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Clustering is a common task in data analysis applications. Despite the extensive literature, the 
continuously increasing volumes of data produced by sensors (e.g., rates of several MB/s by 3D scanners 
such as LIDAR sensors), and the time-sensitivity of the applications leveraging the clustering outcomes 
(e.g., detecting critical situations such as detecting boundary crossing from a robot arm that could 
injure human beings) demand for efficient data clustering algorithms that can effectively utilize the 
increasing computational capacities of modern hardware. To that end, we leverage approximation and 
parallelization, where the former is to scale down the amount of data, and the latter is to scale 
up the computation. Regarding parallelization, we explore a design space for synchronization and 
workload distribution among the threads. As we study different parts of the design space, we propose 
representative Parallel Multiphase Approximate Cluster Combining, abbreviated as PARMA-CC, algorithms.
We show that PARMA-CC algorithms yield equivalent clustering outcomes despite their different 
approaches. Furthermore, we show that certain PARMA-CC algorithms can achieve higher efficiency 
with respect to certain properties of the data to be clustered. Generally speaking, in PARMA-CC 
algorithms, parallel threads compute summaries associated with clusters of data (sub)sets. As the threads 
concurrently combine the summaries, they construct a comprehensive summary of the sets of clusters. By 
approximating a cluster with its respective geometrical summaries, PARMA-CC algorithms scale well with 
increasing data volumes, and, by computing and efficiently combining the summaries in parallel, they 
enable latency improvements. PARMA-CC algorithms utilize special data structures that enable parallelism 
through in-place data processing. As we show in our analysis and evaluation, PARMA-CC algorithms can 
complement and outperform well-established methods, with significantly better timeliness especially 
when utilizing multiple threads, while still providing highly accurate results in a variety of data sets, 
even with skewed data distributions, which cause the traditional approaches to exhibit their worst-case 
behaviour.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Data clustering, the task of grouping data points into sets of 
close-by points, is a research thread active since decades. Among 
many applications and use-cases, clustering algorithms are utilized 
in safety and management applications that monitor environments 
to (i) detect areas with high space contention and support deci-
sions to e.g., minimize hazards, plan road networks or schedule 
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transport systems, and (ii) identify objects (e.g., a self-driving ve-
hicle) exhibiting dangerous or critical behaviour (e.g., crossing a 
geofence or on a collision course with an obstacle). Despite the 
large body of work on data clustering (e.g., [40, Ch. 11-16] and ref-
erences therein), deploying such applications, critical in Internet-
of-Things- (IoT-) based systems, remain challenging due to require-
ments such as the following:

• handling large data volumes (for example geolocation data gath-
ered by numerous GPS (Global Positioning System) devices over 
a period of time and/or readings from LIDAR (Light Detection 
and Ranging) sensors which scan their surroundings via rotat-
ing arrays shooting laser beams, producing several MB/s of point 
cloud data),

• time constraints on data processing,
• efficient data processing for a wide range of data properties.
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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A parallel approach utilizing approximation can open up pos-
sibilities to appropriately address the above issues. Approximation 
reduces the required amount of workload at the expense of ide-
ally small, controllable reduction of accuracy. For example, a re-
cent work proposing MAD-C (Multi-stage Approximate Distributed 
Cluster-combining) [25] provides evidence regarding the advan-
tages of approximation. MAD-C, being a distributed algorithm for 
approximating the Euclidean clustering algorithm, multiplicatively 
reduces the computational workload through approximation at the 
cost of marginal reduction in the clustering accuracy.

MAD-C’s approximation approach aligns with the first part of 
the “scale down, scale up, scale out” message, summarized by Gib-
bons in [14], and paves the way to consider the second part, which 
is about proper utilization of parallelism, already omnipresent in 
contemporary computing architectures at all levels. To tackle this 
issue, in this work we address questions regarding the following: 
Can shared memory boost time efficiency with increased num-
ber of threads? Can work-partitioning for parallelization, time-
efficiency and high-degree of accuracy co-exist? Furthermore, can 
adjusting the algorithm according to the data properties improve 
time-efficiency? Moreover, as IoT applications leverage numerous 
types of data with variety of different properties, can the latter af-
fect how much the available computational capacity is utilized by 
an algorithm? These questions are not jointly answered in the lit-
erature (cf. also § 9).

To answer the aforementioned questions, we propose a fam-
ily of Parallel Multiphase Approximate Cluster Combining meth-
ods (PARMA-CC). PARMA-CC algorithms are designed to achieve 
high time-efficiency and parallelization over a spectrum of differ-
ent properties of data, through proper synchronization. We show 
how to utilize the shared memory in a way that supports par-
allel execution of threads sharing the workload. Because of our 
novel data structures and their algorithmic implementations, sev-
eral operations require nearly constant time and enable incremen-
tal, in-place processing, gradually constructing the final result by 
connecting pieces of the data structure. We analyse the properties 
of PARMA-CC algorithms, and we show they all achieve equivalent 
clustering results. Furthermore, we study the time-efficiency and 
accuracy of PARMA-CC algorithms, also complementing and com-
paring with well-established methods such as Euclidean clustering 
algorithm [36], DBSCAN [11], and PDS-DBSCAN [34]. We supple-
ment the analysis with a detailed experimental study, using both 
LIDAR and GPS data sets. Our results show efficiency in scaling 
and in preserving accuracy, even with high numbers of threads 
and large data sets (that can be challenging for existing cluster-
ing algorithms) and give practical evidence for the results in the 
analysis and the benefits of the different approaches for different 
properties and correlations of the data features.

The remainder of this paper is organized as follows. In § 2, 
we discuss the preliminaries. We outline the design ideas behind 
PARMA-CC algorithms in § 3. We propose the detailed algorithmic 
description of PARMA-CC algorithms in § 4. In § 5, we describe 
our proposed data structures and their algorithmic implementa-
tions. We theoretically analyze PARMA-CC algorithms in § 6. In 
§ 7, we present a discussion regarding the trade-offs among the 
PARMA-CC algorithms, further use cases, and some generalizations. 
We present our empirical evaluation in § 8. We discuss the related 
work and conclusions in § 9 and § 10, respectively.

2. Preliminaries

2.1. System model and problem description

We consider a multi-core shared-memory system supporting 
parallel executions of K threads, denoted by t1 , t2 , · · · , tK . 
Threads access data via read, write and read-modify-write
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atomic operations. We utilize CAS1 (abbreviating compare-and-
swap) and FAA2 (abbreviating fetch-and-add), two commonly used
read-modify-write atomic operations, supported by all con-
temporary general purpose processors.
Input Data: D denotes the input dataset, a set of N points/obser-
vations, where each observation contains one or more real-valued 
features in a metric space (i.e., each feature corresponds to a di-
mension in the input space), over which distances between points 
can be calculated. For instance, D can be a point cloud, i.e., a set 
of measurements in the 3D space, gathered by one or more LIDAR 
sensors, or it can contain geolocation data gathered by several GPS 
trackers over a period of time. It is worth noting that a LIDAR sen-
sor gathers a point cloud by targeting laser beams and measuring 
the time for the laser beams to get reflected back to the sensor. 
Furthermore, the sensor typically rotates to give a 360◦ view [15]. 
Therefore, a point cloud gathered by such a sensor is angularly 
sorted in time.
Problem Description: Given an input dataset D, the goal is to par-
tition D into an unknown number of mutually disjoint sets (a.k.a 
clusters) where the points inside each cluster satisfy some pre-
determined distance-based or density-based criteria. To that end, 
we aim for an efficient, scalable parallel approximate solution to 
assign a clustering label to each point in D according to the clus-
ter to which the point belongs. The approximation, used to reduce 
calculations regarding the enforcement of the distance or density 
criteria, must have high accuracy. As an end result, each cluster 
should be characterized by its point set (i.e., the cluster members) 
and also a volumetric representation of the cluster.
Objectives: To solve the aforementioned problem, we aim for a 
set of highly parallel, time-efficient, and scalable algorithms tai-
lored for different data properties in order to properly utilize the 
available computational power. Regarding guarantees in presence 
of concurrency, a common consistency goal is that for every par-
allel execution, there exists a sequential execution that produces 
an equivalent result. Furthermore, the algorithms must be able 
to combine efficiency and accuracy benefits. Regarding efficiency, 
the evaluation criteria are completion time and utilization of par-
allelism which need to be considered in conjunction with the 
achieved accuracy. Taking into consideration that literature defines 
scalability in various ways (see for example [29]), we evaluate the 
parallelism-utilization properties of an approximate concurrent al-
gorithm A via a scaling-factor, i.e., the ratio of the completion time 
of the sequential baseline (an exact baseline, as this is the case 
in the core of the algorithmic approaches here), to the comple-
tion time of the algorithm A running with K threads, for different 
choices of K. The aforementioned metric allows us to study how 
much the completion time of an approximate parallel algorithm 
changes with respect to the exact sequential baseline for different 
number of threads and accuracy values. We measure the accuracy 
of an approximate parallel algorithm with respect to the results of 
the exact baseline method using rand index [42,26], a commonly 
used measure of clustering similarity. Given two clusterings of the 
same set, rand index measures the ratio of the number of pairs of 
elements that are either clustered together or separately in both 
clusterings, to the total number of pairs of elements.

