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A B S T R A C T

This thesis explores applications of vector-valued modular forms of congruence and
extension types to scalar-valued modular forms for congruence subgroups with a
character, higher order modular forms, and iterated Eichler-Shimura integrals of
depth one and two, including considerable generalizations thereof.

In Paper I (co-authored with Martin Raum), we present an algorithm for computing
bases for spaces of vector-valued modular forms of congruence type and of weight at
least 2 in terms of products of components of vector-valued Eisenstein series. Since
the Fourier series expansions of these Eisenstein series are available, our algorithm
can be used to compute Fourier series expansions of any vector-valued modular
form belonging to these spaces. It complements two available algorithms that (as
opposed to ours) are limited to inductions of Dirichlet characters, and vector-valued
modular forms of Weil type. Our algorithm is based on a representation theoretical
interpretation of a theorem due to Raum and Xià. After a heuristic evaluation of the
time-complexity, we compare our algorithm to the two available ones, highlighting
the trade-offs between generality and performance.

In Paper II (co-authored with Martin Raum and Albin Ahlbäck), we show that all
Eichler integrals, and all “generalized second order modular forms” can be expressed
as linear combinations of corresponding generalized second order Eisenstein series
with coefficients in classical modular forms. We compute the Fourier series expansions
of generalized second order Eisenstein series in level one, and provide their tail
estimates via convexity bounds for additively twisted L-functions. As an application,
we illustrate a bootstrapping procedure that yields numerical evaluations of, for
instance, Eichler integrals from merely the associated cocycle.

Finally, in Paper III (co-authored with Martin Raum), we provide an explicit vector-
valued modular form whose top components are given by the depth two iterated
Eichler-Shimura integral I f ,g, where f and g are cusp forms of weight k ∈ Z≥2. We
show that this vector-valued modular form gives rise to a scalar-valued iterated
Eichler integral of depth two, denoted by E f ,g, that can be seen as a higher-depth
generalization of the scalar-valued Eichler integral E f of depth one. As an aside, our
argument provides an alternative explanation of an orthogonality relation satisfied
by period polynomials originally due to Paşol and Popa. We show that E f ,g can be
expressed in terms of sums of products of components of vector-valued Eisenstein
series with classical modular forms after multiplication with a suitable power of the
discriminant modular form ∆. This allows for effective computation of E f ,g.
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S A M M A N FAT T N I N G

Denna avhandling utforskar tillämpningar av vektorvärda modulära former av
kongruens- och utvidgningstyper på skalarvärda modulära former för kongruens-
delgrupper med karaktärer, högre ordningens modulära former, itererade Eichler-
Shimura integraler av djup ett och två och därtill betydande generaliseringar.

I artikel I (skriven tillsammans med Martin Raum), presenterar vi en algoritm för
att beräkna baser av rum av vektorvärda modulära former av vikt minst 2 och av
kongruenstyp, i termer av produkter av komponenter av vektorvärda Eisensteinserier.
Eftersom Fourierserieutvecklingarna till dessa Eisensteinserier finns tillgängliga, kan
vår algoritm också användas för att beräkna Fourierserieutvecklingar av godtyck-
liga vektorvärda modulära former i dessa rum. Vår algoritm komplementerar två
tillgängliga algoritmer som (till skillnad från vår) är begränsade till induktioner av
Dirichletkaraktärer och vektorvärda modulära former av Weiltyp. Algoritmen bygger
på en representationsteoretisk tolkning av en sats ursprungligen bevisad av Raum
och Xià. Efter en heuristisk uppskattning av tidskomplexiteten jämför vi vår algoritm
med de två tillgängliga, och betonar avvägningarna mellan generalitet och prestanda.

I artikel II (skriven tillsammans med Martin Raum och Albin Ahlbäck), visar vi
att alla Eichlerintegraler och alla ”generaliserade andra ordningens modulära former”
kan uttryckas som linjärkombinationer av motsvarande generaliserade andra ord-
ningens Eisensteinserier med koefficienter i klassiska modulära former. Vi beräknar
Fourierserieutvecklingarna till generaliserade andra ordningens Eisensteinserier i
nivå ett och ger svansuppskattningar genom konvexitetsuppskattningar för additivt
vridna L-funktioner. Som en tillämpning betraktar vi en ”bootstrapping”-teknik som
kan användas för numerisk beräkning av exempelvis Eichlerintegraler, givet endast
den associerade kocykeln.

Slutligen presenterar vi i artikel III (skriven tillsammans med Martin Raum),
en explicit vektorvärd modulär form vars övre komponenter ges av den itererade
Eichler-Shimura integralen av djup två I f ,g, där f och g är spetsformer av vikt
k ∈ Z≥2. Vi visar att denna vektorvärda modulära form ger upphov till en skalarvärd
itererad Eichlerintegral av djup två som vi betecknar med E f ,g och som kan ses som en
generalisering till högre djup av den skalarvärda Eichlerintegralen E f av djup ett. Som
en parentes ger vårt argument en alternativ förklaring till en ortogonalitetsrelation
som uppfylls av periodpolynom som ursprungligen bevisades av Paşol och Popa.
Vi visar att E f ,g kan uttryckas som en summa av produkter av komponenter av
vektorvärda Eisensteinserier med klassiska modulära former efter multiplikation med
en passande potens av diskriminantformen ∆. Detta kan användas för att effektivt
beräkna E f ,g.
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D I S P O S I T I O N

This thesis is divided into four parts:

(I) a general background to the theory of classical modular forms (Chapters 1

and 2),

(II) an introduction to the theory of vector-valued modular forms (Chapter 3),

(III) summaries of the appended papers (Chapters 4 and 5), and finally

(IV) the appended papers themselves.

Chapter 1 is intended for a general mathematical audience and can be skimmed
over for readers with an understanding of the basic theory of classical modular
forms. Chapter 2 is intended for readers who are familiar with classical modular
forms of level one and provides a summary of the theory of modular forms for
subgroups of the full modular group and of modular forms of higher order. Having
read Chapter 2 (or being an expert), the reader is prepared to read Chapter 3, which
provides an introduction to the parts of the theory of vector-valued modular forms
that are necessary to understand the appended papers. The remaining parts are
self-explanatory.
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Part I

W H Y M O D U L A R F O R M S ?





1S C A L A R - VA L U E D M O D U L A R F O R M S O F L E V E L O N E

1.1 the lattice view of modular forms

Our story starts with two-dimensional complex lattices. They are defined as follows.
Let ω1, ω2 ∈ C be linearly independent over R. Then the lattice associated to (ω1, ω2)
is given by

L(ω1, ω2) = Zω1 + Zω2. (1.1)

We can visualize it as in Figure 1.1.

ω1

ω2

Figure 1.1: A visualization of a two-dimensional complex lattice spanned by ω1 and ω2. The
elements of the lattice are the black dots.

We say that (ω1, ω2) is a basis for L(ω1, ω2). A natural question to ask is – when
are two lattices equal? The following proposition answers this.

3



4 scalar-valued modular forms of level one

Proposition 1.1. Let (ω1, ω2), (ω′1, ω′2) ∈ C2 be lattice bases satisfying that Im(ω1/ω2) >
0 and Im(ω′1/ω′2) > 0.1 Then

L(ω1, ω2) = L(ω′1, ω′2), (1.2)

if and only if

γ

(
ω1

ω2

)
=

(
ω′1
ω′2

)
, (1.3)

for some 2× 2 matrix γ with integer entries, satisfying that det(γ) = 1.

Proof. Let us first suppose that L(ω1, ω2) = L(ω′1, ω′2). Since ω1, ω2 ∈ L(ω′1, ω′2) and
ω′1, ω′2 ∈ L(ω1, ω2), there exists matrices A, B ∈ Z2×2 satisfying

ω = Aω′ and ω′ = Bω, (1.4)

where ω = (ω1, ω2)
T and ω′ = (ω′1, ω′2)

T . This implies that ω = ABω and ω′ =
BAω′, and since the entries of ω and ω′ are linearly independent, also that

AB = BA = I, (1.5)

so that A is invertible with B = A−1. We also have that det(A), det(B) ∈ Z and that
det(B) = 1/ det(A). This implies that det(A) = det(B) and that det(A) ∈ {1,−1}.
To find out which sign is correct, let us write

A =

(
a b

c d

)
, (1.6)

for some a, b, c, d ∈ Z. We then have that

Im(ω1/ω2) =
|ω′2|2

|ω2|2
Im(ω′1/ω′2)(ad− bc), (1.7)

which implies that ad− bc > 0 and so det(A) = 1. Conversely, let us now suppose
that ω = Aω′ for a matrix A on the given form. Then we have immediately that
ω1, ω2 ∈ L(ω′1, ω′2) and so L(ω1, ω2) ⊆ L(ω′1, ω′2). Since A−1 ∈ Z2×2, we obtain in
the same way that L(ω′1, ω′2) ⊆ L(ω1, ω2).

The set of matrices A ∈ Z2×2 with det(A) = 1 will feature prominently in the rest
of this thesis, and is given a special name. It is called the special linear group of degree
two over Z, and is denoted by SL2(Z). Since the determinant is multiplicative, it is

1 The set of complex numbers τ ∈ C with Im(τ) > 0 is called the upper half-plane and is denoted by H.
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clear that SL2(Z) is a group with respect to matrix multiplication. We record here
that SL2(Z) is generated by the matrices2

S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
. (1.8)

More generally, if R is any commutative ring with unity, the special linear group over
R is given by

SL2(R) = {A ∈ R2×2 : det(A) = 1}. (1.9)

We also write Γ∞ = ⟨T, S2⟩. This is called the parabolic subgroup of SL2(Z). Given
an element γ =

(a b
c d
)
∈ SL2(Z), we write a(γ) = a, b(γ) = b, c(γ) = c, and d(γ) = d.

Besides being aesthetically pleasing, lattices are central in many wide-ranging parts
of mathematics. Just to mention a few:

1. Optimal sphere packings are often described in terms of lattices (where the
lattice points represent the centers of the spheres). In particular, Maryna Vi-
azovska and her co-authors showed in [31] and [29] that the lattice E8 ⊆ C8

and Λ24 ⊆ C24 (see the papers for their definitions) provide optimal sphere
packings in 8-dimensional and 24-dimensional Euclidean spaces, respectively.
Their work made extensive use of modular forms and related objects.

2. In the study of Lie groups and Lie algebras lattices feature as root lattices of root
systems [3, 8].

3. Given a two-dimensional complex lattice L, the quotient space C/L is in a
well-defined sense isomorphic to an elliptic curve [24].

4. Computationally hard problems on lattices form the basis for lattice-based
cryptography, such as NTRU [9] or “Ring-learning with errors” [23, 25]. The
latter of these is projected to be important in post-quantum cryptography [39].

Given a class A of interesting objects, it is often insightful to study “well-behaved”
functions from A to some other class of better understood objects – such as Rn or
Cn. As a silly (but important) example, we might consider Rn itself to be interesting,
and study linear functions from Rn to Rm. These can of course be identified with the
set of matrices Rm×n, and venturing further along these lines is, as the reader well
knows, the goal of linear algebra.

On a more number theoretic note, we might consider N to be interesting and study
multiplicative functions3 from N to C. By considering their associated L-functions,

2 Proving this is a fun exercise in applying Euclid’s algorithm.
3 That is, functions f : N→ C satisfying that f (ab) = f (a) f (b) for coprime numbers a and b. Some important

examples of these are the Möbius function µ, Euler’s totient function ϕ, and the divisor function σk .
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and studying them using tools from complex analysis, one can draw extraordinary
conclusions concerning the distribution of prime numbers – such as the prime number
theorem and Dirichlet’s theorem on primes in arithmetic progression.

In our case, the class of interesting objects is the set L of all two-dimensional
complex lattices, that is, the set4

L = {Zω1 + Zω2 : ω1, ω2 ∈ C× and ω1, ω2 not on a line}, (1.10)

and we shall study “well-behaved” functions f : L → C.
It is not a coincidence that we mentioned linear functions above. Indeed, we will

restrict ourselves to functions on L that satisfy a criterion that looks a lot like linearity.
However, linearity requires a notion of both scaling and addition, and in contrast to
Rn, L has no obvious additive structure. That being said, its elements can be scaled.
That is, if λ ∈ C× and L ∈ L, then

λL = {λz : z ∈ L} ∈ L. (1.11)

We can thus study functions f : L → C that are intertwined with scaling. That is,
functions f : L → C satisfying that

f (λL) = λ f (L) for all λ ∈ C× and L ∈ L. (1.12)

Upon closer inspection, we find that these functions are not very interesting. Indeed,
suppose that f : L → C is intertwined with scaling, then since −L = L, we have that

f (L) = f (−L) = − f (L) for all L ∈ L. (1.13)

This evidently implies that f = 0. In order to get something interesting, we thus
have to relax the invariance condition (1.12) somewhat. Let us therefore introduce a
parameter k ∈ Z and consider functions f : L → C satisfying that

f (λL) = λ−k f (L) for all λ ∈ C× and L ∈ L. (1.14)

Of course, if k is odd, then for the same reason as (1.13), we obtain only the function
f = 0. If k is even though, we obtain an entire world of functions, bringing with them
a sweeping wealth of arithmetic information – we obtain modular forms.

Modular forms are also required to satisfy some analytically desireable properties,
so as to not make them all too unwieldy. To be precise, we have the following
definition.

Definition 1.1 (Lattice modular forms). Let Λ : H→ L be given by Λ(τ) = Zτ + Z.
Let also k ∈ Z. Then a lattice modular form of weight k is a function f : L → C such
that

4 Recall that C× = C \ {0}.
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1. for all λ ∈ C× and L ∈ L, it holds that

f (λL) = λ−k f (L), (1.15)

2. f ◦Λ is holomorphic, and

3. there exists a number a ∈ R such that

| f (Λ(τ))| = O(Im(τ)a) as Im(τ)→ ∞, (1.16)

uniformly in Re(τ).

The set of lattice modular forms of weight k forms a C-vector space, denoted by LMk.

As a first example of a non-trivial element in LM2k, where k ∈ Z, we consider the
classical Eisenstein series of weight 2k, defined by the (a priori formal) series

G∗2k(L) = ∑
ω∈L\{0}

1
ω2k . (1.17)

Given that G∗2k(L) converges absolutely for any L ∈ L, we have for λ ∈ C× that

G∗2k(λL) = ∑
ω∈L\{0}

1
(λω)2k = λ−2k ∑

ω∈L\{0}

1
ω2k = λ−2kG∗2k(L), (1.18)

so it stands to reason that G∗2k ∈ LM2k if the convergence is sufficiently “nice”. When
k ≥ 2 it is, but to prove it, it is useful to first change to a more analytic point of view.

1.2 the analytic view of modular forms

Any lattice L ∈ L can be rescaled so as to be put into the form Zτ + Z, for some
complex number τ ∈ H. Combined with the scaling condition (1.15), this suggests
that we should be able to map lattice modular forms to similarly behaved functions
from H to C.

This is indeed possible, and the map will be a vector space isomorphism, but
the incurred cost is that the scaling condition (1.15) will take on a somewhat less
appealing form. Let us bring in a new definition.

Definition 1.2 (Modular forms). For γ =
(a b

c d
)
∈ SL2(Z) and τ ∈ H, we let γτ be

given by

γτ =
aτ + b
cτ + d

. (1.19)

This defines a group action – often referred to as the Möbius action. Let now k ∈ Z

and let f : H→ C be a function. Then we say that f is a modular form of weight k if
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1. for all γ =
(a b

c d
)
∈ SL2(Z) it holds that

f (γτ) = (cτ + d)k f (τ), τ ∈H, (1.20)

2. f is holomorphic, and

3. there exists a number a ∈ R such that

| f (τ)| = O(Im(τ)a) as Im(τ)→ ∞, (1.21)

uniformly in Re(τ).

The set of modular forms of weight k forms a C-vector space, which we denote by
Mk.

Let now ψ : LMk → Mk be given by

ψ( f ) = f ◦Λ, (1.22)

where Λ : H→ L is given as in Definition 1.1. We then have the following proposition.

Proposition 1.2. The function ψ is a vector space isomorphism.

Proof. It is clear that ψ is linear. Furthermore, for f ∈ LMk the function ψ( f ) imme-
diately satisfies conditions 2. and 3. of Definition 1.2. Hence, we only have to verify
that ψ is bijective and that for f ∈ LMk, the function ψ( f ) satisfies condition 1. of
Definition 1.2. Let us start with the latter.

Let τ ∈H and γ =
(a b

c d
)
∈ SL2(Z). Then for f ∈ LMk we have that

f ◦Λ(γτ) = f
(

Z
aτ + b
cτ + d

+ Z
)

= f
( 1

cτ + d
(Z(aτ + b) + Z(cτ + d))

)
= (cτ + d)k f (Z(aτ + b) + Z(cτ + d)).

(1.23)

However, we have that(
aτ + b

cτ + d

)
= γ

(
τ

1

)
, (1.24)

so that by Proposition 1.1, we have that

Z(aτ + b) + Z(cτ + d) = Zτ + Z. (1.25)

To finish the proof, we construct a linear two-sided inverse ξ : Mk → LMk to ψ. For
f ∈ Mk, we let ξ( f ) be given by

ξ( f )(Zω1 + Zω2) = ω−k
2 f (ω1/ω2), (1.26)
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where (without loss of generality) we assume that Im(ω1/ω2) > 0.5 Given that ξ( f )
is well-defined, then ξ is evidently linear. Hence, let f ∈ Mk be given and say that
Zω1 + Zω2 = Zω′1 + Zω′2 for some ω1, ω2, ω′1, ω′2 ∈ C, where Im(ω1/ω2) > 0 and
Im(ω′1/ω′2) > 0. Then Proposition 1.1 tells us that there exists a matrix γ =

(a b
c d
)
∈

SL2(Z) such that γ(ω1, ω2)
T = (ω′1, ω′2)

T . We thus obtain that

ω′−k
2 f (ω′1

ω′2
) = (cω1 + dω2)

−k f
( a ω1

ω2
+ b

c ω1
ω2

+ d

)
= (cω1 + dω2)

−k(c ω1
ω2

+ d)k f (ω1
ω2

)

= ω−k
2 f (ω1

ω2
).

(1.27)

Hence, for f ∈ Mk, ξ( f ) is well-defined as a function on L. It is also clear that ξ( f )
satisfies conditions 1. through to 3. of Definition 1.1.

Finally, we make sure that ξ is a two-sided inverse of ψ. Let f ∈ Mk and g ∈ LMk.
Then we have for τ ∈H, that

ψ(ξ( f ))(τ) = ξ( f )(Zτ + Z) = f (τ), (1.28)

and for Zω1 + Zω2 ∈ L with Im(ω1/ω2) > 0, that

ξ(ψ(g))(Zω1 + Zω2) = ω−k
2 ψ(g)(ω1/ω2)

= ω−k
2 g(Z ω1

ω2
+ Z)

= g(Zω1 + Zω2).

(1.29)

This finishes the proof.

Remark 1.1. The new “scaling” condition (1.20) can be rephrased in terms of a right
action of SL2(Z) on functions from H to C, parametrized by the weight, called the
slash action. It is given as follows: let k ∈ Z, then for a function f : H→ C and an
element γ =

(a b
c d
)
∈ SL2(Z), we define a new function f

∣∣
kγ : H→ C by

( f
∣∣
kγ)(τ) = (cτ + d)−k f (γτ), τ ∈H. (1.30)

Hence a function f : H→ C satisfies (1.20) if and only if

f
∣∣
kγ = f for all γ ∈ SL2(Z). (1.31)

The slash action will feature prominently throughout the rest of this thesis.

5 If Im(ω1/ω2) < 0, then just swap the order of the basis elements.
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To see how our new point of view may bear fruit, let us again consider the Eisenstein
series G∗2k. Its equivalent in M2k takes the form

G2k(τ) = ∑
(m,n)∈Z2\{(0,0)}

1
(mτ + n)2k . (1.32)

Our next proposition shows that G2k indeed is an example of a modular form of
weight 2k.

Proposition 1.3. Let k ∈ Z≥2. Then it holds that G2k converges absolutely and locally
uniformly on H, and that G2k(τ) is bounded as τ → i∞. Furthermore, it holds that
G2k ∈ M2k.

