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representations induced from a character of the maximal 
parabolic subgroup P = MAN whose unipotent radical N
is a Heisenberg group. Realizing these representations in the 
non-compact picture on a space I(ν) of functions on the 
opposite unipotent radical N̄ , we apply the Heisenberg group 
Fourier transform mapping functions on N̄ to operators on 
Fock spaces. The main result is an explicit expression for 
the Knapp–Stein intertwining operators I(ν) → I(−ν) on 
the Fourier transformed side. This gives a new construction 
of the complementary series and of certain unitarizable 
subrepresentations at points of reducibility. Further auxiliary 
results are a Bernstein–Sato identity for the Knapp–Stein 
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Unitarizable subrepresentations kernel on N and the decomposition of the metaplectic 
representation under the non-compact group M .
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
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Introduction

In the representation theory of real reductive groups, a central role is played by 
parabolically induced representations. These are families of representations induced from 
a parabolic subgroup which depend on one or several complex parameters. While rep-
resentations induced from a minimal parabolic subgroup are of importance for instance 
in the abstract classification of irreducible representations and in Harish-Chandra’s 
Plancherel formula, representations induced from maximal parabolic subgroups are fun-
damental in the construction and analysis of more singular representations such as the 
minimal representation. In the case of maximal parabolic subgroups, the families of rep-
resentations depend only on one complex parameter and the natural problems in this 
context are to determine those parameters for which the representations are irreducible 
and unitarizable, and to find irreducible unitarizable subquotients at points of reducibil-
ity. The simplest types of maximal parabolic subgroups are those with abelian unipotent 
radical, and the corresponding parabolically induced representations have been studied 
in great details by various authors using algebraic methods, see [19,20,27,29,31,32,39]. 
However, for some purposes it is necessary to have analytic realizations of these rep-
resentations. Using the so-called non-compact picture, the induced representations can 
be realized on functions on the unipotent radical, and the Euclidean Fourier transform 
on this abelian group has proven to provide interesting realizations of some small sub-
quotients of the parabolically induced representations on spaces of L2-functions, see 
[3,6,7,24,28,30,37].

Another class of maximal parabolic subgroups is the one where the unipotent radicals 
are Heisenberg groups, and it is natural to extend both the algebraic and the analytic 
results above. For some special cases, similar algebraic methods were applied to obtain 
results about reducibility and unitarizability [11,14,17]. More recently, the third author 
gave a systematic algebraic treatment for the class of Heisenberg parabolically induced 
representations of Hermitian Lie groups [40]. In this work, we complement these results 
by the analytic picture. More precisely, we apply the Heisenberg group Fourier transform 
to the non-compact picture of the induced representations, and obtain an explicit de-
scription of the invariant Hermitian form. This extends earlier results of Cowling [5] for 
the case G = SU(1, n) and complements recent work of the first author [12] for the case of 
non-Hermitian groups. In particular, we obtain a new description of the complementary 
series and some unitarizable subquotients. This description will be used in a subsequent 
work [13] to study branching rules with respect to certain non-compact subgroups.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Statement of the results

Every simple Hermitian Lie group G possesses a unique (up to conjugation) parabolic 
subgroup P = MAN whose unipotent radical N is a Heisenberg group. The characters 
of A are given by eν with ν ∈ (aC)∗ a functional on the (one-dimensional) complexified 
Lie algebra of A. Extending such a character to a character 1 ⊗ eν ⊗ 1 of P =MAN by 
letting M and N act trivially, we define πν to be the (smooth normalized) parabolically 
induced representation

IndG
P (1⊗ eν ⊗ 1) (ν ∈ (aC)∗).

The non-compact picture is a realization of πν on a space I(ν) ⊆ C∞(N̄), where N̄ is the 
opposite unipotent radical. Since N̄ is a Heisenberg group, we can identify N̄ ≃ V1 ×R

where V1 is a symplectic vector space. In many of the computations in this paper, we 
use that V1 carries the additional structure of a Jordan triple system. More precisely, 
the Hermitian symmetric space G/K corresponding to G can be realized as a bounded 
symmetric domain in a larger Jordan triple system V , and V1 occurs in the Peirce 
decomposition V = V2⊕V1⊕V0 of V with respect to a minimal tripotent (see Section 1.1
for details).

The natural L2-pairing on N̄ with respect to the Haar measure defines a sesqui-linear 
form I(ν) × I(−ν̄) → C which is invariant under πν ⊗ π−ν̄ . For purely imaginary ν ∈ ia∗
this induces a positive definite invariant Hermitian form on I(ν), so the representation 
πν is unitary. The key ingredient to study reducibility and unitarity for other parameters 
is a family of intertwining operators Aν ∶ I(ν) → I(−ν) called Knapp–Stein operators. 
Combining them with the pairing above gives an invariant Hermitian form on I(ν)
for all real ν ∈ a∗, and the main problem is to decide whether this pairing is positive 
(semi)definite. In the non-compact picture, this is equivalent to a spectral decomposition 
of the intertwining operator Aν . Since Aν is a convolution operator on the Heisenberg 
group N̄ , this is a classical problem in non-commutative harmonic analysis and hence 
interesting in its own right.

To illustrate the problem and its difficulty we consider the case where G is the rank 
one Hermitian Lie group SU(1, d + 1). The Knapp–Stein intertwining operator Aν is a 
convolution operator on N̄ = V1 ×R, V1 ≃ Cd, with the kernel

uα(z, t) = (∣z∣4 + t2)α ((z, t) ∈ Cd ×R).

Convolution is turned into multiplication by the Heisenberg group Fourier transform of 
N̄ , and this Fourier transform decomposes the space L2(N̄) as

L2(N̄) = L2(V1 ×R) ≃ ∫ eiλ(Fλ(V1) ⊗ Fλ(V1)∗)dλ,

R×
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the isomorphism being defined by the Weyl transform σλ ∶ L2(V1) → Fλ(V1) ⊗Fλ(V1)∗
onto the space of Hilbert–Schmidt operators on the Fock space Fλ(V1) = Fλ(Cd), which 
carries an irreducible unitary representation of N̄ . Since the Knapp–Stein kernel is in-
variant under M = U(d), its Weyl transform will respect the decomposition of Fλ(Cd)
under M = U(d), acting by the restriction of the metaplectic representation. This decom-
position is a direct sum of all subspaces of homogeneous polynomials of a fixed degree, 
and the Weyl transform of the Knapp–Stein kernel is a diagonal operator with respect to 
this decomposition. The corresponding eigenvalues have been calculated by Cowling [5]
using explicit computations.

Now, when G has higher rank the Knapp–Stein kernel is of the form

uα(z, t) = (t2 −Ω(z))α ((z, t) ∈ V1 ×R),

where −Ω(z) is a non-negative, in most cases irreducible, quartic polynomial. The kernel 
uα(z, t) is much more intricate than the rank one case, where t2 − Ω(z) = (t2 + ∣z∣4) =
(it +∣z∣2)(−it +∣z∣2). The subgroup M still acts on the Fock space Fλ(V1) via the restriction 
of the metaplectic representation to M . Our first main result is a decomposition of 
Fλ(V1) into irreducible representations of M . Note that unless g ≃ su(1, d +1), the group 
M is non-compact, so the representations appearing are infinite dimensional. The case 
g = sp(n, R) is excluded since here Ω ≡ 0 (see Section 3.3 for more details).

Theorem A (see Theorems 2.2 and 2.3). Assume g /≃ sp(n, R), then the representation 
Fλ(V1) of M decomposes discretely into a multiplicity-free direct sum of unitary highest 
weight representations:

Fλ(V1) =⊕
k

Fλ,k(V1),

where the summation is over k ≥ 0 for g /≃ su(p, q) and over k ∈ Z if g ≃ su(p, q). The 
highest weight of Fλ,k(V1) and a highest weight vector are given in Theorems 2.2 and 
2.3.

Since the Knapp–Stein kernel uα is M -invariant, its Weyl transform acts on each 
Fλ,k(V1) by a scalar, thanks to Schur’s Lemma. Our second main result is an explicit 
formula for these eigenvalues:

Theorem B (see Theorem 3.1). The eigenvalues of the Weyl transform σλ(uα) of the 
Knapp–Stein kernel uα are for g /≃ sp(n, R), su(p, q) given by

σλ(uα)∣Fλ,k(V1) = const×
22α−1(−α − b1 − 1)kΓ(α + a1+2

2 )Γ(α + d1+1
2 )

Γ(−α)Γ(α + a1 + b1 + 2 + k) ∣λ∣−2α−d1−1 (k ≥ 0)

and for g = su(p, q) by
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σλ(uα)∣Fλ,k(V1) = const×(−1)kΓ(α + 1)Γ(2α + p + q − 1)
Γ(−α)Γ(α + p + k)Γ(α + q − k) ∣λ∣

−2α−d1−1 (k ∈ Z),

where (d1, a1, b1) are the structure constants of the Jordan triple system V1 (see Table 2).

When g = su(1, d + 1), the eigenvalues can be explicitly computed using the definition 
of the Weyl transform and the result is obtained by evaluating Gamma integrals. This 
technique can be generalized to g = su(p, q), but it does not work for the other cases. 
However, it is possible to compute the eigenvalue for k = 0 explicitly (see Proposition 3.7). 
Using the explicit formulas for the Lie algebra action of n in the non-compact picture 
obtained by the first author [12], we derive a recursion formula for the eigenvalues (see 
Theorem 3.5). Combining the recursion with the formula for k = 0 shows the claimed 
identities.

Using the explicit formulas for the eigenvalues, we are able to give new proofs for 
the existence of complementary series representations, i.e. representations πν which are 
both irreducible and unitarizable (see Theorem 4.1), and we are also able to identify 
certain unitarizable subrepresentations (see Theorem 4.3) and relate them to systems 
of conformally invariant differential operators of order two on the Heisenberg group as 
constructed by Barchini–Kable–Zierau [2] (see Theorem 4.8). In particular, this sheds 
new light onto a construction of Wang [38] of a representation of SU(p, q) using CR 
geometry (see Remark 4.9). As part of our analytic study of the Knapp–Stein kernel, 
we further find a Bernstein–Sato type formula for the kernel uα (see Theorem 5.1). This 
might have some independent interest, for instance for the construction of fundamental 
solutions of certain differential operators on Heisenberg groups (see Corollary 5.7).

Relation to other work

The study of Heisenberg parabolic subgroups P = MAN of a simple Lie group G is 
also of geometric interest. This is because the homogeneous space G/P = K/(M ∩K)
has a parabolic structure, namely the tangent bundle has a G-invariant decomposition as 
Tx(G/P ) = n̄1 + n̄2 with [X, Y ] ∈ n̄2 for sections of n̄1 locally near each x ∈ G/P and a K-
invariant CR-structure on n̄1. They have been classified in [4]. The Lie algebra n̄1 has a 
symplectic structure and the connected component of the group M acts on n̄1 preserving 
the symplectic form. The related geometry of this action has been studied in detail in [35]. 
When g is of real rank one, only g = su(1, d + 1) has a Heisenberg parabolic subalgebra, 
the other rank one Lie algebras have either Heisenberg-type parabolic subalgebras, or 
just an abelian subalgebra when g = so(1, d + 1).

The corresponding Heisenberg parabolically induced representations for g = su(1, d +1)
have been studied in detail in the compact realization by Johnson–Wallach [21] and in the 
non-compact realization by Cowling [5]. For other families of groups, further results about 
the compact picture using algebraic methods were obtained in [11,14,17]. In a recent 
paper [40], the third author has studied these representations for all Hermitian groups in 
the compact realization. In a paper to appear this is extended to quaternionic Lie groups 



6 J. Frahm et al. / Advances in Mathematics 422 (2023) 109001
of real rank 4. For the case of non-Hermitian groups, the first author recently carried 
out a detailed analysis of one particular subrepresentation of a Heisenberg parabolically 
induced representation, the minimal representation (see [12]). By realizing the minimal 
representation in the non-compact picture and applying the Heisenberg group Fourier 
transform, he obtained a new realization on a space of L2-functions.

Notation

For convenience, we give a list of notation used in this paper.

• D = G/K is a bounded symmetric domain of rank r realized as a Jordan triple 
system V = Cd with Jordan triple product {x, ̄y, z} =D(x, ̄y)z = Q(x, z)ȳ and Jordan 
characteristic (a, b) where d = r + a

2 r(r − 1) + rb (see Table 2).
• The corresponding Hom(V, V̄ )-valued quadratic form Q given by Q(x) = 1

2Q(x, x).
• e = e1 is a fixed minimal tripotent in V .
• V = V2 ⊕ V1 ⊕ V0 = V2(e) ⊕ V1(e) ⊕ V0(e) is the Peirce decomposition with respect to 

e.
• V1 = Cd1 is a itself a Jordan triple system. The Jordan characteristic (a1, b1), dimen-

sion d1 and rank are given in Table 2.
• Holomorphic vector fields on D are given for v ∈ V by ξv, where ξv(z) = v −Q(z)v̄.
• g = k ⊕ p is the Cartan decomposition of g, where p = {ξv; v ∈ V }.
• gC = p− ⊕ kC ⊕ p+ is the Harish-Chandra decomposition of gC with respect to the 

center element Z ∈ k. p+ is identified with V by constant vector fields.
• a = Rξe and g = n̄2 ⊕ n̄1 ⊕ (m ⊕ a) ⊕ n1 ⊕ n2 is the root space decomposition of g with 

respect to a (see Section 1.1).
• (aC)∗ is identified with C by ν → ν(ξe). In particular the half sum of positive roots 

is given by ρ = d1 + 1.
• n2 = RE and n̄2 = RF with E, F defined in Section 1.1.
• n = n1 ⊕ n2 and n̄ = n̄1 ⊕ n̄2 are Heisenberg algebras.
• N̄ , M, A, N are the subgroups of G corresponding to n̄, m, a, n, in particular N̄ and 

N are Heisenberg groups.
• P =MAN is a maximal parabolic subgroup with Heisenberg nilradical N .
• l = k ∩m such that (m, l) is a Hermitian symmetric subpair of (g, k) with symmetric 

space M/L =D ∩ V0. Explicitly L = {k ∈K; k ⋅ e = e}.
• K/L0 = P(K/L) is the compact Hermitian symmetric space, given as the projec-

tivization of K/L. Explicitly L0 = {k ∈K; k ⋅ e ∈ Ce}.
• k′ = [k, k] is the semisimple part of k.
• ⟨⋅, ⋅⟩ is the inner product on V given by a multiple of trD(⋅, ̄⋅), normalized such that 

⟨e, e⟩ = 1. It is given explicitly on V1 in Section 1.2.
• ω is the symplectic form on V1 given by ω(v, w) = 4 Im⟨v, w⟩.
• μ ∶ V1 → m ⊕ a, Ψ ∶ V1 → V1 and Ω ∶ V1 → R are the symplectic invariants defined in 

Section 1.2 and Bμ, BΨ and BΩ denote their symmetrizations.
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• (πν , I(ν)) is the degenerate principal series representation of G defined in Section 1.3.
• Aν ∶ I(ν) → I(−ν) is the G-intertwining operator defined in Section 1.4.
• uα is the integral kernel given by uα(v, t) = (t2 −Ω(v))α.
• Fλ = Fλ(V1) is the Fock space carrying a irreducible unitary representation σλ of 

the Heisenberg group N̄ with central character −iλ, as defined in Section 1.5.
• Fλ,k(V1) denotes the k-th irreducible component of Fλ(V1) under dωmet,λ∣m (see 

Section 1.6 and Theorem A).
• Pk ∶ Fλ(V1) → Fλ,k(V1) is the orthogonal projection onto the k-th component of 

Fλ(V1).
• σλ ∶ L1(V1×R) → End(Fλ(V1)) denotes the Weyl transform as defined in Section 1.5.
• F ∶ L1(V1×R) → ⊔λ∈R× End(Fλ(V1)) denotes the Heisenberg group Fourier transform 

as defined in Section 1.5.
• ωmet,λ is the metaplectic representation of Sp(V1, ω) on Fλ(V1) (as projective repre-

sentation) and dωmet,λ is the derived representation of sp(V1, ω) (see Section 1.6).
• P(V1) is the space of polynomials on V1.
• E(α, k) times ∣λ∣−2α−d1−1 is the eigenvalue of the Weyl transform of uα on the k-th 

component Fλ,k(V1) (see Section 3).
• ∇vf(x) = d

dt
∣
t=0 f(x + tv) is the directional derivative.

• ∂v = 1
2(∇v−i∇iv) and ∂̄v = 1

2(∇v+i∇iv) denote the holomorphic and antiholomorphic 
derivatives.
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1. Preliminaries

1.1. Hermitian Lie groups and Heisenberg parabolic subgroups

Let D = G/K be an irreducible Hermitian symmetric space of rank r realized as the 
unit ball in a Hermitian Jordan triple system V . We write the triple product as {u, ̄v, w} =
D(u, ̄v)w with D ∶ V × V̄ → End(V ), where V̄ is the complex conjugate vector space. 
The corresponding operator Q ∶ V ×V → Hom(V̄ , V ) is defined by Q(u, w)v̄ =D(u, ̄v)w, 
and we abuse notation to write Q(v) = 1

2Q(v, v). Any K-invariant inner product ⟨⋅, ⋅⟩ on 
V is a scalar multiple of (v, w) ↦ trD(v, w̄), and we normalize it such that a minimal 
tripotent has norm one.