2.2. Background

For several of the technical parts of the algorithm descriptions, 
the following algorithmic and concurrency-related terms are use-

1 CAS(var, oldVal, newVal) atomically changes the value stored at var to 
newVal if the value stored at var is oldVal and returns “true” in such a case, 
else it does not take any effect and returns “false”.

2 FAA(var, delta) atomically adds value delta to the value stored at variable 
var and returns the value of the variable.
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ful to introduce here: A concurrent algorithm is wait-free if all the 
threads can make progress independently of each other. A concur-
rent implementation of a data object is linearizable if the effects of 
concurrent operations appear instantaneously and are consistent 
with the sequential specification of the object [20]. An operation 
implementation is in-place if it directly modifies parts of a data 
structure without making new copies of the latter.

We consider distance-based and density-based clustering. The 
points in a distance-based cluster satisfy some minimum distance 
criteria, and the points in density-based clusters form contiguous 
region of high-density, separated by contiguous low-density ones. 
We review PCL-EC (the Point-Cloud-Library’s Euclidean clustering 
algorithm) [36] as a representative of a distance-based cluster-
ing. Representing density-based clustering, we cover DBSCAN [11]
(Density-Based Spatial Clustering of Applications with Noise) and 
an established parallel variant, PDSDBSCAN [34]. We refer to PCL-
EC and to DBSCAN as exact sequential distance-based and density-
based baselines, respectively.

PCL-EC partitions a data set into an a priori unknown number 
of clusters, so that each cluster has at least minPts points, and 
within each cluster, each point lies in ε-radius neighbourhood of at 
least another point in the same cluster, for parameters minPts, ε . 
Non-clustered points are identified as noise. Using kd-trees for ef-
ficient neighbourhood search, PCL-EC’s expected and worst-case 
time complexities are respectively O(N logN) and O(N2), see [36, 
Ch. 4].

DBSCAN partitions a data set into an a priori unknown num-
ber of clusters such that a cluster consists of at least one core 
point and all the points that are density-reachable from it. Point 
p is a core point if it has at least minPts points in its ε-radius 
neighbourhood. Point q is directly reachable from p if q lies in the 
ε-radius neighbourhood of p. Point q is density-reachable from 
p, if q is directly reachable either from p or another core point 
that is density-reachable from p. Non-core points that are not 
density-reachable from any core-points are outliers [12]. The ex-
pected and worst-case time complexities of DBSCAN are respec-
tively O(N logN) and O(N2) [39].

PDSDBSCAN [34] is a parallel version of DBSCAN. It parallelizes 
the work through partitioning the points and merging partial clus-
ters consisting of points, maintained via a disjoint-set data struc-
ture, that facilitates maintaining a collection of disjoint sets sup-
porting in-place union and find operations [10, Ch. 21.1]

3. The PARMA-CC family of algorithms

Clustering is a global aggregate function, and as such it is far 
from being an embarrassingly-parallel application; hence, concur-
rency (parallel tasks working on subsets of data) and synchroniza-
tion (putting together the results of the data subsets) imply natural 
trade-offs. We propose PARMA-CC algorithms, abbreviating Parallel 
Multiphase Approximate Cluster Combining, to explore the design 
space for parallelism, in conjunction with appropriately designed 
data structures, to provide alternative options for different scenar-
ios.

For the exposition of the algorithms, we consider LIDAR data as 
it enables more intuitive descriptions. Nonetheless, the algorithms 
can process various types of data, and we evaluate them with LI-
DAR and GPS data.

3.1. High-level view

On one side of the design space, the algorithms in the family 
target a coarse-grained synchronization approach through which op-
erations on disjoint elements are performed in a data parallel fash-
ion, but operations on the shared elements are performed in a mu-
tually exclusive manner. On the other side of the design space, the 
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Fig. 1. The design space of PARMA-CC.

algorithms target a fine-grained synchronization approach through 
which operations are performed in a fully concurrent fashion in 
a wait-free manner. The coarse-grained synchronization approach 
utilizes a scheme for data access control that can take advantage 
of a work-saving mechanism while the fine-grained synchroniza-
tion approach eliminates the inherent waiting that is present in 
the more coarse-grained synchronization one. Furthermore, based 
on an orthogonal aspect, the algorithms in the family leverage ei-
ther a static or work-pool based strategy for workload distribution. 
Fig. 1 visualizes the aforementioned aspects of the design space.

For i ∈ {1, · · · , S}, dis denote mutually disjoint subsets of D, 
where each di is a split of D, and S is the number of splits. Each di
can be, e.g., the i-th chunk of N/S consecutive points in D. Fig. 2a
shows a hypothetical dataset D being split into four splits. In a 
PARMA-CC algorithm, K threads in parallel cluster the splits and 
summarize the locally detected clusters. Afterwards, the threads 
combine the local summaries to create a holistic summary. Lastly, 
according to the combined summary, points in D are relabeled. 
Alg. 1 shows the high-level description of a PARMA-CC algorithm. 
We will see how each PARMA-CC algorithm is designed based on 
its position in the design space in Fig. 1. Furthermore, we will see 
that PARMA-CC algorithms yield equivalent clustering results.

Algorithm 1 Outline of the three phases of a PARMA-CC algorithm.
1: let K be the number of CPU threads
2: let d1, · · · , dS be splits of D
3: let F be an appropriately designed shared data structure
4: for all K threads in parallel do
5: phase I:
6: while ∃ di to be clustered do
7: cluster di and summarize its local clusters in F
8: index the summaries in split-summary ϕi
9: announce the creation of ϕi

10: phase II:
11: create objects by detecting and grouping matching summaries in F
12: phase III (starts when all threads have reached here):
13: while ∃ di to be relabeled do
14: relabel the points in di according to the combined results

3.1.1. Challenges
The high-level design in Algorithm 1 implies challenges regard-

ing data structures, workload distribution, and synchronization, 
outlined in the following:
Data Structures: The design and algorithmic implementation of the 
shared data structure in Algorithm 1 (denoted by F) must be car-
ried out with regard to concurrent updates by several threads as 
well as in-place operations to further facilitate scaling-up through 
shared memory parallelism.
Workload Distribution: The workload distribution and work-partition-
ing mechanism among the threads in a PARMA-CC algorithm must 
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Fig. 2. (a) Dataset split into four splits. (b) Split summaries of local clusters. (c) Hierarchy H of mapCombining operations in a hierarchical PARMA-CC algorithm. (d) el-
lipsoidLinking operations in a flat PARMA-CC algorithm.
facilitate effective collaboration with minimal synchronization and 
contention overheads.
Synchronization: The synchronization and communication among 
the threads in all PARMA-CC algorithms must ensure consistency 
(in the final outcome) despite the diverse algorithmic choices sug-
gested in the design space in Fig. 1.

3.2. Rudiments and definitions

Here we provide general details relevant to all PARMA-CC al-
gorithms. For better intuition, we use a summarization technique 
utilizing bounding ellipsoids for the exposition of the methods. 
However, we will see in § 7 that the choice of the summarization 
technique is orthogonal to the behaviour of PARMA-CC algorithms.

Definition 1. [Objects, Split-summaries, Maps]

• A local cluster is a cluster of points identified by a clustering 
algorithm (e.g., DBSCAN or PCL-EC) performed on a split of the 
input data. A bounding ellipsoid is a volumetric summary of a 
local cluster.

• A pair of ellipsoids 〈e1, e2〉 can overlap directly or indirectly; 
e1and e2 directly overlap if e1 and e2 geometrically overlap; 
e1 and e2 indirectly overlap if there is an ellipsoid e′ such that 
both pairs 〈e1, e′〉 and 〈e2, e′〉 overlap, either directly or indi-
rectly.

• A split-summary ϕi is a set of ellipsoids corresponding to the 
detected clusters in the i-th split. Fig. 2b shows the split-
summaries corresponding to the data splits in Fig. 2a.

• An object consists of a set of mutually overlapping ellipsoids. 
Given an ellipsoid e, let Oe denote the object in which e be-
longs.