Proof. For A, B ∈ R>0 we let

ΩA,B = {τ ∈H : |Re(τ)| ≤ A and Im(τ) > B}. (1.33)

Let now A, B ∈ R>0 be arbitrary. It is a fact, which we will not prove here, that there
exists a constant C ∈ R>0 depending on A and B, such that for all τ ∈ ΩA,B and
δ ∈ R, we have that

|τ + δ| ≥ C max{1, |δ|}. (1.34)

We now have for τ ∈ ΩA,B, that

|mτ + n|−2k = |m|−2k|τ + n
m |
−2k

≤ C|m|−2k max{1, | n
m |}
−2k

= C max{|m|, |n|}−2k.

(1.35)

We also have that

∑
(m,n)∈Z2\{(0,0)}

max{|m|, |n|}−2k = lim
N→∞

∑
|m|,|n|≤N
(m,n) ̸=(0,0)

max{|m|, |n|}−2k

= lim
N→∞

N

∑
n=1

n−2k(2(2n + 1) + 2(2n− 1))

= 8 ∑
n≥1

1
n2k−1 = 8ζ(2k− 1) < ∞.

(1.36)

The second equality is best understood geometrically, as in Figure 1.2.
Weierstraß’ M-test now implies that G2k converges absolutely and uniformly on

ΩA,B. Since any compact subset of H is a subset of ΩA,B for some A, B ∈ R>0, it
follows that G2k is holomorphic on H.
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Figure 1.2: The value of max{|m|, |n|} (in green) when |m|, |n| ≤ 4. We obtain that

∑
|m|,|n|≤4,|m|,|n|̸=0

max{|m|, |n|}−2k = 1−2k(2 · 3 + 2 · (3− 2)) + · · ·+ 4−2k(2 · 9 + 2 · (9− 2)).

Let now γ =
(a b

c d
)
∈ SL2(Z) be arbitrary. Then

G2k(γτ) = ∑
(m,n)∈Z2\{(0,0)}

(cτ + d)k

(m(aτ + b) + n(cτ + d))k

= (cτ + d)k ∑
(m,n)∈Z2\{(0,0)}

1
(m(aτ + b) + n(cτ + d))k

= (cτ + d)2kG2k(τ).

(1.37)

In the last equality we use the fact that

Z(aτ + b) + Z(cτ + d) = Zτ + Z,

familiar from Proposition 1.1. Finally, to show that |G2k(τ)| is bounded as τ → i∞,
we note that for all τ ∈ Ω1,1 we have that

|τ + δ| ≥ 1
3

max{1, |δ|}. (1.38)
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Combining this with the fact that

G2k(τ + 1) = G2k(Tτ) = G2k(τ) for τ ∈H, (1.39)

we find that |G2k(τ)| is bounded on {τ ∈H : Im(τ) > 1}.

The techniques applied in the proof of Proposition 1.3 reoccur under different
guises throughout the theory of modular forms, so it is good to be well-acquainted
with it.

Let now k ∈ Z and let f ∈ Mk be a modular form. Then since

f (τ + 1) = f (Tτ) = f (τ), (1.40)

the function f admits a Fourier series expansion on the form

f (τ) = ∑
n≥0

c( f ; n)e2πinτ , (1.41)

where c( f ; n) ∈ C are the (uniquely determined) Fourier series coefficients of f . This
gives us a convenient way to uniquely represent any modular form. For a function
f : H → C with a Fourier series expansion on the form f (τ) = ∑n∈Z c( f ; n)e2πinτ ,
τ ∈H, we write

ord( f ) = min{n ∈ Z : c( f ; n) ̸= 0}. (1.42)

Note that for functions f , g : H → C with Fourier series expansions as above, we
have that ord( f · g) = ord( f ) + ord(g).

We now define the subspace Sk ⊆ Mk of weight k cusp forms by

Sk = { f ∈ Mk : ord( f ) ≥ 1}. (1.43)

As an example of a Fourier series expansion, we find using Lipschitz’ summation
formula [19] that

G2k(τ) = 2ζ(2k)
(

1− 4k
B2k

∑
n≥1

σ2k−1(n)e
2πinτ

)
, (1.44)

where

B2k =
(−1)k+12 · (2k)!

(2π)2k ζ(2k), (1.45)

are the Bernoulli numbers, and where

σ2k−1(n) = ∑
d|n

d2k−1, (1.46)
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is the (2k− 1)th divisor function. In other words, the Fourier series expansion of G2k
can be seen as a generating series for σ2k−1. Since ζ(2k) ̸= 0, we also see that G2k is
not a cusp form. In fact, the space CGk of weight k Eisenstein series (where Gk = 0
for k odd) is complementary to Sk, and their sum is equal to Mk. To be precise, we
have the following proposition.

Proposition 1.4. Let k ∈ Z≥4 be even. Then we have the following short exact
sequence of vector spaces

0→ Sk
ι( f )= f−−−−→ Mk

ν( f )=c( f ;0)−−−−−−→ C→ 0. (1.47)

Furthermore, it holds that Mk = Sk ⊕CGk.

Proof. It is clear that ι is injective and that ker ν = Sk = im ι. To see that ν is surjec-
tive, we note that ν(Gk) = 2ζ(k) ̸= 0, and so for an arbitrary z ∈ C it holds that
ν( z

2ζ(k) Gk) = z, showing that ν is surjective. Since every short exact sequence of vector
spaces splits, we have that

Mk = ι(Sk)⊕ u(C), (1.48)

where u(z) = z · Gk is a right inverse to ν. However, ι(Sk) = Sk and u(C) = CGk, and
thus we are done.

An important cusp form is the discriminant modular form ∆. It is defined by

∆(τ) = (2π)−12(g2(τ)
3 − 27g3(τ)

2), τ ∈H, (1.49)

where g2 = 60G4 and g3 = 140G6. It is clear that g3
2, g2

3 ∈ M12 and thus ∆ ∈ M12.
Furthermore, comparing to (1.44), one finds that c(∆; 0) = 0 and c(∆; 1) = 1, so that
ord(∆) = 1 and ∆ ∈ S12. One can show, though this requires machinery outside
of our purview, that ∆(τ) is the discriminant of a certain cubic polynomial whose
coefficients depend on τ and whose roots are distinct for any τ. This implies that
∆(τ) ̸= 0 for all τ ∈H.

The discriminant modular form is a very useful computational tool, owing in large
part to the following proposition.

Proposition 1.5. Let k ∈ Z. Then the map ϕ : Mk−12 → Sk given by

ϕ( f ) = ∆ · f , (1.50)

is an isomorphism of vector spaces.

Proof. It is clear that ϕ is linear, and thus we only have to show that it is bijective.
Suppose that ∆ · f = 0 for some f ∈ Mk−12. Then since ∆(τ) ̸= 0 for all τ ∈ H, we
have that f (τ) = 0 for all τ ∈H. This shows that ϕ is injective.
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As for surjectivity, we construct a right-inverse to ϕ. Let g ∈ Sk. Then since ord(∆) =
1, we have that ord(g/∆) ≥ 0, where (g/∆)(τ) = g(τ)/∆(τ). Hence g/∆ satisfies the
growth condition (1.21) and is holomorphic. It is also clear that (g/∆)

∣∣
k−12γ = g/∆

for every γ ∈ SL2(Z), and hence g/∆ ∈ Mk−12. The linear map ψ : Sk → Mk−12 given
by ψ(g) = g/∆ thus satisfies that ϕ ◦ ψ = idSk .

The following result, which we will not prove here, will be needed in the forthcom-
ing discussion.

Proposition 1.6. Let k ∈ Z≤−1 ∪ {2}. Then Mk = {0}.

Proof. See [18] or [2].

Remark 1.2. The standard proof of Proposition 1.6 relies on a non-trivial result called
the valence formula, which provides a relation between the orders of points in the
fundamental domain F = {z ∈ C : |z| ≥ 1, |Re(z)| ≤ 1/2}. It should be noted that
the valence formula is strongly connected to the dimension formula of scalar-valued
modular forms for subgroups of SL2(Z), see Proposition 2.3 of Chapter 2.

So far, we have only seen two examples of elements in Mk. In the next section, we
will see how we can use these to compute any modular form in Mk.

1.3 sturm’s bound, the dimension, and a basis

The following proposition shows that we do not need all Fourier series coefficients to
uniquely identify a modular form.6

Proposition 1.7 (Sturm’s bound). Let k ∈ Z≥4 be even, and let f ∈ Mk. If c( f ; n) = 0
for all 0 ≤ n ≤ ⌊k/12⌋, then it holds that f = 0.

Proof. We have that ord( f ) ≥ ⌊k/12⌋+ 1, and so

ord( f 12) = 12 · ord( f ) ≥ 12(⌊k/12⌋+ 1) > k. (1.51)

We have that the function 1/∆ is holomorphic. It is also 1-periodic, and thus ord(1/∆)
is well-defined. Consequently, we have that

0 = ord(1) = ord(∆ · 1
∆
) = ord(∆) + ord(

1
∆
), (1.52)

so that ord(1/∆) = −ord(∆). We thus conclude that

ord( f 12 · ∆−k) = ord( f 12)− k · ord(∆) > 0. (1.53)

6 This is a simplified version of a proposition first proved by Jacob Sturm. This version serves only to “set the
scene” for our later discussions.
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Hence f 12 · ∆−k ∈ S0. However, for g ∈ S0, we have that g/∆ ∈ M−12 so that
by Proposition 1.5, we have that g/∆ = 0. This implies that g = 0. Consequently
S0 = {0}, and so f 12 = 0, but then f = 0.

Proposition 1.7 implies that the map

Mk ∋ f 7→ (c( f ; 0), c( f ; 1), . . . , c( f ; ⌊k/12⌋)) ∈ C⌊k/12⌋+1, (1.54)

is an injective linear map, and therefore it holds that

dim(Mk) ≤
⌊ k

12

⌋
+ 1. (1.55)

However, combining Propositions 1.5 and 1.6, we can say more.

Proposition 1.8 (Dimension of Mk). Let k ∈ Z. Then

dim(Mk) =


0 if k < 0 or 2 ∤ k,

⌊ k
12 ⌋+ 1 if k ̸≡12 2,

⌊ k
12 ⌋ if k ≡12 2.

(1.56)

Proof. Suppose first that k ∈ {4, 6, 8, 10} and let f ∈ Mk. Then for some α ∈ C× we
have that f − αGk ∈ Sk. By Proposition 1.5, we thus have that

∆−1 · ( f − αGk) ∈ Mk−12 = {0}, (1.57)

so that f = αGk. It is thus clear that Mk = CGk. As for k = 0, we have that 1 ∈ M0,
and so for f ∈ M0 we have that f − 1 · c( f ; 0) ∈ S0 and thus

∆−1 · ( f − c( f ; 0)) ∈ M−12 = {0}, (1.58)

implying that f = c( f ; 0). This implies that M0 = C. In summary, we have the
following values of dim(Mk) thus far:

k 0 2 4 6 8 10

dim(Mk) 1 0 1 1 1 1

For k ≥ 12, we apply induction and Proposition 1.5. Let q ∈ Z≥0 and r ∈
{0, 4, 6, 8, 10} and suppose that the theorem holds for k = 12q + r. Let f ∈ M12(q+1)+r.
Then for some α ∈ C× we have that f − αG12(q+1)+r ∈ S12(q+1)+r, and thus by
Proposition 1.5, it holds that

∆−1 · ( f − αG12(q+1)+r) ∈ M12q+r, (1.59)
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and so f ∈ ∆ M12q+r ⊕CG12(q+1)+r. This implies that

M12(q+1)+r = ∆ M12q+r ⊕CG12(q+1)+r, (1.60)

whence by the induction assumption we have that

dim(M12(q+1)+r) =

q + 1 if r = 2

q + 2 if r ∈ {0, 4, 6, 8, 10}.
(1.61)

Since ⌊ 12(q+1)+r
12 ⌋ = q + 1, this proves the theorem.

The time we spent on Eisenstein series turns out to have been well-spent – we can
in fact express every element in Mk as a linear combination of products of Eisenstein
series.

Proposition 1.9. Let k ∈ Z≥4. Then

Ak = {Ga
4 · Gb

6 : a, b ∈ Z≥0 and 4a + 6b = k}, (1.62)

is a basis for Mk.

Proof. Let us first show that spanCAk = Mk. Propositions 1.8 and 1.4 directly implies
that

M4 = CG4, M6 = CG6, M8 = CG2
4

M10 = CG4 · G6, M12 = CG2
6 ⊕C∆, M14 = CG2

4 · G6.
(1.63)

Since ∆ ∈ spanCA12, we have that (1.63) settles spanCAk = Mk for k ∈ {4, 6, 8, 10, 12, 14}.
For higher weights, we again apply induction and Proposition 1.5. Let q ∈ Z≥0
and r ∈ {4, 6, 8, 10, 12, 14} be given, and suppose that spanCAk = Mk holds for
k = 12q + r. Let f ∈ M12(q+1)+r and let a, b ∈ Z≥0 satisfy 4a + 6b = k + 12.
Since ord(Ga

4 · Gb
6) = 0, we have that there exists some α ∈ C× satisfying that

f − αGa
4 · Gb

6 ∈ Sk+12. Proposition 1.5 thus implies that

f − αGa
4 · Gb

6 ∈ ∆ Mk. (1.64)

Applying the induction assumption, we obtain that

∆ Mk ⊆ spanCAk+12, (1.65)

and thus f ∈ spanCAk+12. By induction, we now obtain that spanCAk = Mk for all
even weights k ∈ Z≥4.
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As for linear independence, let k ∈ Z≥4 be even, and suppose that we have a
relation

∑
a,b≥0

4a+6b=k

ca,bGa
4Gb

6 = 0, (1.66)

for some coefficients ca,b ∈ C. By multiplying (1.66) with G4 · G6, G2
4 , G6, G4, or

G2
4 · G6, when the remainder of k modulo 12 is 2, 4, 6, 8, or 10; respectively, we may

assume that k ≡12 0. This implies7 that 3 | a. We also have that Gk/6
6 = G2a/3+b

6 ,
implying that

Ga
4Gk/6

6 = Ga
4Gb

6G2a/3
6 , (1.67)

and so (G3
4/G2

6)
a/3 = Ga

4Gb
6/Gk/6

6 . Dividing (1.66) by Gk/6
6 we thus obtain that

∑
a,b≥0

4a+6b=k

ca,b(G
3
4/G2

6)
a/3 = 0. (1.68)

This implies that the polynomial

p = ∑
a,b≥0

4a+6b=k

ca,bXa/3 ∈ C[X], (1.69)

has infinitely many zeros, and so p = 0. Therefore all the coefficients ca,b are equal to
zero, and we conclude that the elements of Ak are linearly independent.

Let us now see an example of the power of Proposition 1.9, and of Mk in general.
For k ≥ 4, we let Ek = 1

2ζ(k) Gk. Since 1 = c(E4 · E6; 0) = c(E10; 0), Proposition 1.9
implies that E10 = E4 · E6. This implies that

1− 264 ∑
n≥1

σ9(n)e2πinτ

=
(

1 + 240 ∑
n≥1

σ3(n)e2πinτ
)
·
(

1− 504 ∑
n≥1

σ5(n)e2πinτ
)

. (1.70)

Expanding the product, we obtain the following identity 8

11 σ9(n) = 21 σ5(n)− 10 σ3(n) + 5040
n−1

∑
m=1

σ3(m)σ5(n−m). (1.71)

7 Suppose that 12l = 4a + 6b. Then 6l = 2a + 3b. If b is even, this implies that 6 | 2a so that 3 | a. If b is odd, this
implies that 3 | 2a, so that by Euclid’s lemma we have that 3 |.

8 This can be taken as a justification for studying modular forms. They seem to “magically” encode arithmetic
information.



18 scalar-valued modular forms of level one

We can of course apply the same technique to E8, E12, and E14, to obtain similar
identities involving σ7, σ11 and σ13; respectively. We would like to remark that we are
not aware of any proof of (1.71) or identities like it, relying solely on elementary means.
However, with just a little understanding of Mk, we obtain non-trivial arithmetic
identities with negligible amounts of extra work.

Using the Fast Fourier Transform (FFT), we can quickly compute the Fourier
expansions of the elements of Ak. Combining this with Propositions 1.7 and 1.9,
and row-reduction, we obtain a means to express any element f ∈ Mk as a sum of
products of Eisenstein series.

We can describe this algorithmically as follows:

Algorithm 1.1: Determine if a given truncated Fourier series expansion corre-
sponds to an element of Mk, and if so express it in the basis Ak.

input : An even integer k ∈ Z≥4, and a vector v ∈ C⌊k/12⌋+1.
output : Either ⊥, or coefficients αp ∈ C, p ∈ Ak, satisfying

vi = ∑p∈Ak
αp · c(p; i− 1) for all i.

1 N ← ⌊k/12⌋;
2 D ← dim(Mk);
3 A← 0(N+1)×(D+1) ∈ C(N+1)×(D+1);
4 A·,D+1 ← v;
5 B← 0D ∈ C[X, Y]D;
6 for ⌈ k

6 ⌉ ≤ n ≤ ⌊ k
4 ⌋ do

7 a← − k
2 + 3n;

8 b← k
2 − 2n;

9 Bn ← XaYb;
10 compute pn ← (c(Ga

4Gb
6 ; 0), . . . , c(Ga

4Gb
6 ; N))T with FFT;

11 A·,n ← pn;
12 end
13 Arref ← rref(A);
14 r ← rank(A);
15 if r ̸= D then
16 return ⊥;
17 else
18 α← (Arref)≤D,D+1;
19 P← ∑D

i=1 αiBi;
20 return P;
21 end
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Before ending this chapter, let us briefly explain some of the design choices of
Algorithm 1.1. In a general purpose computer language, there is no default way of
representing an element of Mk. However, we know that they can be viewed as

(a) polynomials in C[X, Y], where X corresponds to G4 and Y corresponds to G6,

(b) and as Fourier series expansions truncated at the Sturm bound, that is, elements
of

CJqK
q⌊k/12⌋+1CJqK

, (1.72)

where the formal variable q corresponds to e2πiτ .

The vector B relies on interpretation (a), and line 10 relies on interpretation (b).
Furthermore, the enumeration on line 6 is motivated by the fact that the solutions

to the linear Diophantine equation 4a + 6b = k is given by (a, b) = (− k
2 + 3n, k

2 − 2n)
where n ∈ Z. The condition a, b ≥ 0 is equivalent to ⌈ k

6 ⌉ ≤ n ≤ ⌊ k
4 ⌋.
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In the previous chapter, we sketched out a more or less complete picture of the theory
of the space of weight k modular forms, Mk. We saw that it was intimately tied to
the Eisenstein series Gk, and that Mk captured certain arithmetic information; see for
example (1.71).

Since studying Mk led to non-trivial arithmetic insights, it stands to reason that we
should obtain yet more insights of such nature by generalizing the definition of Mk in
various ways. There are couple of obvious routes one can take for this. For example,
one can:

(i) modify the group on which the invariance condition is satisfied,

(ii) modify the invariance condition itself,

(iii) modify the domain, or

(iv) modify the range,

or modify any combination of the above. To mention a few well-known examples
we have that (i) and (ii) lead to modular forms of higher level and modular forms
of higher order; that (ii) and (iii) lead to Jacobi forms; that (i), (ii), (iii) and (iv) lead
to Siegel and Bianchi modular forms; that (i), (ii), and (iii) lead to Hilbert modular
forms; and that (i), (ii), and (iv) lead to vector-valued modular forms.

As the title of this thesis indicates, we will pay particular attention to vector-valued
modular forms. We will show how they capture modular forms of higher level,
modular forms of higher order, and considerable generalizations thereof. Work by
Eichler and Zagier [6, 17] also shows that vector-valued modular forms capture Jacobi
forms. Beside the advantage of having a unified theory for classes of modular forms
that traditionally have been treated as disjoint, our approach also allows us to use a
unified framework to compute bases for these types of modular forms.

Furthermore, as we shall see later, our unified computational framework bears a
very distinct resemblance to the computational framework for Mk that we outlined in
the previous chapter.