The Lie algebra g consists of vector fields on V and we have the Cartan decomposition 
g = k ⊕ p into the Lie algebra k of K consisting of linear vector fields, i.e. k ⊆ gl(V ), 
and p = {ξv; v ∈ V } where ξv(x) = v − Q(x)v̄ (x ∈ V ). The Lie algebra k has a one-
dimensional center containing the vector field Z ∈ gl(V ) given by multiplication with i
on V . The corresponding Harish-Chandra decomposition of the complexification gC of g
is the decomposition into eigenspaces of ad(Z): gC = p+⊕kC⊕p−. Here, p+ is the space of 
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constant vector fields and can therefore be identified with V as a complex vector space 
and we write p+ = V .

Denote by (r, a, b) the Jordan characteristic of V , i.e. r is the rank of V and a and b
the dimensions of the joint eigenspaces of a Jordan frame (see [26] for details and Table 2
for the Jordan characteristics in all cases). Let e ∈ V be a minimal tripotent, then ξe ∈ p
defines a Heisenberg grading of g. More precisely, ad(ξe) has eigenvalues {−2, −1, 0, 1, 2}
on g and we write

g = n̄2 ⊕ n̄1 ⊕ (m⊕ a) ⊕ n1 ⊕ n2

for the corresponding decomposition into eigenspaces. Here, a = Rξe and m ⊕ a is an 
orthogonal decomposition of the centralizer of ξe. Moreover

n2 = RE and n̄2 = RF

with

E = 1
2
(ξie − iD(e, ē)) and F = 1

2
(ξie + iD(e, ē)).

In particular n = n1 ⊕ n2 and n̄ = n̄1 ⊕ n̄2 are Heisenberg algebras. The corresponding 
parabolic subalgebra m + a + n of g is called a Heisenberg parabolic subalgebra and we 
write P = MAN for the corresponding (maximal) parabolic subgroup of G and N̄ for 
connected subgroup with Lie algebra n̄.

To also describe n1 and n̄1 explicitly, let V = V2⊕V1⊕V0 be the Peirce decomposition 
of V with respect to the minimal tripotent e, i.e. the decomposition into eigenspaces of 
D(e, ̄e). Then

n1 = {nv ∶= ξv + (D(e, v̄) −D(v, ē)); v ∈ V1},
n̄1 = {n̄v ∶= ξv − (D(e, v̄) −D(v, ē)); v ∈ V1}.

Let l = k ∩m, then (m, l) is a Hermitian symmetric subpair of (g, k) whose symmetric 
space M/L is the subdomain M/L = D ∩ V0 ⊂ D in V0 ⊂ V of rank r − 1. Consequently, 
the complex structure for (g, k) also defines a complex structure for (m, l), and we write

m
C = p

+
m ⊕ l

C ⊕ p
−
m

for the corresponding Harish-Chandra decomposition, where p±m = mC∩p±, where p+m = V0
under the above identification.

1.2. Symplectic invariants

Recall the inner product ⟨⋅, ⋅⟩ on V and note that on V1 it satisfies

D(v, w̄)e = ⟨v,w⟩e (v,w ∈ V1). (1.1)
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Then V1 carries a natural symplectic form ω given by

ω(v,w) = 4 Im⟨v,w⟩. (1.2)

Following [12, Chapter 2.4], we define the following Ad(M)-equivariant maps on V1 ≃
n̄1: the moment map

μ ∶ V1 → m + a μ(v) = 1
2!

ad(n̄v)2E,

the cubic map

Ψ ∶ V1 → V1, Ψ(v) = 1
3!

ad(n̄v)3E,

and the Ad(M)-invariant quartic map

Ω ∶ V1 → R, Ω(v)F = 1
4!

ad(n̄v)4E.

We denote the Bμ, BΨ and BΩ the symmetrizations of the maps above and refer the 
reader to [12, Chapter 2.4] for more details. The following formulas express the three 
symplectic invariants μ, Ψ and Ω in terms of the Jordan triple product:

Proposition 1.1. For v, w ∈ V1 the following identities hold:

(i) [n̄v, ̄nw] = ω(v, w)F ,
(ii) ad(n̄v)E = niv,
(iii) μ(v) = ξiD(v,ē)v + i(∣v∣2D(e, ̄e) − 2D(v, ̄v)),
(iv) Ψ(v) = i(2Q(v)v̄ − ∣v∣2v),
(v) Ω(v) = ∣v∣4 − ⟨D(v, ̄v)v, v⟩,
(vi) [μ(v), ̄nw] = n̄x, where x = i(∣v∣2w − 2D(v, ̄v)w) + iD(e, w̄)D(v, ̄e)v.

The proof makes use of the following fact about the triple product and the Peirce 
decomposition:

Lemma 1.2 ([26, Theorem 3.13]). For α, β, γ ∈ {0, 1, 2} we have D(Vα, V̄β)Vγ ⊆ Vα−β+γ, 
where we put Vj = {0} for j ≠ 0, 1, 2.

Proof of Proposition 1.1. Ad (i): Clearly [n̄v, ̄nw] ∈ n̄2 and since F (0) = 1
2 ie, checking

[n̄v, n̄w](0) =D(v, w̄)e −D(w, v̄)e

we obtain

[n̄v, n̄w] = ω′(v,w)F,
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where ω′(v, w)e = −2i(D(v, w̄) −D(w, ̄v))e is a symplectic form on V1 and induces the her-
mitian form ⟨v, w⟩′e = −4D(w, ̄v)e, such that indeed ω′(v, w) = −4 Im⟨w, v⟩ = 4 Im⟨v, w⟩.

Ad (ii): Since ad(n̄v)E ∈ n1 it is enough to check the constant terms and it is easily 
checked, that

ad(n̄v)E(0) = iv.

Ad (iii): μ(v) ∈ m + a such that μ(v) = αξe + ξw + L, for a scalar α, some w ∈ V0 and 
L ∈ l. In particular L is linear in z. First, checking

μ(v)(0) = 1
2
[n̄v, niv](0) = iD(v, ē)v ∈ V0

gives α = 0 and w = iD(v, ̄e)v. Let ṽ = v − ξv be the quadratic part of ξv. Since all the 
linear terms of μ(v) are L, we have that

L = 2i[D(e, v̄),D(v, ē)] + [v, ĩv] − [iv, ṽ].

Following [26, Lemma 2.6 and Chapter 8.6] we obtain

L = i∣v∣2D(e, ē) − 2iD(v, v̄).

Ad (iv): As before, since Ψ(v) ∈ n̄1, it is enough to check the constant term. We find

Ψ(v)(0) = 1
3
[n̄v, μ(v)](0) =

1
3
([v, l] + [D(v, ē), iD(v, ē)v] − [D(e, v̄), iD(v, ē)v]),

which is easily evaluated to i(∣v∣2v − 2Q(v)v̄) using the identities of [26, Lemma 2.6 and 
Appendix JP12].

Ad (v): We have by (i) and [26, Appendix JP2]

Ω(v)e = 1
4
ω(v,Ψ(v))e = − i

2
(D(v, ¯Ψ(v)) −D(Ψ(v), v̄))e

= (∣v∣2D(v, v̄) − 2D(v,Q(v̄)v) − 2D(Q(v)v̄, v̄))e = (∣v∣4 − ⟨D(v, v̄)v, v⟩)e.

Ad (vi): This is proven in the same way as (iv), by evaluating the constant term. ◻

1.3. Degenerate principal series representations

For ν ∈ (aC)∗ we let (πν , I(ν)) be the induced representation IndG
P (1 ⊗eν ⊗1), acting 

by left-translation on

I(ν) = {f ∈ C∞(G);f(gman) = a−ν−ρf(g)∀man ∈MAN},
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where ρ ∈ (aC)∗ denotes the half sum of all positive roots and aλ = eλ(loga) for a ∈ A. 
We identify (aC)∗ with C by ν ↦ ν(ξe), then ρ = d1 + 1, where d1 = dimC V1. In this 
article we will be concerned with the non-compact picture of the degenerate principal 
series representations, hence we consider I(ν) ⊆ C∞(N̄), by the restriction to the dense 
open subset N̄P ⊆ G. Identifying the Heisenberg group N̄ with V1 ×R by

V1 ×R↦ N̄ , (v, t) ↦ exp(n̄v + tF ),

we will frequently write functions on N̄ as f(v, t) with v ∈ V1 and t ∈ R.

1.4. Intertwining operators

Let w0 = exp(π2 (E − F )) ∈ K, then w−10 Pw0 = P̄ . For Re ν > ρ and f ∈ I(ν) the 
following integral converges for all g ∈ G:

Aνf(g) = ∫
N̄

f(gw0n̄)dn̄.

This defines a family of intertwining operators Aν ∶ I(ν) → I(−ν) which can be extended 
meromorphically in ν ∈ C. In [12, Proposition 3.3.1] it is shown that

Aνf(v, t) = ∫
V1×R

u ν−ρ
2
(w, s)f((v, t) ⋅ (w, s))d(w, s),

where the integral kernel is given by

uα(v, t) = (t2 −Ω(v))α.

(We remark that for non-Hermitian groups one has to use the absolute value of t2−Ω(v)
while for Hermitian groups t2 −Ω(v) ≥ 0 since Ω ≤ 0 by [12, Theorem 2.9.1].) Note that 
since uα(x−1) = uα(x) for all x ∈ N̄ , this can be written as

Aνf = f ∗ u ν−ρ
2
, (1.3)

where

(f ∗ g)(x) = ∫
N̄

f(y)g(y−1x)dy (x ∈ N̄).

To understand this convolution, we apply the Heisenberg group Fourier transform which 
transforms a convolution into a (non-abelian) multiplication.
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1.5. The Weyl transform and the Heisenberg group Fourier transform

For every λ ∈ R×, the Heisenberg group N̄ has a unique irreducible unitary represen-
tation with central character −iλ. For λ > 0 resp. λ < 0 we realize this representation on 
the Fock space Fλ = Fλ(V1) consisting of holomorphic resp. antiholomorphic functions 
ζ ∶ V1 → C such that

∥ζ∥2Fλ
= ∫
V1

∣ζ(z)∣2e−2∣λ∣∣z∣
2
dz < ∞

by

σλ(v, t)ζ(z) = ζ(z + v) ×
⎧⎪⎪⎨⎪⎪⎩

e−iλt−∣λ∣∣v∣
2−2∣λ∣⟨z,v⟩ for λ > 0,

e−iλt−∣λ∣∣v∣
2−2∣λ∣⟨v,z⟩ for λ < 0.

Here we normalize Lebesgue measure on V1 using the inner product ⟨⋅, ⋅⟩. The space 
P(V1) of holomorphic/antiholomorphic polynomials on V1 is dense in Fλ(V1) and the 
derived representation of n̄ on P(V1) is easily computed:

dσλ(v, t)ζ(z) =
⎧⎪⎪⎨⎪⎪⎩

∂vζ(z) − 2∣λ∣⟨z, v⟩ζ(z) − iλζ(z) for λ > 0,
∂̄vζ(z) − 2∣λ∣⟨v, z⟩ζ(z) − iλζ(z) for λ < 0.

(1.4)

The Weyl transform σλ(u) ∈ End(Fλ) of u ∈ L1(V1 ×R) is defined by

σλ(u) = ∫
V1×R

u(v, t)σλ(v, t)dv dt.

It turns convolution into composition of operators on Fλ:

σλ(f ∗ g) = σλ(f) ○ σλ(g) (f, g ∈ L1(N̄)). (1.5)

Combining all σλ(u), λ ∈ R×, we obtain the Heisenberg group Fourier transform

F ∶ L1(V1 ×R) → ⊔
λ∈R×

End(Fλ(V1)), Fu(λ) = σλ(u).

For u ∈ S(V1 ×R) the Fourier transform satisfies the inversion formula

u(v, t) = c∫
R

trFλ
(σλ(−v,−t)σλ(u))∣λ∣d1 dλ (1.6)

and the Plancherel formula

∥u∥2
L2(N̄)

= c∫ ∥σλ(u)∥2HS(Fλ)
∣λ∣d1 dλ (1.7)
R
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with c > 0 depending only on the normalization of the measures. Here, ∥T ∥2HS(Fλ)
=

trFλ
(T ∗T ) denotes the Hilbert–Schmidt norm of a Hilbert–Schmidt operator T on Fλ.

Since I(ν) is not always contained in L1(N̄) or L2(N̄), we will also need a distri-
butional version of the Heisenberg group Fourier transform. This version is easiest to 
formulate if we realize all representations σλ on the same Hilbert space H having the 
same space H∞ of smooth vectors (e.g. in the Schrödinger model on H = L2(Λ) for 
a Lagrangian subspace Λ ⊆ V1 where H∞ = S(Λ), the space of Schwartz functions.) 
In [12, Corollary 3.5.3] it was shown that whenever Reν > −ρ, the Fourier transform 
F ∶ L2(N̄) → L2(R×, HS(H); ∣λ∣d1 dλ) can be extended to an injective continuous linear 
operator

F ∶ I(ν) → D′(R×)⊗̂Hom(H∞,H−∞), Fu(λ) = σλ(u).

Now, if Re ν ∈ (−ρ, ρ), then the Fourier transform is injective both on I(ν) and I(−ν), 
and there exists an operator Âν ∶ F(I(ν)) → F(I(−ν)) such that

σλ(Aνu) = Âνσλ(u).

By (1.3) and (1.5), we have that Âν is given by composition with σλ(u ν−ρ
2
).

The main result of this article is to compute σλ(uα) in the Fock space model. For this 
we first need to understand the action of M on the Fourier transformed side, and this 
involves the metaplectic representation.

1.6. The metaplectic representation

Let Sp(V1, ω) denote the symplectic group of the symplectic vector space (V1, ω) and 
sp(V1, ω) its Lie algebra. For fixed λ ∈ R×, there exists a unique projective representation 
ωmet,λ of Sp(V1, ω) on Fλ(V1) such that

σλ(gv, t) = ωmet,λ(g) ○ σλ(v, t) ○ ωmet,λ(g)−1 (g ∈ Sp(V1, ω), (v, t) ∈ V1 ×R).

Denote by dωmet,λ the derived representation of sp(V1, ω), then dωmet,λ(T ) (T ∈
sp(V1, ω)) is the unique holomorphic/antiholomorphic (depending on whether λ > 0
or λ < 0) differential operator on V1 of order at most 2, skew-symmetric with respect to 
the inner product on Fλ(V1), such that

dσλ(Tv, t) = [dωmet,λ(T ), dσλ(v, t)] for all v ∈ V1, t ∈ R. (1.8)

The underlying Harish-Chandra module of ωmet,λ is P(V1).
We are interested in the restriction of dωmet,λ to the subalgebra m ⊆ sp(V1, ω). Since 

the center of the maximal compact subalgebra u(V1) of sp(V1, ω) is contained in m (see 
[12, Corollary 2.9.4]), the restriction of dωmet,λ to m decomposes discretely into a direct 
sum of irreducible unitary highest weight representations Fλ,k(V1) of m:
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Fλ(V1) =⊕
k

Fλ,k(V1). (1.9)

(We will later see that the sum is over Z if g ≃ su(p, q) and over Z≥0 if g /≃
sp(n, R), su(p, q).) Actually, it is sufficient to decompose dωmet,λ∣m for some fixed λ
and use the m-intertwining operators

Fλ(V1) → Fs−2λ(V1), ζ ↦ ζs, ζs(z) ∶= ζ(s−1z) (s > 0)

between dωmet,λ and dωmet,s−2λ. Then we can arrange that Fs−2λ,k(V1) = Fλ,k(V1)s for 
s > 0. Further, since complex conjugation also defines an m-intertwining operator

Fλ(V1) → F−λ(V1), ζ ↦ ζ̄

between dωmet,λ and dωmet,−λ, we can arrange that Fλ,k(V1) = F−λ,k(V1).
Let Pk denote the orthogonal projection onto Fλ,k(V1). We will later see that the 

decomposition (1.9) is in fact multiplicity-free (see Theorems 2.2 and 2.3). Then the 
action of the Weyl transform σλ(uα) on Fλ(V1) is diagonalizable:

Lemma 1.3. If the decomposition (1.9) is multiplicity-free, then there exist scalars E(α, k)
such that

σλ(uα) = ∣λ∣−2α−d1−1∑
k

E(α,k) ⋅ Pk.