• Two objects overlap if there is at least a pair of overlapping el-
lipsoids (one in each object). Two overlapping objects can get 
merged, forming a bigger object containing all the ellipsoids in 
the original objects.

• A map is a set of objects. Fig. 3 shows several maps.

At the heart of each PARMA-CC algorithm lies a shared data 
structure called the ellipsoid forest, denoted by F in Algorithm 1. 
An ellipsoid forest enables multi-threaded in-place processing and ac-
cess to ellipsoids, supporting efficient indexing and retrieval of objects 
in maps and ellipsoids in objects and split-summaries. At the end of 
phase I, each ellipsoid, summarizing a local cluster, becomes a sin-
gleton in the ellipsoid forest upon creation. As the forest evolves in 
phase II, overlapping ellipsoids get grouped together, i.e., by form-
ing objects.

Definition 2. [Ellipsoid Forest - Extended Disjoint Set Data Struc-
ture] We propose to implement the ellipsoid forest as an extended 
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disjoint-set data structure [10, Ch. 21], i.e., a data structure that can 
store disjoint sets of ellipsoids, representing growing objects. Here, 
in a disjoint-set, a tree represents an object, and the root of a given 
tree is called the representative of the associated object. Similar to 
a disjoint-set, an ellipsoid forest supports the following operations: 
(i) findRoot returns the representative of the object containing 
a given ellipsoid, and (ii) merge replaces two given objects with 
their union.

We propose two extensions of the disjoint-set data structure, 
resulting in two variants of an ellipsoid forest data structure, in 
particular through the following:

• operation mapCombining, which, given maps �i and �j , for 
each O in �i and O′ in �j , merges O and O′ if they overlap, and 
it returns a new map that indexes the resulting objects (merged 
and not merged objects of �i and �j). The operation is to be 
invoked in a synchronized, hierarchical order, to produce a final 
map by combining evolving partial maps, and hence we name 
the extended data structure hierarchical ellipsoid forest; or

• operation ellipsoidLinking, which, given split-summaries 
ϕi and ϕj , for each pair of ellipsoids eand e′ in ϕi and ϕj , if they 
overlap, merges the objects they are part of, i.e., Oe and Oe′ . 
The operation does not return any index, it only updates internal 
links in the composite data structure. It can be invoked concur-
rently in an asynchronous fashion, to perform linking between 
all pairs of split-summaries, and hence we name the extended 
data structure flat ellipsoid forest.

Table 1 summarizes the ellipsoid forests’ extended API.

3.2.1. The three phases of a PARMA-CC algorithm
Having introduced the concept of the ellipsoid forest, we give a 

refined outline of a PARMA-CC-family algorithm.
Phase I: The goal here is to efficiently organize volumetric sum-
maries of local clusters in the shared memory, facilitating efficient 
operations in phase II. To that end, the threads collaboratively clus-
ter the data splits and create the split-summaries ϕis. The afore-
mentioned steps are outlined in Algorithm 1 l.6-9.
Phase II: The objective in this phase, outlined in Algorithm 1 l. 11, 
is to concurrently detect and group overlapping ellipsoids in the 
ellipsoid forest in a scalable manner.
Phase III: This phase’s objective is to assign clustering labels to 
points in D such that all points that relate to the same object are 
given the same label, different from labels of points that belong to 
other objects. Therefore, to relabel the points associated with the 
ellipsoids in a certain object, we use the identity of the root of the 
associated object in the ellipsoid forest, retrieved by findRoot. 
To make sure that the objects in the ellipsoid forest do not change 
any more when this phase is executed, a thread should start its 
phase III only after all threads have finished their phase II. The 
aforementioned steps are outlined in Algorithm 1 l.13-14.
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Fig. 3. Maps in a hierarchical PARMA-CC algorithm. Delimiting boxes indicate detected objects in each map. (a) Initial contents of the maps. (b) Maps �1 and �3 after 
operations �1:=mapCombining(�1,�2) and �3:=mapCombining(�3,�4), respectively. (c) �1 after operation �1:=mapCombining(�1,�3).

Table 1
Ellipsoid Forest’s Extended API (the algorithmic implementations are presented in § 5).

operation forest type description

mapCombining(�i , �j) hierarchical for each O in �i and each O
′ in �j , merges O and O

′ if O and O
′ overlap, returns the combined map

ellipsoidLinking(ϕi , ϕj) flat for each e in ϕi and each e′ in ϕj , merges objects Oe and Oe′ if Oe and Oe′ overlap
The algorithmic details of phases I-III are determined based on 
the choices in the design space of PARMA-CC algorithms. Partic-
ularly, the algorithmic details of phases I and III are determined 
based on the workload distribution aspect of the design space, and 
the algorithmic details of phase II are determined based on the 
synchronization aspect of the design space. We elaborate on the 
two aspects of the design space in the following subsection.

3.3. The design space of PARMA-CC algorithms

We explained in § 3.1 that PARMA-CC algorithms cover a design 
space concerning two orthogonal aspects: (i) synchronization, and 
(ii) workload distribution. We study the synchronization and work-
load distribution aspects of the design space in § 3.3.1 and § 3.3.2, 
respectively.

3.3.1. Synchronization via hierarchical ellipsoid forest vs 
synchronization via flat ellipsoid forest

The synchronization aspect of the design space mainly con-
cerns the manner in which overlapping ellipsoids are detected and 
grouped together. As ellipsoids are stored in the ellipsoid forest, 
the key element regarding this aspect is the ellipsoid forest. As 
noted in Definition 2, there are two forest types, named hierarchi-
cal and flat. From now on, a hierarchical PARMA-CC algorithm is 
one that utilizes the hierarchical forest, and a flat PARMA-CC algo-
rithm is one that utilizes the flat forest.

In a hierarchical PARMA-CC algorithm, the order of performing 
operations is synchronized via a tree H, spanning over nodes that 
represent maps in the process of constructing the overall outcome 
(cf. Definition 1). Particularly, every node in H instructs perform-
ing mapCombining on two maps. Operations in disjoint branches 
of H can be performed concurrently, but in the same branch, 
the order of performing the operations must follow the hierarchy, 
starting from the leaves and continuing upwards. Fig. 2c shows a 
hierarchy applicable on the maps in Fig. 3a, i.e., the maps initi-
ated by the split-summaries in Fig. 2b. Accordingly, Fig. 3b shows 
the contents of maps �1 and �3 after operations �1:= mapCom-
bining(�1,�2) and �3:= mapCombining(�3,�4), respectively. 
Finally, Fig. 3c shows the content of �1 after operation �1:= map-
Combining(�1,�3). In Fig. 3, the objects in each map are distin-
guished by delimiting boxes.
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In a flat PARMA-CC algorithm, there is no need to synchronize 
the order of performing operations because ellipsoidLinking
utilizes asynchronous concurrent linearizable operations (similar 
to [23]) which makes it possible to perform consistently the el-
lipsoidLinking operations (which are commutative and asso-
ciative, as we show in the more detailed description sections) in 
a fully concurrent fashion on all pairs of split-summaries. Fig. 2d
outlines the ellipsoidLinking operations corresponding to 
the split-summaries in Fig. 2b. Note that performing the ellip-
soidLinking operations in Fig. 2d will result in detecting the 
same objects shown in Fig. 3c.

3.3.2. Basic workload distribution vs flexible workload distribution
Another key aspect of the design space (as we outlined in the 

beginning of the section and in Fig. 1), is the distribution of the lo-
cal clustering and local relabeling tasks (i.e., phase I and phase III 
workload) among the threads. To that end, PARMA-CC algorithms 
are categorized into two groups. In the first group, which we refer 
to as basic, the workload in phase I and phase III are distributed 
among the threads in a work-sharing [8] style by statically assign-
ing each task to a processor. In the second group, which we refer 
to as flexible, the workload is partitioned into a large number of 
tasks (larger than the number of threads in the system) available 
as a shared pool, from which the threads compete to take tasks in 
a work-stealing [8] fashion. From now on, a basic PARMA-CC algo-
rithm is one that utilizes the basic workload distribution approach, 
and a flexi PARMA-CC is one that utilizes the flexible workload dis-
tribution approach.
Basic Workload Distribution: The basic workload distribution as-
sumes a one-to-one relation between the number of threads (K) 
and the number of splits (S). Concretely, for each i ∈ {1, · · · , K}, 
the local clustering and relabeling tasks associated with di are per-
formed statically assigned to thread ti .
Flexible Workload Distribution: Notice that in a basic workload dis-
tribution, the duration of performing the local clustering tasks can 
vary between splits even when they contain the same number of 
points and the threads are equally fast. The latter is due to the fact 
that the local clustering algorithm employs a spatial data structure 
for indexing the points. Consequently, with different distributions 
of points in each split, the associated cost of using the data struc-
ture varies. Hence, the threads that finish their local clustering task 
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earlier will have to wait in subsequent phases of the algorithm. 
To alleviate the aforementioned problem, a flexi PARMA-CC algo-
rithm breaks down the local clustering and local relabeling tasks 
into fine-grained chunks by allowing S to be larger than K. A flexi 
PARMA-CC algorithm accommodates a shared pool of local cluster-
ing and relabeling tasks which can be booked by each thread in a 
wait-free manner.