In this chapter, we provide an outline of the theory of modular forms of higher
level and of modular forms of higher order. This serves as preparation for the material
that we present in the latter parts of the thesis.

21
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2.1 modular forms on subgroups

Let us first define precisely what we mean by a modular form on a subgroup
Γ ⊆ SL2(Z). In order to obtain a finite-dimensional space, we restrict our scope to
subgroups with finite index in SL2(Z).

Definition 2.1. Let k ∈ Z and let Γ ⊆ SL2(Z) be a finite index subgroup, and let
ν : Γ→ C× be a multiplicative character. Then we say that a function f : H→ C is a
modular form of weight k for Γ with character ν if

1. for all γ ∈ Γ it holds that

( f
∣∣
kγ)(τ) = ν(γ) f (τ), τ ∈H, (2.1)

2. f is holomorphic, and

3. there exists a number a ∈ R such that for all γ ∈ SL2(Z), we have that

|( f
∣∣
kγ)(τ)| = O(Im(τ)a) as Im(τ)→ ∞, (2.2)

uniformly in Re(τ).

We remind the reader that the weight k slash action
∣∣
k was defined in Remark 1.1. If

in addition, we have for all γ ∈ SL2(Z) that

( f
∣∣
kγ)(τ)→ 0 as Im(τ)→ ∞, (2.3)

uniformly in τ, we call f a cusp form. The space of weight k modular forms and
cusp forms for Γ with character ν, is denoted by Mk(Γ, ν) and Sk(Γ, ν). Furthermore,
we write Mk(Γ) = Mk(Γ, 1Γ) and Sk(Γ) = Sk(Γ, 1Γ), where 1Γ is the trivial character,
defined by 1Γ(γ) = 1 for all γ ∈ Γ

Arguably, the only unexpected difference is in the growth condition (2.2). To
understand what it comes from, we need talk a little bit about cusps.

We extend the Möbius action of SL2(Z) on H to H∗ = H∪Q∪ {i∞} by letting

γq =
aq + b
cq + d

, γ(− d
c
) = i∞, γ(i∞) =

a
c

,

q ∈ Q, γ =
(a b

c d
)
∈ SL2(Z). (2.4)

Note that limt→+∞ γ(it) = a/c for γ =
(a b

c d
)
∈ SL2(Z), so the above extension is

well-defined.
We call the elements in Q∪ {i∞} the cusps of H∗ and given a finite index subgroup

Γ ⊆ SL2(Z), we call the orbits in Γ\Q ∪ {i∞} the cusp classes associated to Γ. Let
q = a/c ∈ Q with gcd(a, c) = 1. Then there exists integers b, d ∈ Z such that
ad− bc = 1 and thus

(a b
c d
)
(i∞) = a/c. This means that SL2(Z) acts transitively on the
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cusps, or equivalently, that there is only one cusp class, namely SL2(Z)\Q∪ {i∞} =
{SL2(Z)i∞}.

In fact, for a finite index subgroup Γ ⊆ SL2(Z), there are only finitely many cusp
classes associated to Γ. To be precise, we have the following proposition.

Proposition 2.1. Let Γ ⊆ SL2(Z) be a subgroup of index m ∈ Z≥1. Then it holds that

|Γ\Q∪ {i∞}| ≤ m. (2.5)

Proof. We prove this by establishing a bijective correspondence with a certain double
quotient. To be precise, we let

F : Γ\Q∪ {i∞} → Γ\SL2(Z)/Γ∞ be defined by

F(Γq) = ΓγqΓ∞,
(2.6)

where γq ∈ SL2(Z) is any element satisfying γq(i∞) = q.
We first prove that F is well-defined. Let therefore q1, q2 ∈ Q ∪ {i∞} satisfy that

Γq1 = Γq2. Then q1 = γq2 for some γ ∈ Γ. There exists elements γ1, γ2 ∈ SL2(Z)
such that qi = γi(∞) for i ∈ {1, 2}. Consequently, we have that γ−1

1 γγ2(i∞) = i∞
implying that γ−1

1 γγ2 ∈ Γ∞. Then γγ2Γ∞ = γ1Γ∞, and so Γγ2Γ∞ = Γγ1Γ∞, and thus
F is well-defined.

Repeating the same argument in reverse, we see that F is injective. Finally, to see
that F is surjective, we just note that for an arbitrary element γ =

(a b
c d
)
∈ SL2(Z), we

have that F(Γ a
c ) = ΓγΓ∞, where we identify a/0 with i∞.

It is clear that |Γ\SL2(Z)/Γ∞| ≤ |Γ\SL2(Z)|, and thus the result follows.

We now have enough of an understanding of the cusps of H∗ to explain the
difference in the growth condition. We summarize it in the following proposition.

Proposition 2.2. Let Γ ⊆ SL2(Z) be a finite index subgroup, and let {γ1, . . . , γr} ⊆
SL2(Z) be a complete set of representatives for Γ\SL2(Z)/Γ∞. Let also f : H → C

be a holomorphic function. Then f satisfies the growth condition (2.2) if and only if
there exists a number a ∈ R, such that for all 1 ≤ i ≤ r, it holds that

| f (γiτ)| = O(Im(τ)a) as Im(τ)→ ∞, (2.7)

uniformly in Re(τ).

Proof. If the growth condition (2.2) is satisfied, then the condition (2.7) is immediately
satisfied. As for the converse, let γ = SL2(Z). Then for some 1 ≤ i ≤ r we have that
ΓγΓ∞ = ΓγiΓ∞, and hence γ = αγiβ for some α ∈ Γ and β ∈ Γ∞. This implies that

( f
∣∣
kγ)(τ) = ( f

∣∣
kγiβ)(τ) = (c(γiβ)τ + d(γiβ))

−k f (γiβτ). (2.8)
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Since β(i∞) = i∞, it is clear that

lim
Im(τ)→∞

| f (γiβτ)| = lim
Im(τ)→∞

| f (γiτ)|. (2.9)

We also have that |c(γiβ)τ + d(γiβ)|−k = O(Im(τ)−k) as Im(τ) → ∞, uniformly in
Re(τ), and thus it follows that f satisfies (2.2).

Remark 2.1. By Proposition 2.1, we have that {γj(i∞)}r
j=1 forms a complete set

of representatives for the cusp classes Γ\Q ∪ {i∞}. For this reason, the growth
condition is often summarized as f having moderate growth at the cusps. We will use
this terminology throughout the rest of this thesis.

Note that if Γ = SL2(Z), then Γ\SL2(Z)/Γ∞ = {Γ 1 Γ∞}. This shows how the
condition (2.2) generalizes (1.21).

We have yet to explain why we need the growth condition at all, even for the basic
case of Mk. This is a question that is more suited for an introductory textbook on
modular forms, but we remark that it is needed for Mk(Γ, ν) to be finite-dimensional.

For completeness, we give an exact formula for dim(Mk(Γ, ν)), but before we state
it we recall that an elliptic point on H is a point τ ∈H satisfying that

Γτ = {γ ∈ Γ : γτ = τ}, (2.10)

is non-trivial. See [14, Chapter 2.3]. The following formula for the dimension is due
to Borcherds [11], who bases his presentation on Fischer [7].

Proposition 2.3. Let Γ ⊆ SL2(Z) be a finite index subgroup and let ν : Γ→ C× be a
multiplicative character. Let also:

• E be the set of all elliptic points in H with respect to the action from Γ,

• {e1, . . . , eP} ⊆ H, P ∈ Z≥1, be a complete set of representatives for the orbit
space Γ\E,

• Pj = |Γej |/2, for each 1 ≤ j ≤ P,

• Rj is a generator for Γej conjugate to the element
(

cos(π/Pj) − sin(π/Pj)

sin(π/Pj) cos(π/Pj)

)
∈

SL2(R),

• g be the genus1 of Γ\H∗,

• {c1, . . . , cC} ⊆ Q∪ {i∞}, C ∈ Z≥1, be a set of representatives of Γ\Q∪ {i∞},

1 The genus is a topological invariant which abstractly counts the number of “holes” of a surface. It makes
sense for Γ\H∗ when viewed as a compact Riemann surface, and can be computed explicitly with the
Riemann-Hurwitz formula. See [14, Chapter 3.1], for details.
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• Tj be an element conjugate in SL2(R) to T−1 satisfying that Γcj = ⟨Tj, S2⟩,

• and finally

ω = 2π
(

2g− 2 + C +
P

∑
j=1

(1− 1/νj)
)

, (2.11)

be the area of Γ\H∗ with respect to the Γ-invariant measure dxdy/y2.

Furthermore, if z ∈ C× is an Nth root of unity and γ ∈ Γ, we write

δν,N(z, γ) =
1
N

N−1

∑
j=1

z · ν(γ)
1− e(j/N)

and δν,∞(z, γ) = δν,N(z, γ) +
ν(γ)

2N
. (2.12)

Then

dim Mk(Γ, ν) =
1
2
(ψ(I) + iψ(−I)) (2.13)

where

ψ(γ) =
(k− 1)ω

4π
ν(γ) +

P

∑
j=1

δν,Pj (e(
k

2Pj
)ν(Rj), γ) +

C

∑
j=1

δν,∞(ν(Tj), γ), (2.14)

for γ ∈ {I,−I}.

Proof. See [11].

We also have a Sturm bound for Mk(Γ, ν) when its elements may be expanded into
Fourier series.

Proposition 2.4. Let Γ ⊆ SL2(Z) be an index m ∈ Z≥1 subgroup with ±TN ∈ Γ for
some N ∈ Z≥1. Let also ν : Γ→ C× be a multiplicative character, and k ∈ Z. Then if
a modular form f ∈ Mk(Γ, ν) satisfies that

c( f ; n) = 0 for all n ∈ Q with 0 ≤ n ≤
⌊ km

12

⌋
, (2.15)

it holds that f = 0.

Proof. See [18].
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2.1.1 Modular Forms of Higher Level

When it comes to modular forms for subgroups of SL2(Z), there is one family of
subgroups of particular interest – the congruence subgroups. Let us start with the
principal congruence subgroup. For any integer N ∈ Z≥1, we have a homomorphism
ψ : SL2(Z)→ SL2(Z/NZ) given by

ψ

(
a b

c d

)
=

(
a + NZ b + NZ

c + NZ d + NZ

)
(2.16)

We see that the normal subgroup ker(ψ) ⊆ SL2(Z) is given by

ker(ψ) = {γ ∈ SL2(Z) : γ ≡N 12×2}, (2.17)

where the congruence is regarded component-wise. This is the principal congruence
subgroup, which we denote by Γ(N).

We say that a subgroup Γ ⊆ SL2(Z) is a congruence subgroup if for some integer
N ∈ Z≥1 it holds that Γ(N) ⊆ Γ. The smallest such N is called the level of Γ, and we
write

level(Γ) = min{N ∈ Z≥1 : Γ(N) ⊆ Γ}. (2.18)

We see for example that level(Γ(N)) = N and that level(SL2(Z)) = 1.
Similarly, if Γ is a congruence subgroup of level N ∈ Z≥1, ν : Γ → C× is a

multiplicative character, and k ∈ Z is an integer, we say that the modular forms in
Mk(Γ, ν) have level N.

In addition to the principal congruence subgroup, there are two other congruence
subgroups that are particularly important, Γ0(N) and Γ1(N). They are defined by

Γ1(N) =
{

γ ∈ SL2(Z) : γ ≡N

(
1 ∗
0 1

)}

Γ0(N) =
{

γ ∈ SL2(Z) : γ ≡N

(
∗ ∗
0 ∗

)}
,

(2.19)

where ∗ denotes an arbitrary integer. Recall now that a Dirichlet character of modulus
N ∈ Z≥1 is a completely multiplicative function χ : Z→ C such that for any a ∈ Z,
we have that

χ(a) =

0 if gcd(a, N) > 1

1 if gcd(a, N) = 1,
(2.20)
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and χ(a + N) = χ(a). Note that for an integer a ∈ Z satisfying gcd(a, N) = 1, we
have that χ(a)ϕ(N) = χ(aϕ(N)) = χ(1) = 1. This implies that the non-zero values of a
Dirichlet character lie on the unit circle.

The set of Dirichlet characters modulo N ∈ Z≥1 forms a group with respect to
multiplication, denoted by D(N). Given a Dirichlet character χ ∈ D(N), we can
construct a multiplicative character χ̃ : Γ0(N) → C× by setting χ̃(γ) = χ(d(γ)). By
slight abuse of notation, we identify every element χ ∈ D(N) with the multiplicative
character Γ0(N)→ C× constructed from χ.

The reason for the importance of Γ0(N) and Γ1(N) are their corresponding spaces
of modular forms Mk(Γ1(N)) and Mk(Γ0(N), χ) where χ is a Dirichlet character for
Γ0(N), and where N ∈ Z≥1 and k ∈ Z≥2. These spaces are the topic of the celebrated
Modularity Theorem, which famously implies Fermat’s Last Theorem.

Just as with Mk, we can construct Eisenstein series for Mk(Γ1(N)) and Mk(Γ0(N), χ),
the span of which is complementary to the spaces of cusp forms Sk(Γ1(N)) and
Sk(Γ0(N), χ).

These Eisenstein series are constructed as linear combinations of the Eisenstein
series for Γ(N), which are defined as follows. Let k ∈ Z≥3 and N ∈ Z≥1. Then for
γ ∈ SL2(Z), we let

Gk,N,Γ1(N)γ(τ) = ∑
(c,d)∈Z2\{(0,0)}
(c,d)≡N(c(γ),d(γ))

(cτ + d)−k, τ ∈H. (2.21)

We note that we have a bijection

Γ1(N)\SL2(Z)→ {([c], [d]) ∈ (Z/NZ)2 : gcd(c, d, N) = 1}
Γ1(N)γ 7→ ([c(γ)], [d(γ)]),

(2.22)

showing that Gk,N,Γ1(N)γ is well-defined as a formal power series. After some work,
see for example [16] or [14], one verifies that Gk,N,Γ1(N)γ converges absolutely and
locally uniformly on H, and hence it is a holomorphic function. It is also of moderate
growth at the cusps. Furthermore, for γ ∈ SL2(Z), τ ∈H, and δ =

(A B
C D
)
∈ SL2(Z),

we find that

(Gk,N,Γ1(N)γ

∣∣
kδ)(τ) = ∑

(c,d)∈Z2\{(0,0)}
(c,d)≡N(c(γ),d(γ))

(τ(Ac + Cd) + Bc + Dd)−k

= ∑
(c′ ,d′)∈Z2\{(0,0)}

(c′ ,d′)δ−1≡N(c(γ),d(γ))

(c′τ + d′)−k

= ∑
(c′ ,d′)∈Z2\{(0,0)}

(c′ ,d′)≡N(c(γ),d(γ))δ

(c′τ + d′)−k

= Gk,N,Γ1(N)γδ(τ).

(2.23)
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Since Γ(N), being the kernel of a homomorphism, is a normal subgroup and since
Γ(N) ⊆ Γ1(N), we find that Gk,N,Γ1(N)γ

∣∣
kδ = Gk,N,Γ1(N)γ for δ ∈ Γ(N). This means

that Gk,N,Γ1(N)γ ∈ Mk(Γ(N)). We let

Ek(Γ(N)) = spanC{Gk,N,Γ1(N)γ : γ ∈ SL2(Z)}. (2.24)

Using some additional machinery one can show that

Mk(Γ(N)) = Ek(Γ(N))⊕ Sk(Γ(N)), (2.25)

see for example [16]. This is the generalization to Mk(Γ(N)) of Proposition 1.4.
Though not very insightful to state here, we record that the Fourier series expansions
of Gk,N,Γ1(N)γ are readily available, see for example [16] or [14].

To construct Eisenstein series for Γ0(N) and Γ1(N) we first need to talk some more
about Dirichlet characters. Given integers M, N ∈ Z≥1 with M | N, and Dirichlet
characters χ1 ∈ D(N), χ2 ∈ D(M), we say that χ1 is induced by χ2 if

χ1(a) = χ2(a) for all a ∈ Z with gcd(a, N) = 1. (2.26)

The smallest modulus M for which there exists a character χ2 inducing χ1, is called
the conductor of χ1, and is denoted by cond(χ1). If cond(χ1) = N, we say that χ1 is
primitive.

Let now k ∈ Z≥3 and u, v ∈ Z≥1 be integers, and let χ1 ∈ D(u) and χ2 ∈ D(v) be
Dirichlet characters satisfying that2 (χ1χ2)(−1) = (−1)k and that χ2 is primitive. For
τ ∈H, we then let

Gk,χ1,χ2 (τ) = ∑
0≤c<u
0≤d<v
0≤e<u

χ1(c)χ2(d)Gk,N,F−1([cv],[d+ev])(τ) (2.27)

where F denotes the bijection (2.22). We find that for γ ∈ Γ0(N) it holds that

Gk,χ1,χ2

∣∣
kγ = ∑

0≤c<u
0≤d<v
0≤e<u

χ1(c)χ2(d)Gk,N,F−1([cv],[d+ev])γ(τ). (2.28)

Through a clever change of variables, see for example [14], one finds that

∑
0≤c<u
0≤d<v
0≤e<u

χ1(c)χ2(d)Gk,N,F−1([cv],[d+ev])γ(τ) = (χ1χ2)(d(γ))Gk,χ1,χ2 (τ). (2.29)

This means that Gk,χ1,χ2 ∈ Mk(Γ0(N), χ1χ2). Since (χ1χ2)(1) = 1, it also holds that
Gk,χ1,χ2 ∈ Mk(Γ1(N)).

2 Here juxtaposition denotes multiplication, so (χ1χ2)(a) = χ1(a)χ2(a).
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We now have all the ingredients to describe all the Eisenstein series in Mk(Γ1(N))
and Mk(Γ0(N), χ) where χ ∈ D(N). For N ∈ Z≥1 and k ∈ Z≥3, we let

AN,k = {(χ1, χ2, t) : ∃u1, u2 ∈ Z≥1. tu1u2 | N,

χi ∈ D(ui), χi primitive, (χ1χ2)(−1) = (−1)k}. (2.30)

For (χ1, χ2, t) ∈ AN,k and τ ∈H, we let

Gk,χ1,χ2,t(τ) = Gk,χ1,χ2 (tτ). (2.31)

Since Gk,χ1,χ2 ∈ Mk(Γ1(u1u2)), where ui is the modulus of χi, we find that Gk,χ1,χ2,t ∈
Mk(Γ1(tu1u2)). However, since tu1u2 | N, we have that Mk(Γ1(N)). For χ ∈ D(N),
we now let

Ek(Γ1(N)) = spanC{Gk,χ1,χ2,t : (χ1, χ2, t) ∈ AN,k}
Ek(Γ0(N), χ) = spanC{Gk,χ1,χ2,t : (χ1, χ2, t) ∈ AN,k, χ1χ2 = χ}.

(2.32)

These spaces contain all the Eisenstein series, in the sense that

Mk(Γ1(N)) = Ek(Γ1(N))⊕ Sk(Γ1(N))

Mk(Γ0(N), χ) = Ek(Γ0(N), χ)⊕ Sk(Γ0(N), χ).
(2.33)

Hence, to compute Mk(Γ1(N)) and Mk(Γ0(N), χ), it remains to compute the spaces of
cusp forms Sk(Γ1(N)) and Sk(Γ0(N), χ). Thankfully, due to a theorem by Raum and
Xià, it turns out that the spaces of cusp forms are spanned by products of Eisenstein
series in Ek(Γ(N)). We will describe this theorem in detail in the summary of paper I.

the vector-valued connection In the next chapter, we will see that the
spaces Mk(Γ, ν) are isomorphic to weight k vector-valued modular forms associated

to the induced representation IndSL2(Z)
Γ ν. This allows to study Mk(Γ, ν) as a special

case of vector-valued modular forms of congruence type.

2.2 higher order modular forms

In the previous section, the major change from the classical setting was in modi-
fying the group on which in the invariance condition is satisfied. We only made a
minor change to the invariance condition itself. In this section, we will make a more
substantial change to the invariance condition as well.