Proof. It follows from the M -invariance of uα and Schur’s Lemma that

σλ(uα) = ∑
k

E(α,k;λ) ⋅ Pk

for some scalars E(α, k; λ) ∈ C. We claim that the homogeneity of uα implies that 
E(α, k; λ) is homogeneous in λ of degree −2α− d1 − 1. If we denote the natural action of 
R+ on functions/distributions u on N̄ = V1 ×R by

f ↦ fs, fs(z, t) ∶= f(s−1z, s−2t),

then a straightforward computation shows that for s > 0:

(σs2λ(f)ζ)s = s−2d1−2σλ(fs)ζs (ζ ∈ Fs2λ(V1)). (1.10)

Note that for f = uα we have fs = s−4αf . Hence, applying (1.10) to f = uα and ζ ∈
Fs2λ,k(V1) shows that E(α, k; s2λ) = s−4α−2d1−2E(α, k; λ). That E(α, k; λ) only depends 
on ∣λ∣ and not on sgnλ follows by taking complex conjugates. ◻
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In Section 2 we make the decomposition (1.9) explicit, and in Section 3 we find 
the eigenvalues E(α, k). For this, we first need to understand the action of m in the 
metaplectic representation. Recall the decomposition mC = p+m ⊕ lC ⊕ p−m = V0 ⊕ lC ⊕ V̄0.

Lemma 1.4. Let λ > 0. The restriction of dωmet,λ to m is given by

dωmet,λ(w) = −
1
4λ ∑

α,β

⟨w,Q(vα, vβ)ē⟩∂vα∂vβ

dωmet,λ(T ) = −∂Tz − 1
2 trV1(T )

dωmet,λ(Q(x)w̄) = 2λ⟨Q(z)ē, w⟩,

where (vα)α is any basis of V1.

Proof. We first compute the action of mC = p+m ⊕ lC ⊕ p−m on n̄C1 ≃ V C
1 . Recall the linear 

isomorphism V1 → n̄1, v ↦ n̄v = ξv−((D(e, ̄v) −D(v, ̄e)). It follows that n̄C1 = {n̄+v + n̄−w̄; v ∈
V1, w̄ ∈ V̄1}, where

n̄+v(x) = v +D(v, ē)x and n̄−w̄(x) = −Q(x)w̄ −D(e, w̄)x.

Moreover, p+m consists of the constant vector fields w for w ∈ V0 and p−m consists of the 
vector fields Q(x)w̄ for w ∈ V0. A short computation using basic Jordan identities [26, 
Appendix] shows that

ad(w)n̄+v = 0 ad(w)n̄−v̄ = n̄+D(w,v̄)e (w ∈ V0),

ad(T )n̄+v = n̄+Tv ad(T )n̄−v̄ = n̄−
T̄ v

(T ∈ mC ∩ l
C),

ad(Q(x)w̄)n̄+v = n̄−D(w̄,v)ē ad(Q(x)w̄)n̄−v̄ = 0 (w ∈ V0).

From (1.4) it follows that

dσλ(n̄+v) = ∂v and dσλ(n̄−v̄) = −2∣λ∣ ×
⎧⎪⎪⎨⎪⎪⎩

⟨z, v⟩ for λ > 0,
⟨v, z⟩ for λ < 0.

The rest is a simple computation using the characterization (1.8) of dωmet,λ. ◻

We know that each Fλ,k(V1) is a unitary highest weight representation of m. We 
can therefore determine the decomposition (1.9) by finding all highest weight vectors in 
Fλ(V1), i.e. solving the equation

dωmet,λ(w)f = −
1
4λ ∑⟨w,Q(vα, vβ)ē⟩∂vα∂vβf = 0 for all w ∈ V0. (1.11)
α,β
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2. The metaplectic representation restricted to M

We find the explicit decomposition of the restriction of the metaplectic representa-
tion of sp(V1, ω) to the subalgebra m. The decomposition is multiplicity-free. In order 
to describe the highest weights, we need the strongly orthogonal roots for the Hermitian 
symmetric pair (m, l). We then use the Hua–Kostant–Schmid decomposition of poly-
nomials on V1, the K-finite vectors in the Fock space realization of the metaplectic 
representation, to obtain the decomposition into irreducible representations of m.

2.1. Cartan subalgebras and Harish-Chandra strongly orthogonal roots

In order to identify a suitable Cartan subalgebra of l (and hence of m), we make use 
of another Hermitian symmetric pair, the pair (k′, l′) where

k
′ = [k, k] and l

′ = {X ∈ k′; ad(X)e ∈ Ce}.

The central element

Z0 ∶= −
i

2
(D(e, ē) − 2 + a(r − 1) + b

d
Z) ∈ l′,

where d = dimC V , induces the Harish-Chandra decomposition

k
′C = q

+ + l
′C + q

−,

where

q
+ = {D(v, ē); v ∈ V1} ≃ V1. (2.1)

Here Z is the central element in of k defining the complex structure on p; see Section 1.1.
To find the Harish-Chandra strongly orthogonal roots for (k′, l′), we follow [40, Section 

2.2] and fix a Jordan quadrangle {e, v1, w, v2}, v1, v2 ∈ V1. We have

D(e, w̄) =D(v1, v̄2) = 0, D(e, v̄1)w = v2,

D(v1, ē)v1 =D(v2, ē)v2 = 0, D(v1, ē)v2 = w.
(2.2)

Under the identification (2.1), the elements E+1 = D(v1, ̄e), E+2 = D(v2, ̄e) ∈ q+ form a 
frame of minimal tripotents in q+, as well as E−1 =D(e, ̄v1), E−2 =D(e, ̄v2) ∈ q−, and

[E+1 ,E−1 ] =D(v1, v̄1) −D(e, ē), [E+2 ,E−2 ] =D(v2, v̄2) −D(e, ē) ∈ l′C

are commuting.
Now, (k′, l′) is Hermitian symmetric of rank two, so it is a well-known fact that the 

elements D(v1, ̄v1) −D(e, ̄e), D(v2, ̄v2) −D(e, ̄e) can be extended to a Cartan subalgebra 
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for l′C, and the dual basis for D(v1, ̄v1) −D(e, ̄e) and D(v2, ̄v2) −D(e, ̄e), denoted by 
2α1, 2α2, yields the Harish-Chandra strongly orthogonal roots α1, α2 for (k′, l′).

To transfer this information to l, we use the isomorphism

l→ l
′, X ↦X − 1

id
tr ad(X)∣p+ ⋅Z, (2.3)

where Z ∈ k is as in Section 1.1. Applying this isomorphism to the considerations for l′

above gives a Cartan subalgebra tl of lC and two non-compact positive roots β1 < β2

which are the pull-backs of α1 and α2.

2.2. The Hua–Kostant–Schmid decomposition

By Lemma 1.4, the connected subgroup L ⊆ M with Lie algebra l acts in the meta-
plectic representation ωmet,λ by

ωmet,λ(l)ζ(z) = (detV1 l)−
1
2 ζ(l−1z) (l ∈ L, z ∈ V1, ζ ∈ Fλ(V1)). (2.4)

Apart from the determinant character, this is just the left regular action of L on func-
tions on V1. Hence, to decompose ωmet,λ∣L, it suffices to decompose the space P(V1) of 
polynomials on V1, the K-finite vectors in Fλ(V1), under the left regular action of L. 
This follows from a classical result of Hua–Kostant–Schmid (see e.g. [34]). We exclude 
the case g ≃ su(p, q), because here V1 is not simple, but the sum of two simple ideals, so 
the statement is slightly different.

Lemma 2.1. Assume g /≃ su(p, q). Then the space P(V1) of polynomials on V1 decomposes 
under the action of L as

P(V1) = ⊕
m1≥m2≥0

W (−m1β1 −m2β2),

where W (−m1β1 −m2β2) is irreducible of highest weight −m1β1 −m2β2. Moreover, a 
highest weight vector in W (−m1β1 −m2β2) is given by

Δm1,m2(z) = Det1(z)m1−m2 Det2(z)m2 ,

where Det1(z) = ⟨z, v1⟩ and Det2(z) is the Jordan determinant of the maximal Jordan 
subalgebra of V1 with identity element v1 + v2.

Proof. Apply the Hua–Kostant–Schmid decomposition to the Hermitian symmetric pair 
(k′, l′) and pull back the information to l via the isomorphism (2.3). ◻
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2.3. Decomposition of the metaplectic representation

We now use Lemma 2.1 to derive the explicit decomposition of the restriction of the 
metaplectic representation of sp(V1, R) to m. We restrict to λ > 0, the case λ < 0 is 
similar.

Theorem 2.2. Let λ > 0 and assume g /≃ su(p, q). Then the restriction dωmet,λ∣m of the 
metaplectic representation of sp(V1, ω) to m decomposes as

dωmet,λ∣m =
∞

⊕
k=0

τ−kδ0− 1
2 ζ0

, (2.5)

where τμ denotes the unitary highest weight representation of m with highest weight μ ∈ t∗l , 
δ0 = β1 is the lowest root of V1 and ζ0 is the central character of l obtained by restriction 
of the trace of the defining action of u(V1) ⊆ sp(V1, ω) on V1 to tl. Moreover, the function 
Det1(z)k = ⟨z, v1⟩k is a highest weight vector in τ−kδ0− 1

2 ζ0
.

Proof. By Lemma 2.1 it suffices to determine which highest weight vectors Δm1,m2 for 
the action of l also are highest weight vectors for the action of m, i.e. which Δm1,m2

satisfy (1.11). For this, we abbreviate

Q(∂, ∂) = ∑
α,β

Q(vα, vβ)∂vα∂vβ .

We claim that ⟨w, Q(∂, ∂)ē⟩Δm1,m2 = 0 for all w ∈ V0 if and only if m2 = 0. Assume first 
that m2 = 0, then

⟨w,Q(∂̄, ∂̄)ē⟩Δm1,0(z) =m(m − 1)⟨w,Q(v1, v1)ē⟩Det1(z)m−2

=m(m − 1)⟨w,D(v1, ē)v1⟩Det1(z)m−2 = 0,

since D(v1, ̄e)v1 = 0 by (2.2). We now prove the converse using the Cayley identity (see 
[10, Proposition VII.1.6] or [25]). Let V1 =W2+W1+W0 be the Peirce decomposition of V1
with respect to the maximal tripotent v1+v2. Then W2 is a Jordan algebra with identity 
element v1 + v2 and Det2 its Jordan determinant. Let Det2(∂) be the corresponding 
differential operator. Since Det2(u) is of weight −(β1 + β2), the differential operator 
Det2(∂) is of weight (β1 + β2) and thus is given by

Det2(∂) = ⟨w,Q(∂, ∂)ē⟩

for some w ∈ V0. Now, if Δm1,m2 is a highest weight vector for m, then in particu-
lar Det2(∂)Δm1,m2 = 0. Since this operator only contains differentiation in W2 and 
Δm1,m2(x) only depends on the projection of x ∈ V1 = W2 ⊕W1 ⊕W0 to W2, it follows 
that Det2(∂)Δm1,m2 ∣W2 = Det2(∂)(Δm1,m2 ∣W2) = 0. But by the Cayley identity:
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Det2(∂W2)(Δm1,m2 ∣W2) = (m1 +
a1

2
)m2 ⋅Δm1−1,m2−1∣W2 ,

where (a1, b1) is the Jordan characteristic of V1. This implies (m1+ a1
2 )m2 = 0 and hence 

m2 = 0. The rest of the statement is clear with δ0 = β1 and ζ0 = tr ad ∣V1 , see (2.4). ◻

For the classical cases g = so(2, n), so∗(2n), the Lie algebra m is a product of two 
simple ideals and the decomposition (2.5) is related to the dual pair correspondence. For 
convenience, we make the decomposition explicit in Appendix B.

The missing case g = su(p, q) is treated in the next section.

2.4. The case g = su(p, q)

This case is treated in detail in [36]. Let V =Mp,q(C) be the Jordan triple system of 
p × q-matrices, and g = u(p, q) the corresponding Lie algebra. We take g = u(p, q) instead 
of su(p, q) as the former is more convenient. Note that irreducible unitary representations 
of u(p, q) are irreducible unitary representations of su(p, q) on which the center u(1) of 
u(p, q) acts by a scalar.

We fix the matrix e = E1q as a minimal tripotent, then V1 =Mp−1,1(C) ⊕M1,q−1(C) ≃
Cp−1 ⊕Cq−1 and

m =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

is
X

is

⎞
⎠
∶ s ∈ R,X ∈ u(p − 1, q − 1)

⎫⎪⎪⎬⎪⎪⎭
≃ u(1) ⊕ u(p − 1, q − 1).

We choose the subspace spanned by the diagonal matrices {Ejj}p+qj=1 as a Cartan subal-
gebra tC of gC, which is also Cartan subalgebra of kC. Let {εj}p+qj=1 be the dual basis and 
fix the ordering ε1 > . . . > εp+q. The rank of mC is p + q − 1 with tC ∩mC being a Cartan 
subalgebra of mC.

The same discussion as in the proof of Theorem 2.2 can be applied to each of the 
simple ideals Cp−1 and Cq−1 of V1. We write (z, w) ∈ Cp−1 ⊕Cq−1 = V1.

Theorem 2.3. For λ > 0 we have

ωmet,λ∣m =
∞

⊕
m=0

τ− 1
2 (ε1+⋯+εp−εp+1−⋯−εp+q)−mεp ⊕

∞

⊕
n=1

τ− 1
2 (ε1+⋯+εp−εp+1−⋯−εp+q)+nεp+1

where each τμ is an irreducible of m with highest weight μ and highest weight vector 
ζ(z, w) = zmp−1 for μ = −1

2(ε1 + ⋯ + εp − εp+1 − ⋯ − εp+q) − mεp and ζ(z, w) = wn
1 for 

μ = −1
2(ε1 + ⋯ + εp − εp+1 − ⋯ − εp+q) + nεp+1. Here all {εj}p+qj=1 are identified with their 

restriction to tC ∩mC.

Remark 2.4. The decomposition above has been found in this case by Sternberg–
Wolf [36], where the m-representations are described explicitly as polynomials in the 
Fock space, which are products of homogeneous polynomials in the first p − 1 and last 
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q−1 variables with fixed difference of degrees k ∈ Z. In this sense we will in the following 
write

Fλ(V1) = ⊕
k∈Z

Fλ,k(V1),

where Fλ,k(V1) corresponds to τμ with μ = −1
2(ε1+⋯ +εp−εp+1−⋯ −εp+q) −kεp for k ≥ 0

and μ = −1
2(ε1 +⋯ + εp − εp+1 −⋯ − εp+q) − kεp+1 for k ≤ 0. Note that if p = 1 resp. q = 1, 

then only k ≤ 0 resp. k ≥ 0 contributes.

3. Weyl transform of the intertwining kernel uα(z, t)

In this section we shall find the Weyl transform of uα(z, t). This generalizes earlier 
results of Cowling [5, Theorem 8.1] for the rank one case g = su(1, n). By M -invariance, 
σλ(uα) acts by a scalar on the components in (2.5). Let Pk be the orthogonal projection 
onto the k-th component in Theorems 2.2 and 2.3, and let for g /≃ sp(n, R), su(p, q),

E(α,k) ∶= const×(−α − b1 − 1)k
22α−1Γ(α + a1+2

2 )Γ(2α+d1+1
2 )

Γ(−α)Γ(α + a1 + b1 + 2 + k) (3.1)

and for g ≃ su(p, q)

E(α,k) ∶= const×(−1)k Γ(α + 1)Γ(2α + p + q − 1)
Γ(−α)Γ(α + p + k)Γ(α + q − k) . (3.2)

Here the constant is positive and only depends on the normalization of the measures 
involved and on the structure constants (a1, b1, d1) (see (3.10) and Proposition 3.7 for a 
more detailed description of the constant). The rest of this section is dedicated to prove 
the following theorem.

Theorem 3.1. The Weyl transform of uα(z, t) is for g /≃ sp(n, R), su(p, q)

σλ(uα) = ∣λ∣−2α−d1−1
∞

∑
k=0

E(α,k)Pk

and for g ≃ su(p, q)

σλ(uα) = ∣λ∣−2α−d1−1
∞

∑
k=−∞

E(α,k)Pk.

The missing case g ≃ sp(n, R) is actually the easiest one and will be treated separately 
in Section 3.3. The corresponding result is Theorem 3.8.

To find E(α, k) we first show a recursion relation for E(α, k) as a sequence in k in 
Section 3.1, before evaluating explicitly at k = 0 in Section 3.2 to prove the stated 
formula.
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3.1. A recursion formula

Let g /≃ sp(n, R), then V1 is a Jordan triple system of rank 2 with characteristic (a1, b1)
for g /≃ su(p, q), and for g ≃ su(p, q) it is the direct sum of two Jordan triple systems of 
rank 1 with characteristics (0, b1) = (0, p − 2) and (0, b′1) = (0, q − 2). We can treat both 
cases simultaneously by a slight abuse of notation. We assume throughout this section 
that V1 is irreducible, i.e. in the case g ≃ su(p, q) we consider V1 to be one of the two 
components with characteristics (0, b1) ∈ {(0, p − 2), (0, q − 2)}. To simplify the formulas, 
we define b′1 = b1 in case g /≃ su(p, q) and a1 = 0 in case g ≃ su(p, q). In particular, we 
have

d1 = dimV1 = a1 + b1 + b′1 + 2 =
⎧⎪⎪⎨⎪⎪⎩

a1 + 2b1 + 2 for g /≃ su(p, q),
b1 + b′1 + 2 for g ≃ su(p, q).