4. Detailed description of PARMA-CC algorithms

We cover basic and flexi PARMA-CC algorithms in § 4.1 and 
§ 4.2, respectively.

4.1. Basic members of the PARMA-CC family

Hierarchical Parallel Multiphase Approximate Cluster Combin-
ing, abbreviated as PARMAH , and Flat Parallel Multiphase Approxi-
mate Cluster Combining, abbreviated as PARMAF , are the two basic 
members of the PARMA-CC family. We introduce PARMAH in § 4.1.1
and PARMAF in § 4.1.2. In § 4.2, we discuss how PARMAH and 
PARMAF serve as a basis for the flexi members of the family.3

Algorithm 2 PARMAH algorithm.
1: let H be a combine hierarchy
2: let each mapCombining in H be uniquely associated with a thread
3: let S:=K
4: for all thread ti | i ∈ {1, · · · , K} in parallel do
5: phase I:
6: cluster di & summarize its local clusters
7: index the summaries in ϕi
8: �i := ϕi
9: signal the responsible thread on the first level of H that �i is ready

10: phase II:
11: if ti is responsible for mapCombining(�m,�n) then
12: wait to receive signals that �m and �n are ready
13: �m:= mapCombining(�m, �n)

14: signal the responsible thread in the next level of H (if any) that �m is 
ready

15: phase III (starts when all threads have reached here):
16: relabel the points in di based on their objects

Algorithm 3 PARMAF algorithm.
1: let V be {vm,n|m, n ∈ {1, 2, · · · , S}, m < n} (see Definition 3)
2: let S:=K
3: for all thread ti | i ∈ {1, · · · , K} do
4: phase I:
5: cluster di & summarize its local clusters
6: index the summaries in ϕi
7: for all v ∈ V|v = vi,x or v = vx,i do
8: atomically increment v //e.g., using FAA
9: phase II:

10: while ∃(m, n) | corresponding task to vm,n not booked do
11: if corresponding task to vm,n is booked // (e.g. using CAS(vm,n , 2, 3))

then
12: ellipsoidLinking(ϕm,ϕn)
13: phase III (starts when all threads have reached here):
14: relabel the points in di based on their objects

4.1.1. PARMAH
PARMAH is a basic PARMA-CC algorithm that utilizes the hierar-

chical ellipsoid forest (see § 3.3). In PARMAH , each mapCombin-
ing in hierarchy H is uniquely associated with a thread which 
is responsible for performing the associated mapCombining. To 
make sure that the contents of the maps are finalized before a 

3 The gray lines in the pseudocodes indicate parts that have been described in 
previous sections and are marked in this way to facilitate the focus of the different 
parts of each algorithm.
73
thread performs its mapCombining, it must wait until it receives 
signals that the associated maps are ready. Algorithm 2 gives a 
high-level view of PARMAH . We study phase I and phase II of 
PARMAH in the following. We avoid repeating phase III of PARMAH
because it is identical to the provided details of the corresponding 
phase in § 3.2.1.
Phase I: After having created the split-summary ϕi , thread ti
initializes map �i by the content of ϕi , as indicated in Algo-
rithm 2 l.8. Afterwards, ti signals the responsible thread on the 
first level of H that �i is ready.
Phase II: Assuming ti is responsible for mapCombining(�m, 
�n), after having received the signals that �m and �n are ready, 
ti performs the associated mapCombining and updates �m, as 
indicated in Algorithm 2 l.13. Then, ti signals the responsible 
thread in the next level of H (if any) that �m is ready, as shown 
in Algorithm 2 l.14.

4.1.2. PARMAF
PARMAF is a basic PARMA-CC algorithm that utilizes the flat 

ellipsoid forest (see § 3.3). In PARMAF the elements in the ellip-
soid forest are accessed and modified in a fully concurrent manner, 
i.e. no ordering is required. The latter holds because PARMAF uti-
lizes the ellipsoidLinking operations to detect and group the 
overlapping ellipsoids. We will cover the algorithmic implementa-
tion of the data structure associated with ellipsoidLinking
and their consistency guarantees in the presence of concurrent op-
erations in § 5.3.

In PARMAF , the ellipsoidLinking tasks are distributed 
among the threads based on the availability of tasks and the avail-
ability of unoccupied threads. To that end, each thread, after hav-
ing performed the local clustering task and having created the 
associated split-summary, should reveal the availability of the new 
split-summary and the associated ellipsoidLinking tasks to 
the rest of the threads, so the unoccupied threads can perform the 
associated tasks. We propose to utilize an array V, for storing the 
status of the ellipsoidLinking tasks:

Definition 3. Let V be a set of status values, each one associated 
with an ellipsoidLinking task on a certain pair of maps. As
ellipsoidLinking is symmetric, V is defined as {vm,n|m, n ∈
{1, 2, · · · , S}, m < n}, where vi, j indicates the status of ellip-
soidLinking(ϕm, ϕn) and can have any of the following values: 
0: when neither ϕm nor ϕn is created (initial value); 1: when one 
of ϕm or ϕn is ready; 2: when both ϕm and ϕn are ready, but
ellipsoidLinking(ϕm, ϕn) is not yet booked, 3: when el-
lipsoidLinking(ϕm, ϕn) is booked (to be performed by the 
thread that booked it).

To make sure concurrent updates on V are performed correctly, 
the threads use atomic synchronization primitives to update the sta-
tus values.

Algorithm 3 outlines PARMAF . We study phase I and phase II of 
PARMAF in the following. We avoid repeating phase III of PARMAF
because it is identical to the provided details of the corresponding 
phase in § 3.2.1.
Phase I: In this phase, after having created split-summary ϕi , 
thread ti updates the status values of the affected ellip-
soidLinking tasks. To that end, it atomically increments the 
status values of each affected task (e.g., by performing FAA), as 
shown in Algorithm 3 l.7-8.
Phase II: A thread in this phase keeps iterating through the status 
values in V. As the thread finds a task which is not booked yet, it 
tries to atomically book the task (e.g., via CAS operation to change 
its status from two to three). Upon successful booking, the thread 
performs the respective task. The aforementioned steps are shown 
in Algorithm 3 l.10-l.12.
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4.2. Flexi members of the PARMA-CC family

A flexi PARMA-CC targets flexible workload distribution among 
the threads, in particular dividing the local clustering and local 
relabeling tasks into fine-grained chunks, through allowing S to 
be larger than K. Following the discussion in § 3.3.2, the flexi-
ble workload distribution decreases the potential amount of the 
threads’ waiting time; therefore, it increases the utilization of re-
sources. We introduce FLEXI-PARMAH , and FLEXI-PARMAF , flexi 
versions of PARMAH and PARMAF , respectively.

4.2.1. Flexi shared phases
As there is not a one-to-one correspondence between the data 

splits and the threads, we design a wait-free booking mechanism 
for performing the local clustering and local relabeling tasks, which 
we explain in the following.
Phase I: The goal here is to perform parallel local clustering of S
splits with K threads. Let LCT, abbreviating Local Clustering Tasks, 
be a boolean array of size S, where each index shows if the as-
sociated local clustering task has been performed. The booking 
mechanism is similar to the one introduced in § 4.1.2. Phase Iis 
shown in Algorithm 5 and Algorithm 4 for the flexi PARMA-CC al-
gorithms. The lines marked by � indicate the preparation step for 
phase II.
Phase III: The goal here is to perform parallel local relabeling of 
S splits with K threads. To that end, we utilize a boolean array 
of size S named LRT, abbreviating Local Relabeling Tasks, in the 
same fashion as explained for LCT. Phase III in Algorithm 5 and 
Algorithm 4 outline the relabeling steps in flexi PARMA-CC algo-
rithms.

We review the uncovered details of FLEXI-PARMAH and 
FLEXI-PARMAF , in § 4.2.2 and § 4.2.3, respectively.