Our starting point can somewhat facetiously be stated as the following question:

what if we require our functions not to be invariant after one, but after
two (or more) slashes?
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This question was considered in the context of what are known as modular symbols by
Goldfeld, in his paper [10]. For clarity, let us bring in a definition.

Definition 2.2. Let k ∈ Z and let Γ ⊆ SL2(Z) be a finite index subgroup containing
±TN for some N ∈ Z≥1. Then a modular form of order 1 and weight k for Γ, is
an element of Mk(Γ). A modular form of order n ∈ Z≥2 is a holomorphic function
f : H→ C with moderate growth at the cusps, satisfying that f

∣∣
k(γ− 1) = 0 for all

Γ ∈ Γ∞ ∩ Γ, and that for every γ ∈ Γ, the functions

f
∣∣
k(γ− 1), (2.34)

are modular forms of order n− 1. We write M[n]
k (Γ) for the C-vector space of modular

forms.

Goldfeld studied the distribution of modular symbols by relating it to the behavior
of a certain ζ-function, that itself was constructed from Eisenstein series belonging to

M[2]
0 (Γ0(N)) where N ∈ Z≥1.
We shall now look at a slightly more general example, namely that of Eisenstein

series belonging to M[2]
k (Γ) constructed from modular symbols, where Γ ⊆ SL2(Z) is

a finite index subgroup containing Γ∞ and k ∈ Z≥2.
For γ ∈ Γ and f ∈ S2(Γ) we define the modular symbol ⟨γ, f ⟩ by

⟨γ, f ⟩ =
∫ γz

z
f (w)dw, (2.35)

where z ∈H∗ is arbitrary. Since f is a weight 2 cusp form, the integral is independent
of the choice of z, so ⟨γ, f ⟩ is well-defined. This also implies that for γ1, γ2 ∈ Γ we
have

⟨γ1γ2, f ⟩ =
∫ γ1γ2z

z
f (w)dw

=
∫ γ2z

z
f (w)dw +

∫ γ1γ2z

γ2z
f (w)dw

= ⟨γ2, f ⟩+ ⟨γ1, f ⟩,

(2.36)

so that ⟨·, f ⟩ is a homomorphism. We also see that ⟨γ, f ⟩ = 0 for γ ∈ Γ∞. We now let
for k ∈ Z≥3 and τ ∈H

E[2]
k (τ; ⟨·, f ⟩) = ∑

[γ]∈Γ∞\Γ
⟨γ−1, f ⟩(1

∣∣
kγ)(τ). (2.37)

Goldfeld showed that for a fixed cusp form f ∈ Sk and an arbitrary positive real
number ϵ ∈ R>0, it holds that

⟨γ, f ⟩ ≪ϵ |c(γ)|
1
2 +ϵ. (2.38)
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Combining this with the argument (1.36), we find that E[2]
k (τ; ⟨·, f ⟩) converges ab-

solutely and locally uniformly on H for k > 5
2 . This implies that for δ ∈ Γ, we

have

(E[2]
k (·; ⟨·, f ⟩)

∣∣
kδ)(τ) = ∑

[γ]∈Γ∞\Γ
⟨γ−1, f ⟩(1

∣∣
kγδ)(τ)

= ∑
[γ′ ]∈Γ∞\Γ

⟨δ(γ′)−1, f ⟩(1
∣∣
kγ′)(τ)

= ⟨δ, f ⟩Ek,Γ(τ) + E[1]
k (τ; ⟨·, f ⟩),

(2.39)

where Ek,Γ = ∑[γ]∈Γ∞\Γ 1
∣∣
kγ. By the usual arguments, we have that Ek,Γ ∈ Mk(Γ) for

k > 2. Altogether, we have that

E[2]
k (·; ⟨·, f ⟩) ∈ M[1]

k (Γ). (2.40)

Using the same methodology as Goldfeld, we can also obtain Fourier series expansions

for E[2]
k (Γ).

We note that E[2]
k (·; ⟨·, f ⟩)

∣∣
k(γ− 1) = ⟨γ, f ⟩Ek,Γ, that is, the modular deficit at γ is

equal to a homomorphism Γ→ C evaluated at γ multiplied with a modular form in
Mk(Γ). This turns out to always be the case for second order modular forms.

Proposition 2.5. Let k ∈ Z, let Γ ⊆ SL2(Z) be a finite index subgroup containing Γ∞,

and let f : H → C be a function. Then f ∈ M[2]
k (Γ) if and only if f is holomorphic

and has moderate growth at the cusps, f
∣∣
k(γ− 1) = 0 for γ ∈ Γ∞ ∩ Γ, and there exists

a finite set of homomorphisms A = {ϕi}m
i=1, m ≥ 1, ϕi : Γ→ C, and a corresponding

set of modular forms {gϕ}ϕ∈A ⊆ Mk(Γ) such that for all γ ∈ Γ, we have that

f
∣∣
k(γ− 1) = ∑

ϕ∈A
ϕ(γ) · gϕ. (2.41)

Proof. If f satisfies the conditions of the proposition and A and {gϕ}ϕ∈A ⊆ Mk(Γ)
are corresponding finite sets of homomorphisms Γ → C and modular forms, then
since Mk(Γ) is a vector space, we have that

f
∣∣
k(γ− 1) = ∑

ϕ∈A
ϕ(γ) · gϕ ∈ Mk(Γ), (2.42)

showing that f ∈ M[2]
k (Γ).

Conversely, let us now suppose that f ∈ M[2]
k (Γ). Let {gi}d

i=1, d ∈ Z≥1, be a basis
for Mk(Γ). For a given γ ∈ Γ, there are then coefficients cγ

i ∈ C such that

f
∣∣
k(γ− 1) =

d

∑
i=1

cγ
i gi. (2.43)
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For γ1, γ2 ∈ Γ we thus obtain

d

∑
i=1

cγ1γ2
i gi = f

∣∣
k(γ1γ2 − 1)

= f
∣∣
k(γ1 − 1)

∣∣
kγ2 + f

∣∣
k(γ2 − 1)

=
d

∑
i=1

(cγ1
i (gi

∣∣
kγ2) + cγ2

i gi)

=
d

∑
i=1

(cγ1
i + cγ2

i )gi.

(2.44)

This shows that ϕi(γ) = cγ
i is a homomorphism, so letting A = {ϕi}d

i=1 and gϕi = gi
will do.

Building on Goldfeld’s work, Diamantis and O’Sullivan studied the structure of

M[2]
k (Γ), k ∈ Z≥3, and computed its dimension [20]. Finally, in [21], Diamantis and

Sim provided a complete classification of M[n]
k (Γ), for k ∈ Z≥3 and n ∈ Z≥2.

the vector-valued connection While not immediately apparent, Proposi-
tion 2.5 provides us with a connection to group cohomology. Indeed, homomorphisms
from Γ to C are nothing but 1-cocycles when Γ acts trivially on C. Since the first
cohomology group is isomorphic to the group of extension classes in C[Γ], we also
have a connection to representation theory. Using this, we can view the elements

of M[n]
k (Γ) as components of certain vector-valued modular forms. Furthermore, in

this setting it is very easy to generalize higher order modular forms, essentially by
changing the action to something non-trivial. In paper II, we show that this allows
us to view Eichler integrals as generalized second order modular forms. Building on
this, we show in paper III that iterated Eichler-Shimura integrals of depth 2 can be
viewed as generalized third order modular forms – this construction generalizes to
arbitrary depth, but in depth 2 we were able to construct a novel scalar-valued depth
two Eichler integral.

2.3 the products of eisenstein series philosophy

As we have indicated in the previous section, modular forms for subgroups with
character, and higher order modular forms can both be studied from a perspective of
vector-valued modular forms. In the beginning of this chapter, we also mentioned
that this allows us to use a unified framework to compute them. In this section, we
describe what we mean by this.

To start with, let us state our intent in abstract terms.
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Goal

For a space M of general modular forms whose domain is H, find a basis
for M in terms of products of Eisenstein series-type objects whose Fourier
series expansions converge rapidly. Use this basis to develop algorithms
for expressing any element f ∈ M in terms of products of Eisenstein
series-type objects, and for evaluating f (τ) to arbitrary precision at any
τ ∈H.

To accomplish the goal we follow what the author of this thesis has taken to calling
the products of Eisenstein series philosophy. It can be stated as follows.

The products of Eisenstein series philosophy

Let M be a space of general modular forms. To achieve the goal for M,
we:

1. Find a space M̃ of vector-valued modular forms, whose components
contain the elements of M.

2. Obtain a Sturm-type bound for elements in M̃, and an exact formula
for dim(M̃).

3. Find Eisenstein series in M̃, and compute their Fourier series
expansions.

4. Obtain a theorem that says that M̃ is spanned by products of the
Eisenstein series, or objects derived from them.

5. Compute a basis for M̃ in terms of products of Eisenstein series (or
derived objects), by computing involved the Fourier series
expansions, truncating at the Sturm bound, and performing
row-reduction.

We remark that this philosophy bears a very close resemblance to the way we
showed how Mk could be computed in Chapter 1. In the rest of this thesis, we will:

1. Introduce vector-valued modular forms, and show how they encapsulate the
higher order modular forms, modular forms for subgroups, and considerable
generalizations thereof.

2. In all cases under consideration, show how we have developed the philosophy

to an effective tool that we have used to solve the goal.
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In this chapter, we present a condensed introduction to vector-valued modular forms
and explain how they relate to the general modular forms that were covered in the
previous chapter.

Vector-valued modular forms are a natural generalization of modular forms for
subgroups of SL2(Z) with respect to a multiplicative character, to modular forms
taking values in an n-dimensional complex vector space V, n ∈ Z≥2. One then
needs to replace the multiplicative character with a complex finite-dimensional
representation of a finite index subgroup of SL2(Z). We call these arithmetic types.

Remark 3.1. The presentation that follows builds largely on the papers [32] by
Raum, [38] by Mertens and Raum, and [11]. An alternative approach, based on
Poincaré series is provided by Knopp and Mason in [13] and [12].

3.1 arithmetic types

Let us get straight to the definition.

Definition 3.1 (Arithmetic type). Let Γ ⊆ SL2(Z) be finite index subgroup. Then an
arithmetic type for Γ is a finite-dimensional complex representation1. We write V(ρ)
for the representation space of ρ.

If in addition ker(ρ) is a congruence subgroup, we call ρ a congruence type of level
equal to level(ker(ρ)).

Remark 3.2. If ker(ρ) has finite index in Γ, we can use Weyl’s unitarity trick to
construct an inner product of V(ρ) for which ρ is unitary. This implies that ρ is
semi-simple.

Note that an arithmetic type ρ for a finite index subgroup Γ ⊆ SL2(Z) is fully
determined by its value at the generators of Γ.

We also remark that the slash action
∣∣
k extends to an action on functions from H

to V, where V is any finite-dimensional complex vector space. If in addition, ρ is an
arithmetic type for a subgroup Γ ⊆ SL2(Z), k ∈ Z is an integer, f : H → V(ρ) is a
function, and γ ∈ Γ, we let

( f
∣∣
k,ργ)(τ) = ρ(γ−1)( f

∣∣
kγ)(τ) τ ∈H. (3.1)

1 Which we recall is a group homomorphism ρ : Γ→ GL(V), where V is a finite-dimensional complex vector
space.

37
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The slash action is linear, in the sense that if V is a finite-dimensional complex
vector space, then

(c1 f1 + c2 f2)
∣∣
kγ = c1( f1

∣∣
kγ) + c2( f2

∣∣
kγ),

c1, c2 ∈ C, f1, f2 : H → V. (3.2)

It also extends linearly to a right-action of the group ring C[SL2(Z)] on the set of
functions from H→ V by setting

f
∣∣
k,ρ(c1γ1 + c2γ2) = c1( f

∣∣
k,ργ1) + c2( f

∣∣
k,ργ2),

c1, c2 ∈ C, γ1, γ2 ∈ SL2(Z). (3.3)

Note that this is addition2 in C[SL2(Z)]. It should not be confused with element-wise
addition of matrices. The analogous statements hold for the action

∣∣
k,ρ.

We can now define vector-valued modular forms.

Definition 3.2 (Vector-valued modular forms). Let k ∈ Z be an integer, let Γ be
a finite index subgroup of SL2(Z), and let ρ be an arithmetic type for Γ. Let also
f : H→ V(ρ) be a function. Then we say that f is a vector-valued modular form of
type ρ if

1. for all γ ∈ Γ, it holds that

f
∣∣
k,ργ = f , (3.4)

2. f is holomorphic, and

3. for all γ ∈ SL2(Z) it holds that there exists a number a ∈ R such that

∥( f
∣∣
kγ)(τ)∥2 = O(Im(τ)a) as Im(τ)→ ∞, (3.5)

uniformly in Re(τ).

We write Mk(ρ) for the C-vector space of vector-valued modular forms of weight k
and type ρ. If in addition, it holds that for all γ ∈ SL2(Z) that

∥( f
∣∣
kγ)(τ)∥2 → 0 as Im(τ)→ ∞, (3.6)

uniformly in Re(τ), we say that f is a vector-valued cusp form of type ρ. We write
Sk(ρ) for the C-vector space of vector-valued cusp forms of weight k and type ρ.

2 In other words, it is the group operation on the free abelian group generated by the symbols {eγ : γ ∈ SL2(Z)}.
To simplify notation, we write γ for eγ . This may cause some confusion at first, but we have found that this
choice of notation decreases cognitive clutter.



3.1 arithmetic types 39

We record that if ρ is an arithmetic type such that for some N ∈ Z≥1 we have that
TN ∈ ker(ρ), then elements f ∈ Mk(ρ) have a Fourier series expansion on the form

f (τ) = ∑
n≥0

c( f ; n)e2πinτ/N , τ ∈H, (3.7)

where c( f ; n) ∈ V(ρ) are the Fourier series coefficients.
Let Γ ⊆ SL2(Z) be a finite index subgroup and let ν : Γ→ C× be a multiplicative

character. We then see that

Mk(ν) = Mk(Γ, ν), (3.8)

where the right-hand side was defined in Definition 2.1. In particular, if 1 : Γ→ C×

is the trivial character, then

Mk(1) = Mk(Γ). (3.9)

In line with the products of Eisenstein series philosophy, we now present a Sturm
bound for Mk(ρ) and a formula for dim Mk(ρ), where ρ is an arithmetic type, and
where k ∈ Z≥3. Let us start with the Sturm bound.

Proposition 3.1 (Sturm bound for Mk(ρ)). Let k ∈ Z and let ρ be an arithmetic type
such that TN ∈ ker(ρ) for some N ∈ Z≥1. Let f ∈ Mk(ρ). Then if

c( f ; n) = 0 for all n ∈ Q with 0 ≤ n ≤ k
12

, (3.10)

it holds that f = 0.

Proof. See [27, Theorem 1.2].

As for the dimension formula, we have the following proposition, due in this
formulation to Borcherds and Fischer.

Remark 3.3. As we will see when we define induced types, we can without loss of
generality restrict ourselves to arithmetic types for SL2(Z).

Proposition 3.2 (Dimension of Mk(ρ)). Let ρ be arithmetic type for SL2(Z) satisfying
that TM ∈ ker(ρ) for some M ∈ Z≥1, and let k ∈ Z≥3. Then

dim Mk(ρ) =
1
2

3

∑
j=0

e(jk/2)ψ(k, ρ, j), (3.11)

where

ψ(k, ρ, j) =
k− 1

12
Tr(ρ(Zj)) + δ3(e(1/6)ρ(R), ρ(Zj))

+ δ2(e(1/4)ρ(S), ρ(Zj)) + δ0(ρ(T−1), ρ(Zj)), (3.12)
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where R = TS, and

δN(X, g) =
1
N

N−1

∑
j=1

Tr(X jg)
1− e(j/N)

, (3.13)

for N ∈ Z≥1, and

δ0(X, g) =
Tr(g)
2M

+
1
M

M−1

∑
j=1

Tr(X jg)
1− e(j/M)

, (3.14)

where M = min{M ∈ Z≥1 : TM ∈ ker(ρ)}.

Proof. See [11] or [7, Corollary 2.5.5].

3.2 examples of arithmetic types

Let ρ be an arithmetic type for a subgroup Γ of SL2(Z). We can then view V(ρ) as
C[Γ]-module, by setting

γ.v = ρ(γ)v, γ ∈ Γ and v ∈ V(ρ). (3.15)

It is a standard result in representation theory [1, 8] that the category of complex
representations of Γ is isomorphic to the category of C[Γ]-modules, and thus we
henceforth identify ρ with the C[Γ]-module V(ρ) unless otherwise indicated.

Before looking at some concrete examples, we recall that given a finite index
subgroup Γ ⊆ SL2(Z) and a C[Γ]-module V, the space of invariants H0

Γ(V) is defined
by

H0
Γ(V) = {v ∈ V : γ.v = v}. (3.16)

The subscript is often omitted if it is understood from the context.

3.2.1 Induced types

We now show how one can extend an arithmetic type for a proper subgroup of
SL2(Z) to an arithmetic type for SL2(Z) itself. For subgroups Γ ⊆ Γ′ ⊆ SL2(Z) of
finite index, and an arithmetic type ρ of Γ, we let the induced type of ρ for Γ′ be given
by

IndΓ′
Γ ρ = C[Γ′]⊗C[Γ] ρ. (3.17)

Recall that the action of C[Γ′] on the tensor product is defined by

γ(δ⊗ v) = (γδ)⊗ v, (3.18)
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for v ∈ V(ρ).
The induced type allows us to always work with arithmetic types for SL2(Z), rather

than for proper subgroups, simply let Γ′ = SL2(Z) in the following proposition.

Proposition 3.3. Let Γ ⊆ Γ′ ⊆ SL2(Z) be finite index subgroups, k ∈ Z be an integer,
and σ be an arithmetic type for Γ. Then

Ind : Mk(σ)→ Mk(IndΓ′
Γ σ)

f 7→
(

τ 7→ ∑
[γ]∈Γ′/Γ

γ⊗ ( f
∣∣
kγ−1)(τ)

)
, (3.19)

is an isomorphism of C-vector spaces.

Proof. If γ ∈ Γ′ and α ∈ Γ, we have that

γα⊗ ( f
∣∣
kα−1γ−1)(τ) = γα⊗ σ(α−1)( f

∣∣
kγ−1)(τ)

= γ(α⊗ σ(α−1)( f
∣∣
kγ−1)(τ)

= γ(1⊗ σ(α)σ(α−1)( f
∣∣
kγ−1)(τ)

= γ⊗ ( f
∣∣
kγ−1)(τ).

(3.20)

This shows that the sum (3.19) is well-defined. Let now δ ∈ Γ′. Then

(Ind( f )
∣∣
k,ρδ)(τ) = ρ(δ−1) ∑

[γ]∈Γ′/Γ
γ⊗ ( f

∣∣
kγ−1δ)(τ)

= ∑
[γ]∈Γ′/Γ

δ−1γ⊗ ( f
∣∣
kγ−1δ)(τ)

= ∑
[β]∈Γ′/Γ

β⊗ ( f
∣∣
kβ−1)(τ),

(3.21)

where the last equality follows since γΓ 7→ δ−1γΓ is a permutation of Γ′/Γ. This
shows that Ind is a well-defined map. It is also clear that it is linear. It remains to
show that it is bijective.