Recall that in our normalization of ⟨z, w⟩ on V , a minimal tripotent has norm 1. We 
fix our identification n̄1 ≃ V1 along with their complex structures via n̄v ↦ v ∈ V1.

Recall again our convention that V1 is viewed as a Jordan subtriple system of V so 
that a minimal tripotent in v1 is also a minimal tripotent in V . In particular we have

p1 ∶= trV1 D(v1, v̄1) = 2 + a1 + b1. (3.3)

We shall need also the evaluation of trV1 D(e, ̄v1)D(v1, ̄e).

Lemma 3.2. trV1 D(e, ̄v1)D(v1, ̄e) = b1 + 1.

Proof. For any u ∈ V1, we find using (1.1):

⟨D(e, v̄1)D(v1, ē)u,u⟩ = ⟨D(v1, ē)D(e, v̄1)u,u⟩ + ⟨[D(e, v̄1),D(v1, ē)]u,u⟩
= ⟨u, v1⟩⟨D(v1, ē)e, u⟩ + ⟨(D(e, ē) −D(v1, v̄1))u,u⟩
= ∣⟨u, v1⟩∣2 + ∥u∥2 − ⟨D(v1, v̄1)u,u⟩.

Consider the Peirce decomposition of V1 with respect to the tripotent v1: V1 =W2⊕W1⊕
W0 with W2 = Cv1. Then the above computation shows: if u = v1 ∈W2 then D(v1, ̄e)u = 0; 
if u ∈ W1 then ⟨D(e, ̄v1)D(v1, ̄e)u, u⟩ = 0; if u ∈ W0 then ⟨D(e, ̄v1)D(v1, ̄e)u, u⟩ = ∥u∥2. 
Thus trV1 D(e, ̄v1)D(v1, ̄e) = dimW0 = b1 + 1 since V1 is a Jordan triple of rank two and 
v1 is a minimal tripotent. ◻

Recall the Fock space Fλ(V1), its irreducible m-submodules Fλ,k(V1), and the Weyl 
transform f ↦ σλ(f) from Section 1.5. By Theorem 2.2, the unit vector ζk ∈ Fλ,k(V1)
given by

ζk(w) =
√

(2∣λ∣)d1+k

d
wk

1 (z ∈ V1)

π 1k!
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is a highest weight vector for the action of m. Here we write w1 = ⟨w, v1⟩.

Lemma 3.3. For h ∈ C∞c ((0, ∞)) let f ∈ S(n̄) = S(V1 ×R) be defined by

f(z, s) =
∞

∫
0

h(λ)eiλs−∣λ∣∣z∣
2
z̄k1λ

d1 dλ.

Then the Weyl transform σλ(f) ∈ HS(Fλ(V1)) of f is a scalar multiple of the rank one 
operator ζ0 ⊗ ζ∗k , more precisely:

σλ(f)ζ =
1
c

√
k!

(2∣λ∣)k h(λ)⟨ζ, ζk⟩ζ0 (ζ ∈ Fλ(V1)),

where c is the constant in (1.6).

Proof. We take Xλ the rank one operator

Xλ =
√

k!
(2∣λ∣)k h(λ)ζ0 ⊗ ζ∗k ∶ ζ ↦

√
k!

(2∣λ∣)k h(λ)⟨ζ, ζk⟩ζ0,

and compute the trace

trFλ
(σλ(−z,−s)Xλ) = ⟨σλ(−z,−s)Xλζk, ζk⟩Fλ

=
√

k!
(2∣λ∣)k h(λ)⟨ζ0, σλ(z, s)ζk⟩Fλ

= h(λ)eiλse−∣λ∣∣z∣
2
z̄k1 .

It follows by the inversion formula (1.6) that the Weyl transform of fk is precisely Xλ. ◻

We say that a homogeneous polynomial p(z) in (z, ̄z) ∈ V1 × V̄1 is of bi-degree (p, q)
if p(λz) = λpλ̄qp(z) for all λ ∈ C. If p and q are two polynomials of different bi-degrees 
then e−∣λ∣∣z∣

2
p(z) and e−∣λ∣∣z∣

2
q(z) are orthogonal in the space L2(V1) and in particular 

they are linearly independent. We call the function e−∣λ∣∣z∣
2
p(z) of bi-degree (p, q) if p(z)

is of bi-degree (p, q).

Proposition 3.4. In L2(V1), we have the following orthogonal decompositions:

(1) zk+11 ∣z1∣2e−∣λ∣∣z∣
2
= k + 2

2∣λ∣ z
k+1
1 e−∣λ∣∣z∣

2
+Rest,

(2) zk+11 ∣zp∣2e−∣λ∣∣z∣
2
= 1

2∣λ∣z
k+1
1 e−∣λ∣∣z∣

2
+Rest, p ≠ 1,

(3) zk+11 ∣z∣2e−∣λ∣∣z∣
2
= k + d1 + 1

2∣λ∣ zk+11 e−∣λ∣∣z∣
2
+Rest,

(4) ⟨D(z, ̄z)z, v1⟩zk1e−∣λ∣∣z∣
2
= k + p1

zk+11 e−∣λ∣∣z∣
2
+Rest,
∣λ∣
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(5) ⟨D(e, ̄v1)D(z, ̄e)z, z⟩zk1 e−∣λ∣∣z∣
2
= b1 + 1

∣λ∣ zk+11 e−λ∣z∣
2
+Rest,

where the terms Rest are orthogonal to the leading term zk+11 e−∣λ∣∣z∣
2
. Complex conjugating 

each identity also produces orthogonal decompositions.

Proof. (1) and (2) follow easily by computing the relevant inner products, and (3) is a 
consequence of (1) and (2). We prove the remaining two identities.

Ad (4): Choose an orthonormal basis {up}p=1,...,d1 of V1 with u1 = v1. Then

⟨D(z, z̄)z, v1⟩zk1e−∣λ∣∣z∣
2
= ∑

p,q,m

⟨D(up, ūm)uq, v1⟩zpzq z̄mzk1e
−∣λ∣∣z∣2 ,

and the summands are symmetric in p and q. All terms are orthogonal to zk+11 e−∣λ∣∣z∣
2

except the ones for (p, q) = (1, m) or (p, q) = (m, 1). We divide them into the three 
disjoint cases p = q =m = 1, p = 1, q =m > 1, and q = 1, p =m > 1. First, let p = q =m = 1. 
Then, by (1):

⟨D(up, ūm)uq, v1⟩zpzq z̄mzk1 = 2∣z1∣2zk+11 e−λ∣z∣
2
= 2(k + 2)

2∣λ∣ zk+11 e−∣λ∣∣z∣
2
+Rest.

Next, let p = 1 and q =m > 1, then

∑
q>1
⟨D(v1, ūq)uq, v1⟩∣zq ∣2zk+11 e−∣λ∣∣z∣

2
= ∑

q>1
⟨D(v1, v̄1)uq, uq⟩∣zq ∣2zk+11 e−∣λ∣∣z∣

2
.

Its projection onto zk+11 e−∣λ∣∣z∣
2

is, by (2)

1
2∣λ∣z

k+1
1 e−∣λ∣∣z∣

2
∑
q>1
⟨D(v1, v̄1)uq, uq⟩ =

1
2∣λ∣z

k+1
1 e−∣λ∣∣z∣

2 ⎛
⎝

d1

∑
q=1
⟨D(v1, v̄1)uq, uq⟩ − 2

⎞
⎠

= 1
2∣λ∣z

k+1
1 e−∣λ∣∣z∣

2
(trV1 D(v1, v̄1) − 2) = 1

2∣λ∣z
k+1
1 e−∣λ∣∣z∣

2
(p1 − 2).

The third case q = 1, p =m > 1 is the same as the second case. Hence

⟨D(z, z̄)z, v1⟩zk1e−∣λ∣∣z∣
2
= 2(k + 2) + 2(p1 − 2)

2∣λ∣ zk+11 e−∣λ∣∣z∣
2
+Rest

= k + p1

∣λ∣ zk+11 e−∣λ∣∣z∣
2
+Rest.

Ad (5): Using the same orthonormal basis as before, we have

⟨D(e, v̄1)D(z, ē)z, z⟩zk1 e−∣λ∣∣z∣
2
= ∑ ⟨D(e, v̄1)D(up, ē)uq, um⟩zk1zpzq z̄me−∣λ∣∣z∣

2
.

p,q,m
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Each summand is orthogonal to zk+11 e−∣λ∣∣z∣
2

except when (p, q, m) is among the following 
three disjoint cases: (p, q, m) = (1, 1, 1); (p, q, m) = (1, q, m), q = m > 1; (p, q, m) =
(p, 1, m), p = m > 1. By symmetry, the second and the third cases produce the same 
orthogonal projection. First, let (p, q, m) = (1, 1, 1), then ⟨D(e, ̄v1)D(up, ̄e)uq, um⟩ =
⟨D(e, ̄v1)D(v1, ̄e)v1, v1⟩ = 0 since D(v1, ̄e)v1 = 0. Next, let (p, q, m) = (1, q, m), q =m > 1, 
then the sum over these terms is

∑
q>1
⟨D(e, v̄1)D(v1, ē)uq, uq⟩zk+11 ∣zq ∣2e−λ∣z∣

2

= 1
2λ

zk+11 e−λ∣z∣
2
∑
q>1
⟨D(e, v̄1)D(v1, ē)uq, uq⟩ +Rest

= 1
2λ

zk+11 e−λ∣z∣
2 d1

∑
q=1
⟨D(e, v̄1)D(v1, ē)uq, uq⟩ +Rest

= 1
2λ

zk+11 e−λ∣z∣
2
trV1 D(e, v̄1)D(v1, ē) +Rest,

again due to the fact that D(v1, ̄e)v1 = 0. Finally, we get

⟨D(e, v̄1)D(z, ē)z, z⟩zk1 e−∣λ∣∣z∣
2
= 2 trV1 D(e, v̄1)D(v1, ē)

2λ
zk+11 e−∣λ∣∣z∣

2
+Rest

= trV1 D(e, v̄1)D(v1, ē)
λ

zk+11 e−∣λ∣∣z∣
2
+Rest,

the factor 2 being due to the symmetry of p and q. The claim now follows with 
Lemma 3.2. ◻

We now state the main theorem of this section:

Theorem 3.5. Let Tν ∶ πν → π−ν be any continuous G-intertwining operator, then

σλ(Tν) = ∑
k

t(ν, k;λ)Pk (3.4)

with t(ν, k; λ) ∈ C satisfying the recursive relation

L(ν;k + 1)t(ν, k + 1;λ) = L(−ν;k + 1)t(ν, k;λ), (3.5)

where

(i) For g /≃ sp(n, R), su(p, q) and k ≥ 0:

L(ν;k + 1) = ν + a1 + 1 + 2k.
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(ii) For g ≃ su(p, q) and k ∈ Z:

L(ν;k + 1) = ν + q − p + 1 + 2k.

The proof requires some long computations and we first briefly sketch the idea. Since 
Tν is in particular M -intertwining and ωmet,λ∣M is the multiplicity-free direct sum of 
Fλ,k(V1), it follows that σλ(Tν) is of the form (3.4). Using Lemma 3.3, we choose Schwarz 
functions fk(z, s) on N̄ whose Weyl transform σλ(fk) is a rank one operator mapping the 
polynomial wk

1 to a multiple of the constant function w0
1 = 1, all in the Fock space Fλ(V1). 

Since wk
1 ∈ Fλ,k(V1), we have σλ(Tνfk) = t(ν, k; λ)σλ(fk). Since Tν is in particular N -

intertwining, we have

Tν(dπν(nv)fk) = dπ−ν(nv)(Tνfk) (v ∈ V1). (3.6)

The map v ∈ V1 ↦ dπν(nv) is R-linear and we consider its complexification and the 
corresponding (1, 0)-part dπν(n(1,0)v ), with

n(1,0)v = 1
2
(nv − iniv) ∈ nC;

in other words we consider the complex linear part in the formula for dπν(nv). We shall 
compute dπν(n(1,0)v )fk for v = v1 and prove that it is the form iL(ν; k + 1)fk+1 + Rk, 
with the rest term Rk satisfying that its Weyl transform is orthogonal to the Weyl 
transform of fk+1, in the space of Hilbert-Schmidt operators. Taking Weyl transform of 
the intertwining relation we obtain then the recursion formula.

Proof. It is enough to prove the identity for λ > 0. Fix the Jordan quadrangle as above. 
The intertwining relation (3.6) for n(1,0)v1 ∈ nC is

Tν (dπν(n(1,0)v1
)f) = dπ−ν(n(1,0)v1

) (Tνf) , (3.7)

for any Schwarz class function f ∈ S(V1×R) ⊆ I(ν). We choose a special class of functions 
f in order to find the recursion formula. Let η = η(z, s; λ) = eiλs−λ∣z∣

2
which will appear 

in all formulas below, and

fk(z, s) =
∞

∫
0

h(λ)Fk(z, s;λ)λd1 dλ,

where

Fk(z, s;λ) = η(z, s;λ)z̄k1

and h(λ) is as in Lemma 3.3. In particular, fk is in the Schwartz class S(n̄) = S(V1 ×R). 
We have
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dπν(n(1,0)v1
)fk =

∞

∫
0

h(λ)dπν(n(1,0)v1
)Fk(z, s;λ)λd1 dλ

and we shall prove that

(dπν(n(1,0)v1
)Fk) (z, s;λ) = iL(ν;k + 1)Fk+1(z, s;λ) +Rk(z, s;λ)η(z, s;λ), (3.8)

where the rest term Rk(z, s; λ) is a polynomial of (z, ̄z) and Rk(z, s; λ)η(z, s; λ) is or-
thogonal to Fk+1 in the space L2(V1). Thus

dπν(n(1,0)v1
)fk(z, s) = iL(ν;k + 1)fk+1(z, s) +Rk(z, s),

where

Rk(z, s) =
∞

∫
0

Rk(z, s;λ)η(z, s;λ)λd1 dλ.

It then follows from the Plancherel formula (1.7) that

⟨σλ(Rk), ζ0 ⊗ ζ∗k ⟩HS(Fλ) = ⟨σλ(Rk)ζk, ζ0⟩Fλ
= 0.

We perform Weyl transform σλ on the equation (3.7) with f = fk, we let it act on the 
element ζk ∈ Fλ,k(V1), and evaluate its inner product with ζ0 in Fλ(V1). By Lemma 3.3
above we get

h(λ)iL(ν;k + 1)t(ν, k + 1;λ) = h(λ)iL(−ν;k + 1)t(ν, k;λ).

This identity holds for any h(λ), so (3.5) follows.
The rest of the proof is to compute dπν(n(1,0)v1 )Fk(z, s; λ). The function dπν(n(1,0)v1 )Fk

is a linear combination of Fk+1 and a rest term of the form

Rk(z, s;λ)η(z, s;λ),

where Rk(z, s; λ) is a sum of polynomials of (z, ̄z) of bi-degrees (0, k+1), (1, k), (0, k−1)
and (2, k + 1), which are orthogonal to Fk+1. So we shall perform orthogonalization in 
the space L2(V1) and project onto the vector Fk+1. If two functions f and g are such 
that f − g is orthogonal to functions of bi-degree (0, k + 1), equivalently if then have the 
same orthogonal projection on functions of bi-degree (0, k + 1), then we write f ≡ g.

Let ∇vF (x) = d
dt
∣
t=0 F (x + tv) denote the derivative of F at x in the direction v. With 

this notation, the Lie algebra action of nv1 is given in [12, Corollary 3.2.2]:

dπν(nv1)Fk =
ν + ρ

2
ω(z, v1)Fk +

1
2
ω(Ψ(z), v1)

d

ds
Fk

+∇ω(z,v1)zFk +∇xFk +
s

2
ω(z, v1)

d

ds
Fk − s∇v1Fk,
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where [μ(z), ̄nv1] = n̄x, with x = i(∣z∣2v1 − 2D(z, ̄z)v1) + iD(e, ̄v1)D(z, ̄e)z by Proposi-
tion 1.1(vi). The complex linear and conjugate linear terms in x are x(1,0) = i(∣z∣2v1 −
2D(z, ̄z)v1) and x(0,1) = iD(e, ̄v1)D(z, ̄e)z. With (1.2), it follows that the complex linear 
part of v ↦ dπν(nv)Fk at v = v1 is

dπν(n(1,0)v1
)Fk = A +B +C +D +E,

where

A = i(ν + ρ)⟨v1, z⟩Fk = i(ν + ρ)z̄1Fk = i(ν + ρ)Fk+1,

B = i⟨v1,Ψ(z)⟩
d

ds
Fk,

C = (2i)⟨v1, z⟩∇zFk = (2i)z̄1(∂zFk + ∂̄zFk),
D = ∂̄iD(e,v̄1)D(z,ē)zFk + ∂i∣z∣2v1−D(z,z̄)v1Fk,

E = (is)⟨v1, z⟩
d

ds
Fk − s∂v1Fk,

with ∂v = 1
2(∇v − i∇iv) and ∂̄v = 1

2(∇v + i∇iv). For each term, we find the orthogonal 
projection onto Fk(z, s; λ) = z̄k+11 η(z, s; λ).

