various assumptions(Even-Dar et al., 2006; Bubeck et al., 2009; Jamieson et al., 2013; Kaufmann et al., 2016;
Garivier and Kaufmann, 2016; Jedra and Proutiere, 2020; Wang et al., 2021; Agrawal et al., 2021; Tirinzoni
and Degenne, 2022).

The work of Garivier and Kaufmann (2016) is the first to introduce an optimal algorithm, Track and Stop, in
the fixed confidence setting for classical multi-armed bandits and our LLPT Explorer takes inspiration from
their algorithm, adapting it to the latent bandit setting. Russo (2016) introduces a class of top-two sampling
strategies for the pure-exploration problem, which we here use as baselines. These top-two algorithms were
originally analyzed using a different performance measure but have recently been theoretically analyzed in
the fixed-confidence setting by Jourdan et al. (2022). Our work is also related to (Maillard and Mannor, 2014;
Zhou and Brunskill, 2016; Hong et al., 2020a;b), who study regret minimization in latent bandits, in contrast
to our work which studies the pure-exploration problem in latent bandits.

Kato and Ariu (2021) studied pure exploration in contextual bandits, where a new context is observed at
each time point, and found that contextual information improves the speed at which the average treatment
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effects (Imbens and Rubin, 2015) of actions across contexts can be estimated. Our problem is related to this
setting but differs in that we see only a single context x per bandit instance, and are interested in the effects
of actions for this specific x, not on average. Håkansson et al. (2020) studied fast search for near-optimal
treatments, based on a model learned from historical trajectories, but did not consider online learning. In
their setting, an optimal search strategy can be found by solving a dynamic programming problem in an
estimated discrete state space. This is not feasible here due to the high dimensionality of our history, H.

8 Discussion & conclusion

In this work we have studied the problem of finding the optimal arm in latent bandits using as few trials as
possible. We have empirically and theoretically shown that our proposed algorithms are able to leverage
the latent structure in a near-optimal way to substantially reduce the expected stopping time compared to
available baselines. Our empirical evaluation in a simulator of Alzheimer’s disease derived from real-world
data, demonstrated that our algorithms are able to find the optimal treatment in just a few trials.

Our analysis is limited to the case in which the latent variable model is given and exact. When forced to
estimate the model from historical data, sensitivity to misspecification or misestimation becomes a concern.
Hong et al. (2020a) analyzed latent bandits in regret minimization when the reward model is misspecified but
the resulting bound suffers linear regret scaled by the error, and Hong et al. (2022) provided an improved
sub-linear regret bound for this with additional assumptions on the reward structure. In the pure-exploration
setting, recovering quickly from misspecification is even more critical since the time scale is shorter. We
conjecture that an informative guarantee in the misspecified case will similarly require additional assumptions
on the reward structure or additional sources of data. We believe the setting where a learner needs to recover
the true model up to some pre-specified precision is an interesting direction for future work. Another useful
generalization would be to go beyond the analysis of expected rewards. In high-stakes applications, it is
desirable to manage also the risk of worst-case low-probability events, see e.g., Tamkin et al. (2019). This
would further increase the suitability of our approach for the medical domain.
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Appendix

A Proofs

Our objective can be written as follows

minimize
ϕ

EHτ ,S,ϕ[τ ] (7)

subject to P (µâτ ,x,s < µ∗
x,s | X = x, S = s) ≤ δ, ∀x, s

A.1 Lower bound

Recall the definition of Altx(s), given a latent state s we define the set of alternative latent states as

Altx(s) := {s′ ∈ S : arg max
a

E[r|s, x, a] ̸= arg max
a

E[r|s′, x, a]}. (8)

Proof of lemma 1

Recall the statement of lemma 1, Given a latent state s and context x, any δ-PAC algorithm ϕ will satisfy
∑

a

Eϕ[Na|x, s]KLR,a,x
s,s′ + ρ(x; s, s′) ≥ kl(δ||1− δ). (9)

Proof. Let Ht denote the history up to time t. The expected log-ratio between s and s′ ∈ Altx(s) under the
latent state s and algorithm ϕ can be written as