Let {γi}r
i=1 ⊆ Γ′ be a complete set of representatives for Γ′/Γ where γ1 = 1. For

brevity, let us write ρ = IndΓ′
Γ σ. Given a modular form f ∈ Mk(ρ), there are unique

functions fi : H→ V(σ), 1 ≤ i ≤ r, such that

f (τ) =
r

∑
i=1

γi ⊗ fi(τ). (3.22)

For a given element δ ∈ Γ′, there is a unique permutation πδ ∈ Sr and a unique
function fδ : {1, . . . , r} → Γ, defined by

δ−1γi = γπδ(i) fδ(i). (3.23)
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The relation f
∣∣
k,ρδ = f then implies that

f (τ) = ( f
∣∣
k,ρδ)(τ) =

r

∑
i=1

γπδ(i) ⊗ σ( fδ(i))( fi
∣∣
kδ)(τ), (3.24)

and so fπδ(i) = σ( fδ(i)) fi
∣∣
kδ. In particular, if δ ∈ Γ and i = 1, we obtain that

πδ(1) = 1 and fδ(1) = δ−1, and therefore f1 = σ(δ−1) f1
∣∣
kδ = f

∣∣
k,σδ. This means that

f1 ∈ Mk(δ). We also have that πγj (j) = 1 and fγj (1) = 1, implying that f1 = f j
∣∣
kγj

and thus f1
∣∣
kγ−1

j = f j.
We can now define the linear function F : Mk(ρ) → Mk(σ) by F( f ) = f1. Let

f ∈ Mk(ρ). We then obtain

Ind(F( f )) = Ind( f1) =
r

∑
i=1

γi ⊗ f1
∣∣
kγ−1

i =
r

∑
i=1

γi ⊗ fi = f . (3.25)

Similarly, if g ∈ Mk(σ), we have that

F(Ind(g)) = F(
r

∑
i=1

γi ⊗ g
∣∣
kγ−1

i ) = g
∣∣
kγ−1

1 = g, (3.26)

since γ1 = 1. This shows that Ind is a bijective linear function, and so we are done.

In particular, we let for a positive integer N ∈ Z≥1 and a multiplicative character
χ : Γ0(N)→ C×, the induced types ρN and ρχ be given by

ρN = IndSL2(Z)
Γ1(N)

1 and ρχ = IndSL2(Z)
Γ0(N)

χ. (3.27)

To understand how ρN and ρχ look like, we next provide two simple examples.
Namely those of ρ3 and ρψ where ψ ∈ D(3) is given by ψ(2) = −1.

Let start by considering ρ3. We have that

SL2(Z) =
8⊔

i=1
γiΓ1(3), (3.28)

where

γ1 = I, γ2 = −I, γ3 = S, γ4 = −S,

γ5 = STS, γ6 = −STS, γ7 = T−2S, γ8 = −T−2S.
(3.29)

Given an arbitrary element γ ∈ SL2(Z), there exists a unique number 1 ≤ i ≤ 8 and
a unique element γ′ ∈ Γ1(3) such that

γ = γiγ
′. (3.30)
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This implies that

B = {γ1 ⊗ 1, γ2 ⊗ 1, . . . , γ8 ⊗ 1}, (3.31)

is a basis for V(ρ3). To determine ρ3(S) and ρ3(T), we have to express S(γi ⊗ 1) and
T(γi ⊗ 1) as linear combinations of elements of B. We note that if

Sγi = γjγ
′, (3.32)

then

S(γi ⊗ 1) = γjγ
′ ⊗ 1 = γj(γ

′ ⊗ 1) = γj(1⊗ γ′.1) = γj(1⊗ 1)

= γj ⊗ 1, (3.33)

and similarly for left multiplication by T. Hence, S and T act on B by permutations.
After some work, one finds that

S(γi ⊗ 1) = γσS(i) ⊗ 1, and

T(γi ⊗ 1) = γσT(i) ⊗ 1,
(3.34)

where

σS = (3, 4, 2, 1, 8, 7, 5, 6), σT = (1, 2, 7, 8, 3, 4, 5, 6). (3.35)

As for ρχ, we first need to compute a set representatives for SL2(Z)/Γ0(3). One finds,
for example, that SL2(Z) =

⊔4
i=1 δiΓ0(3), where

δ1 = I, δ2 = −S, δ3 = −STS, δ4 = −T−2S. (3.36)

Consequently, B′ = {δi ⊗ 1}4
i=1 is a basis for V(ρχ). In this case, S and T no longer act

exactly like permutations, but almost – they act like permutations with multiplicative
twists. For example, we have that

S(δ1 ⊗ 1) = S⊗ 1 = δ2(−I)⊗ 1 = δ2(1⊗ (−I).1) = δ2(1⊗ ψ(−I))

= −(δ2 ⊗ 1). (3.37)

Continuing, we find that

S(δi ⊗ 1) = fS(i) · (δσ′S(i)
⊗ 1), and

T(δi ⊗ 1) = fT(i) · (δσ′T(i)
⊗ 1),

(3.38)

where

σ′S = (2, 1, 4, 3), fS = (−1, 1,−1, 1), and

σ′T = (1, 4, 2, 3), fT = (1, 1, 1, 1).
(3.39)
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We notice that both ρ3 and ρψ share a similar form – they act as twisted permutations.
This is of course true for any tensor product on the form

ρ⊗n
3 ⊗C ρ⊗m

ψ , (3.40)

where n, m ∈ Z≥1 are integers, and the n-fold and m-fold tensor products are taken
over C; as well. By allowing twists of higher dimension than 1, we are naturally lead
to what we call twisted permutation types.

3.2.2 Twisted permutation types

Recall that for a group G and an integer n ∈ Z≥1, the wreath product of G with the
permutation group Sn, denoted by G ≀ Sn, is given by

G ≀ Sn = {( f , π) | f : {1, . . . , n} → G, π ∈ Sn}, and

( f ′, π′)( f , π) = (i 7→ f ′(π(i)) f (i), π′π).
(3.41)

Furthermore, given an arithmetic type ρ for G, we define the representation ρ ≀ Sn :
G ≀ Sn → GL(Cn ⊗V(σ)) by

(ρ ≀ Sn)( f , π)(ei ⊗ w) = eπ(i) ⊗ ρ( f (π(i)))w, (3.42)

where ei denotes the canonical basis of Cn.
We now arrive at the following definition.

Definition 3.3 (Twisted permutation type). Let Γ ⊆ SL2(Z) be a finite index subgroup,
n ∈ Z≥1 be an integer, and σ be a finite-dimensional complex representation of some
group G. Then we say that an arithmetic type ρ for Γ is a twisted permutation type of
order n and with twist representation σ, if there exists a group homomorphism ρ≀

such that ρ factors as

ρ : Γ
ρ≀−→ G ≀ Sn

σ≀Sn

−−→ GL(Cn ⊗V(σ)). (3.43)

We call V(σ) the twist space of ρ and dim(V(σ)) the twist dimension of ρ.

By slight abuse of terminology, we refer to an arithmetic type as a twisted permuta-
tion type even if it is only isomorphic to one.

To get a feeling for the definition, let us show that ρ3⊗C ρψ is a twisted permutation
type of order 32 with twist representation std(C).3 Let

ei,j = (γi ⊗ 1)⊗C (δj ⊗ 1). (3.44)

3 Recall that for a finite-dimensional complex vector space V, the representation std(V) : GL(V)→ GL(V) is
given by std(V)(γ)(v) = γ(v).
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where 1 ≤ i ≤ 8 and 1 ≤ j ≤ 4. We then find that

Sei,j = fS(j) · eσS(i),σ′S(j) and Tei,j = fT(j) · eσT(i),σ′T(j) (3.45)

where σS and σT are given as in (3.35), and σ′S, σ′T , fS, and fT are given as in (3.39).
Let now the permutation ΣS, ΣT ∈ S32 be given by

ΣS(4(i− 1) + j) = 4(σS(i)− 1) + σ′S(j)

ΣT(4(i− 1) + j) = 4(σT(i)− 1) + σ′T(j),
(3.46)

where 1 ≤ i ≤ 8 and 1 ≤ j ≤ 4. Let also the functions FS, FT : {1, . . . , 32} → C be
given by

FS(ΣS(4(i− 1) + j)) = fS(j) and FT(ΣT(4(i− 1) + j)) = fT(j), (3.47)

with i and j as above. We now let ρ be given by V(ρ) = C32 and

ρ(S)ei = FS(ΣS(i))eΣS(i) and ρ(T)ei = FT(ΣT(i))eΣT(i), (3.48)

and ρ≀ : SL2(Z)→ C× ≀ S32 be given by

ρ≀(S) = (FS, ΣS) and ρ≀(T) = (FT , ΣT). (3.49)

One verifies that ρ≀(S)4 = (ρ≀(S)ρ≀(T))6 = 1, implying that ρ≀ is a group homomor-
phism. By construction, we have that

ρ = std(C) ≀ Sn ◦ ρ≀, (3.50)

and it is clear that F : V(ρ3 ⊗C ρψ)→ V(ρ) given by F(ei,j) = e4(i−1)+j is an isomor-
phism of representations.

why twisted permutation types? As we will re-tell below, in [36] Raum and
Xià showed that vector-valued modular forms of congruence type can be expressed
in terms of components of certain vector-valued Eisenstein series. This accomplishes
steps 3 and 4 of the philosophy for modular forms that occur as components of
vector-valued modular forms for congruence type. To further accomplish step 5, we
show in paper I that the result of Raum-Xià can be recast in terms of invariants of
tensor products of induced types, that is, invariants of twisted permutation types.

3.2.3 Extension types

We now describe a different way of constructing new arithmetic types from existing
ones. In constract to the induction construction, we create a new arithmetic type of a
finite index subgroup Γ ⊆ SL2(Z) from two given arithmetic types of the same group
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Γ. This construction originates in group cohomology, and the explanation we give
here follows the one presented in [38] and papers II and III.

Given arithmetic types ρ and σ for a finite index subgroup Γ ⊆ SL2(Z), we let the
space of 1-cocycles, and the space of parabolic 1-cocycles, of type (ρ, σ), be given by

Z1(ρ, σ) = { f : Γ→ Hom(V(ρ), V(σ)) |
f (γ1γ2) = σ(γ1) f (γ2) + f (γ1)ρ(γ2)}, and

Z1
pb(ρ, σ) = { f ∈ Z1(ρ, σ) : ∀γ ∈ Γ∞ ∩ Γ. f (γ) = 0}.

(3.51)

We also let the corresponding spaces of 1-coboundaries and parabolic 1-coboundaries
of type (ρ, σ), be given by

B1(ρ, σ) = { f ∈ Z1
pb(ρ, σ) : ∃h ∈ Hom(V(ρ), V(σ)).

∀γ ∈ Γ. f (γ) = σ(γ)h− hρ(γ)}, and

B1
pb(ρ, σ) = B1(ρ, σ) ∩ Z1

pb(ρ, σ),

(3.52)

and define H1(ρ, σ) and H1
pb(ρ, σ) by

H1(ρ, σ) =
Z1(ρ, σ)

B1(ρ, σ)
and H1

pb(ρ, σ) =
Z1

pb(ρ, σ)

B1
pb(ρ, σ)

. (3.53)

We also fix, once and for all, an injection ν : H1(ρ, σ)→ Z1(ρ, σ).
For4 ϕ ∈ Z1(σ, ρ), we let the extension of type (ρ, σ), denoted by ρ ⊞ϕ σ, be given

by

V(ρ ⊞ϕ σ) = V(ρ)⊕V(σ)

(ρ ⊞ϕ σ)(γ)(v, w) = (ρ(γ)v + ϕ(γ)w, σ(γ)w).
(3.54)

Let us briefly explain the justification for its name. Note that ρ ⊞ϕ σ fits into the
following extension of σ by ρ

0→ ρ
v 7→(v,0)−−−−→ ρ ⊞ϕ σ

(v,w) 7→w−−−−−→ σ→ 0. (3.55)

We say that two extensions ρ ↪→ ξ1 ↠ σ and ρ ↪→ ξ2 ↠ σ are equivalent if and only
if there exists a map f such that the following diagram commutes

0 ρ ξ1 σ 0

0 ρ ξ2 σ 0.

= f = (3.56)

4 Note the order of ρ and σ.
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We denote the set of extension classes of σ by ρ by Ext(σ, ρ). We also define the
corresponding set of parabolic extension classes by

Extpb(σ, ρ) = {[ρ ↪→ ξ ↠ σ] ∈ Ext(σ, ρ) :

∀γ ∈ Γ∞ ∩ Γ. ξ(γ) = 0}.
(3.57)

The sets Ext(σ, ρ) and Extpb(σ, ρ) have the additional structure of abelian groups
through the Baer sum. For its precise definition, we refer to [4]. Given an extension
class [ρ ↪→ ξ ↠ σ] ∈ Ext(σ, ρ) it turns out that ξ ∼= ρ ⊞ϕ σ for some ϕ ∈ Z1(σ, ρ),
unique up to the addition of a coboundary. More precisely, we have the following
isomorphism

Ext(σ, ρ) ∋ [ρ ↪→ ρ ⊞ϕ σ ↠ σ] 7→ ϕ + B1(σ, ρ) ∈ H1(σ, ρ), (3.58)

descending to an isomorphism Extpb(σ, ρ) ∼= H1
pb(σ, ρ) between parabolic extension

classes and parabolic cohomology.
We also let the universal parabolic extension ρ ⊞pb σ of type (ρ, σ) be defined by

V(ρ ⊞pb σ) = V(ρ)⊕V(σ)⊗H1
pb(σ, ρ), and

(ρ ⊞pb σ)(γ)(v1, v2 ⊗ ϕ) = (ρ(γ)v1 + ν(ϕ)(γ)v2, σ(γ)v2 ⊗ ϕ). (3.59)

why extension types? In paper II and III, we show, building upon the theoretical
framework developed by Mertens and Raum [38], that vector-valued modular forms
of extension type capture both modular forms of higher order, and iterated Eichler-
Shimura integrals. For modular forms of higher order, the connection is provided by
Proposition 2.5. We will describe in this detail in the next section.

3.3 examples of vector-valued modular forms and their components

It is finally time to see what we can do with all of the theory that we have developed
so far. In this section, we present an assortment of vector-valued modular forms for
the different types of arithmetic types we have presented so far. We will also connect
them back to what we saw in Chapter 2.

3.3.1 Modular forms of induced type

Proposition 3.3 implies that for a finite index subgroup Γ, a multiplicative character
ν : Γ→ C×, and k ∈ Z, we have that

Mk(Γ, ν) ∼= Mk(IndSL2(Z)
Γ ν). (3.60)
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This accomplishes step 1 of the philosophy for Mk(Γ, ν). As a special case, we find
that

Mk(ρN) ∼= Mk(Γ1(N)) and Mk(ρχ) ∼= Mk(Γ0(N), χ). (3.61)

In particular, if g ∈ Mk(IndSL2(Z)
Γ ν), then there exists a unique modular form

f ∈ Mk(Γ, ν) such that

g = ∑
[γ]∈SL2(Z)/Γ

γ⊗ f
∣∣
kγ−1. (3.62)

Hence if g admits a Fourier series expansion, then

c( f ; n) = ∑
[γ]∈SL2(Z)/Γ

γ⊗ c( f
∣∣
kγ−1; n), (3.63)

so f contains the Fourier series expansion at every cusp of f . This is a key advantage

of recasting Mk(Γ, ν) as Mk(IndSL2(Z)
Γ ν); if one can compute a basis in terms of Fourier

series expansions of the latter, then one obtains cusp expansions for the elements of
Mk(Γ, ν) at no additional cost.

3.3.2 Vector-valued Eisenstein series

Let ρ be an arithmetic type for SL2(Z) with finite index kernel (so that ρ is semi-
simple), and let k ∈ Z≥3. For a vector v ∈ V(ρ), we let Stab(v) = {γ ∈ SL2(Z) :
ρ(γ)v = v} and Γ∞(v) = Γ∞ ∩ Stab(v). Note that Γ∞(v) has finite index in Γ∞,
since ker(ρ) has finite index in SL2(Z). Following [32], we now define the weight k
vector-valued Eisenstein series of type ρ at v, by

Ek,v(τ) =
1

|Γ∞/Γ∞(v)| ∑
[γ]∈Γ∞(v)\SL2(Z)

v
∣∣
k,ργ (3.64)

One verifies that Ek,v converges absolutely and locally uniformly on H, and has
moderate growth at i∞, and hence Ek,v ∈ Mk(ρ) for any v ∈ V(ρ). For k ∈ {1, 2} we
apply Hecke’s trick [19], and put for v ∈ V(ρ)

Ek,v(τ) =
1

|Γ∞/Γ∞(v)| lim
s→0

∑
[γ]∈Γ∞(v)\SL2(Z)

ysv
∣∣
k,ργ, (3.65)

where y = Im(τ). One can verify, see [16, Chapter 7] or [14, Chapter 4], that E1,v ∈
M1(ρ). However, E2,v is not holomorphic in general. That being said, Raum showed
in [32, Lemma 3.2] that E2,v is holomorphic, and thus E2,v ∈ M2(ρ), when ρ does not
contain an isomorphic copy of the trivial type 1. Since M2(1) = M2 = {0}, we do not
have to worry about the “trivial part” of ρ.
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We are thus led to define

Ek(ρ) = spanC{Ek,v : v ∈ V(ρ)}, (3.66)

for k ∈ {1} ∪Z≥3 or k = 2 if ρ does not contain an isomorphic copy of 1. If there
exists a subrepresentation 1′ ⊆ ρ such that 1′ ∼= 1, we write5 ρ = 1′ ⊕ ρ′ and define

E2(ρ) = spanC{E2,v : v ∈ V(ρ′)}. (3.67)

We have, though this is non-trivial to prove, for k ∈ Z≥1 that

Mk(ρ) = Ek(ρ)⊕ Sk(ρ), (3.68)

see the remark following Proposition 1.4 in [32].
To see how the Eisenstein series in Ek(ρ) relate to the Eisenstein series of Chapter 2,

we let

Ek[ρ] = spanC{v ◦ E : v ∈ V(ρ)∨, E ∈ Ek(ρ)}. (3.69)

be the space of components of vector-valued Eisenstein series. One finds, see for
example [35], that for k ∈ Z≥3 and N ∈ Z≥1 it holds that

Ek[ρN ] = Ek(Γ(N)). (3.70)

Hence, we define E1(Γ(N)) and E2(Γ(N)) as E1[ρN ] and E2[ρN ].6

The following proposition shows how we can recover vector-valued modular forms
from a space of scalar-valued modular forms that is invariant under the slash action.

Proposition 3.4. Let ρ be an arithmetic type for SL2(Z), let k ∈ Z be an integer, and
let Γ ⊆ SL2(Z) be a finite index subgroup. Let W ⊆ Mk(Γ) be a subspace of modular
forms invariant under weight k slash action of SL2(Z), viewed as a C[SL2(Z)]-module.
Then we have the map

H0(W ⊗ ρ)→ Mk(ρ)

∑
i

fi ⊗ vi 7→
(

τ 7→∑
i

fi(τ)vi

)
.

(3.72)

Proof. This is Lemma 1.3 of Paper I.

5 This is possible because ρ is semi-simple.
6 This coincides with the usual definition of holomorphic Eisenstein series of level N and weight 1 and 2. The

usual definition uses the extended Eisenstein series

Gk,N,Γγ(τ, s) = ∑
(c,d)∈Z2\{(0,0)}
(c,d)≡N (c(γ),d(γ))

ys |cτ + d|−2s(cτ + d)−k , (3.71)

where y = Im(τ), and puts Gk,N,Γγ(τ) = lims→0 Gk,NΓγ(τ, s). Some modification, analogous to the definition
of E2(ρN), needs to be done in the case of k = 2. See [16, Chapter 7], for details. We opted for the alternative
definition for the sake of brevity.
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Note that by (2.23), we have that Ek(Γ(N)) is invariant under the slash action. This
means that for k, N ∈ Z≥1, we have that

H0(Ek(Γ(N))⊗ ρ) ⊆ Mk(ρ), (3.73)

under the map (3.72).
The following theorem, due to Raum and Xià, is a vector-valued analogue of

Proposition 1.9.

Theorem 3.1 (Raum and Xià). Let k, l ∈ Z with k ≥ 2 and 1 ≤ l ≤ k− 1, let N ∈ Z≥1,
and let ρ be a congruence type of level N. Then there exists an integer N0 ∈ Z≥1,
with N | N0 such that under the map (3.72), we have that

Mk(ρ) = H0(Ek[ρN ]⊗ ρ) + H0((El [ρN0 ] · Ek−l [ρN0 ])⊗ ρ). (3.74)

Proof. See [36, Theorem 4.4].

Propositions 3.1 and 3.2, Theorem 3.1, and equation (3.70), settles steps 2, 3, and 4,
for modular forms that occur as components of vector-valued modular forms of
congruence type. This the starting point for paper I.