The last term E is

E = (is)⟨v1, z⟩(iλ)z̄k1η(z, s;λ) − s(−λ)⟨v1, z1⟩z̄k1η(z, s;λ) = 0.

The second term, using Proposition 1.1(iv):

B = (−iλ)∣z∣2z̄k+11 η(z, s;λ) + (iλ)⟨v1,D(z, z̄)z⟩z̄k1η(z, s;λ).

We leave this as it is and will combine it with the term D.
The third term C is

C = (2i)z̄1(∂zFk + ∂̄zFk)

and ∂z = ∑ zq∂q being the holomorphic Euler operator. Then

C = (2i)z̄1 [kz̄1
k + (−2λ)z̄1

k∣z∣2]η(z, s;λ) = (2i)kz̄1
k+1η(z, s;λ) − (4iλ)z̄k+11 ∣z∣2η(z, s;λ).

Its (0, k + 1)-term is given, using Proposition 3.4 (3), by

C ≡ (2i)kz̄1
k+1η(z, s;λ) − (4iλ) 1

2λ
(k + d1 + 1)z̄k+11 η(z, s;λ) = −2i(d1 + 1)Fk+1.

The last term D requires some more computations. We write

D =D1 +D2 +D3
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with

D1 = (∂̄iD(e,v̄1)D(z,ē)z z̄
k
1 )η(z, s;λ),

D2 = z̄k1 (∂̄iD(e,v̄1)D(z,ē)zη(z, s;λ)),
D3 = z̄k1 (∂i(∣z∣2v1−2D(z,z̄)v1)η(z, s;λ)).

We treat these three terms separately. The term

D1 = −ikz̄k−11 ⟨v1,D(e, v̄1)D(z, ē)z⟩η(z, s;λ) = −ikz̄k−11 ⟨D(v1, ē)v1,D(z, ē)z⟩η(z, s;λ) = 0

since D(v1, ̄e)v1 = 0. We further have

D2 = (iλ)⟨z,D(e, v̄1)D(z, ē)z⟩z̄k1η(z, s;λ),

which is treated in Proposition 3.4 (5) above, so that

D2 ≡ i(b1 + 1)z̄k+11 η(z, s;λ).

Finally,

D3 = (−λ)⟨i(∣z∣2v1 − 2D(z, z̄)v1), z⟩z̄k1η(z, s;λ)
= (−iλ)∣z∣2z̄k+11 η(z, s;λ) + (2iλ)z̄k1 ⟨v1,D(z, z̄)z⟩η(z, s;λ).

Combining with the term B, we have

B +D3 = (−2iλ)∣z∣2z̄k+11 η(z, s;λ) + (3iλ)⟨v1,D(z, z̄)z⟩z̄k1η(z, s;λ)
≡ i(2k + 3p1 − d1 − 1)z̄k+11 η(z, s;λ),

where we have used Proposition 3.4 (3) and (4) in the last step. Altogether this gives

dπν(n(1,0)v1
)Fk = iL(ν;k + 1)Fk+1 +Rest,

where

L(ν;k + 1) = (ν + ρ) + 2k − 3(d1 + 1) + b1 + 1 + 3p1 = (ν + ρ) + 2k − 2 − 2b1.

For g /≃ su(p, q) we have ρ = a1+2b1+3, which shows the claim in this case. For g ≃ su(p, q), 
the above computation is still valid for each of the two simple ideals of V1, and we obtain 
two different recursions for k ≥ 0:

L(ν;k + 1)t(ν, k + 1;λ) = L(−ν;k + 1)t(ν, k;λ),
L′(ν;k + 1)t(ν,−k − 1;λ) = L′(−ν;k + 1)t(ν,−k;λ),
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where

L(ν;k + 1) = (ν + ρ) + 2k − 2 − 2b1 = (ν + ρ) − 2p + 2 + 2k = ν + q − p + 1 + 2k,

L′(ν;k + 1) = (ν + ρ) + 2k − 2 − 2b′1 = (ν + ρ) − 2q + 2 + 2k = ν + p − q + 1 + 2k.

Since L′(ν; k + 1) = −L(−ν; −k), this proves the statement for g ≃ su(p, q). ◻

3.2. Evaluation at k = 0

We fix minimal orthogonal tripotents e1, e2 ∈ V1 with ∥e1∥ = ∥e2∥ = 1.
By Theorem 2.2, the constant function 1 is contained in Fλ,0(V1). We can therefore 

compute E(α, 0) by applying σλ(uα) to 1. By homogeneity in λ, we may even set λ = 1:

σ1(uα)1 = E(α,0)1.

Then

E(α,0) = ∫
n̄

uα(z, t)eite−∣z∣
2
dz dt. (3.9)

We consider the compact Hermitian symmetric space K/L0 = P(K/L) given as the 
projectivization of K/L. Explicitly

L0 = {k ∈K;k ⋅ e ∈ Ce}.

We denote the Lie algebra of L0 by l0. Let kC = q+ ⊕ lC0 ⊕ q− be the Harish-Chandra 
decomposition. Then q+ = {D(v, ̄e); v ∈ V1} is naturally isomorphic to the Jordan triple 
system V1 (see [40] for more details). Hence we can use polar coordinates (see [9, Sec-
tion 1]) on q+ ≅ V1 given by z = h(t1e1 + t2e2), h ∈ L0. Here t1 ≥ t2 ≥ 0 if g /≃ su(p, q) and 
t1, t2 ≥ 0 otherwise. Then

∫
V1

dv = const× ∫
t1,t2

(t21 − t22)a1t2b1+11 t
2b′1+1
2 ∫

L0

dhdt1 dt2, (3.10)

with positive constant determined by the normalization of the measures.
A key observation to solve the integral (3.9) is the following:

Lemma 3.6. For h ∈ L0 and t1, t2 ≥ 0, t ∈ R:

uα(h(t1e1 + t2e2), t) = ((t21 − t22)2 + t2)α.

Proof. Let w = t1e1 + t2e2. Since Ω is M -invariant, we have Ω(hw) = Ω(w) for all 
h ∈ L0 ⊆ M . Consider the formula for Ω given in Proposition 1.1(v). Then ∣w∣2 = t21 + t22
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by orthogonality. It remains to consider ⟨D(w, w̄)w, w⟩. By [26, Lemma 3.15] we can 
expand

⟨D(w, w̄)w,w⟩ = 2t31⟨e1,w⟩ + 2t32⟨e2,w⟩ = 2t41 + 2t42,

such that

Ω(w) = (t21 + t22)2 − 2t41 − 2t42− = −(t21 − t22)2,

which proves the statement. ◻

It follows that

E(α,0) = const×∫
R

eit ∫
t1≥t2≥0

((t21 − t22)2 + t2)αe−(t
2
1+t

2
2)(t21 − t22)a1t2b1+11 t

2b′1+1
2 dt1 dt2 dt.

Proposition 3.7. For −1 − a1
2 < α < −1

2 the following integral exists as an oscillatory 
integral:

∫
R

eit ∫
t1>t2≥0

((t21 − t22)2 + t2)αe−(t
2
1+t

2
2)(t21 − t22)a1t2b1+11 t

2b′1+1
2 dt1 dt2 dt.

It can be evaluated in the following two cases:

(1) For b1 = b′1 the integral equals

2a1−2Γ(a1+2b1+2
2 )Γ(a1+1

2 )Γ(b1 + 1) ×
22αΓ(α + a1+2

2 )Γ(α + a1+2b1+3
2 )

Γ(−α)Γ(α + a1 + b1 + 2) .

(2) For a1 = 0 the integral equals

2−3−b1−b
′
1πΓ(b1 + 1)Γ(b′1 + 1) × Γ(α + 1)Γ(2α + b1 + b′1 + 3)

Γ(−α)Γ(α + b1 + 2)Γ(α + b′1 + 2) .

Proof. First we obtain after change of coordinates t21 = r, t22 = rs

1
4 ∫

R

eit∫
R+

1

∫
0

(r2(1 − s)2 + t2)αe−r(1+s)(1 − s)a1ra1+b1+b
′
1+1sb1 dsdr dt.

Changing coordinates further to t ↦ tr(1 − s) we obtain

1
4 ∫ (1 + t2)α∫ e−r(1−it)r2α+a1+b1+b

′
1+2

1

∫ e−rs(1+it)(1 − s)2α+a1+1sb1 dsdr dt.
R R+ 0



J. Frahm et al. / Advances in Mathematics 422 (2023) 109001 31
We can calculate the integral over s using [15, 3.383 (1)] and obtain

B(2α + a1 + 2, b1 + 1)
4

× ∫
R

(1 + t2)α ∫
R+

e−r(1−it)r2α+a1+b1+b
′
1+21F1(

b1 + 1
2α + a1 + b1 + 3

;−r(1 + it))dr dt.

Using [15, 7.522 (9)] we can evaluate the integral over r:

B(2α + a1 + 2, b1 + 1)Γ(2α + a1 + b1 + b′1 + 3)
4

× ∫
R

(1 + t2)α(1 − it)−(2α+a1+b1+b
′
1+3)2F1(

b1 + 1, 2α + a1 + b1 + b′1 + 3
2α + a1 + b1 + 3

;−1 + it

1 − it
)dt.

We expand the hypergeometric function and obtain using the Cauchy Beta Integral

∫
R

(1 + t2)α(1 − it)−(2α+a1+b1+b
′
1+3)2F1(

b1 + 1, 2α + a1 + b1 + b′1 + 3
2α + a1 + b1 + 3

;−1 + it

1 − it
)dt

=
∞

∑
m=0

(−1)m (b1 + 1)m(2α + a1 + b1 + b′1 + 3)m
m!(2α + a1 + b1 + 3)m ∫

R

(1 + it)α+m(1 − it)−α−a1−b1−b
′
1−m−3 dt

=
∞

∑
m=0

(−1)m (b1 + 1)m(2α + a1 + b1 + b′1 + 3)m
m!(2α + a1 + b1 + 3)m

2−1−a1−b1−b
′
1πΓ(a1 + b1 + b′1 + 2)

Γ(−α −m)Γ(α + a1 + b1 + b′1 +m + 3)

= 2−1−a1−b1−b
′
1πΓ(a1 + b1 + b′1 + 2)

Γ(−α)Γ(α + a1 + b1 + b′1 + 3) 3F2(
b1 + 1, 2α + a1 + b1 + b′1 + 3, α + 1

2α + a1 + b1 + 3, α + a1 + b1 + b′1 + 3
; 1).

For b1 = b′1, the hypergeometric function can be evaluated using Proposition D.1, and 
for a1 = 0 we can use Proposition D.2. The claimed formulas now follow after applying 
the duplication formula for the Gamma function. ◻

Proof of Theorem 3.1. Proposition 3.7 implies the formula for k = 0. Then applying the 
recursion of Theorem 3.5 yields the formula. ◻

3.3. The symplectic case

We will shortly handle the case g = sp(n, R). Here M = Sp(n − 1, R) acts by the 
projective representation ωmet,λ irreducibly on even and odd functions in the Fock space 
such that

Fλ(V1)∣sp(n−1) = Fλ,0(V1) ⊕ Fλ,1(V1).

Let Pk, k ∈ {0, 1} be the corresponding orthogonal projections and define
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E(α,k) = (−1)k2πn−1Γ(2α + 1) cos(π 2α + 1
2

) . (3.11)

In this section we prove the following theorem:

Theorem 3.8. We have for g ≃ sp(n, R)

σλ(uα) = ∣λ∣−2α−n[E(α,0)P0 + E(α,1)P1].

Lemma 3.9. We have Ω(v) = 0 for all v ∈ V1.

Proof. This is an easy computation, by for example realizing V as the space of symmetric 
complex n × n matrices to find that ⟨D(v, ̄v)v, v⟩ = ∣v∣4 for all v ∈ V1. ◻

Proof of Theorem 3.8. Assume λ > 0. Further we assume −1
2 < Re(α) < 0 and let N ∈

Zn−1
≥0 be a multiindex. Then

E(α,k)∣λ∣−2α−n = 1
N !

∂ ∣N ∣

∂zN

BBBBBBBBBBBz=0
σλ(uα)zN

= ∑
N ′≤N

(N
N ′
)(−2λ)∣N ′∣

N ′! ∫
R

eiλt∣t∣2α dt ∫
Cn−1

e−λ∣z∣
2
∣z1∣N

′
1 . . . ∣zn−1∣N

′
n−1 dz,

where k ∈ {0, 1} is determined by the multiindex N being even or odd. The first integral 
is just a Fourier transform (in the distribution sense) and we evaluate

∫
R

eiλt∣t∣2α dt = 2∣λ∣−2α−1
∞

∫
0

cos(t)t2α dt = 2∣λ∣−2α−1Γ(2α + 1) cos(π 2α + 1
2

) .

For the second integral we choose N ∈ {(0, . . . , 0), (1, 0, . . . , 0)}, so that we only need to 
consider N ′1 = 0, 1, and use polar coordinates to find

∫
Cn−1

e−λ∣z∣
2
∣z1∣N

′
1 dz =

∞

∫
0

r2n−3+2N ′1e−λr
2
dr ∫

S2n−3

∣ω1∣2N
′
1 dω.

Applying the coordinates {z ∈ C; ∣z∣ < 1} ×S2n−3 → S2n−1, (z, η) → (z, 
√

1 − ∣z∣2η) we can 
evaluate this to

∞

∫
0

r2n−3+2N ′1e−λr
2
dr ∫

S2n−3

∣ω1∣2N
′
1 dω = ∣λ∣−n+1−N

′
1πn−1.

Hence, in total we obtain the claimed formula. The statement follows for all α by mero-
morphic continuation. ◻
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4. The complementary series and its endpoint

We use the Plancherel formula for the Heisenberg group Fourier transform combined 
with the formula for the Fourier transform of the Knapp–Stein kernel to identify the 
complementary series in πν , as well as a unitary quotient/subrepresentation at the end 
of the complementary series which is related to the kernel of a conformally invariant 
system of differential operators.

4.1. The Hermitian form under the Fourier transform

For any ν ∈ C, the bilinear pairing

I(ν) × I(−ν) → C, (f1, f2) ↦ ∫
N̄

f1(n̄)f2(n̄)dn̄

is invariant for πν ⊗ π−ν . Twisting with the intertwining operator Aν ∶ I(ν) → I(−ν), it 
follows that for ν ∈ R the sesquilinear form

I(ν) × I(ν) → C, (f1, f2) ↦ ⟨f1, f2⟩ν = ∫
N̄

(Aνf1)(n̄)f2(n̄)dn̄

is G-invariant. Combining the Plancherel formula (1.7) with Theorems 3.1 and 3.8 shows 
that for Reν > −ρ this sesqui-linear form can be rewritten as

⟨f1, f2⟩ν = c∑
k

E(ν−ρ2 , k)∫
R×

tr (σλ(f1) ○ Pk ○ σλ(f2)∗)∣λ∣−ν+ρ−1 dλ. (4.1)

4.2. The complementary series

By (4.1) we can use the results of Section 3 to find the complementary series of the 
degenerate principal series representations.

Theorem 4.1. For ν ∈ R, the representation (πν , I(ν)) is irreducible and unitary (also 
called a complementary series representation) if and only if

ν ∈
⎧⎪⎪⎨⎪⎪⎩

(−1,1) if g ≃ su(p, q) and p − q is even,
(−a1 − 1, a1 + 1) if g /≃ su(p, q), sp(n,R).

Proof. By (4.1) it is enough to check if the scalars E(ν−ρ2 , k) are real valued and of the 
same sign. First, for g = sp(n, R) by Theorem 3.8, we have

E(α,0) = −1
E(α,1)



34 J. Frahm et al. / Advances in Mathematics 422 (2023) 109001
for all α ∈ C, such that there is no complementary series.
Now let g ≃ su(p, q). Let wlog p − q = r ≥ 0. By Theorem 3.1 we have that

E(ν−ρ2 , k) = (−1)rE(ν−ρ2 ,−k − r). (4.2)

Hence for r odd we have no complementary series. Now assume r = 2m is even and 
k ≥ 0. Then

E(ν−ρ2 , k −m) = const× (−1)k−m
Γ(ν+12 + k)Γ(ν+12 − k)

= const×
(−ν+12 )k

Γ(ν+12 + k)
,

which is definite if and only if ν ∈ (−1, 1). By (4.2) the same follows for k ≤ 0.
Finally in the remaining cases we have by Theorem 3.1,

E(ν−ρ2 , k) = const×
(−ν+a1+1

2 )k
Γ(ν+a1+1

2 + k)
,

which is definite if and only if ν ∈ (−a1 − 1, a1 + 1). ◻

Remark 4.2. In the cases where there is no complementary series, i.e. g ≃ su(p, q) with 
p −q odd or g ≃ sp(n, R), the representation I(ν) for ν = 0 decomposes into the direct sum 
of two unitarizable irreducible representations (see [17, Section 4] for su(p, q) and [11, 
Theorem 2.29] for sp(n, R)). On the Fourier transformed side, these subrepresentations 
correspond to the decomposition of the Fock spaces Fλ(V1) into even and odd functions.