4.2.2. FLEXI-PARMAH
The goal of this algorithm is to reduce the amount of time that 

a thread waits for its descendants’ maps. To that end, this algo-
rithm utilizes an agile mechanism to generate the combine hierar-
chy H on the fly. Notably, H is determined based on the order in 
which the maps become available. The latter is achieved by utiliz-
ing a multithreaded queue Q, which holds the indices of the ready 
maps. As the preparation step (�), for each local clustering task 
that a thread performs, it inserts the index of the associated map 
in Q. In phase II, a thread tries to pop two indices from Q. If two 
indices are popped successfully, then it performs mapCombining
on associated maps, and it will insert the index of the resulting 
map in Q. This process continues until (S -1) mapCombining op-
erations are performed. To that end, the total number of performed 
tasks is kept as a global variable that gets incremented atomically. 
When (S -1) tasks are performed, there is only one map index in 
Q, which indexes all the objects in the forest.

In Algorithm 4 and Algorithm 5 the lines marked by � indicate 
the preparation step for phase II.

4.2.3. FLEXI-PARMAF
This is a flexi version of PARMAF . As the preparation step (�), 

for each local clustering task that a thread performs, the thread 
updates the status values of the affected ellipsoidLinking
tasks, using the technique explained in § 4.1.2. Algorithm 5 out-
lines FLEXI-PARMAF .

5. The ellipsoid forest data structures and algorithmic 
implementation

In this section, we introduce the algorithmic implementation 
of the ellipsoid forest data structure. We start by introducing the 
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Algorithm 4 FLEXI-PARMAH algorithm.
1: let LCT and LRT be shared arrays of size S initialized to 0
2: let Q be a multithreaded queue
3: let totalNumberOfCombines be initialized to 0
4: for all K threads in parallel do
5: phase I:
6: for splitID ∈ {1, · · · , S} do
7: if CAS(LCT[splitID], 0, 1) then
8: cluster dsplitID & summarize its local clusters
9: index the summaries in ϕsplitID

10: �splitID := ϕsplitID
11: Q.push(splitID)(�)
12: phase II:
13: while totalNumberOfCombines < S− 1 do
14: if Q.tryPop(i, j) == success then
15: �i := mapCombining(�i , �j)
16: FAA (totalNumberOfCombines, 1)
17: Q.push(i)
18: phase III (starts when all threads have reached here):
19: for splitID ∈ {1, · · · , S}
20: if CAS(LRT[splitID], 0, 1) then
21: relabel the points in dsplitID based on their objects

Algorithm 5 FLEXI-PARMAF algorithm.
1: let LCT and LRT be shared arrays of size S initialized with 0
2: let V be {vi, j |i, j ∈ {1, 2, · · · , S}, i < j} (see Definition 3)
3: for all K threads in parallel do
4: phase I:
5: for splitID ∈ {1, · · · , S} do
6: if CAS(LCT[splitID], 0, 1) then
7: cluster dsplitID & summarize its local clusters
8: index the summaries in ϕsplitID
9: for all v ∈ V|v = vsplitID,x or v = vx,splitID do

10: FAA(v, 1)(�)
11: phase II:
12: while ∃(i, j) | vi,j 	= 3 do
13: if CAS(vi,j , 2, 3) then
14: ellipsoidLinking(ϕi ,ϕj )
15: phase III (starts when all threads have reached here):
16: for splitID ∈ {1, · · · , S}
17: if CAS(LRT[splitID], 0, 1) then
18: relabel the points in dsplitID based on their objects

bounding ellipsoid data structure. Afterwards, we study the algo-
rithmic implementation of the hierarchical and flat forests in § 5.2
and § 5.3, respectively.

5.1. The bounding ellipsoid data structure

In our design, each (bounding) ellipsoid is instantiated in the 
shared memory and automatically becomes an element in the 
forest upon creation. The data structure supporting an ellipsoid 
contains μ and � used to represent the ellipsoid’s centroid vec-
tor and covariance matrix, respectively (see § 2.2). Furthermore, it 
also contains certain fields that are required to maintain the mem-
bership of an ellipsoid in the forest. To that end, a unique ID is 
required to identify the ellipsoid in the forest. Furthermore, a par-
ent pointer, initialized to null, is utilized to support the structure 
of the trees in the forest. Moreover, an ellipsoid requires a next
pointer and a rank value. As we explain in § 5.2, the next point-
ers facilitate efficient enumeration of ellipsoids in objects, and the 
rank values regulate the heights of the trees resulting from a map-
Combining operation.

For a given cluster c, μ and � of the associated bounding el-
lipsoid are respectively the sample mean and sample covariance 
of the points in c, which can be calculated with O(1) time com-
plexity. Similarly, the other fields of the bounding ellipsoid data 
structure can be initialized with O(1) time complexity. Further-
more, given two ellipsoids, we can determine if they geometrically 
overlap, using the method described in [2] with O(1) time com-
plexity.
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5.2. The algorithmic implementation of hierarchical ellipsoid forest

As noted in § 3.3.1, in a hierarchical forest, mapCombining
operations are performed according to a combine hierarchy H, 
which regulates the concurrent accesses and operations in the for-
est. Furthermore, the objects are represented by enhanced trees in 
a hierarchical forest. An enhanced tree facilitates iterating through 
the ellipsoids in the associated object with constant time per 
ellipsoid. The latter is achieved by making the ellipsoids in an 
enhanced tree form a circular linked-list via the next pointers 
(see § 5.1).

5.2.1. Compound operation
Operation mapCombining: Given maps �i and �j , for each 

pair of objects 〈O, O′〉, where O ∈ �i and O
′ ∈ �j , mapCombin-

ing merges O and O
′ if they overlap. Afterwards, the objects in 

�j get linked to �i . Finally, potential duplicate objects in �i are 
removed. To that end, an unset flag is associated with the root of 
every object in �i . Then, every pointer in �i ’s linked-list is iter-
ated: the flag of the associated object’s root gets marked if it is 
not already marked. Otherwise, the corresponding pointer gets re-
moved from �i ’s linked-list because another pointer in �i already 
points to the same object. Algorithm 6 outlines the algorithmic im-
plementation of mapCombining.

Enhancements (i) For improved amortized time complexity, we 
adopt the path-compression and union-by-rank heuristics [10]; the 
former flattens the trees, and the latter controls the growth of 
depth of the trees. To that end, the rank value (see § 5.1), initially 
zero, is assigned to each ellipsoid.

(ii) Note that mapCombining(�i , �j) checks all pairs of ob-
jects in �i and �j to merge the overlapping ones. Suppose object 
O in �i and object O

′ in �j do not overlap. To determine this,
mapCombining has to check all pairs of ellipsoids in O and O

′ . 
To avoid this worst-case behaviour, we propose a work-saving test
that utilizes delimiting boxes.

Definition 4. An object’s delimiting box is the smallest axis-aligned 
cuboid encapsulating the ellipsoids in the object.

The delimiting-box test: If the delimiting boxes of objects O and O
′

do not geometrically overlap, then O and O′ do not overlap, hence 
effectively saving pairwise checks of the ellipsoids in O and O′ .

Algorithm 6 Operation mapCombining in a hierarchical ellipsoid 
forest.

1: procedure mapCombining(�i , �j )
2: for O ∈ �i .list & O′ ∈ �j .list do
3: if overlap(O, O′) then
4: mergeH(O, O′)
5: �i .list.pushAll(�j .list)
6: unmark all objects in �.list
7: for O ∈ �.list do
8: if findRootH(O).marked then
9: �.list.remove(O)

10: else
11: findRootH(O).marked:= 1
12: return �i

5.2.2. Auxiliary operations
In the hierarchical forest, any ellipsoid in an object can be used 

to represent the object because all the ellipsoids in the object can 
be accessed via the circular linked-list. Furthermore, the represen-
tative (i.e., the root) of the object can be accessed by following the 
parent pointers. With this note in mind, we introduce the basic 
operations.
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Algorithm 7 Auxiliary operations in a hierarchical ellipsoid forest.

1: procedure overlap(O, O′)
2: if ¬overlap(O.dBox, O

′.dBox)
then

3: return false
4: for e ∈ O & e′ ∈ O

′ do
5: if e and e′ overlap then
6: return true
7: return false

8: procedure mergeH(O, O′)
9: e :=findRootH(O)

10: e′ :=findRootH(O
′)

11: linkH(e, e′)
12: swap(e.next, e′.next)
13: findRootH(e).dBox :=

union(e.dBox, e′.dBox)

14: procedure findRootH(e)
15: if e.parent == ∅ then
16: return e
17: else
18: e.parent:=find-

RootH(e.parent)
19: return e.parent

20: procedure linkH(e, e′)
21: if e.rank > e′.rank then
22: e′.parent := e
23: else
24: e.parent := e′
25: if e.rank == e′.rank then
26: e′.rank := e′.rank + 1

Operation overlap: Given objects O1 and O2, this operation 
determines if O1 and O2 overlap. Algorithm 7 shows the algo-
rithmic implementation of overlap with the delimiting box test. 
Note that Algorithm 7 l.4 utilizes the circular linked-lists of the 
enhanced trees to iterate over each ellipsoid in constant time.