3.3.3 Modular forms of higher order

Let Γ ⊆ SL2(Z) be a finite index subgroup, let k ∈ Z, and let {ϕi}d
i=1, d ∈ Z≥1, be a

basis for H1
pb(1Γ, 1Γ). Let now f ∈ Mk(1Γ ⊞pb 1Γ). Then we may write

f = ( f1,
d

∑
i=1

gi ⊗ ϕi), τ ∈H, (3.75)

where f1 and {gi}d
i=1 are functions from H to C. For brevity, we now write ρ =

1Γ ⊞pb 1Γ. Then for γ ∈ Γ, we have that

f
∣∣
k,ργ = ρ(γ−1)

[ ( f1
∣∣
kγ

0

)
+

d

∑
i=1

(
0

gi
∣∣
kγ⊗ ϕi

) ]

=

(
f1
∣∣
kγ

0

)
+

d

∑
i=1

(
ϕi(γ

−1)gi
∣∣
kγ

gi
∣∣
kγ⊗ ϕi

) (3.76)

Since f is modular, we have that(
f1

∑d
i=1 gi ⊗ ϕi

)
=

(
f1
∣∣
kγ + ∑d

i=1 ϕi(γ
−1)gi

∣∣
kγ

∑d
i=1 gi

∣∣
kγ⊗ ϕi

)
(3.77)
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This implies that gi
∣∣
kγ = gi for all i, and hence

f1
∣∣
k(γ− 1) =

d

∑
i=1

ϕi(γ)gi, (3.78)

so f1 ∈ M[2]
k (Γ). Combining this with Proposition 2.5, we conclude that the map

F2 : Mk(1Γ ⊞pb 1Γ)→ M[2]
k (Γ)

( f , ∗) 7→ f ,
(3.79)

is well-defined, linear, and surjective.
With an inductive argument, we can extend this to higher orders. For n = 1, we let

1[n]Γ = 1Γ and for n > 1, we let

1Γ ⊞pb 1[n−1]
Γ . (3.80)

For n ∈ Z≥1, we now let Fn be given by

Fn : Mk(1
[n]
Γ )→ M[n]

k (Γ)

( f , ∗) 7→ f .
(3.81)

To see that Fn is well-defined, it is enough to show that for any elements γ1, . . . , γn ∈ Γ

and any f ∈ Mk(1
[n]
Γ ), we have that

f
∣∣
k(γ1 − 1)(γ2 − 1) · · · (γn − 1) = 0. (3.82)

Let now n ∈ Z≥1 and f ∈ Mk(1
[n]
Γ ), and suppose that

f =

(
g

∑m
i=1 hi ⊗ ϕi

)
, (3.83)

where {ϕi}m
i=1 is a basis for H1

pb(1
[n−1]
Γ , 1Γ). Then, since f is modular we find that

hi ∈ Mk(1
[n−1]
Γ ) for all i, and that

g
∣∣
k(γ− 1) =

m

∑
i=1

ϕi(γ)hi, (3.84)

for any γ ∈ Γ. As an inductive assumption, let us now assume (3.82) holds for

Mk(1
[n−1]
Γ ). Then for any elements γ1, . . . , γn ∈ Γ, we have that

hi
∣∣
k(γ2 − 1) · · · (γn − 1) = 0, (3.85)
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and thus

g
∣∣
k(γ1 − 1)(γ2 − 1) . . . (γn − 1)

=
m

∑
i=1

ϕi(γ1)hi
∣∣
k(γ2 − 1) · · · (γn − 1) = 0. (3.86)

It follows that f
∣∣
k(γ1 − 1) · · · (γn − 1) = 0. By induction, we obtain that (3.82) holds

for any space Mk(1
[n]
Γ ). This implies that Fn is a well-defined linear map.

It is also the case that Fn is surjective for n > 2. However,the proof of this is beyond
the scope of this thesis. We refer to [38, Proposition 3.15], for details.

3.3.4 Generalized second order modular forms

The fact that second order modular forms are images of modular forms of type
1Γ ⊞pb 1Γ suggests a natural generalization of second order modular forms: we may
consider the “ρ component” of modular forms of type ρ ⊞pb σ where ρ and σ are
general arithmetic types. This is the point of view that we take in paper II. For clarity,
let us bring in another definition.

Definition 3.4. Let Γ ⊆ SL2(Z) be a finite index subgroup and k ∈ Z. Let also ρ

and σ be arithmetic types. Then we say that a holomorphic function f : H→ V(ρ)
with moderate growth at the cusps is a generalized second order modular form of
type (ρ, σ) and weight k if there exists a finite set of cocycles A ⊆ Z1

pb(σ, ρ) and a
corresponding set of modular forms {gϕ}ϕ∈A ⊆ Mk(σ), such that for every γ ∈ Γ we
have that

f
∣∣
k,ρ(γ− 1) = ∑

ϕ∈A
ρ(γ−1)ϕ(γ)gϕ. (3.87)

We write M[1]
k (ρ, σ) for the space of generalized second order modular forms of

weight k and type (ρ, σ).

Remark 3.4. Paralleling the map F2 from the previous section, we have the following
linear and surjective map:

F : Mk(ρ ⊞pb σ)→ M[1]
k (ρ, σ)

( f , ∗) 7→ f .
(3.88)

Our initial motivation for studying generalized second order modular forms is that
they contain Eichler integrals. They are defined as follows. Let k ∈ Z≥2 be an even
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integer, and let f ∈ Sk be a cusp form. Then the Eichler integral associated to f , is
defined by

E f (τ) =
∫ i∞

τ
f (z)(τ − z)k−2 dz, τ ∈H. (3.89)

Note that if γ =
(a b

c d
)
∈ SL2(Z), then since

γτ − γz =
τ − z

(cτ + d)(cz + d)
, (3.90)

and d(γz) = (cτ + d)−2 dz, we have that

(E f
∣∣
2−kγ)(τ) =

∫ γ−1(i∞)

τ
f (z)(τ − z)k−2 dz. (3.91)

This implies that

ϕE f (γ; τ) = E f
∣∣
2−k(1− γ−1)(τ) =

∫ i∞

γ(i∞)
f (z)(τ − z)k−2dz. (3.92)

If k = 2, and we allow f to be a cusp form for a congruence subgroup Γ of level
greater than one, we have that ϕE f (γ; τ) = −⟨γ, f ⟩, where ⟨γ, f ⟩ is the modular
symbol defined in (2.36), and so in the weight 2 case we have that ϕE f ∈ Z1

pb(1Γ, 1Γ).
To relate E f to generalized second order modular forms, we first need to define the

dth symmetric power of the standard representation, denoted by symd(X). It is the
arithmetic type for SL2(Z) given by

V(symd(X)) = C[X]d = {p ∈ C[X] : deg(p) ≤ d}, (3.93)

where X is a formal variable, and

symd(X)(γ)p = p
∣∣
−dγ−1 = (−cX + a)dp(

dX− b
−cX + a

), (3.94)

where γ =
(a b

c d
)
∈ SL2(Z). We see that ϕE f (γ; X) ∈ C[X]k−2, and hence ϕE f (·; X) ∈

Z1
pb(1, symd(X)). Hence, if we can transform ϕE f (·; X) to a cocycle ψE f ∈ Z1

pb(symd(X), 1)
satisfying that

ψE f (γ)g(τ) = −ϕE f (γ
−1; τ) = E f

∣∣
2−k(γ− 1)(τ), τ ∈H, (3.95)

for some modular form g ∈ M2−k(symk−2(X)), we would have that E f ∈ M2−k(1, symd(X)).
Thankfully, this is indeed possible. To construct ψE f we make use of the following
pairing on C[X]d:

⟨·, ·⟩ : C[X]d ×C[Y]d −→ C

(p, q) 7−→
d

∑
i=0

(−1)i
(
d

i

)−1
piqd−i,

(3.96)
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where p = ∑d
i=0 piXi and q = ∑d

i=0 qiYi. One can verify that for γ ∈ SL2(Z), p ∈
C[X]d and q ∈ C[Y]d, we have that

⟨γ.p, γ.q⟩ = ⟨p, q⟩. (3.97)

One also sees that for a polynomial p ∈ C[X]d, we have that

⟨p, (X−Y)d⟩ = p(Y). (3.98)

For ϕ ∈ Z1
pb(1, symd(X)), we now let

ϕ∨(γ)v = ⟨ϕ(γ−1), v⟩, γ ∈ SL2(Z), v ∈ C[X]d. (3.99)

The invariance of ⟨·, ·⟩ implies that ϕ∨ ∈ Z1
pb(symd(X), 1). While we will not use it

now, we record that

Z1
pb(1, symd(X)) −→ Z1

pb(symd(X), 1)

ϕ 7−→ ϕ∨,
(3.100)

is a vector space isomorphism. We now let ψE f = −ϕE f (·; X)∨. Then it holds that

ψE f (γ)(X− τ)k−2 = −⟨ϕE f (γ
−1; X), (X− τ)k−2) = −ϕE f (γ

−1; τ), (3.101)

and since (X− τ)k−2 ∈ M2−k(symk−2(X)), we have arrived at what we wanted. We
conclude that E f ∈ M2−k(1, symd(X)), and that E f

(X− ·)k−2 ⊗ ψE f

 ∈ M2−k(1 ⊞pb symk−2(X)). (3.102)

The above discussion expands on the condensed proof we gave of Proposition 2.2 in
Paper II.

3.3.5 Iterated Eichler-Shimura integrals

The Eichler integral E f that we considered in the previous section can readily be
generalized to a multivariate setting, essentially by iterating the definition of E f a
number of times. We then arrive at iterated Eichler-Shimura integrals. They also turn
out to correspond to components of vector-valued modular forms of extension type.

The first step is to decouple the τ-dependence of the integrand in E f , and consider
a polynomial-valued analogue of E f . Specifically, for a cusp form f ∈ Sk of even
weight k ∈ Z≥2 we let the polynomial-valued Eichler integral associated to f be the
function I f : H→ C[X]d, be defined by

I f (τ; X) =
∫ i∞

τ
f (z)(X− z)k−2dz, τ ∈H. (3.103)
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Since f is a cusp form, it is clear that I f is holomorphic and has moderate growth at
the cusp. We also record that I f (τ; τ) = E f (τ).

We now let

ϕI f = I f (·; X)
∣∣
0,symk−2(X)

(1− γ−1). (3.104)

Using the same technique as when we computed ϕE f in the previous section, we find

that ϕI f ∈ Z1
pb(1, symd(X)). Let now ρ f = symk−2(X)⊞ϕI f

1. Then for γ ∈ SL2(Z),
we have(

I f (·; X)

1

) ∣∣
0,ρ f

γ = ρ f (γ
−1)

(
I f (·; X)

∣∣
0γ−1

1

)

=

(
symk−2(X)(γ−1)I f (·; X)

∣∣
0γ−1 + ϕI f (γ

−1)

1

)
=

(
I f (·; X)

1

)
, (3.105)

showing that (I f , 1)T ∈ M0(ρ f ).
We can now consider the iterated version of I f . These are known as iterated

Eichler-Shimura integrals.

Definition 3.5. Let k ∈ Z≥2 be an even integer, let n ∈ Z≥1, and let ( f1, . . . , fn) ∈ Sn
k

be an n-tuple of weight k cusp forms. Then we let the depth n iterated Eichler-Shimura
integral associated to ( f1, . . . , fn) be the function I f1,..., fn : H→ C[X1, . . . , Xn]d recur-
sively defined by

I f1,..., fn (τ; X1, . . . , Xn) =
∫ i∞

τ
f (z)(X1 − z)k−2 Ig(z; X2, . . . , Xn)dz. (3.106)

Hence, with the terminology of Definition 3.5, we can say that I f is the same as the
depth 1 iterated Eichler-Shimura integral associated to the 1-tuple ( f ).

Iterated Eichler-Shimura integrals have been studied extensively for a variety of
deep reasons. We shall explain in this in greater detail in the summary of papers
II and III, but suffice it to say that it would be greatly useful to be able to study
them with another set of tools. By relating them to vector-valued modular forms of
extension type, we accomplish exactly this.

Put concretely, in paper III, we provide the following theorem, characterizing
iterated Eichler-Shimura integrals of depth 2.

Theorem (Theorem 2.3 of paper III). Let k ∈ Z≥2 be an even integer, let n ∈ Z≥1,
and let f , g ∈ Sk be cusp forms of weight k. Let also

ψ f ,g(γ) =
∫ i∞

γ(i∞)
f (z)(X− z)k−2 Ig(z; Y)dz, γ ∈ SL2(Z), (3.107)
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and let

(ϕIg · symk−2(X))(γ)p = ϕIg (γ) · symk−2(X)(γ)p, (3.108)

so that ϕIg · symk−2(X) takes values in C[X, Y]k−2. Let now ρ̃ f ,g be the extension
type7

ρ̃ f ,g = symk−2(X, Y)⊞(ϕIg ·symk−2(X),ψ f ,g)
(symk−2(X)⊞ϕI f

1), (3.109)

where symk−2(X, Y) = symk−2(X)⊗ symk−2(Y). Then

I f ,g ∈ M0(ρ̃ f ,g). (3.110)

Remark 3.5. The extension type ρ̃ f ,g can be realized as the block matrix representation
given by

ρ̃ f ,g(γ) =


symk−2(X, Y)(γ) (ϕIg · symk−2(X))(γ) ψ f ,g(γ)

0 symk−2(X)(γ) ϕI f (γ)

0 0 1

 , (3.111)

where γ ∈ SL2(Z). This is of course equivalent to its description as an extension type.

In paper III, we show that I f ,g is related to a scalar-valued Eichler-Shimura type
integral, denoted by E f ,g, in a way that is parallel to how I f relates to E f . We also
show that this relation provides an alternative explanation of some properties of
Eichler cohomology.

At this point, the reader should have a basic understanding of the utility of vector-
valued modular forms. Therefore, we now deem it appropriate to give a summary of
the papers contained in this thesis.

7 The reason for the occurence of tilde in the notation will be made clear in Chapter 5.
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4.1 introduction

As we have stated before, the goal of paper I is to develop an algorithm for computing
bases for Mk(ρ), where k ∈ Z≥2 and ρ is a congruence type of level N ∈ Z≥1, in
terms of products of components of vector-valued Eisenstein series of type ρN and
their Fourier series expansions, using the Raum-Xià theorem (that is, Theorem 3.1).
Together with the paper, we also provide an implementation of the algorithm (and
adjacent tooling) as a Julia [28] package, fitting within the Nemo.jl [30] ecosystem.

Recall that the Raum-Xià theorem implies that for integers k ∈ Z≥2 and 1 ≤ l ≤
k− 1, and ρ a congruence type of level N, there exists an integer N | N0 ∈ Z≥1 such
that

Mk(ρ) = H0(Ek[ρN ]⊗ ρ) + H0((El [ρN0 ] · Ek−l [ρN0 ])⊗ ρ) (4.1)

Here that we use the map from Proposition 3.4 to view the invariant spaces as
subspaces of Mk(ρ).

To use this theorem effectively, we need some way of enumerating a basis for the
elements of

H0(Ek[ρN ]⊗ ρ), (4.2)

and

H0((El [ρN0 ] · Ek−l [ρN0 ])⊗ ρ). (4.3)

We do this by relating (4.2) and (4.3) to spaces that are easier to represent on a
computer – namely invariant spaces of twisted permutation types. This can be seen
as representing spaces of analytic objects in terms of abstract algebraic objects, and
thus we think of it as a process of algebraization.

4.2 algebraization

In the previous chapter, we saw that for k, N ∈ Z≥1, it holds that

Ek[ρN ] = Ek(Γ(N)) = spanC{Gk,N,Γ1(N)γ : γ ∈ SL2(Z)}. (4.4)

In order to not have to work with right actions, we define

Gk,N,γΓ1(N) = Gk,N,Γ1(N)γ−1 . (4.5)

59



60 paper i

Recall that we may view Ek[ρN ] as an SL2(Z)-representation through the weight k
slash action. In fact, SL2(Z) acts on Ek[ρN ] in the same way as SL2(Z) acts on V(ρN).
To be precise, let {γi}n

i=1 be a complete set of representatives for SL2(Z)/Γ1(N).
Then for γ ∈ SL2(Z) and 1 ≤ i ≤ n, we have that

γ.Gk,N,γiΓ1(N) = Gk,N,Γ1(N)γ−1
i γ−1 = Gk,N,γπγ (i)Γ1(N), (4.6)

and

γ.(γi ⊗ 1) = γπγ(i)γ
′ ⊗ 1 = γπγ(i) ⊗ 1, (4.7)

for some permutation πγ ∈ Sn and an element γ′ ∈ SL2(Z) depending on γ. This
implies that for k, N ∈ Z≥1 we have a surjection of representations

fk,N : ρ∨N −↠ Ek[ρN ] given by γ⊗ 1 7−→ Gk,N,γΓ1(N). (4.8)

This result is Proposition 1.2 of the paper. It is a standard fact representation theory,
that if we have a morphism f : ρ → σ of semi-simple finite-dimensional complex
representations, then the induced map

f̃ : H0(ρ) −→ H0(σ)

v 7−→ f (v),
(4.9)

is surjective, if f is surjective. The representations ρN and Ek[ρN ] are both semi-simple,
in that they have finite index kernels and are therefore unitarizable through Weyl’s
trick. Taken together, this implies that the maps

H0(ρ∨N ⊗ ρ) −→ H0(Ek[ρN ]⊗ ρ)

v⊗ w 7−→ fk,N(v)⊗ w,
(4.10)

and

H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ) −→ H0(El [ρN0 ]⊗ Ek−l [ρN0 ]⊗ ρ)

v1 ⊗ v2 ⊗ w 7−→ fl,N0 (v1)⊗ fk−l,N0 (v2)⊗ w,
(4.11)

are surjective. This means that the direct sum of (4.10) and (4.11) is a surjection on
the form

ΦE : H0(ρ∨N ⊗ ρ)⊕H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ)

−↠ H0(Ek[ρN ]⊗ ρ)⊕H0(El [ρN0 ]⊗ Ek−l [ρN0 ]⊗ ρ), (4.12)

For subrepresentations ρ1 and ρ2 of a representation ρ, it is clear that the map
ρ1 ⊕ ρ2 → ρ1 + ρ2 given by (v, w) 7→ v + w is surjective. It is also clear that the map

El [ρN0 ]⊗ Ek−l [ρN0 ]→ El [ρN0 ] · Ek−l [ρN0 ]

given by f ⊗ g 7→ f · g,
(4.13)



4.3 fourier series expansions 61

is surjective, for any k ∈ Z≥2, 1 ≤ l ≤ k− 1 and N0 ∈ Z≥1. Notice also that the space
El [ρN0 ] · Ek−l [ρN0 ] is finite-dimensional in that it is a subspace of Mk(Γ(N0)) and that
it is semi-simple as a representation with respect to the weight k slash action since its
kernel contains Γ(N0), and so has finite index.

This means that we have surjections on the form

Φ× : H0(Ek[ρN ]⊗ ρ)⊕H0(El [ρN0 ]⊗ Ek−l [ρN0 ]⊗ ρ)

−↠ H0(Ek[ρN ]⊗ ρ)⊕H0((El [ρN0 ] · Ek−l [ρN0 ])⊗ ρ), (4.14)

given by (v, f1 ⊗ f2 ⊗ w) 7→ (v, ( f1 · f2)⊗ w), and

ΦΣ : H0(Ek[ρN ]⊗ ρ)⊕H0((El [ρN0 ] · Ek−l [ρN0 ])⊗ ρ)

−↠ H0(Ek[ρN ]⊗ ρ) + H0((El [ρN0 ] · Ek−l [ρN0 ])⊗ ρ), (4.15)

given by (v, w) 7→ v + w. In conclusion, we have that

Mk(ρ) = im(ΦΣ ◦Φ× ◦ΦE ). (4.16)

Hence, if we can compute a basis B for

H0(ρ∨N ⊗ ρ)⊕H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ) (4.17)

then B′ = ΦΣ(Φ×(ΦE (B))) is a spanning set for Mk(ρ). To reduce it to a basis, we
employ the Fourier series expansions of the Eisenstein series in combination with the
Sturm bound and row reduction, in a way that parallels Algorithm 1. However, this
is somewhat subtle, so let us describe it in a new section.