4.3. The end of the complementary series

In this section we study subrepresentations realized as the kernel of the intertwining 
operator Aν at the end of the complementary series. Let therefore

ν0 =
⎧⎪⎪⎨⎪⎪⎩

1 if g ≃ su(p, q) and p − q even,
a1 + 1 if g /≃ su(p, q), sp(n,R),

and assume throughout this section that g /≃ sp(n, R) and that p − q is even in case 
g ≃ su(p, q). Then it is easily read off from Theorem 3.1 that E(−ν0−ρ

2 , k) = 0 if and only 
if k ≠ k0, where

k0 =
⎧⎪⎪⎨⎪⎪⎩

q−p
2 if g ≃ su(p, q) and p − q even,

0 if g /≃ su(p, q), sp(n,R).

Hence, by Theorems 3.1 and 3.8, the kernel KerA−ν0 consists of those functions f ∈ I(ν)
such that



J. Frahm et al. / Advances in Mathematics 422 (2023) 109001 35
σλ(f)∣Fλ,k(V1) = 0,

for all k ≠ k0. We view this as the image of Aν0 since E(ν0−ρ
2 , k) = 0 if and only if k = k0. 

Then obviously, the invariant sesqui-linear form ⟨⋅, ⋅⟩ν vanishes on KerA−ν0 . But since 
KerA−ν0 = ImAν0 we can as well consider the parameter ν0:

⟨f1, f2⟩ν0 = const×∫
R×

tr (σλ(f1) ○ Pk0 ○ σλ(f2)∗)∣λ∣−ν0+ρ−1 dλ. (4.3)

This should really be viewed as an invariant form on ImAν0 .
For f ∈ I(ν0) let Af(λ, k) = σλ(f)∣Fλ,k(V1) ∶ Fλ,k(V1) → Fλ(V1), then

⟨f1, f2⟩ν0 = const×∫
R×

tr (Af1(λ, k0) ○Af2(λ, k0)∗)∣λ∣ρ−ν0−1 dλ,

which is obviously positive semidefinite (if one normalizes the constant to be positive). 
We have therefore proved:

Theorem 4.3. The subrepresentation ImAν0 = KerA−ν0 ⊆ I(−ν0) is proper and unitariz-
able.

Remark 4.4. One could do the same for ν = −ν0−2n, but here the coefficient in E(−ν−ρ2 , k)
would be

const× (−n)k
Γ(ν0 + n + k) ,

whose sign is (−1)k, so the corresponding subrepresentation is not unitarizable.

We describe the K-types of the unitarizable representation KerA−ν0 . Following [40, 
Lemma 2.5] we have for g /≃ su(p, q), sp(n, R)

I(ν)∣K ≃⊕
l∈Z

⊕
μ1≥μ2≥∣l∣,

μ1=μ2=l mod 2

Wμ1,μ2,l,

where Wμ1,μ2,l is the K-module of highest weight lα0 + μ1α1 + μ2α2, where {α0, α1, α2}
is the dual basis to {iZ, i(E+1 −E−1 ), i(E+2 −E−2 )} as given in Section 2. For more details 
see [40]. For g ≃ su(p, q) we have even more explicitly following [17]

I(ν)∣K ≃ ⊕
μ1,μ2≥0

⊕
μ1=m1+n1,
μ2=m2+n2,

m1−m2=n1−n2

Hm1,n1(Cp) ⊗Hm2,n1(Cq),

where Ha,b are the harmonic homogeneous polynomials of holomorphic degree a and 
anti-holomorphic degree b.
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Corollary 4.5. For g /≃ su(p, q), sp(n, R) we have

KerA−ν0 ∣K ≃⊕
l∈Z

⊕
μ≥∣l∣,

μ=l mod 2

Wμ,μ,l

and for g ≃ su(p, q) we have

KerA−ν0 ∣K ≃ ⊕
μ1,μ2≥0,

μ1−μ2=q−p

⊕
μ1=m1+n1,
μ2=m2+n2,

m1−m2=n1−n2

Hm1,n1(Cp) ⊗Hm2,n2(Cq).

Proof. This result can be read off easily from [40, Theorem 3.1] or [17, Section 4] in the 
latter case. ◻

Remark 4.6. The results above can also be proven using the compact picture as studied 
in [40], and in the case of su(p, q) this was already done in [17]. Yet, our approach of 
studying the non-compact picture gives a rather quick and systematic proof in all cases.

4.4. Relation to conformally invariant systems

Barchini, Kable and Zierau constructed in [2] a system Ωμ(T ) of second order dif-
ferential operators on N̄ , parametrized by T ∈ m, such that the joint kernel of Ωμ(m′)
is a subrepresentation of I(ν) for each simple or abelian factor m′ ⊆ m and a certain 
parameter ν = ν(m′). In some cases, we can relate this kernel to the subrepresentation 
constructed above. The key observation for this is that by [12, Theorem 4.4.1] we have

σλ(Ωμ(T )f) = 2iλ ⋅ σλ(f) ○ dωmet,λ(T ) (T ∈ m), (4.4)

where dωmet,λ denotes the metaplectic representation of sp(V1, ω) on Fλ(V1) restricted 
to m.

We first show that in the case where m′ is non-compact, the kernel of Ωμ(m′) is trivial. 
For this, we use the notation

I(ν)Ωμ(m
′) = {f ∈ I(ν);Ωμ(T )f = 0 for all T ∈ m′}.

Lemma 4.7. If m′ ⊆ m is a non-compact simple factor, then I(ν)Ωμ(m
′) = {0}.

Proof. Let f ∈ I(ν), then (4.4) implies that Ωμ(T )f = 0 for all T ∈ m′ if and only if 
σλ(f)∣W = 0, where W = dωmet,λ(m′)Fλ(V1)∞. Since W is a closed m′-invariant subspace 
of Fλ(V1)∞ and dωmet,λ∣m′ decomposes discretely into irreducible subrepresentations U , 
it follows that W is the closure of the direct sum of the subrepresentations dωmet,λ(m′)U . 
But dωmet,λ(m′)U is a closed m′-invariant subspace of U , so either dωmet,λ(m′)U = U

or dωmet,λ(m′)U = {0}. In the latter case, U would be the trivial representation of m′
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which, by the Howe–Moore property, cannot occur in the restriction of a non-trivial 
irreducible unitary representation of the metaplectic group Mp(V1, ω) to a non-compact 
subgroup (see e.g. [18, Theorem 5.1]). Hence, dωmet,λ(m′)U = U for all U and therefore 
W = dωmet,λ(m′)Fλ(V1)∞ = Fλ(V1)∞. But this implies σλ(f) = 0 and hence, by the 
injectivity of the Fourier transform, also f = 0. ◻

We therefore restrict to the case where m has a compact factor mcpt. By the clas-
sification (see Table 1) this happens if and only if g ≃ su(p, q), so(2, n), so∗(2n), where 
mcpt = u(1), so(n − 2), su(2), respectively. Moreover, in all cases ν(mcpt) = −ν0 (cf. [12, 
Theorem 4.2.3 and Table D.2]).

Theorem 4.8. For g ≃ su(p, q), so(2, n) or so∗(2n) we have

I(−ν0)Ωμ(mcpt) = KerA−ν0 = ImAν0 .

Proof. As in the proof of Lemma 4.7 we conclude that W = dωmet,λ(mcpt)Fλ(V1)∞ is the 
closure of the direct sum of dωmet,λ(mcpt)U , where U runs through the irreducible sub-
representations of dωmet,λ∣mcpt . However, since mcpt is compact, the trivial representation 
can and does occur in dωmet,λ∣mcpt . In fact, by Propositions B.1, B.2 and Theorem 2.3, 
the largest subspace of Fλ(V1)∞ on which mcpt acts trivially is Fλ,k0(V1) ∩ Fλ(V1)∞. 
Hence, W = Fλ,k0(V1)⊥ ∩ Fλ(V1)∞ and it follows that f ∈ I(−ν0)Ωμ(mcpt) if and only if 
σλ(f)∣W = 0. Since W is the closure of the subspaces Fλ,k(V1), k ≠ k0, the result follows 
from the observations above about KerA−ν0 . ◻

Remark 4.9. For g = su(p, q) we have mcpt = u(1) and hence, the system Ωμ(mcpt)
consists of a single differential operator on N̄ , the CR-Laplacian ◻ on the Heisenberg 
group N̄ ≃ Cp−1,q−1 ⋉R associated with the Hermitian form on Cp−1,q−1 given by

(z,w) ↦ [z,w] = z1w̄1 +⋯+ zp−1w̄p−1 − zpw̄p −⋯− zp+q−2w̄p+q−2.

The subrepresentation KerA−1 agrees with the space of solutions to the equation ◻f =
0. This equation and the corresponding representation were previously studied in the 
context of CR geometry by Wang [38]. We remark that in his work, the question of 
unitarity was not addressed. As a consequence of our results, we can conclude that the 
kernel of the Knapp–Stein operator

A−1f(n̄(z,t)) = ∫
Cp+q−2×R

(s2 + [w,w]2)−
p+q
2 −1f(n̄(z,t) ⋅ n̄(w,s))d(w, s)

consists of solutions to the Yamabe equation ◻f = 0 if p − q is even. If p − q is odd the 
representation constructed as the kernel of the Yamabe equation is in fact trivial. This 
follows from our results, but can also be deduced from Howe–Tan [17] and can easily be 
verified by checking that
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σλ(◻) = −
λ

2
(2Ep−1,q−1 + p − q),

where Ep−1,q−1 is the (p − 1, −q + 1)-Euler operator on V1. The vanishing of Wang’s 
representation in the case p − q odd resembles the same phenomenon for O(p, q), where 
the minimal representation can be realized on the kernel of the Yamabe operator on 
Rp−1,q−1 if p − q is even, and for p − q odd there are no K-finite solutions of the Yamabe 
equation (see [23, Theorem 3.6.1 (3)]).

5. A Bernstein–Sato identity

In this section we obtain a Bernstein–Sato identity for the Knapp–Stein kernel

uα(v, t) = (t2 −Ω(z))α (v, t) ∈ V1 ×R ≃ n̄1.

For this, let {eα} be a basis of V1 as a real vector space (and hence of n̄1 by our iden-
tification) and let {êα} be the dual basis with respect to the symplectic form ω, i.e. 
ω(eα, ̂eβ) = δαβ . In the coordinates (v, t) ∈ n̄ ≅ V1 ×R the left-invariant vector fields are 
generated by

∇α ∶= ∇vα +
1
2
ω(eα, v)

∂

∂t
and ∇T = ∂

∂t
,

where ∇vf(x) = d
dt
∣
t=0 f(x + tv) denotes the directional derivative. We define the fourth 

order differential operator

Ω(∇) ∶= ∑
α,β,γ,δ

BΩ(êα, êβ , êγ , êδ)∇α∇β∇γ∇δ.

Theorem 5.1 (Bernstein–Sato identity).

(Ω(∇) − cα∇2
T )uα(v, t) = dαuα−1(v, t),

where

cα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
16 ((2α + d1)2 + d1) if g ≃ su(p, q),
1
16 ((2α + d1)2 + 3d1 − 4) if g ≃ so(2, n), so∗(2n),
1 if g ≃ sp(n,R),
1
16 ((2α + d1)2 + 1

9(2d
2
1 + 11d1 − 4)) otherwise,

and
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dα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−α2

4 (2α + d1 − 1)(2α + d1) if g ≃ su(p, q),
−α

4 (α + 1)(2α + d1 − 2)(2α + d1 − 1) if g ≃ so(2, n), so∗(2n),
−2α(2α − 1) if g ≃ sp(n,R),
− α

36(2α + d1 − 1)(3α + d1 − 1)(6α + d1 + 2) otherwise.

First we observe that

∇2
Tuα(v, t) = 4α(α − 1)t2uα−2(v, t) + 2αuα−1(v, t). (5.1)

Second, since Ω(∇) is a differential operator of degree 4 in the right invariant vector 
fields, we have

Ω(∇)uα(v, t) = αp1(v, t)uα−1(v, t) + α(α − 1)p2(v, t)uα−2(v, t)
+ α(α − 1)(α − 2)p3(v, t)uα−3(v, t) + α(α − 1)(α − 2)(α − 3)p4(v, t)uα−4(v, t), (5.2)

where the polynomials p1, . . . , p4 are expressed as combinations of derivatives of u(v, t) =
u1(v, t) = t2 −Ω(v) as follows:

p1(v, t) = ∑
α,β,γ,δ

BΩ(êα, êβ , êγ , êδ)∇α∇β∇γ∇δu(v, t),

p2(v, t) = p
(2,2)
2 (v, t) + p

(1,3)
2 (v, t) = 3 ∑

α,β,γ,δ

BΩ(êα, êβ , êγ , êδ)∇α∇βu(v, t)∇γ∇δu(v, t)

+ 4 ∑
α,β,γ,δ

BΩ(êα, êβ , êγ , êδ)∇α∇β∇γu(v, t)∇δu(v, t),

p3(v, t) = 6 ∑
α,β,γ,δ

BΩ(êα, êβ , êγ , êδ)∇α∇βu(v, t)∇γu(v, t)∇δu(v, t),

p4(v, t) = ∑
α,β,γ,δ

BΩ(êα, êβ , êγ , êδ)∇αu(v, t)∇βu(v, t)∇γu(v, t)∇δu(v, t).

In order to prove the theorem, we find explicit expressions for the polynomials p1, . . . , p4
and conclude that Ω(∇)uα is a linear combination of uα−1 and Ω(x)uα−2, which allows 
us to combine (5.2) and (5.1) to a Bernstein–Sato identity.

5.1. The calculations

Throughout this section we will make frequent use of the identities of [12, Lemma 2.4.1, 
Lemma 2.4.2 and Lemma 2.4.3]. The following proposition is due to basic calculations 
together with the lemmas mentioned above.

Lemma 5.2.

(i) ∇αu(v, t) = −ω(eα, tv +Ψ(v)),
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(ii) ∇α∇βu(v, t) = ω(eβ , μ(v)eα) − ω(eα, eβ)t,
(iii) ∇α∇β∇γu(v, t) = 2ω(eγ , Bμ(eα, v)eβ) − 1

2ω(eβ , eγ)ω(eα, v),
(iv) ∇α∇β∇γ∇δu(v, t) = 2ω(eδ, Bμ(eα, eβ)eγ) + 1

2ω(eα, eβ)ω(eγ , eδ).

Recall the constants σ and τ from Lemma C.3 and Lemma C.6. Then Theorem 5.1
follows from the following proposition.

Proposition 5.3.

(i) p4(v, t) = Ω(v)u(v, t)2,
(ii) p3(v, t) = u(v, t)Ω(v)(d1 + 5),
(iii) p

(1,3)
2 (v, t) = −1

3Ω(v)(8σ + 2d1 + 1),
(iv) p

(2,2)
2 (v, t) = 1

4Ω(v)(τ − d1 − 8),
(v) p1(v, t) = 1

24d1(8σ + 2d1 + 1).

Proof. Ad (i): We have by [12, Lemma 2.4.1, Lemma 2.4.2]

p4(v, t) =

∑
α,β,γ,δ

BΩ(êα, êβ , êγ , êδ)ω(eα, tv +Ψ(v))ω(eβ , tv +Ψ(v))ω(eγ , tv +Ψ(v))ω(eδ, tv +Ψ(v))

= Ω(tv +Ψ(v)) = Ω(v)u(v, t)2.

Ad (ii): By [12, Lemma 2.4.1, Lemma 2.4.2]

p3(v, t) = 6∑
α

BΩ(tv +Ψ(v), tv +Ψ(v), μ(v)eα, êα)

= −1
4 ∑α

ω(μ(v)eα,2μ(tv +Ψ(v))êα + ω(tv +Ψ(v), êα)(tv +Ψ(v)))

= −1
2
u(v, t)∑

α

ω(μ(v)eα, μ(v)êα) −
1
4
ω(μ(v)(tv +Ψ(v)), tv +Ψ(v))

= 1
2
u(v, t) tr(μ(v)2) + 3

4
ω(Ψ(v)t +Ω(v)v, tv +Ψ(v))

= 1
2
u(v, t) tr(μ(v)2) + 3

4
t2ω(Ψ(v), v) + 3

4
Ω(v)ω(v,Ψ(v))

= 1
2
u(v, t) tr(μ(v)2) − 3Ω(v)u(v, t).