Eϕ[Lt(s, s′)|x, s] = Eϕ

[
log p(Ht|s)

p(Ht|s′) |x, s

]
(10)

= Eϕ

[
ρ(x; s, s′) +

t∑

i=1
log p(ri|s, at, x)

p(ri|s′, at, x) |x, s

]
(11)

= ρ(x; s, s′) +
K∑

a=1
Eϕ[Na|x, s]KLR,a,x

s,s′ (12)

where the last step follows from the KL-divergence decomposition, see Lemma 15.1 in (Lattimore and
Szepesvári, 2020). Further, by definition we have

KL(pϕ(Ht|x, s) ∥ pϕ(Ht|x, s′)) = Eϕ[Lt(s, s′)|x, s] (13)

and using the information-processing inequality (Thomas M. Cover, 2005), as in (Kaufmann et al., 2016)
yields

Eϕ[L(s, s′)|x, s] ≥ kl(δ||1− δ) (14)

where kl(δ||1− δ) is the KL-divergence between two Bernoulli variables with mean δ and 1− δ.

Proof of proposition 1

Proof. This proof follows the same line as the proof for the general lower bound in (Kaufmann et al., 2016).
The main difference is that we, due to lemma 1, get a dependence on the context distribution, p(X|s), in the
lower bound.

From lemma 1 we have

ρ(x; s, s′) +
K∑

a=1
Eϕ[Na|x, s]KLR,a,x

s,s′ ≥ kl(δ||1− δ),∀x and ∀s′ ∈ Altx(s). (15)

15



Published in Transactions on Machine Learning Research (04/2023)

Equation 15 gives a necessary condition which any δ-PAC algorithm needs to obey and we can simply
minimize Eϕ[τ |x, s] w.r.t. this constraint. Note that this yields a LP with finite constraints since the set of
all latent states is finite. Hence, we get the following optimization problem

minimize
ϕ

Eϕ[τ |x, s]

subject to
K∑

a=1
Eϕ[Na|x, s]KLR,a,x

s,s′ + ρ(x : s, s′) ≥ kl(δ||1− δ); ∀s′ ∈ Altx(s)

We introduce

γx,a := E[Na|x, s]
kl(δ||1− δ) (16)

and solving the above optimization problem is equivalent to solving

minimize
γx,a≥0

∑

a

γx,a

subject to
∑

a

γx,aKLR,a,x
s,s′ + ρ(x; s, s′)

kl(δ||1− δ) ≥ 1, ∀s′ ∈ Altx(s).
(17)

Let γ∗
x,a be a optimal solution, then

E[τ |x, s] =
∑

a

E[Na|x, s] ≥ kl(δ||1− δ)
∑

a

γ∗
x,a (18)

and by defining 1/Cδ(s, x) =
∑

a γx,a we get

E[τ |x, s] ≥ kl(δ||1− δ) 1
Cδ(s, x) . (19)

A.2 Upper bound on sample complexity for tracking rule

Let τ represent the (random) stopping time with certainty parameter δ. Further, let Lt(s, s′) represent the
log-likelihood ratio of t samples under model s and s′,

Lt(s, s′) = ρ(xi; s, s′) +
t∑

i=1
zi(s, s′) where

t∑

i=1
zi(s, s′) := log p(ri | S = s, A = ai)

p(ri | S = s′, A = ai)
(20)

and
ρ(xi; s, s′) = log p(xi | S = s)

p(xi | S = s′) .

Next, let the optimal worst-case playing proportions w∗
x,a(s) = γ∗

x,a/
∑

b γ∗
x,b in an observed context x under

an assumed true state s be given by the optimizers γ∗
x,a of equation 17.