4.3 fourier series expansions

For a ring A and a rational number B ∈ Q, we let the ring of Puiseux series with
coefficients in A, denoted by FE(A), and the ring of Puiseux series with coefficients
in A truncated at B, denoted by FEB(A), be given by

FE(A) =
⋃

N∈Z≥1

AJq1/NK[q−1], and

FEB(A) =
⋃

N∈Z≥1

AJq1/NK[q−1]/qB ⋃
N∈Z≥1

AJq1/NK.
(4.18)

If ρ(T) is diagonalizable, we obtain maps1

fe : Mk(ρ) −→ FE(C)⊗V(ρ)

f 7−→ ∑
n∈Q

c( f ; n)qn, (4.19)

1 Here we make the identification v⊗∑n∈Q cnqn = ∑n∈Q(cnv)qn , where cn ∈ C and v ∈ V(ρ).
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and

feP : Mk(ρ) −→ FEB(C)⊗V(ρ)

f 7−→ ∑
n∈Q
n<P

c( f ; n)qn (4.20)

by computing the Fourier series expansions of the elements of Mk(ρ). Note also that
if P is the Sturm bound for Mk(ρ), then feP is injective.

In Section 2.1 of the paper, we show that the Fourier series expansion map feB,
B ∈ Q, commutes with the maps ΦE , Φ×, and ΦΣ, in the sense that for B ∈ Q, we
have

feB ◦ΦΣ ◦Φ× ◦ΦE = ΦΣ ◦Φ× ◦ (feB ⊗ idρ ⊕ fe⊗2
P ⊗ idρ) ◦ΦE (4.21)

As we shall see in the next section, this can have a considerable impact on performance.
Instead of having to enumerate the complete spanning set B′ (referred to in the
previous section) at once, and then perform row reduction on the corresponding
matrix of Fourier series coefficients, we can construct B′ iteratively, and perform
row reduction on the matrix of coefficients as we go along. If, as experimental data
indicates usually is the case, |B′| is much larger than dim(Mk(ρ)), this allows us to
abort execution as soon as the rank of matrix of coefficients equals dim(Mk(ρ)).

4.4 the algorithm

If we have an efficient means to compute a basis for the space

H0(ρ∨N ⊗ ρ)⊕H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ), (4.22)

then the above discussion leads to an algorithm for computing a corresponding basis
for Mk(ρ), in terms of Fourier series expansions. We state it as a theorem below.

Theorem (Theorem 2.2 of Paper I). Let k ∈ Z≥2 and let ρ be a congruence type of
level N. Assume that S is greater than or equal to the Sturm bound for k and ρ. Then
Algorithm 2 computes a basis for feS(Mk(ρ)) ∼= Mk(ρ).
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Algorithm 4.1: Computing a basis for Mk(ρ)

1 let N0 be chosen as in Theorem 3.1;
2 P← ⌈SN⌉/N;
3 let vi, 1 ≤ i ≤ dim(ρ) be a basis of V(ρ);
4 let M be the empty matrix of size 0× PN dim(ρ) over C;
5 let B =

⋃I
i=1 Bi be a disjoint decomposition of a basis of

H0(ρ∨N ⊗ ρ)⊕H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ);
6 for 1 ≤ i ≤ I do
7 for b ∈ Bi do
8 let f = ∑i fivi ← ΦΣ Φ× feP ΦE (b);
9 append to M the row with entries ri,n ← c( fi; n/P), for 0 ≤ n < NP

and 1 ≤ i ≤ dim(ρ);
10 end
11 replace M by its reduced row echelon form;
12 if rank M = dim Mk(ρ) then
13 for each row r of M, output the truncated Fourier series expansion f

with coefficient c( fi; n) = ri,n;
14 return;
15 end
16 end

Remark 4.1. In the paper, we provide a modified version of the above algorithm that
works with coefficients in the universal cyclotomic field2 Qab. This allows for exact
arithmetic, but requires some understanding of what are known as Qab-structures on
the relevant spaces of modular forms. For brevity we omit this from this summary,
and we refer to Section 2.2 of the paper for a detailed discussion.

As we remark in the paper, we can also obtain an expression for every element in
the computed basis in terms of products of Eisenstein series, by keeping track of all
the formal linear combinations of the elements in B occur in every row of M.

We provide a formal proof of the correctness of Algorithm 2 in the paper. For brevity,
we do not include it here, but suffice it to say that it follows by a straightforward
induction argument relying on the intertwining property of the truncated Fourier
series expansion map feP that we described in (4.21), together with the fact that feP is
injective when P is at least the Sturm bound.

However, to be able to make effective use of Algorithm 2, we need:

• an efficient way of computing a basis for

H0(ρ∨N ⊗ ρ)⊕H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ),

2 The smallest subfield of C containing all roots of unity.
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• an estimate of the time and space complexity, and

• a comparison to other available algorithms.

That it is the purpose of the rest of the paper, which we summarize below.

4.5 orbit-stabilizer decomposition

Given an arithmetic type σ for a finite index subgroup Γ ⊆ SL2(Z), we can compute
a basis for H0(σ) naïvely by computing a basis for

ker


σ(γ1)− 1

σ(γ2)− 1
...

σ(γm)− 1


︸ ︷︷ ︸

:=T∈Hom(V(σ),V(σ)m)

, where {γi}m
i=1, m ∈ Z≥1, is a generating set for Γ. (4.23)

This can be accomplished with row reduction on a matrix representation of T. If we
have no additional structural information for σ, this is the best we can do. However,
in our case, σ will be on the form ρ∨N ⊗ ρ or ρ∨N0

⊗ ρ∨N0
⊗ ρ and these arithmetic types

certainly do have additional structural information.
Indeed, since ρN acts by permutation, we have that ρ∨N

∼= ρN . This means that we
may equivalently compute the invariants for

ρN ⊗ ρ and ρN0 ⊗ ρN0 ⊗ ρ. (4.24)

However, they are evidently (in the terminology of Section 3.2.2) twisted permutation
types of order

|SL2(Z)/Γ1(N)| and |SL2(Z)/Γ1(N0)|2, (4.25)

respectively. Twisted permutation types (of order greater than 1) have the advantage
that they split into direct sums of smaller (induced) representations. The associated
invariant space will therefore also split into a direct sum of smaller invariant spaces.

To state this result, we need some additional terminology. Let ρ be a twisted
permutation type of order n ∈ Z≥1 of a finite index subgroup Γ ⊆ SL2(Z) with twist
representation σ of a group G. If I ⊆ {1, . . . , n} is a subset, we let

V(ρ)I = spanC{ei ⊗ v : i ∈ I, v ∈ V(σ)} ⊆ V(ρ), (4.26)

where {ei}n
i=1 is the canonical basis for Cn. We also let the stabilizer of V(ρ)I be the

subgroup given by

Stab(V(ρ)I) = {γ ∈ Γ : ρ(γ)V(ρ)I ⊆ V(ρ)I} ⊆ Γ. (4.27)
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Restricting ρ to Stab(V(ρ)I) yields a representation

ρI : Stab(V(ρ)I)→ GL(V(ρ)I). (4.28)

Let now π : G ≀ Sn → Sn be the projection π( f , α) = α, let ρ≀π = π ◦ ρ≀π , and let
R ⊆ {1, . . . , n} be a set of representatives for ρ≀π(Γ)\{1, . . . , n}. That is, we have

{1, . . . , n} =
⊔
i∈R

ρ≀π(Γ){i}. (4.29)

Proposition 3.5 of the paper states that

ρ ∼=
⊕
i∈R

IndΓ
Stab(V(ρ)i)

ρi, (4.30)

where V(ρ)i = V(ρ){i} and ρi = ρ{i}. To obtain R and generating sets for the
Stab(V(ρ){i}) we apply the orbit-stabilizer algorithm [15, Chapter 4.1]. In our imple-
mentation this is performed via the computer algebra system GAP.

Hence, with ρ as above, we obtain

H0(ρ) ∼=
⊕
i∈R

H0(IndΓ
Stab(V(ρ)i)

ρi). (4.31)

There is an additional benefit to considering invariant spaces of induced types.
Namely, we can employ the following result, which historically goes under the name
Frobenius reciprocity.

Proposition (Frobenius reciprocity). Let H ⊆ G be groups, with H a subgroup of G.
Then, if ρ is a complex representation of H and σ is a representation of G, we have

HomG(IndG
Hρ, σ) ∼= HomH(ρ, ResG

H σ). (4.32)

Similarly, if ρ is a representation of G and σ is a representation of H, we have that

HomG(ρ, IndG
Hσ) ∼= HomH(ResG

Hρ, σ). (4.33)

Proof. See any standard book on representation theory, such as [3] or [1].

By Frobenius reciprocity, we have that

H0(IndΓ
Stab(V(ρ)i)

ρi) = HomΓ(1, IndΓ
Stab(V(ρ)i)

ρi)

∼= HomStab(V(ρ)i)(1, ρi) ∼= H0
Stab(V(ρ)i)

(ρi). (4.34)

However, for γ ∈ Stab(V(ρ)i) it holds that

ρ(γ)(ei ⊗ w) = ei ⊗ σ(ρ≀(γ)1(i))w, (4.35)
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implying that

H0
Stab(V(ρ)i)

(ρi)

∼= {w ∈ V(σ) : ∀γ ∈ Stab(V(ρ)i). σ(ρ≀(γ)1(i))w = w}. (4.36)

Hence, if {γ1, . . . , γm} is a set of generators for Stab(V(ρ)i), we have that

H0
Stab(V(ρ)i)

(ρi) ∼= ker


σ(ρ≀(γ1)1(i))− 1

σ(ρ≀(γ2)1(i))− 1
...

σ(ρ≀(γm)1(i))− 1

 . (4.37)

As mentioned earlier, we can compute a basis for (4.37) using row reduction.
We conclude that if ρ is a twisted permutation type, then we can compute a basis

for the H0(ρ) by first decomposing ρ into a direct sum of smaller induced types,
and then computing bases for their invariant spaces by computing bases for the
kernels (4.37). As we shall see in Section 4.8, this gives a significant reduction in time
complexity in comparison to computing H0(ρ) through the naïve method mentioned
at the outset of this section.

4.6 isotypic and double-coset decompositions

To be able to estimate the time complexity of Algorithm 2, we need to have a good
estimate of

h0(ρ∨N) + h0(ρ∨N0
⊗ ρ∨N0

⊗ ρ), (4.38)

where h0 = dim H0, preferably in terms of dim(ρ), N, and N0. For this, we use
another decomposition that leverages:

(i) Frobenius reciprocity,

(ii) the Γ1(N)-isotypic decomposition of ResΓ1(N)ρ, and

(iii) a result often referred to as Mackey’s double coset theorem, or Mackey’s formula.

We first describe the isotypic decomposition. Let ρ be a congruence type of level
N ∈ Z≥1 for Γ1(N). Then since

Γ1(N)/Γ(N) = {TkΓ(N) : k ∈ Z}, (4.39)
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we have that ρ is determined by ρ(T). We furthermore have that ρ(TN) = ρ(T)N = 1,
and so ρ(T) is diagonalizable with eigenvalues equal to Nth roots of unity. This
implies that

ρ ∼=
N−1⊕
n=0

ρ[e
( · n

N
)
], (4.40)

where the so-called isotypic component ρ[e
( ·n

N
)
] equals the direct sum of all irreducible

subrepresentations of ρ isomorphic to the representation

SL2(Z)→ C× given by γ 7→ e
(nb(γ)

N
)
. (4.41)

The decomposition (4.40) is called the isotypic decomposition or the canonical decomposi-
tion, see [1, Chapter 2.6]

Mackey’s formula, on the other hand, describes how the restrictions of induced
types split into direct sums indexed by double cosets.

Proposition (Mackey’s double coset theorem). Let H and K be subgroups of a group
G, and let ρ be representation of K. For [g] ∈ H\G/K, let Kg = H ∩ gKg−1. Let also
ρg : Kg → GL(V(ρ)) be the representation given by ρg(k)w = ρ(g−1kg)w. Then it
holds that

ResG
HIndG

K ρ =
⊕

[g]∈H\G/K

IndH
Kg

ρg. (4.42)

Proof. See [1, Chapter 7.3].

We now write, as in Section 3.1 of the paper

πg = IndΓ1(N0)
Γ1(N0)∩g−1Γ1(N0)g1, [g] ∈ Γ1(N0)\SL2(Z)/Γ1(N0). (4.43)

We record here, and this is shown in Lemma 3.2 of the paper, that πg(T) corresponds
to a transitive permutation. This implies that πg(T) has distinct eigenvalues, and
hence the isotypic components of πg are at most one-dimensional.

Combining the above, we obtain Proposition 3.1 of the paper.

Proposition (Proposition 3.1 of Paper I). Let ρ be a congruence type of SL2(Z) of
level N ∈ Z≥1 and let N0 be chosen as in Theorem 3.1. Then it holds that

H0(ρ∨N ⊗ ρ) ∼= (ResΓ1(N) ρ)[1], (4.44)
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and

H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ)

∼=
⊕

[g]∈Γ1(N0)\SL2(Z)/Γ1(N0)
0≤m0<N0
0≤m<N

m0≡N0−
mN0

N

πg[e
( ·m0

N0

)
]⊗ ResΓ1(N0)

(
(ResΓ1(N)ρ)[e

( ·m
N
)
]
)

(4.45)

Sketch of proof. By Frobenius reciprocity, we have that

H0(ρ∨N ⊗ ρ) ∼= Hom(ρN , ρ) ∼= H0
Γ1(N)(ResΓ1(N)ρ), (4.46)

and

H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ) ∼= H0
Γ1(N)(ResΓ1(N0)(ρ

∨
N0
)⊗ ResΓ1(N0)(ρ)). (4.47)

However, ResΓ1(N0)ρ = ResΓ1(N0)ResΓ1(N)ρ, and since ρM, M ∈ Z≥1, is self-dual, we
also have that

ResΓ1(N0)ρ
∨
N0
∼= ResΓ1(N0)ρN0 = ResΓ1(N0)ρN0 IndSL2(Z)

Γ1(N0)
1. (4.48)

The result now follows by using Mackey’s formula on (4.48) and noting that for
arithmetic types ρ1, ρ2, for Γ1(M) and M ∈ Z≥1, we have that

H0
Γ1(M)

(
ρ1[e

( ·m1
M
)
]⊗ ρ2[e

( ·m2
M
)
]
)
= {0}, (4.49)

unless m1 + m2 ≡N 0.

The above considerations now leads to Proposition 3.3, which presents a bound
for (4.38) on the form we desire.

Proposition (Proposition 3.3 of Paper I). Let ρ be a congruence type of level N ∈ Z≥1
and let N0 be chosen as in Theorem 3.1. Then it holds that

h0(ρ∨N ⊗ ρ)≪ dim(ρ), (4.50)

and

h0(ρ∨N0
⊗ ρ∨N0

⊗ ρ)≪ |Γ1(N0)\SL2(Z)/Γ1(N0)|dim(ρ)≪ϵ N1+ϵ
0 dim(ρ),

(4.51)

where ϵ ∈ R>0 is arbitrary.
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Sketch of proof. Since the isotypic components of πg are at most one-dimensional, the
dimension of H0(ρ∨N0

⊗ ρ∨N0
⊗ ρ) reduces to a sum over Γ1(N0)\SL2(Z)/Γ1(N0) and

0 ≤ m < N of the isotypic components of ResΓ1(N), with some terms possibly equal
to zero. This is less than |Γ1(N0)\SL2(Z)/Γ1(N0)|dim(ρ).

The last bound follows by comparing the double coset to Γ1(N0)\SL2(Z)/Γ∞
which is in bijection with the cusps of H∗/Γ1(N0).

Remark 4.2. It is possible to compute a basis for H0(ρ∨N ⊗ ρ) and H0(ρ∨N0
⊗ ρ∨N0

⊗
ρ) by using Proposition 3.1 instead of the orbit-stabilizer decomposition. In our
implementation, we opted not to do so and instead rely on the aforementioned
computer algebra system GAP.

4.7 T -orbit decomposition

Before we give a summary of the time-complexity, we want to mention a technique
that we use in our implementation to drastically reduce the number of columns of
the matrix M on lines 3 and 8 of Algorithm 2.

Let ρ be an arithmetic type for SL2(Z), satisfying that ρ(T) is diagonalizable. Then
T acts on FE(C)⊗V(ρ) by

T(v⊗ ∑
n∈Q

cnqn) = ρ(T−1)v⊗ ∑
n∈Q

e(n)cnqn. (4.52)

If f ∈ Mk(ρ), where k ∈ Z, then fe( f ) is invariant with respect to this action, since

fe( f ) = fe( f
∣∣
k,ρT) = fe(ρ(T−1) f

∣∣
kT) = T fe(T). (4.53)

Now, if ρ is a twisted permutation type of order n, and R is a set of representatives
for ρ≀π(TZ)\{1, . . . , n}, then we have deflation and inflation maps, given by

defl : FE(C)⊗Cn ⊗V(σ) −→ FE(C)⊗C|R| ⊗V(σ)

n

∑
i=1

fi 7−→ ∑
i∈R

fi,
(4.54)

and

infl : FE(C)⊗C|R| ⊗V(σ) −→ FE(C)⊗Cn ⊗V(σ)

∑
i∈R

fi 7−→ ∑
i∈R

0≤h<|ρ≀π(TZ){i}|

Th fi. (4.55)

where fi ∈ FE(C)⊗Cei ⊗V(σ). The T-invariance property (4.53) implies that defl is
injective on fe(Mk(ρ)), with inverse infl.

The consequence of this is that the numbers of columns required in the matrix
M in Algorithm 2 can be reduced from PN dim(ρ) to P dim(ρ), by working with
defl ◦ fe(Mk(ρ)) instead of fe(Mk(ρ)).
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4.8 complexity, examples , and comparison

Our last, and arguably most important, contribution in the paper is a comparison
between Algorithm 2 (assuming that we compute H0(ρ∨N ⊗ ρ) and H0(ρ∨N0

⊗ ρ∨N0
⊗ ρ)

as described above) with existing algorithms, in terms of time complexity.
In Section 4 of the paper, we provide a heuristic analysis of the time complexity of

our method by analyzing the time complexity of its constituent parts. To recapitulate,
these are:

(i) the computation of the invariant spaces H0(ρ∨N ⊗ ρ) and H0(ρ∨N0
⊗ ρ∨N0

⊗ ρ), as
described in Section 4.5,

(ii) the computation of the T-orbits, as described in Section 4.7,

(iii) the computation of the Fourier series expansions up to the Sturm bound, and

(iv) the row reduction of the matrix M in Algorithm 2.

In Table 4.1, we summarize the time-complexities for these steps in the case of Mk(ρ)
where k ∈ Z≥2 and ρ is a congruence type of level N for a finite index subgroup
Γ ⊆ SL2(Z) such that Γ1(N) ⊆ Γ, that is also a twisted permutation type of order n
and twist dimension d.

(i) Oϵ(N3+ϵ
0 d2 + dκ + n2N4+ϵ

0 ) with the orbit-stabilizer algorithm

if Γ = SL2(Z), then Oϵ(N3+ϵ
0 (nd)2) with Proposition 3.1

(ii) O(dim(ρ)(dκ−1 + n))

(iii) Oϵ((kN2
0 )

1+ϵ dim(ρ))

(iv) Oϵ(max{N1+ϵ
0 dim(ρ), k|SL2(Z)/Γ|dim(ρ)}κ)

Table 4.1: Time-complexities for the different steps in our method – here κ denotes the exponent
of n in the time-complexity for multiplication of n× n matrices. In our setting we
have κ ≈ 2.807, though for extremely (indeed, prohibitively) large values of n there
exists algorithms with κ ⪅ 2.373. We refer to Section 4 of the paper for an extensive
discussion.

In our analysis we assume that fundamental arithmetic operations have cost O(1).
This assumption is true over Q and fixed precision arithmetic in C, but not over Qab

or arbitrary precision arithmetic in C. We provide a discussion on what consequences
this has in Section 4.3 of the paper.