Then the statement follows by Lemma C.3.
Ad (iii): We have by [12, Lemma 2.4.2]

p
(1,3)
2 (v, t) = −8 ∑

α,β

BΩ(tv +Ψ(v),Bμ(eα, v)eβ , êα, êβ)

= 2
3 ∑ ω (Bμ(eα, v)eβ ,Bμ(êα, tv +ψ(v))êβ
α,β
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+1
4
ω(êα, êβ)(tv +Ψ(v) + 1

4
ω(tv + ψ(v), êβ)êα))

= −2
3 ∑α

tr(Bμ(êα, ψ(v))Bμ(eα, v)) +
1
6 ∑α

ω(Bμ(eα, v)êα, tv +Ψ(v))

+ 1
6 ∑α

ω(Bμ(eα, v)(tv +Ψ(v)), êα)

= −2
3 ∑α

tr(Bμ(êα, ψ(v))Bμ(eα, v)) +
1
3 ∑α

ω(Bμ(eα, v)êα, tv +Ψ(v)).

Further we calculate using [12, Lemma 2.4.3]

∑
α

ω(Bμ(eα, v)êα, tv +Ψ(v))

= ∑
α

ω(Bμ(eα, êα)v, tv +Ψ(v))

+ 1
4 ∑α

ω(ω(eα, v)êα − ω(eα, êα)v − 2ω(v, êα)eα, tv +Ψ(v))

= − 2d1 + 1
4

ω(v,Ψ(v))

= − (2d1 + 1)Ω(v).

Then the statement follows by Corollary C.5.
Ad (iv): By [12, Lemma 2.4.2]

p
(2,2)
2 (v, t) = 3 ∑

α,β

BΩ(μ(v)eα, êα, μ(v)eβ , êβ)

= −1
4 ∑

α,β

ω(μ(v)eα,Bμ(μ(v)eβ , êβ)êα) −
1
8 ∑β

ω(μ(v)μ(v)eβ, êβ)

= 1
4 ∑α

tr(Bμ(μ(v)eα, êα)μ(v)) −
1
8

tr(μ(v)2).

Again the formula follows from Lemma C.3 and Lemma C.6.
Ad (v): By [12, Lemma 2.4.2] we calculate

p1(v, t) = 2 ∑
α,β,γ

BΩ(Bμ(eα, eβ)eγ , êα, êβ , êγ)

= 1
6 ∑

α,β

tr((Bμ(eα, eβ)Bμ(êα, êβ)) −
1
24 ∑

α,β,γ

ω(Bμ(eα, eβ)eγ , ω(êα, êγ)êβ)

− 1
24 ∑

α,β,γ

ω(Bμ(eα, eβ)eγ , ω(êβ , êγ)êα),

where the first summand is equal to 1σd1 by Corollary C.5. Further, by [12, Lemma 2.4.3]
3
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− 1
24 ∑

α,β,γ

ω(Bμ(eα, eβ)eγ , ω(êα, êγ)êβ)

− 1
24 ∑

α,β,γ

ω(Bμ(eα, eβ)eγ , ω(êβ , êγ)êα)

= − 1
12 ∑

α,β

ω(Bμ(eα, eβ)êα, êβ)

= − 1
12 ∑

α,β

ω(Bμ(eα, êα)eβ , êβ)

− 1
48 ∑

α,β

ω(ω(eα, eβ)êα − ω(eα, êα)eβ − 2ω(eβ, êα)eβ , êβ)

= 1
48 ∑α

ω(eα, êα)(2d + 1) = d1(2d1 + 1)
24

. ◻

Proof of Theorem 5.1. From Proposition 5.3 it follows, that

Ω(∇)uα(v, t) =
α

24
d1(8σ + 2d1 + 1)uα−1(v, t)

+ α(α − 1)
12

(12α2 + 12d1α + 3τ − 32σ − 35d1 − 76)Ω(v)uα−2(v, t) (5.3)

which implies the theorem together with (5.1). ◻

5.2. Application: fundamental solutions

For g /≃ sp(n, R), we define the renormalization

ũα =
2

c′L0
Γ(α + d1+1

2 )
uα,

where c′L0
is the structure constant as in (3.10). Then the Bernstein–Sato identity can 

be rewritten as

(Ω(∇) − cα∇2
T )ũα = d̃αũα−1,

where

d̃α =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−α2

2 (2α + d1) if g ≃ su(p, q),
−α

2 (α + 1)(2α + d1 − 2) if g ≃ so(2, n), so∗(2n)
− α

18(3α + d1 − 1)(6α + d1 + 2) otherwise.

Proposition 5.4. For g /≃ sp(n, R), we have

ũ d1+1 (v, t) = δ(v, t).

− 2
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Proof. First let g /≃ su(p, q), sp(n, R). We consider the coordinates (3.10). Then we have 
using the coordinates

(t1, t2, t) = (
√
r sin

1
2 φ cosh s,

√
r sin

1
2 φ sinh s, r cosφ)

and an appropriate test function ϕ,

∫
t1≥t2≥0

∫
R

uα(h(t1e1 + t2e2), t)ϕ(h(t1e1 + t2e2), t)dt1 dt2 dt

= ∫
R

∫
t1,t2

((t21 − t22)2 + t2)α(t21 − t22)a1t2b1+11 t
2b′1+1
2 ϕ(h(t1e1 + t2e2), t)dt1 dt2 dt

= 1
2 ∫
R+

r2α+d1 ∫
R+

cosh2b1+1 s sinh2b′1+1 s

π

∫
0

sind1−1 φϕ(h(t1e1 + t2e2), t)dφdsdr,

such that uα is essentially given as a Mellin transform and a distribution which is in-
dependent of α and which can be thought of as describing the level sets of t2 − Ω(v). 
Since

1
Γ(α + d1+1

2 )
r2α+d1 ∣

α=−
d1+1

2

= δ(r),

and since the integrand of the inner integrals is locally integrable, we prove the statement 
in this case.

In the case of g ≃ su(p, q) the argument is similar, using polar coordinates on 
(Cp−1, Cq−1). ◻

Now we can use Theorem 5.1 to find further residues of uα.

Corollary 5.5. For g /≃ sp(n, R) and αl = −d1+1
2 − l, l ∈ Z≥0 we have

ũαl
=

l−1
∏
j=0

d−1αj
(Ω(∇) − cαj

∇2
T )δ(v, t)

Note that dαj
≠ 0 for all j ∈ Z≥0.

Remark 5.6. We excluded the case g ≃ sp(n, R) in the discussion above. Actually, this 
case is even easier to handle. Here, Ω = 0 and we just have uα(v, t) = ∣t∣2α which satisfies 
the Bernstein–Sato identity u′′α = 2α(2α − 1)uα−1 as claimed in Theorem 5.1, and also

1
Γ(α + 1)

uα(v, t)∣
α=− 1−l

= δ(2l)(t)
4l(1)

(l ∈ Z≥0).

2 2 2 l
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Another consequence of Proposition 5.4 and the Bernstein–Sato identity in Theo-
rem 5.1 is:

Corollary 5.7. For g /≃ sp(n, R), the distribution

v = 1
d̃α

uα

with α = 1−d1
2 is a fundamental solution for the differential operator

Ω(∇) − cα∇2
T ,

i.e. (Ω(∇) − cα∇2
T )v = δ.

Appendix A. Highest and lowest roots of V1

We give a list of the highest root δ1 and lowest root δ0 in n̄1 ≃ V1 with respect to the 
Cartan subalgebra in lC of mC. We exclude the case g = sp(n, R). These results can be 
found in [8] or can be derived from there.

Let γ1 < γ2 < ⋯ < γr be the Harish-Chandra strongly orthogonal roots for gC. The 
Jordan characteristic for G/K is (r, a, b). When M is irreducible, the Jordan character-
istic for M/L is (r − 1, a, b). Then γ2 < ⋯ < γr are the strongly orthogonal roots for the 
non-compact factor of M , and M is not simple precisely for g ≃ su(p, q), so∗(2n), so(2, n). 
When M/L is of tube type, the central character ζ0 with the normalization ζ0(γ∨2 ) = 1
is precisely (see e.g. [33])

ζ0 =
1
2
(γ2 +⋯ + γr).

The highest and lowest roots δ1, δ0 in V1 are not linear combinations of γ2, . . . , γr and 
involve other simple roots (except for sp(n, R)) and their precise description depends 
on the root system. It follows by definition that δ0 is the lowest positive non-compact 
root connected to γ1. Thus, the Dynkin diagram for mC is obtained from that of gC

by deleting the lowest root γ1 and the corresponding simple compact root connected to 
γ1 and add γ2 to the diagram. For the classical domains, the roots δ1, δ0 can be found 
directly without reference to the root system of gC. However, for the two exceptional 
domains it is convenient to express δ1 and δ0 in terms of simple roots of gC.

In the Jordan triple notation we have γ∨2 = D(w, w̄). The action of γ∨2 on v1 ∈ V1 is 
1 which then also determines the value of ζ0. We write the joint Peirce decomposition 
for e1 = e, e2 = w as V = V11 ⊕ V22 ⊕ V12 ⊕ V10 ⊕ V20 ⊕ V00 with V11 = Ce, V22 = Cw, and 
dimV12 = a. This gives the Peirce decomposition for e as V = V2 ⊕ V1 ⊕ V0 with

V1 = V12 ⊕ V10.
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Thus, D(w, w̄) = γ∨2 acts on V1 as

D(w, w̄)∣V12 = 1, D(w, w̄)∣V10 = 0.

It follows that

tr adV1(γ∨2 ) = a.

Since the central character ζ0 is normalized by ζ0(γ∨2 ) = 1, we have

tr adV1 = aζ0, (A.1)

in the case where m is irreducible. However, it follows from the classification that l
always has one-dimensional center, thus the above relation is true in all cases. The 
central character is found explicitly in terms of simple roots of mC in [8] which we recall 
below.

A.1. The case g = so∗(2n)

Here m = so∗(2(n − 2)) + su(2) is reducible, l = u(n − 2) ⊕ su(2), k = u(n), l0 =
u(n − 2) ⊕ u(2) and (a1, b1) = (2, n − 4). The Lie algebra so(2(n − 2), C) has root system 
of type Dn−2.

The real rank of g is r = [n2 ]. The positive roots and non-compact positive roots are

Δ+ = {εj ± εi;n ≥ j > i ≥ 1}, Δ+n = {εi + εj ;n ≥ j > i ≥ 1}.

Denote m = n − 2, then

Δ+(so(2m,C)) = {εj ± εi;n ≥ j > i ≥ 3}, Δ+n(so(2m,C)) = {εj + εi;n ≥ j > i ≥ 3}.

It follows that

δ1 = εn − εn−1, εn−1 − εn−2, . . . , ε4 − ε3, ε4 + ε3

form a system of simple roots for Δ+(mC) and

ζu(m) =
1
2
(ε3 +⋯+ εn)

is the central character of the summand u(m) of l. (The correspondence between Jordan 
triple notation and the matrix notation is D(e1, ̄e1) = E11 + E22, D(e2, ̄e2) = E33 +
E44, . . . , D(er, ̄er) = E2r−1,2r−1 + E2r,2r, and it is of tube type if n = 2r is even. So 
the character ζu(m) actually defines a character on the double covering of the usual 
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determinant representation of u(m).) The roots of the summand sl(2, C) = su(2)C of lC

are {±β}, with the Cartan tsl(2,C) = C(E11 −E22) and β = ε1 + ε2 in the above notation.
We have V = ⋀2 Cn is the space of skew-symmetric matrices as representation of 

U(n) with Cn being the defining representation. Thus, as matrices, V = V2 ⊕ V1 ⊕ V0
where V2 = C(E12 − E21), V0 = ⋀2 Cm and the space V1 = Cm ⊗ C2 with Cm and C2

the defining representation of u(m) and su(2), respectively. The Cartan subalgebra is 
tl = tu(m) + tsu(2), and

δ1 = εn +
1
2
β, δ0 = ε3 −

1
2
β

are the highest and lowest weights of V1 as representation of l.
The central character tr adV1 ∶X ↦ tr ad(X)∣V1 of l is

tr adV1 = 2(ε3 +⋯ + εn) = 4ζu(m)

since su(2) on C2 is traceless. Note that here a = 4 so that the relation (A.1) still holds 
even though m is reducible, as mentioned above.

A.2. The case g = so(2, n)

Let l = [n2 ] and tC = Cε0 + ⋯ + Cεl with dual space (tC)′ = Cε0 + ⋯ + Cεl be the 
Cartan subspace and its dual. The root system of so(2 + n, C) is, Δ+c = {εj ± εi; l ≥ j >
i ≥ 1} or Δ+c = {εj ± εi; l ≥ j > i ≥ 1} ∪ {εj ; l ≥ j ≥ 1}, Δ+n = {ε0 + εj ; l ≥ j ≥ 1} or 
Δ+n = {ε0 + εj ; l ≥ j ≥ 1} ∪{ε0}, depending on n being even or odd, respectively. The root 
system of mC = sl(2, C) ⊕ so(n − 2, C) is Δ+c (so(n − 2, C)) = {εj ± εi; l ≥ j > i ≥ 2} or 
Δ+c (mC) = {εj ±εi; l ≥ j > i ≥ 2} ∪{εi; l ≥ j ≥ 2}, Δ+n(sl(2, C)) = {ε0+ε1}, in the respective 
cases. In other words we have β = ε0 + ε1 and in this notation D(e1, ̄e1) is corresponding 
to ε0 − ε1 and D(e2, ̄e2) is corresponding to β = ε0 + ε1.

A.3. The case g = e6(−14)

In this case m = su(1, 5), l = u(5), k = so(2) ⊕ spin(10), l0 = so(2) ⊕ u(5) and (a1, b1) =
(4, 2). The roots of e6 are

Δ+c = {εj ± εi; 5 ≥ j > i ≥ 1},

Δ+n = {
1
2
(

5
∑
i=1
(−1)νiεi − ε6 − ε7 + ε8);

5
∑
i=1

νi is even},

with simple roots

η1 =
1(ε1 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7 + ε8), η2 = ε1 + ε2, ηj = εj−1 − εj−2, (3 ≤ j ≤ 6),

2



J. Frahm et al. / Advances in Mathematics 422 (2023) 109001 47
and Harish-Chandra roots

γ1 = η1, γ2 =
1
2
(−ε1 + ε2 + ε3 + ε4 − ε5 − ε6 − ε7 + ε8).

The roots of mC = sl(6, C) are

Δ+c (mC) = {εj − εi; 5 ≥ j > i ≥ 2; εi + ε1; 5 ≥ i ≥ 1},

and

Δ+n((mC)) = {1
2
(

5
∑
i=1
(−1)νiεi − ε6 − ε7 + ε8) ∈ Δ+n; (−1)ν1 −

5
∑
i=2
(−1)νi + 3 = 0}.

We have {ε5 − ε4, ε4 − ε3, ε3 − ε2, ε2 + ε1} forms a system of simple compact roots, and 
together with γ2 we get a system of simple roots for mC. (The discrepancy of the root 
system of Δ+c (mC) with ε2 + ε1 as a simple root instead of ε2 − ε1 is due to our choice 
of γ1; in the standard notation and Dynkin diagram for the root system of e6, α1 is 
connected to the third nod ε2 − ε1 so it is deleted and the second nod ε2 + ε1 stays, as it 
is orthogonal to γ1.) The lowest weight δ0 in V1 = C10 is then

δ0 =
1
2
(−ε1 + ε2 − ε3 − ε4 − ε5 − ε6 − ε7 + ε8).

By computing the inner product with simple roots in Δ+c (mC), we see that V1 = C10 =
⋀2 C5, where C5 is the defining representation of l = u(5).

The central character tr adV1 is easily found in terms of simple roots,

ζ0 =
1
6
(5(γ2) + 4(ε5 − ε4) + 3(ε4 − ε3) + 2(ε3 − ε2) + (ε2 + ε1)),

and

tr adV1 = 6ζ0 = 5(γ2) + 4(ε5 − ε4) + 3(ε4 − ε3) + 2(ε3 − ε2) + (ε2 + ε1)

since a = 6.
(In the standard notation of the root system of sl(6, C) = su(1, 5)C with Cartan 

subalgebra in C6 of dimension 5, the representation V C
1 = C20 = ⋀3 C6 with highest 

weight

1
2
(ε6 + ε5 + ε4 − ε3 − ε2 − ε1).

Its branching under sl(5, C) is ⋀2 C5 ⊕ ⋀3 C5. The central character on gl(5) on V1 =
⋀2 C5 is
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ζ0 =
1
6
(ε6 + ε5 + ε4 + ε3 + ε2 − 5ε1)

and the trace functional tr adV1 is

6ζ0

where the Peirce decomposition becomes ⋀2 C5 = ⋀2 C4 ⊕C4 = C6 ⊕C4. Our D(e2, ̄e2)-
element corresponds to −ε1 + ε2.)

A.4. The case g = e7(−25)

Here m = so(2, 10), l = so(2) ⊕ so(10), k = so(2) ⊕ e6, l0 = so(2) ⊕ so(2) ⊕ spin(10) and 
(a1, b1) = (6, 4). The compact roots are precisely all roots for e6 in the section A.3 above 
with non-compact roots

Δ+n = {−ε7 + ε8,±εi + ε6; 1 ≤ i ≤ 5} ∪ {1
2
(

5
∑
i=1
(−1)ν(i)εi + ε6 − ε7 + ε8);

5
∑
i=1
(−1)ν(i) is odd}.