When the context X is constant, the second term in the constraint vanishes and the γx,a parameters is
independent of x.
Proposition. The LLPT algorithm ϕ (Algorithm 1) which a) selects actions by tracking proportions w∗

a,x(ŝt) ∝
γ∗

a,x(ŝt), where γ∗
a,x(ŝt) are the solution to equation 17 with δ = 0 and ŝt is the MAP state at time t, and b)

stops according to the stopping rule in Section 4.4, satisfies, with s the true state, and a constant α > 0,

lim
δ→0

Eϕ[τ |s, x]
log(1/δ) ≤

α

C∗(s, x) .
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Proof. We make an adaptation of the proof of Lemma 2 in (Chernoff, 1959) to tracking algorithms with
an initial observed context. Let ai be actions drawn according to a tracking rule which selects actions
according to a concentrating parameter (in our case ŝt concentrates to s and we track w∗

a,x(ŝt)), and let
Na(t) =

∑t
i=1 1[ai = a]. Then, by Lemma 17 in (Garivier and Kaufmann, 2016), for any ζ := ζx(s), there

exists a Tζ such that for T ≥ Tζ , we have

∀t ≥
√

T : max
a

∣∣∣∣
Na(t)

t
− w∗

x,a(s)
∣∣∣∣ ≤ 3(K − 1)ζ .

Now, let T0 = inft{t : ∀t′ ≥ t, ŝt′ = s} be the smallest number of samples such that for more samples, the
estimated latent state will be correct. This bound exists, and is reached exponentially fast, by Lemma 1
in (Chernoff, 1959):

p(T0 > t) ≤ Ke−bt .

Next, let Ts′(δ) = inft{t : ∀t′ ≥ t, Lt′(s, s′) > log( 1−δ
δ )} be the shortest time after the log-likelihood ratio

exceeds log( 1−δ
δ ) w.r.t. comparison between s and s′. Whenever the stopping criterion in Section 4.4 is

satisfied with parameter δ, so is this. We can see this by noting that if p(S = s | ht) > 1− δ for some s, then
p(S = s′ | ht) < δ for s′ ̸= s. Hence,

log p(S = s | ht)
p(S = s′ | ht)

= Lt(s, s′) > log
(

1− δ

δ

)
.

It follows that,
τ ≤ max(max

s′ ̸=s
Ts′(δ), T0, Tζ) .

We have from lemma 1 in (Chernoff, 1959) that there exist constants K and b such that

p(T0 > t) ≤ Ke−bt .

Hence, to show that the stopping time is bounded by t, it is sufficient to show that for each alternative state
s′ ̸= s, and sufficiently large t, there are constants K = K(ϵ, s′), b = b(ϵ, s′), such that

p(Ts′(δ) > t) ≤ Ke−bt .

If the result holds for t > α log( 1−δ
δ )/C∗

δ (s, x), we have our result by a simple argument.

For ζ > 0, define W ζ = {w:= wx,a(s) ∈ [0, 1]K : ∥w∥1 = 1, ∥w − w∗
x,a(s)∥∞ ≤ 3(K − 1)ζ} to be the set

of playing proportions ζ-close to w∗
x,a(s). Now, define the ζ-worst-case playing proportions wζ(s) as the

optimizers of Cζ(s, x) = minw∈W ζ mins′
∑

a wx,aKL(µa,x,s, µa,x,s′).

Consider Lt(s, s′) as defined in equation 20. Add and subtract both KLR,ai,x
s,s′ := KL(µai,x,s, µai,x,s′) and

KLR,wζ ,x
s,s′ := Ea∼wζ(s)[KL(µa,x,s, µa,x,s′)] from term i in the sum,

Lt(s, s′) =
t∑

i=1

[
zi(s, s′)−KLR,ai,x

s,s′ + KLR,ai,x
s,s′ −KLR,wζ ,x

s,s′ + KLR,wζ ,x
s,s′

]
+ ρ(x; s, s′)

=
t∑

i=1

[
zi(s, s′)−KLR,ai,x

s,s′

]

︸ ︷︷ ︸
(a)

+
t∑

i=1

[
KLR,ai,x

s,s′ −KLR,wζ ,x
s,s′

]

︸ ︷︷ ︸
(b)

+ tKLR,wζ ,x
s,s′

︸ ︷︷ ︸
(c)

+ ρ(x; s, s′)
︸ ︷︷ ︸

(d)

.