Operation mergeH: Given objects O1 and O2, this operation 
unifies the enhanced trees corresponding to O1 and O2 into a 
single enhanced tree in the hierarchical forest. First of all, the 
roots/representatives of the two objects are retrieved using the
findRoot operation. Second, the aforementioned roots are linked 
via a call to the linkH operation. Third, to make the ellipsoids 
in the new enhanced tree form a circular linked-list, the circular 
linked-lists associated with O1 and O2 are unified by swapping the 
next pointers of the roots. Finally, the delimiting box of the new 
object is adjusted so that it encompasses the delimiting boxes of 
O1 and O2. The operation is conducted in-place, avoiding unnec-
essary data copying or moving

Operation findRootH: Given an ellipsoid e, findRootH tra-
verses the chain of parent pointers until it reaches the root of the 
object in which e is a member. A recursive implementation of the
findRootH operation with the path-compression heuristic is pro-
vided in Algorithm 7, where, as the recursion unwinds on a path 
to a root, the parent pointers start pointing to the root. Further-
more, given an ellipsoid in an object O, findRootH returns the 
root ellipsoid in O.

Operation linkH: This operation links two ellipsoids e and 
e′ , as the roots of two distinct objects, using the union-by-rank 
heuristic. To that end, linkH sets the parent pointer of the one 
with the lower rank to the other one (i.e., attaching the shorter 
tree to the taller tree). If e and e′ have the same rank, then one of 
them is chosen to be the new root, and its rank gets incremented. 
Algorithm 7 outlines the linkH operation.

5.3. The algorithmic implementation of flat ellipsoid forest

As we explained in Definition 2, the flat forest extends the dis-
joint set data structure by the ellipsoidLinking operation. 
The flat forest allows concurrent wait-free execution of ellip-
soidLinking operations in any order by utilizing fine-grained 
synchronization primitives as proposed in [23].

5.3.1. Compound operation
Operation ellipsoidLinking: Given split-summaries ϕi

and ϕj , this operation checks whether each ellipsoid pair 〈e, e′〉, 
where e belongs to ϕi and e′ belongs to ϕj , overlaps. In that case, 
it merges the objects associated with e and e′ . Algorithm 8 out-
lines the algorithmic implementation of ellipsoidLinking.
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Table 2
Table of Notation.

N � number of points in the input dataset
K � number of threads
S � number of data splits
γ � number of local clusters in a data split

|O| � number of ellipsoids in object O
‖�‖ � sum of number of ellipsoids in objects 

in �
α(.) � inverse Ackermann function
Algorithm 8 Operation ellipsoidLinking in a flat ellipsoid 
forest.

1: procedure ellipsoidLinking(ϕi ,ϕj )
2: for e ∈ ϕi .list & e′ ∈ ϕj .list do
3: if e and e′ overlap then
4: mergeF(e, e′)

Algorithm 9 Auxiliary operations in a flat ellipsoid forest. The last 
executed step marked by an asterisk gives the linearization point. 
Adapted from [23].

1: procedure findRootF(e)
2: while e.parent 	= ∅

∗ do
3: e:=e.parent
4: return e

5: procedure mergeF(e, e′)
6: while true do
7: e := findRootF(e)

8: e′ := findRootF(e′)
9: if e.ID< e′.ID then

10: if CAS(e.parent, ∅, e′)∗ then
11: return
12: else if (e.ID== e′.ID)∗ then
13: return
14: else if e.ID> e′.ID then
15: if CAS(e′.parent, ∅, e)∗ then
16: return

5.3.2. Auxiliary operations
Operation findRootF: Given an ellipsoid e, this operation fol-

lows the parent pointers from e until it reaches the root of the 
object in which e belongs.

Operation mergeF: Given two ellipsoids e and e′ , this oper-
ation merges the trees in the forest that are associated with e
and e′ . First of all, utilizing the findRootF operation, the rep-
resentatives of the objects associated with e and e′ are found. 
Afterwards, the parent pointer of the object representative with 
the lower ID value gets linked to the object representative with 
the higher ID value. As there are concurrent accesses to the el-
ements in the forest, there might be other threads that link the 
aforementioned parent pointer to another ellipsoid. Therefore, the 
implementation shown in Algorithm 9 utilizes CAS to atomically 
update the parent pointers. If the CAS operation fails when chang-
ing a parent pointer, it means that the parent pointer was already 
changed by some other thread (executing an overlapping ellip-
soidLinking operation involving some ellipsoid(s) belonging to 
the same object(s)) in the meantime. Therefore, the roots of the 
associated objects are recalculated, and then the same mechanism 
tries to link them. The aforementioned steps continue in the retry 
loop (shown in Algorithm 9 l.6-l.16) until the roots of the associ-
ated objects get linked (by any of the threads). The operation is 
conducted in-place, avoiding unnecessary data copying or moving.

5.4. Discussion on system aspects

The proposed algorithmic descriptions of PARMA-CC algorithms 
incorporate a simple scheduler [8] for parallel execution of tasks. 
Such a choice allows us to uncover the algorithm properties of the 
design space and as well as the behaviour of the ellipsoid forests. 
In general, parallel execution of tasks in PARMA-CC algorithms can 
be scheduled using any off-the-shelf parallelization library, such as 
OpenMP [22], TBB [45], and Cilk [7]. Using such parallelization li-
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braries is orthogonal to the scope of this work as it introduces 
new aspects and trade-offs to the study. Nevertheless, using such 
libraries can facilitate scheduling and executing finer parallel tasks. 
For instance, each invocation of ellipsoidLinking operation 
be decomposed into several parallelization tasks. As shown in Al-
gorithm 8, there is no dependency between the iterations of the 
for loop in ellipsoidLinking; therefore, each iteration of the 
aforementioned for loop can be performed in parallel.

6. Analysis

We provide an analytical study of PARMA-CC algorithms.
Notation: Let γ be an upper bound on the number of locally de-
tected clusters in a split of data. For an object O, let |O|, i.e., size 
of O, be the total number of ellipsoids in O. Considering a hier-
archical PARMA-CC algorithm, for a map �, let ‖�‖ the number 
of all the ellipsoids in �. Table 2 summarizes the notations in this 
section.

6.1. Ellipsoid forest analysis

6.1.1. Hierarchical ellipsoid forest

Lemma 1. [Adapted from Lemma 21.13 in [10]] The worst-case and 
amortized time complexity of each findRootH operation is respec-
tively O(log(γ S)) and O(α(γ S)), where α(.) is the inverse Ackermann 
function.

Note that α(.) is a very slowly growing function where α(x) < 5
for x < 1080.

Lemma 2. The worst-case time complexity of each overlap operation 
on objects O1 and O2 is O(|O1||O2|).

Lemma 3. The worst-case and amortized time complexity of each
mergeH operation is respectively O(log(γ S)) and O(α(γ S)).

Proof. A mergeH calls (i) three findRootH operations, (ii) one
linkH operation, and (iii) swapping the values of two pointers. 
According to Lemma 1, the worst-case and amortized time com-
plexity of (i) is respectively O(log(γ S)) and O(α(γ S)). (ii) and 
(iii) are performed with O(1) time complexity.

Lemma 4. The worst-case and amortized time complexities of each
mapCombining operation on �i and �j are bounded from above by 
O

(
log(γ S).||�i||.||�j||

)
and O

(
α(γ S).||�i||.||�j||

)
, respectively.

The above follows from deriving an upper bound on the sum-
mation of time complexities of operations overlap and mergeH
as performed by the mapCombining operation. Note that the 
bound for the amortized complexity is loose for two reasons: (i) As 
soon as O and O′ are found to have overlapping ellipsoids, over-
lap returns true without further investigation of the remaining 
cases, see Algorithm 7 l.5-6. (ii) When objects O and O

′ do not 
overlap, with high probability, the delimiting boxes of O and O

′
do not overlap either; therefore, saving the comparisons of ellip-
soids in O and O′ .
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6.1.2. Flat ellipsoid forest

Lemma 5. [adapted from Theorem 1 in [23]] Any concurrent execution 
order of findRootF and mergeF is linearizable and wait-free.

Lemma 6. [adapted from Theorem 2 in [23]] The probability that each
findRootF and each mergeF perform O (log (γ S)) steps is at least 
1 − 1

γ S .