Choose

γ1 = α7 = ε6 − ε5, γ2 = ε6 + ε5, γ3 = β = ε8 − ε7

and

Δ+c (mC) = {εj ± εi; 5 ≥ j > i ≥ 1},

Δ+n((mC)) = {1
2
(

5
∑
i=1
(−1)νiεi − ε6 − ε7 + ε8) ∈ Δ+n;

4
∑
i=1
(−1)νi − (−1)ν5 + 1 = 0 }.

The lowest weight in V1 is

δ0 =
1
2
(−ε1 − ε2 − ε3 − ε4 − ε5 + ε6 − ε7 + ε8) +

1
2
(γ2 + γ3)

and V1 = C16 ⊗C, with C16 the spin representation of so(10) and C the representation 
of so(2) with character 1

2(γ2 + γ3).
The central characters are

ζ0 =
1
2
(γ2 + γ3) and tr adV1 = 8ζ0,

since a = 8.

Appendix B. Explicit decomposition of the metaplectic representation

For the two classical cases g = so(2, n) and so∗(2n) we make the decomposition (2.5)
more explicit and relate it to dual pair correspondences in the literature.
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B.1. The case G = SO∗(2n)

Here M = SO∗(2(n − 2)) × SU(2), m = so∗(2(n − 2)) ⊕ su(2), l = u(n − 2) ⊕ su(2). In 
this case, Theorem 2.2 becomes a special case of the dual pair correspondence (see e.g. 
[8]):

Proposition B.1. For λ > 0 we have

ωmet,λ∣M =
∞

⊕
k=0

τ−k(δ0+ 1
2β)−2ζ0

=
∞

⊕
k=0

τ
SO∗(2(n−2))
−kδ0−2ζ0 ⊗ Sk(C2),

where Sk(C2) is the k-th symmetric power of the standard representation C2 of SU(2).

B.2. The case G = SO(2, n), n > 4

This is somewhat the easiest case. Due to the low-dimensional isomorphisms so(2, 2) ≃
so(2, 1) ⊕ so(2, 1), so(2, 3) ≃ sp(2, R) and so(2, 4) ≃ su(2, 2), we shall assume n > 4.

Let V = Cn be the Type IV Jordan triple with the corresponding Hermitian symmetric 
pair (g, k) = (so(2, n), so(2) ⊕ so(n)). Let {e = e1, e2} be a Jordan frame. We have 
m = sl(2, R) ⊕ so(n − 2) with

sl(2,R) = Rξie2 +Rξe2 +RiD(e2, ē2),

and

so(n − 2) = {X ∈ k;Xe = 0} = so(n − 2) ⊂ so(n) ⊂ k = so(2) ⊕ so(n);

the space V1(e) = V12 = Cn−2 = R2 ⊗ Rn−2 with the defining action of m = sl(2, R) +
so(n − 2). The space V1 is itself a Jordan algebra of rank two. Let v1, v2 ∈ V1 be a frame 
of tripotents and for any z ∈ V1 let z1 = ⟨z, v1⟩, z2 = ⟨z, v2⟩ be the coordinates of z with 
respect to v1, v2. The roots of sl(2, C) = sl(2, R)C with respect to D(e2, ̄e2) are {±β}
with β(D(e2, ̄e2)) = 2. Note that D(e2, ̄e2)v1 = 1. Thus V1 = Cn−2 is the representation 
V1 = C ⊗ Cn−2 with D(e2, ̄e2) acting as 1

2β and so(n − 2, C) acting as the defining 
representation Cn−2.

The space V1 has highest weight δ1 ∶= 1
2β + εl and lowest weight δ0 ∶= −1

2β + ε2.
The vector v1 − iv2 ∈ V1 is a highest weight vector in V1. Let z1 = ⟨z, v1⟩, z2 = ⟨z, v2⟩. 

The space of harmonic polynomials of degree k on Cn−2 has then highest weight vector 
(z1 + iz2)k.

The decomposition of the metaplectic representation ωmet,λ of Sp(n − 2, R)) under 
M = SL(2, R) ×SO(n − 2) = SL(2, R) ×O(n − 2) is the dual pair correspondence [22]. For 
completeness we present a sketch of the proof following our computations.
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Proposition B.2. For λ > 0 we have

ωmet,λ∣M =
∞

⊕
k=0

τ
SL(2,R)
− 1

2kβ−
1
2 (n−2)β

⊗Hk(Cn−2),

where Hk(Cn−2) is the representation of O(n − 2) on the space of spherical harmonics 
on V1 = Cn−2 of degree k. The highest weight vectors are f(z) = (z1 + iz2)k in the usual 
coordinates of V1 = Cn−2; the quadratic equation Q(∂)ef = 0 is precisely the spherical 
harmonic condition.

Proof. The space of all polynomials on Cn is decomposed as

I ⊗H

where I is the space of so(n −2)-invariants and H the space of harmonic polynomials. I
is generated by the unique quadratic polynomial (z, z) obtained from the Jordan product 
Q(z)ē = (z, z)e2 on Cn−2. The so(n − 2, C)-highest weight vectors are of the form (z1 +
iz2)kQ(z)j . It follows from the same general considerations above that (z1+iz2)k(z, z)j is 
a highest vector for sl(2, C) = su(1, 1)C precisely when j = 0. The corresponding highest 
weight of (z1 + iz2)k for D(e2, ̄e2) ∈ sl(2, C) is −1

2 tr(D(e2, ̄e2)∣V1) − k = −(n − 2) − k, i.e. 
it is −1

2(n + k − 2)β. ◻

Appendix C. Symplectic summation formulas

In this section we prove some summation formulas involving the symplectic invariants 
μ, Ψ and Ω as well as their symmetrizations Bμ, BΨ and BΩ. We use the abbreviation 
Tx = [T, x] for T ∈ m and x ∈ V1. Then the following identities hold for x, y, z ∈ V1 and 
a, a′, b, b′ ∈ R (see e.g. [35, Theorem 2.16 and Corollary 4.2]):

Bμ(ax + bΨ(x), a′x + b′Ψ(x)) = (aa′ − bb′Ω(x))μ(x), (C.1)

Bμ(x, y)z −Bμ(x, z)y =
1
4
ω(x, y)z − 1

4
ω(x, z)y − 1

2
ω(y, z)x, (C.2)

μ(x)Ψ(x) = −3Ω(x)x. (C.3)

Lemma C.1. For x, v ∈ V1:

[μ(x),Bμ(x, v)]x = −2Bμ(Ψ(x), v)x +
3
2
ω(x, v)Ψ(x).

Proof. By the m-equivariance of Bμ:

[μ(x),Bμ(x, v)]x = Bμ(μ(x)x, v)x +Bμ(x,μ(x)v)x,

and by the definition of Ψ(x) and (C.2)
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= −3Bμ(Ψ(x), v)x +Bμ (x,Bμ(x, v)x −
3
4
ω(x, v)x)x

= −3Bμ(Ψ(x), v)x +Bμ(x,Bμ(x, v)x)x −
3
4
ω(x, v)μ(x)x.

Using the m-equivariance of Bμ on the second terms and the definition of Ψ on the third 
one, we find

= −3Bμ(Ψ(x), v)x +
1
2
[Bμ(x, v), μ(x)]x +

9
4
ω(x, v)Ψ(x).

Isolating [μ(x), Bμ(x, v)]x in the resulting equation shows the claimed formula. ◻

Proposition C.2. For x, v ∈ V1, the following identity holds:

μ(x)2v = 2ω(x, v)Ψ(x) − 2ω(Ψ(x), v)x +Ω(x)v.

Proof. By (C.2) and the definition of Ψ we have

μ(x)2v = μ(x)Bμ(x,x)v

= μ(x) (Bμ(x, v)x −
3
4
ω(x, v)x)

= μ(x)Bμ(x, v)x +
9
4
ω(x, v)Ψ(x).

Using Lemma C.1, this can be rewritten as

= [μ(x),Bμ(x, v)]x +Bμ(x, v)μ(x)x +
9
4
ω(x, v)Ψ(x)

= −2Bμ(Ψ(x), v)x +
3
2
ω(x, v)Ψ(x) − 3Bμ(x, v)Ψ(x) +

9
4
ω(x, v)Ψ(x)

= −2Bμ(Ψ(x), v)x − 3Bμ(x, v)Ψ(x) +
15
4
ω(x, v)Ψ(x).

Applying (C.2) to the first two terms and using that Bμ(x, Ψ(x)) = 0 by (C.1) gives:

= −2(1
4
ω(Ψ(x), v)x − 1

4
ω(Ψ(x), x)v − 1

2
ω(v, x)Ψ(x))

− 3(1
4
ω(x, v)Ψ(x) − 1

4
ω(x,Ψ(x))v − 1

2
ω(v,Ψ(x))x)

+ 15
4
ω(x, v)Ψ(x).

Collecting the various terms and using the definition of Ω shows the claimed identity. ◻
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Lemma C.3. For x ∈ V1:

trμ(x)2 = 2(d1 + 8)Ω(x).

Proof. This follows directly from Proposition C.2. ◻

Now let (eα)α ⊆ V1 be a basis and (êα)α the dual basis with respect to the symplectic 
form, i.e. ω(eα, ̂eβ) = δαβ .

Lemma C.4. For x, y ∈ V1 we have

∑
α

tr(Bμ(x, eα) ○Bμ(êα, y)) = σ ⋅ ω(x, y),

where

σ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 1
24(2d1 + 1)(d1 + 8) if m is simple (i.e. gC is not of type A, B or D),

−1
8(5n − 6) if gC ≃ sl(n,C),

−1
8(11n − 52) if gC ≃ so(n,C).

Proof. If m is simple, we have tr(Bμ(x, y) ○Bμ(z, w)) = Cω(Bμ(x, y)z, w) with C = d1+8
6

by [12, Corollary 2.4.6 and Lemma 5.3.3]. Combining this with [12, Lemma 2.4.3] we 
find

∑
α

tr(Bμ(x, eα) ○Bμ(êα, y) = C∑
α

ω(Bμ(eα, x)êα,w)

= C∑
α

⎛
⎝
ω(Bμ(eα, êα)x, y) +

1
4
ω(eα, x)ω(êα, y)

− 1
4
ω(eα, êα)ω(x, y) −

1
2
ω(x, êα)ω(eα, y)

⎞
⎠

= −2d1 + 1
4

C ⋅ ω(x, y)

where we have used ∑αBμ(eα, ̂eα) = 0. The formulas for type A, B and D are checked 
by direct computation, using e.g. the explicit formulas in [12, Appendix B]. ◻

Corollary C.5. The following identities hold:

∑
α

tr(Bμ(x, eα) ○Bμ(êα,Ψ(x))) = 4σΩ(x) (x ∈ V1),

∑ tr(Bμ(eα, eβ) ○Bμ(êα, êβ)) = 2σ ⋅ d1.

α,β
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Lemma C.6. For x ∈ V1 we have

∑
α

tr(Bμ(μ(x)eα, êα) ○ μ(x)) = τ ⋅Ω(x),

where

τ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
3(d1 + 8)2 if m is simple (i.e. gC is not of type A, B or D),
n2 + 2n + 12 if gC ≃ sl(n,C),
n2 − 8n + 48 if gC ≃ so(n,C).

Proof. Write μ(x) = ∑m′ μ(x)m′ , where the summation is over all simple factors m′ of m
and μ(x)m′ ∈ m′. By [12, Lemma 2.4.5] we find

∑
α

tr(Bμ(μ(x)eα, êα) ○ μ(x)) = ∑
m′

C(m′) ⋅ tr(μ(x)m′ ○ μ(x)).

If m is simple, this equals C(m) tr(μ(x)2) which can be evaluated using Lemma C.3 and 
[12, Lemma 5.3.3]. In the other two cases, m = m1 ⊕m2 with m1 “small” and m2 “large”. 
Then

= (C(m1) − C(m2)) tr(μ(x)m1 ○ μ(x)) + C(m2) tr(μ(x)2).

The second term is again evaluated with Lemma C.3, and the first one can be computed 
directly for the two cases. ◻

Appendix D. Evaluation of some hypergeometric series

Proposition D.1. For a ∈ C and m, n ∈ N with m ≥ n − 1 we have

3F2(
a, n, 2a + n +m

2a +m + 1, a + n +m + 1
; 1)

=
√
πΓ(2a +m + 1)Γ(m−n+22 )Γ(a +m + n + 1)

22a+m+nΓ(a +m + 1)Γ(m+n+22 )Γ(2a+m−n+2
2 )Γ(2a+m+n+1

2 )
.

Proof. By [1, Corollary 3.3.6] we have

3F2(
2a + n +m, a, n

2a +m + 1, a + n +m + 1
; 1) = Γ(2a +m + 1)Γ(a + n +m + 1)Γ(m − n + 2)

Γ(2a + n +m)Γ(a +m − n + 2)Γ(m + 2)

× 3F2(
1 − n, 1 − a, m − n + 2
a +m − n + 2, m + 2

; 1).

After an application of [1, Corollary 3.3.5], the expression becomes
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= Γ(2a +m + 1)Γ(m − n + 2)
Γ(a +m − n + 2)Γ(a +m + 1)3F2(

1 − a, a, a +m + 1
a +m − n + 2, a +m + n + 1

; 1).

This expression can be evaluated with [1, Theorem 3.5.5 (ii)]:

= πΓ(2a +m + 1)Γ(m − n + 2)Γ(a +m + n + 1)
22a+2m+1Γ(a +m + 1)Γ(m−n+32 )Γ(m+n+22 )Γ(2a+m−n+2

2 )Γ(2a+m+n+1
2 )

.

The claimed formula follows with the duplication formula for the Gamma function. ◻

Proposition D.2. Let a ∈ C and m, n ∈ N, then

3F2 (
a,n,2a + n +m

2a + n, a + n +m + 1 ; 1) = m!(a +m + 1)n(2a)n
(n +m)!(a)n

.

We note that the generalized hypergeometric function in this identity is balanced.

Proof. By [1, Corollary 3.3.5] we obtain

3F2 (
a,n,2a + n +m

2a + n, a + n +m + 1 ; 1) = Γ(a + n +m + 1)
Γ(n +m + 1)Γ(a + 1)3F2 (

a,2a,−m
2a + n, a + 1 ; 1) ,

and using [1, Corollary 3.3.4]

3F2 (
−m,a,2a

2a + n, a + 1 ; 1) = (a + n)m(1)m
(2a + n)m(a + 1)m 3F2 (

−m,a,−n −m

−a − n −m + 1,−m ; 1) .

This generalized hypergeometric function simplifies to a classical hypergeometric func-
tion which is evaluated using the Chu–Vandermonde identity (see. e.g. [1, Corollary 
2.2.3])

3F2 (
−m,a,−n −m

−a − n −m + 1,−m ; 1) = 2F1 (
−n −m,a

−a − n −m + 1 ; 1) = (−2a − n −m + 1)n+m
(−a − n −m + 1)n+m

.

Putting these three identities together shows the claim. ◻

Appendix E. Tables

We give a list of G/K and the corresponding projective space P(K/L) = K/L0 as 
compact Hermitian symmetric space; see [16,26]. The compact dual of a noncompact 
Hermitian symmetric space D is denoted by D∗.
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Table 1
Non-compact Hermitian symmetric spaces D = G/K with associated Lie algebras g, k and m.

D = G/K g k m

Ir+b,r su(r + b, r) s(u(r + b) ⊕ u(r)) u(r + b − 1, r − 1)
II2r so

∗(4r) u(2r) so
∗(4r − 4) ⊕ su(2)

II2r+1 so
∗(4r + 2) u(2r + 1) so

∗(4r − 2) ⊕ su(2)
IIIr sp(r,R) u(r) sp(r − 1,R)
IVn, n > 4 (r = 2) so(n,2) so(n) ⊕ so(2) so(n − 2) ⊕ sl(2,R)
V (r = 2) e6(−14) spin(10) ⊕ so(2) su(1,5)
V I (r = 3) e7(−25) e6 ⊕ so(2) so(2,10)

Table 2
The compact Hermitian symmetric spaces P(K/L) = K/L0. For type I domain Ir,r+b, r ≥ 2, P(K/L) is a 
product Pr−1 × Pr+b−1 of projective spaces with the corresponding (a1, b1) being (0, r + b − 2), (0, r − 2) for 
each factor.
D = G/K K/L0 (a, b) d (a1, b1) d1

Ir+b,r I∗r+b−1 × I
∗
r−1 (2, b) r(r + b) (0, r + b − 2), (0, r − 2) 2r + b − 2

II2r I∗2,2r−2 (4,0) r(2r − 1) (2,2r − 4) 4r − 4
II2r+1 I∗2,2r−1 (4,2) r(2r + 1) (2,2r − 3) 4r − 2
IIIr I∗r−1 (1,0) 1

2 r(r + 1) (0, r − 2) r − 1
IVn, n > 4 IV ∗n−2 (n − 2,0) n (n − 4,0) n − 2
V II∗5 (6,4) 16 (4,2) 10
V I V ∗ (8,0) 27 (6,4) 16
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