Starting with term (a), by definition, for any time point i, by definition of the KL-divergence,

E[zi(s, s′)] = ER

[
log p(R | S = s, X = x, A = ai)

p(R | S = s′, X = x, A = ai)
| S = s

]
= KLR,ai,x

s,s′ .
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Hence, for any ϵ1 > 0, (
∑t

i=1[zi(s, s′) − KLR,ai,x
s,s′ ] + ϵ1) has positive mean and finite moment generating

function for moments k ∈ [−1, 0] for any ai and s′ ̸= s. As a result, there exists k∗ < 0 and b1 > 0, depending
on ϵ1, such that for any trial i,

E[ek∗[zi(s,s′)−KLR,ai,x

s,s′ +ϵ1]] ≤ e−b1 .

Following the proof of Lemma 1 in (Chernoff, 1959), we have,

E
[
e

k∗[
∑t

i=1
[zi(s,s′)−KLR,ai,x

s,s′ +ϵ1]
]
≤ e−b1t

and, as a result,

p

(
t∑

i=1
[zi(s, s′)−KLR,ai,x

s,s′ ] < −ϵ1t

)
≤ e−b1t .

For term (b), it follows from the definition of wζ , Tζ and Cζ that, for any t ≥ max(Tζ , T0), ŝt = s and
∥w(t)− w∗(s)∥∞ ≤ 3(K − 1)ζ. Hence,

t∑

i=1
[KLR,ai,x

s,s′ −KLR,wζ ,x
s,s′ ] ≥ 0 .

In other words, after we have collected more than Tζ samples, we will have more information than the
ζ-worst-case rule for s. For term (c), by definition of Cζ , for any s′, KLR,wζ ,x

s,s′ ≥ Cζ(s, x).

Combining the previous results, noting that term (d) is a constant, for any s′ and any ϵ3 > 0 and appropriately
chosen K4, b4, we get that for t ≥ max(T0, Tζ),

p
(
Lt(s, s′) < t[Cζ(s, x)− ϵ3]

)
≤ K4e−b4t .

For t > log( 1−δ
δ )/(Cζ(s, x)− ϵ3), we thus have

p(Ts′ > t) ≤ K4e−b4t .

For any positive random variable T , we have the identity,

E[T ] =
∫ ∞

0
p(T > t)dt .

Hence,
E[Ts′ ] ≤ t0 +

∫ ∞

0
p(T ′

s > t)dt ≤ t0 + K4/b4

and so we can let t0 ≥ T0 + Tζ + log( 1−δ
δ )/(Cζ(s)− ϵ3) + K4/b4.

Next, we study the high-certainty limit δ → 0. We note first that as δ → 0, log( 1−δ
δ ) → log(1/δ). When

δ → 0, the influence of the term ρ(x; s, s′) in equation 3 vanishes and the C∗
δ (s, x) converges to

C∗(s, x) = min
γx,a≥0

∑

a

γx,a (21)

s.t.
∑

a

γx,aKLR,a,x
s,s′ ≥ 1, ∀s′ ∈ Altx(s)

by the continuity of linear programs (Dragomirescu and Bergthaller, 1966). Thus, if we let ζ → 0, we have
Cζ(s, x)→ C∗(s, x). We get,

lim
δ→0

E[τ | x]
log 1/δ

≤ 1
(C∗(s, x)− ϵ3) .

Refactoring, we get the desired result.
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B Additional experiments and results

B.1 Reward Structure
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Figure 4: Structure of the means µs,a under different latent states. (a) Non-contextual rewards and (b)
Contextual rewards

B.2 Outcome Distribution

Shown in Figure 5 below.
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Figure 5: Distributions of treatment outcomes under two different latent states showing that the outcomes
are approximately gaussian

B.3 Correctness Results

Shown in Figure 6 below.
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Figure 6: Correctness levels under (a) Varying δ levels; Dotted line marks the desired correctness level (b)
Varying σ levels with δ = 0.01
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