Lemma 7. The expected asymptotic time complexity of each find-
RootF and each mergeF is O (log (γ S)).

Proof. Based on Lemma 6, the probability that each findRootF
and each mergeF perform �(γ S) steps (the maximum possible 
height of a tree in the ellipsoid forest) is at most 1

γ S . Therefore, 
the expected time complexity of each findRootF and mergeF
is less than or equal to (1 − 1

γ S )O (log (γ S)) + 1
γ S�(γ S), yielding 

the bound O (log (γ S)).

Lemma 8. The expected asymptotic time complexity of each ellip-
soidLinking operation is O

(
γ 2 log (γ S)

)
.

Proof. Consider ellipsoidLinking on two given maps. Due to 
the linearity of expectation, the expected time complexity of el-
lipsoidLinking is the sum of expected time complexities of 
the mergeF operations that it performs. Consider two given maps. 
The maximum number of times that ellipsoidLinking can 
perform the mergeF on the two maps is at most O(γ 2) times 
(the number of pairs of ellipsoids in the two maps), where each
mergeF has expected time complexity of O (log (γ S)) according 
to Lemma 7.

6.2. Safety and completeness properties of PARMA-CC algorithms

Lemma 9. Operations and mapCombining and ellipsoidLink-
ing satisfy the commutative and associative properties.

The above follows from the descriptions and the algorithmic 
implementations introduced in § 5.2 and § 5.3.

Lemma 10. For any concurrent execution of a PARMA-CC algorithm, 
there exists a sequential execution that produces an equivalent result.

Proof. We argue how to build an equivalent sequential execution 
corresponding to a concurrent execution of a PARMA-CC algorithm. 
Similar to the concurrent execution, the equivalent sequential algo-
rithm splits the input dataset into S splits and operates in three 
matching phases, except for the synchronization details, which 
are not needed in the equivalent sequential execution. Regarding 
phase I, the signalling mechanism in PARMAH (shown in Algo-
rithm 2 l.9), updating the status values in PARMAF (shown in Al-
gorithm 3 l.7-8), insertions in Q in FLEXI-PARMAH (shown in Al-
gorithm 4 l.11), and updating the status values in FLEXI-PARMAF
(shown in Algorithm 5 l.9-10) are not needed in the equivalent se-
quential algorithm. Note that besides the aforementioned synchro-
nization details, the rest of the operations in phase I of a PARMA-
CC execution are performed in a data parallel fashion. Therefore, 
in phase I, the equivalent sequential algorithm can perform the lo-
cal clustering tasks and create the split-summaries in any arbitrary 
order. The same argument also holds regarding phase III of the 
equivalent sequential algorithm. We explain how to construct the 
rest of the equivalent sequential execution (i.e., phase II) for the 
hierarchical and flat PARMA-CC algorithms in the following:
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Hierarchical: A hierarchical PARMA-CC algorithm performs map-
Combining (see Algorithm 6) operations in the hierarchical forest 
according to hierarchy H, where H can either be predetermined as 
in PARMAH or be dynamically determined as in FLEXI-PARMAH . 
In either case, mapCombining operations are performed with 
respect to the following rules: (P1) mapCombining operations 
corresponding to disjoint subtrees in H can be performed in par-
allel. (P2) mapCombining operations which have an ancestor-
descendant relation in H never modify the same sets in the forest 
simultaneously. (P3) Each ellipsoid belongs to only one object both 
before and after a mapCombining operation. (P4) All pairs of 
objects that have overlapping ellipsoids are merged in the final 
map. Therefore, in phase II, the equivalent sequential algorithm can 
sequentially perform mapCombining operations following any ar-
bitrary hierarchy H and get the same set of objects because oper-
ation mapCombining satisfies the commutative and associative 
properties (see Lemma 9).

Flat: The threads in a flat PARMA-CC algorithm perform el-
lipsoidLinking (see Algorithm 8) operations on all pairs of 
split-summaries (i.e., elements of V as defined in Definition 3). 
We show in the following that any arbitrary (due to concurrency) 
inter-leaving of ellipsoidLinking operations, results in the 
same set of objects.

1. Each ellipsoidLinking operation in V is performed exactly 
once. The latter holds because each thread tries to atomically 
book available an ellipsoidLinking operation via perform-
ing CAS on the corresponding status value (see Definition 3), 
as long as there are available ellipsoidLinking operations 
left.

2. As the threads perform ellipsoidLinking operations, con-
current executions of operation mergeF might be performed.

3. As any concurrent execution of mergeF is linearizable (see 
Lemma 5), and operation ellipsoidLinking satisfies the 
commutative and associative properties (see Lemma 9), the 
same set of objects gets formed in the ellipsoid forest regard-
less of linearization of the mergeF operations.

Based on the sequence of arguments in (1), (2), and (3), any 
concurrent execution of ellipsoidLinking operations on all 
pairs of split-summaries results in the same set of objects. There-
fore, in phase II, the equivalent sequential algorithm can sequen-
tially perform ellipsoidLinking in any arbitrary order and 
get the same set of objects.

Definition 5 (The Completeness Property). An ellipsoid forest satisfies 
the completeness property when the following condition holds for 
each pair of ellipsoids 〈ei, ej〉 in the forest: The pair 〈ei, ej〉 is 
directly or indirectly overlapping (see Definition 1) if and only if 
there exists an object O such that ei ∈ O and ej ∈ O.

Lemma 11 (Completeness in PARMAH). By the end of phase II in 
PARMAH , the completeness property holds in the associated hierarchi-
cal ellipsoid forest.

Proof. We first prove the statement in the following direction: If 
the pair 〈ei, ej〉 is directly or indirectly overlapping, then, by the 
end of phase II, there exists an object O such that ei ∈ O and 
ej ∈ O. To that end, consider phase I, when ei is a member of 
Oi′ in map �i , and ej is a member of O j′ in map �j . If the pair 
〈ei, ej〉 is directly overlapping, then Oi′ and O j′ are merged when
mapCombining operation is performed on the maps containing 
ei and ej (such a mapCombining operation is guaranteed to 
exist as H is a spanning tree, see § 3.3.1). On the other hand, sup-
pose the pair 〈ei, ej〉 is indirectly overlapping via ellipsoid ek
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(i.e., ellipsoids in each of the pairs 〈ei, ek〉 and 〈ej, ek〉 are di-
rectly overlapping), where ek belongs to object Ok′ , at the end of 
phase I, in �k. After mapCombining operations are performed on 
�i , �j , and �k in the order specified by H, there will be an ob-
ject containing ei , ej , and ek . The latter holds regardless of the 
hierarchy specified by H because the mapCombining operation 
satisfies the commutative property (see Lemma 9). This argument 
can be extended inductively to cover all the cases in which ei and 
ej are indirectly overlapping.

Now we prove the statement in the opposite direction: If there 
exists an object O such that ei ∈ O and ej ∈ O, then the pair 
〈ei, ej〉 is directly or indirectly overlapping. Towards a contradic-
tion, suppose the pair 〈ei, ej〉 is neither directly nor indirectly 
overlapping, but ei ∈ O and ej ∈ O. The latter implies that, at 
some point in phase II, the mapCombining operation combined 
non-overlapping objects, a contradiction.

Lemma 12 (Completeness in PARMAF). By the end of phase II in 
PARMAF , the completeness property holds in the associated flat ellip-
soid forest.

Proof. We first prove the statement in the following direction: If 
the pair 〈ei, ej〉 is directly or indirectly overlapping, then there 
exists an object O such that ei ∈ O and ej ∈ O. To that end 
suppose ei ∈ ϕi and ej ∈ ϕj . If the pair 〈ei, ej〉 is directly over-
lapping, then, through the call to ellipsoidLinking(ϕi, ϕj), ei
and ej will become members of the same object. On the other 
hand, if the pair 〈ei, ej〉 is indirectly overlapping with just an 
ellipsoid ek ∈ ϕk in between (i.e., ellipsoids in each of the pairs 
〈ei, ek〉 and 〈ej, ek〉 are directly overlapping), then there will 
be an object containing ei and ej (as well as ek) after el-
lipsoidLinking(ϕi, ϕk) and ellipsoidLinking(ϕj, ϕk) are 
completed. This argument can be inductively extended to cover all 
the cases in which ei and ej are indirectly overlapping.

The proof in the opposite direction is made with contradiction, 
similar to the one provided in the proof of Lemma 11.

Lemma 13 (Completeness in Flexi PARMA-CC Algorithms). At the end of 
phase II, the ellipsoid forest in a flexi PARMA-CC satisfies the complete-
ness property.