In Section 4.5 of the paper, we provide example code for how to use our package
in Julia, and in particular we provide a concrete example of how it can be used to
compute bases for

M6(IndSL2(Z)
Γns(7)

1) and M4(ρ),
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where Γns(N), N ∈ Z≥1 is the non-split Cartan subgroup of level N, and where ρ

is a Moonshine-like arithmetic type that we specify further on page 24 of the paper.
These examples showcase the generality of our algorithm. Indeed, existing methods
to compute these bases are ad-hoc in nature, whereas we can compute them merely
as special cases of spaces of vector-valued modular of congruence type.

4.8.1 Comparison

Finally, in Section 5 of the paper, we provide a comparison with other available
algorithms. At the time of writing, there were no other algorithms available that
target vector-valued modular forms for congruence types as a whole. Instead, the
existing algorithms target the special cases of:

(i) scalar-valued modular forms for a congruence subgroup of level N ∈ Z≥1 and
a character, that is the spaces Mk(Γ, ν) where k ∈ Z≥2, ν ∈ D(N), and Γ is a
congruence subgroup of level N,

(ii) vector-valued modular forms of type ρχ where χ ∈ D(N) and N ∈ Z≥1, and

(iii) vector-valued modular forms of Weil type.

For (i), there are two well-established methods: modular symbols and the Eichler-
Selberg trace formula. (See [37] for an extensive summary with a view towards
time-complexity.) By default, they both provide bases for Mk(Γ, ν) in terms of Fourier
series expansions at the cusp i∞, truncated at a precision P ∈ Q>0 where P≫ N is
at least the Sturm bound. The time-complexity is

Oϵ(N1+ϵP2), using modular symbols, and

Oϵ(N
3
2 +ϵP

3
2 ), using the trace formula.

(4.56)

Unfortunately, our method is at best on par with this. If N0 ≈ N (which experimental
data suggests) we can achieve a total time-complexity of Oϵ(N3+ϵ). We remark that

this assumes that we do not employ the isomorphism Mk(Γ, ν) ∼= Mk(IndSL2(Z)
Γ ν).

This would yield Fourier series expansions at all cusp classes, but with higher time-
complexity.

For (ii), Cohen and Belabas [33] developed as part of an algorithm to compute
Petersson scalar-products of modular forms in Mk(Γ0(N), χ), a method that can
be used to compute a basis of Mk(ρχ) in terms of cusp expansions of elements in
Mk(Γ0(N), χ). In the paper, we show that Cohen and Belabas’ method has the same
general form as ours, but differs in which invariants are computed. Instead of relying
on an invariant space on the form

H0(Ek(Γ(N))⊗ ρχ) + H0((El(Γ(N0)) · Ek−l(Γ(N0)))⊗ ρχ), (4.57)
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it relies on an invariant space of the form

Ek(Γ0(N), χ) +
k−1

∑
l=1

H0((El(Γ1(N)) · Ek−l(Γ1(N)))⊗ χ). (4.58)

We recall (see Section 2.1.1) that

Ek(Γ1(N)) =
⊕

χ∈D(N)

Ek(Γ0(N), χ),

and since H0((El(Γ0(N), χ1) · Ek−l(Γ0(N), χ2))⊗ χ) is equal to zero unless χ1χ2 = χ,
the invariant space (4.58) reduces to

Ek(Γ0(N), χ) + ∑
1≤l<k

χ1χ2=χ

H0((El(Γ0(N), χ1) · Ek−l(Γ1(N), χ2))⊗ χ). (4.59)

In other words, the computation of the invariants is reduced to factorization in D(N),
having time complexity O(N). As we can see from Table 4.1, Cohen’s algorithm is
thus significantly faster in the case of ρ = ρχ.

Finally for (iii), Brandon Williams [34] obtained a result that can be used to compute
vector-valued modular forms of Weil type. A result of Skoruppa [22] states that the
space Mk(ρ) where k ∈ Z≥2 and ρ is a congruence type is contained in some space
Mk(σ) where σ is a Weil type. Williams’ results can also be reframed in terms
of invariants, analogous to Theorem 3.1. However, in contrast to our method, his
algorithm avoids the computation of bases of these invariant spaces altogether, and
instead generates a basis Mk(ρ) based on certain canonical elements of the invariants.
In this way, the most costly step in our method is avoided, leading to improved
performance in the case of ρ equal to a Weil type.



5PA P E R S I I A N D I I I

5.1 introduction

The goal of papers II and III is to show how Eichler integrals and iterated Eichler-
Shimura integrals can be studied using of vector-valued modular forms of extension
type, and to show how the corresponding spaces of modular forms of extension type
can be effectively computed in terms of (vector-valued) Eisenstein series.

As mentioned before, paper II focuses on the base case of scalar-valued Eichler
integrals of depth one. That is, integrals of the form

E f (τ) =
∫ i∞

τ
f (z)(τ − z)k−2dz, where τ ∈H, f ∈ Sk, and k ∈ Z≥2. (5.1)

As described in Section 3.3.4, we show that in Proposition 2.2 of paper II, that E f

(X− ·)k−2 ⊗ ψE f

 ∈ M2−k(1 ⊞pb symk−2(X)), (5.2)

where ψE f = −ϕE f (·; X)∨. In a similar fashion, one also obtains that(
I f

1

)
∈ M0(symk−2(X)⊞ϕI f

1). (5.3)

Paper III instead focuses on the case of depth two, and in particular on the iterated
Eichler-Shimura integral I f ,g and on the hitherto unexamined scalar-valued Eichler-
Shimura integral of depth two E f ,g, where f , g ∈ Sk and k ∈ Z≥2. The latter is defined
by

E f ,g(τ) =
∫ i∞

τ
f (z)Eg(z)dz, τ ∈H. (5.4)

We want to emphasize that the construction of E f ,g is intrinsic to depth two. Indeed,
its existence stems from the pairing

symk−2(X)⊗ symk−2(Y) −→ C

p⊗ q 7−→
k−2

∑
i=0

(−1)i
(

k− 2
i

)−1
piqk−2−i,

(5.5)

73
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defined in Section 3.3.4. This pairing can be applied to the “top” component of the
extension type ρ̃ f ,g which we recall is given by

ρ̃ f ,g(γ) =


symk−2(X, Y)(γ) (ϕIg · symk−2(X))(γ) ψ f ,g(γ)

0 symk−2(X)(γ) ϕI f (γ)

0 0 1

 , (5.6)

where γ ∈ SL2(Z), see also Remark 3.5.
In Theorem 2.4 of paper III, we show by direct computation that this leads to an

arithmetic type ρ f ,g of depth two (in the sense of [38, Section 1.6]), defined by

ρ f ,g : SL2(Z) −→ GL(C⊕C[X]k−2 ⊕C)

γ 7−→


1 −ϕ∨Ig

(γ) ψ f ,g(γ)

0 symk−2(X)(γ) ϕI f (γ)

0 0 1

 ,
(5.7)

where f , g ∈ Sk, k ∈ Z≥2, and

ψ f ,g(γ) =
∫ i∞

γ(i∞)
f (z)Eg(z)dz (5.8)

for h ∈ Sk, and γ ∈ SL2(Z). In particular, Theorem 2.4 of paper III states that
E f ,g

I f

1

 ∈ M0(ρ f ,g). (5.9)

As we described in Section 3.3.4, we also show that
I f ,g

I f

1

 ∈ M0(ρ f ,g). (5.10)

Furthermore, as we alluded to earlier, the relation between ρ̃ f ,g and ρ f ,g, provides an
alternative explanation of an identity in Eichler cohomology that is originally due to
Paşol and Popa [26]. As we shall see later, the extension type ρ f ,g belongs to a family
of extension types ρϕ1,ϕ2 parameterized by pairs of cocycles ϕ1, ϕ2 ∈ Z1

pb(1, symd(X)),
d ∈ 2Z≥0 satisfying a certain orthogonality criterion.

We shall now summarize the remaining parts of paper II and III, namely the the
representation theory that underlies the cohomological interpretation of the relation
between ρ̃ f ,g and ρ f ,g, and the computational aspects (including the definition of the
relevant Eisenstein series).
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5.2 on the types ρ̃ f ,g and ρ f ,g

In this section, we provide a brief outline of the results obtained in Section 2 of paper
III.

To begin, we recall that we have the following antisymmetric bilinear form

⟨⟨·, ·⟩⟩ : C[X]2d −→ C

⟨⟨p, q⟩⟩ = ⟨T−1.p− T.p, q⟩
(5.11)

For a cusp form f ∈ Sk, k ∈ Z≥2, we also let r f = ϕI f (S). This is usually referred to
as the period polynomial associated to f , and is used to define the celebrated Eichler-
Shimura isomorphism; which provides a vector-space isomorphism between Sk ⊕ Sk
and Z1

pb(1, symk−2(X)). We refer Section 1.4 of paper III for a brief recapitulation of
the basic theory.

In [26], Paşol and Popa showed that

⟨⟨r f , rg⟩⟩ = 0, where f , g ∈ Sk, k ∈ Z≥2. (5.12)

This is complementary to Haberland’s formula [5], which states that

⟨⟨r f , rg⟩⟩ = −6(2i)k−1( f , g), where f , g ∈ Sk, k ∈ Z≥2, (5.13)

and where ( f , g) denotes the Petersson inner product [14, Chapter 5.4].
Let now d ∈ 2Z≥0 be an even integer. For cocycles ϕ1, ϕ2 ∈ Z1

pb(1, symd(X)) and a
function ψ : SL2(Z)→ C, we let ρϕ1,ϕ2,ψ : SL2(Z)→ GL(C⊕C[X]d ⊕C) be defined
by

ρϕ1,ϕ2,ψ(γ) =

1 ϕ∨2 (γ) ψ(γ)

0 symd(X)(γ) ϕ1(γ)

0 0 1

 . (5.14)

Proposition 2.1 of paper III tells us when ρϕ1,ϕ2,ψ is a representation.

Proposition (Proposition 2.1 of paper III). Let d ∈ 2Z≥0 and let ϕ1, ϕ2 ∈ Z1
pb(1, symd(X))

be cocycles. Let also ψ : SL2(Z)→ C be a function. Then the following are equivalent

(i) ρϕ1,ϕ2,ψ is a representation,

(ii) for all γ1, γ2 ∈ SL2(Z) it holds that ψ(γ1γ2) = ψ(γ1) + ψ(γ2) + ϕ∨2 (γ1)ϕ1(γ2),

(iii) (ϕ∨2 , ψ) ∈ Z1
pb
(
symd(X)⊞ϕ1 1, 1

)
,

(iv) (ψ, ϕ1)
T ∈ Z1

pb
(
1, 1 ⊞ϕ∨2

symd(X)
)
.
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Furthermore, if any of these conditions hold, then

ρϕ1,ϕ2,ψ = 1 ⊞(ϕ∨2 ,ψ)
(
symd(X)⊞ϕ1 1

)
=
(
1 ⊞ϕ∨2

symd(X)
)
⊞( ψ

ϕ1

) 1.

Furthermore, Theorem 2.2 of paper III gives a necessary and sufficient condition
for these criteria to hold.

Theorem (Theorem 2.2 of paper III). Let d ∈ 2Z≥0 and let ϕ1, ϕ2 ∈ Z1
pb(1, symd(X))

be cocycles. Then there exists a function ψ : SL2(Z)→ C making ρϕ1,ϕ2,ψ a represen-
tation if and only if

⟨⟨ϕ1(S), ϕ2(S)⟩⟩ = 0. (5.15)

If such a function exists, it is unique, and is given by

ψ(S) = −1
2

ϕ∨2 (S)ϕ1(S). (5.16)

As we stated before, we show in Theorem 2.4 of paper III that ρ f ,g is a representation.
However, we also see that

ρ f ,g = ρϕI f ,−ϕIg ,ψ f ,g , (5.17)

showing that ⟨⟨ϕI f (S), ϕIg (S)⟩⟩ = 0, by Theorem 2.2. This is precisely the identity
obtained by Paşol and Popa.

Furthermore, we refer to pairs of cocycles (ϕ1, ϕ2) ∈ Z1
pb(1, symd(X)) satisfying

⟨⟨ϕ1(S), ϕ2(S)⟩⟩ = 0 as admissible.

5.3 eisenstein series and saturation

In paper II, we work with three types of Eisenstein series, namely:

• vector-valued Eisenstein series of type symd(X),

• generalized second order Eisenstein series of type (symd(X), 1), and

• generalized second order Eisenstein series of type (1, symd(X)).

The latter two correspond to the “top” component of vector-valued Eisenstein series
of type

symd(X)⊞pb 1 and 1 ⊞pb symd(X), (5.18)

respectively. In paper III, we work with the above Eisenstein series, but also with
vector-valued Eisenstein series of type ρϕ1,ϕ2 where (ϕ1, ϕ2) ∈ Z1

pb(1, symd(X))2 is a
pair of admissible cocycles.
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We will provide their definitions here, but we refer to paper II and III for proof of
their convergence and computation of their Fourier series expansions. In particular,
see Proposition 3.4 and Theorem 3.8 of paper II, and Theorem 3.1 of paper III.

Let d ∈ 2Z≥0, k > 2 + d, and 0 ≤ j ≤ d be integers, with k and d even. Then we let
the vector-valued Eisenstein series of type symd(X) be defined by

Ek(τ; d, j) = ∑
[γ]∈Γ∞\SL2(Z)

(X− τ)j∣∣
k,symd(X)

γ, τ ∈H. (5.19)

As for generalized second order Eisenstein series, let d ∈ 2Z≥0, k > 2 + d, and
0 ≤ j ≤ d be integers, with k and d even. If ϕ ∈ Z1

pb(1, symd(X)) is a cocycle, we

let the weight k generalized second order Eisenstein series of type (1, symd(X))

associated to (ϕ∨, (X− τ)j), denoted by E[1]
k (·; ϕ∨, j) be given by(

E[1]
k (τ; ϕ∨, j)

Ek(τ; d, j)

)
= ∑

[γ]∈Γ∞\SL2(Z)

[( 0
(X−·)j

)∣∣
k,1⊞ϕ∨ symd(X)

γ
]
(τ), τ ∈H. (5.20)

Similarly, we let the weight k generalized second order Eisenstein series of type

(symd(X), 1) associated to ϕ, denoted by E[1]
k (·; ϕ), be given by(

E[1]
k (τ; ϕ)

Ek

)
= ∑

[γ]∈Γ∞\SL2(Z)

[( 0
1
)∣∣

k,symd(X)⊞ϕ1γ
]
(τ), τ ∈H. (5.21)

We also define the jth Eisenstein series of type 1 ⊞ϕ∨ symd(X) and the Eisenstein
series of type symd(X)⊞ϕ 1 by

Ek(τ; 1 ⊞ϕ∨ symd(X), j) =

(
E[1]

k (τ; ϕ, j)

Ek(τ; d, j)

)
, and

Ek(τ; symd(X)⊞ϕ 1) =

(
E[1]

k (τ; ϕ)

Ek

)
, τ ∈H.

(5.22)

Finally, for a pair of admissible cocycles (ϕ1, ϕ2) ∈ Z1
pb(1, symd(X))2 we let the weight

k Eisenstein series of type ρϕ1,ϕ2 , denoted by Ek(·; ϕ1, ϕ2), be given by

Ek(τ; ϕ1, ϕ2) = ∑
[γ]∈Γ∞\SL2(Z)

[( 0
0
1

)∣∣
k,ρϕ1,ϕ2

γ
]
(τ), τ ∈H. (5.23)



78 papers ii and iii

Paralleling the terminology used in paper II for the generalized second order Eisen-
stein series, we define in paper III the weight k generalized third order Eisenstein

series of type (ϕ1, ϕ2), denoted by E[2]
k (·; ϕ1, ϕ2), as followsE[2]

k (τ; ϕ1, ϕ2)

E[1]
k (τ; ϕ1)

Ek

 = Ek(τ; ϕ1, ϕ2), τ ∈H. (5.24)

Since we have convergence and moderate growth at cusps, it is clear from the
definitions that

Ek(·; 1 ⊞ϕ∨ symd(X), j) ∈ Mk(1 ⊞ϕ∨ symd(X)),

Ek(·; symd(X)⊞ϕ 1) ∈ Mk(symd(X)⊞ϕ 1), and

Ek(·; ϕ1, ϕ2) ∈ Mk(ρϕ1,ϕ2 ).

(5.25)

To see how we can compute modular forms in Mk(1 ⊞ϕ∨ symd(X)), Mk(symd(X)⊞ϕ

1), and Mk(ρϕ1,ϕ2 ); in terms of these Eisenstein series, we first need to recall the
definition of saturated ideals. If R is a ring, M is an R-module, I ⊆ M is a submodule,
and f ∈ M, then the saturation of I at f is the R-module

(I : f ∞) = {g ∈ M : ∃n ∈ Z≥0. f ng ∈ I}. (5.26)

Let now M• =
⊕

k∈Z Mk be the graded ring of modular forms. Then for an arithmetic
type ρ, we have that

M•(ρ) =
⊕
k∈Z

Mk(ρ), (5.27)

is an M•-module. Let furthermore d ∈ 2Z≥0 and k0 > 2 + d be integers, and let
(ϕ1, ϕ2) ∈ Z1

pb(1, symd(X))2 be admissible. Then we have the following submodules

of Eisenstein series of M•(1 ⊞ϕ∨1
symd(X)), M•(symd(X)⊞ϕ1 1), and M•(ρϕ1,ϕ2 ):

E≥k0 (1 ⊞ϕ∨1
symd(X)) = spanM•{Ek(·; 1 ⊞ϕ∨1

symd(X), j) : k ≥ k0, 0 ≤ j ≤ d}

(5.28)

E≥k0 (symd(X)⊞ϕ1 1) = spanM•{Ek(·; symd(X)⊞ϕ1 1) : k ≥ k0} (5.29)

E≥k0 (ρϕ1,ϕ2 ) = spanM•{Ek(·; ϕ1, ϕ2) : k ≥ k0}. (5.30)

We can now state Theorem 4.3 of paper II in terms of extension types.

Theorem (Theorem 4.3 of paper II). Let d ∈ 2Z≥0, k0 > 2 + d be integers, and let
ϕ ∈ Z1

pb(1, symd(X)). Let also ι be given by ι( f ) = ( f , 0)T . Then

(E≥k0 (1 ⊞ϕ∨ symd(X)) + ι(M•) : ∆∞) = M•(1 ⊞ϕ∨ symd(X)), and

(E≥k0 (symd(X)⊞ϕ 1) + ι(M•) : ∆∞) = M•(symd(X)⊞ϕ 1).
(5.31)
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Stated more plainly, Theorem 4.3 implies that any modular form of type ρ is, after
multiplication with a suitable power of ∆, equal to a sum of scalar-valued Eisenstein
series and products of scalar-valued Eisenstein series with vector-valued Eisenstein
series of type ρ, where ρ = 1 ⊞ϕ∨1

symd(X) or ρ = symd(X)⊞ϕ1 1.
This allows for numerical evaluation of vector-valued modular forms of type

1 ⊞pb symd(X) and symd(X)⊞pb 1 to high precision, given that one can identify the
contribution from ι(M•). We provide a concrete example of this in Section 5 of paper
II, applied to the special case of the Eichler integral E∆ ∈ M−10(1 ⊞pb sym10(X)).

In paper III, we show that Theorem 4.3 generalizes to the case of ρϕ1,ϕ2 , and thus
of scalar-valued Eichler-Shimura integrals of depth two. Namely, we provide the
following theorem.

Theorem (Theorem 3.1 of paper III). Let d ∈ 2Z≥0 and k0 > 2 + d be integers, and
let (ϕ1, ϕ2) ∈ Z1

pb(1, symd(X))2 be admissible. Then we have

M•(ρϕ1,ϕ2 ) =
(
E≥k0 (ρϕ1,ϕ2 ) + ι1

(
E≥k0 (1 ⊞ϕ∨2

symd(X))
)
+ ι2(M•) : ∆∞), (5.32)

where ι1( f , g) = ( f , g, 0)T and ι2( f ) = ( f , 0, 0)T .

We hope that papers II and III convinces the reader of the utility of extension
types. Furthermore, it is our belief that the methods we have developed can with
further research be generalized to handle higher depth cases, and that Theorem 4.3
of paper II and Theorem 3.1 of paper III can be developed as to fit within a general
computational framework for modular forms of extension types.
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