Proof. For a given hierarchical/flat flexi PARMA-CC algorithm op-
erating on S splits, consider a hierarchical/flat basic PARMA-CC 
algorithm that operates with K=S threads. The two algorithms 
produce equivalent ellipsoid forests because both mapCombin-
ing and ellipsoidLinking satisfy the commutative prop-
erty. Therefore, the ellipsoid forest at the end of phase II of the 
flexi PARMA-CC algorithm satisfies the completeness property sim-
ilar to the basic PARMA-CC algorithm (based on Lemma 11 and 
Lemma 12).

Corollary 1. With fixed minPts, ε , and S, PARMA-CC algorithms yield 
the same clustering for the same input dataset.

6.3. Completion time behaviour of PARMA-CC algorithms

Here we analyze the completion time behaviour of the algo-
rithms in the PARMA-CC family.
Assumptions:

• As D can contain several hundreds of thousands of points, but 
the number of splits is limited to a few hundreds, we assume 
N � S ≥ K. Furthermore, we assume N � γ because a local 
cluster can typically contain a large number of points.
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• The local clustering algorithm (for instance PCL-EC or DBSCAN) 
uses a kd-tree to perform ε-neighbourhood queries.

• The total number of ellipsoids in an ellipsoid forest (γ S) is 
smaller than 1080 for all the possible use-cases. Therefore, all 
occurrences of the inverse Ackermann function are substituted 
with O(1).

Lemma 14. The following statements hold regarding the completion 
time of different phases of a PARMA-CC algorithm:

• The expected completion time of phase Iis O( NK log ( NS )).
• The expected completion time of phase II of a hierarchical PARMA-CC 

algorithm is O(γ 2S2).
• The expected completion time of phase II of a flat PARMA-CC algo-

rithm is O
(

γ 2S2

K log (γ S)
)

.

• The expected completion time of phase III in a hierarchical PARMA-CC 
algorithm is O( NK ).

• The expected completion time of phase III in a flat PARMA-CC algo-
rithm is O

( N
K log (γ S)

)
.

Proof. We prove each statement in the following:

• We prove the statement for basic and flat PARMA-CC algo-
rithms:

– In case of a basic PARMA-CC algorithm (S = K): As the 
workload is distributed evenly among the K threads, the 
expected completion time of a data split clustering is 
O( NK log ( NK )).

– In case of a flexi PARMA-CC algorithm (S > K): There are S
local clustering tasks to be shared by K threads, and as each 
split contains N/S points, the expected completion time of 
a data split clustering is O( NS log ( NS )). Therefore, the ex-
pected completion time of K threads concurrently perform-
ing local clustering is O

( S
K
N
S log ( NS )

) =O( NK log ( NS )).

Other computational steps in phase I of a PARMA-CC (i.e., fit-
ting bounding ellipsoids, applying synchronization primitives, 
pushing elements into a queue) are asymptotically dominated 
by O( NK log ( NS )).

• Summing up the amortized time complexities of all mapCom-
bining operations (see Lemma 4), the expected total time 
complexity of all mapCombining operations is bounded from 
above by O(γ 2S2), which is a loose bound based on the proof 
of Lemma 4.

• In phase II of a flat PARMA-CC algorithm, there are O(S2) el-
lipsoidLinking operations which are shared by K threads 
running in parallel. Considering the fine granularity of the el-
lipsoidLinking operations, each thread performs O(S2/K)

ellipsoidLinking operations. Applying the linearity of ex-
pectation over the expected time complexity of each ellip-
soidLinking (given in Lemma 8) yields the result.

• We prove the statement for basic and flat PARMA-CC algo-
rithms:

– In case of a basic PARMA-CC algorithm (S = K): As the 
workload is distributed evenly among the K threads, each 
thread relabels O( NK ) points.

– In case of a flexi PARMA-CC algorithm (S > K): There 
are S local relabeling tasks to be shared by K threads, 
and as each split contains N/S points, each thread relabels 
O

( S
K
N
S

) =O( NK ) points.

The amortized time complexity of relabeling each point is O(1)

because finding the root of the associated tree, via performing
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Table 3
Algorithms in the PARMA-CC family (SP stands for synchronization primitives).

Synchronization
Algorithm Ellipsoid Forest/Combine Order Basic/Flexi Phase I Phase II Phase III Preferred Data Properties

PARMAH Hierarchical/predetermined Basic - SP - arbitrarily ordered
PARMAF Flat/dynamic Basic - SP - spatio-temporal (e.g. LIDAR)
FLEXI-PARMAF Flat/dynamic Flexi SP SP SP spatio-temporal (e.g. LIDAR)
FLEXI-PARMAH Hierarchical/dynamic Flexi Ready Queue + SP SP SP arbitrarily ordered
findRootH (Lemma 1), and then retrieving the root’s ID are 
the only required steps for each point. The expected completion 
time can be driven by taking a summation over the amortized 
time complexities of relabeling each point.

• This statement is proven similar to the previous one. Due to 
the linearity of expectation, summing the expected comple-
tion times of O( NK ) findRootF operations (given in Lemma 7) 
yields the result.

Observation 1. Lemma 14 indicates the following trade-off between the 
expected completion time of phase I and the expected completion time 
of phase II: the dominating factor in the completion time of a PARMA-CC 
algorithm, i.e., the local clustering in phase I, can be reduced by increas-
ing K and/or S. However, too large values for K and/or S increase the 
expected completion time of phase II.

Theorem 1. The expected completion time of a PARMA-CC algorithm un-
der the given assumptions is O( NK log ( NS )).

Proof. The theorem follows from taking the dominating asymptotic 
term in Lemma 14.

6.4. On shared memory accesses and contention

As discussed in § 5.1, the operations on the data structure are 
in-place, avoiding unnecessary copies and moves of data. Regard-
ing contention on the shared memory in different PARMA-CC al-
gorithms, note that there is none in PARMAH because the compu-
tations that each thread performs follow a predetermined partial 
order that ensures that concurrent operations touch disjoint data 
only. The number of occasions in which shared memory contention 
can take place in FLEXI-PARMAH is proportionate to S, i.e., the 
number of shared tasks. On the other hand, the number of shared 
tasks in flat PARMA-CC algorithms is proportionate to S2, deter-
mined by the number of ellipsoidLinking operations. Note 
that this shared memory contention discussion is complementary 
to the expected completion time analysis in Lemma 14, which, 
among other factors, takes into account the expected number of 
retries that have to be performed because of memory contention, 
where necessary.

Note when X threads concurrently perform a CAS operation on 
a memory location, only one of them succeeds and X− 1 threads 
fail. Therefore, to measure memory contention, we consider the 
average ratio of failed CAS operations to the total number of in-
voked CAS operations. Exact measurements for the ratio of failed 
CAS operations to the total number of invoked CAS operation are 
data-dependent and execution-dependent. In the worst-case, the 
aforementioned ratio can be as large as 1 − 1

K , indicating one suc-
cessful CAS against K− 1 unsuccessful CAS for all the invocations. 
In the algorithmic implementation of PARMA-CC, some invocations 
of CAS operations can be avoided; e.g., a thread does not need 
to invoke a CAS to book a local clustering task which is already 
booked or completed (see Algorithm 4 l.7 and Algorithm 5 l.6). 
The same also applies for booking local clustering tasks and el-
lipsoidLinking operations. We empirically measure the afore-
mentioned ratio in § 8.5.
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7. Discussion on the utilization and the building components of 
the algorithms

7.1. On which PARMA-CC algorithm to choose

Let inter-split overlap refer to the amount of overlap between 
local clusters in different splits. With high inter-split overlap, uti-
lizing the hierarchical forest can result in a higher scaling-factor 
compared to utilizing the flat forest. First of all, as the inter-split 
overlap increases, the average number of ellipsoids in different 
objects increases. Consecutively, the computational savings of the 
delimiting-box test increase as a result of skipping the comparison 
of ellipsoids in non-overlapping objects. On the other hand, the 
amount of concurrent updates on overlapping elements in a flat 
forest is directly proportional to the inter-split overlap. Therefore, 
threads performing ellipsoidLinking in a flat forest have to 
retry (see Algorithm 9 l.6) for more number of times for successful 
linking as the inter-split overlap increases.

Observation 2. With the splitting mechanism outlined in § 3.2 and input 
data having a spatio-temporal locality (e.g., an angularly sorted LIDAR 
point cloud), the inter-split overlap is low. Therefore, we expect the flat 
PARMA-CC algorithms to scale better under the aforementioned condi-
tions. On the contrary, we expect the hierarchical PARMA-CC algorithms 
to scale better on arbitrarily ordered datasets that exhibit high inter-split 
overlap. Table 3 summarises the PARMA-CC algorithms.

7.2. Use cases implying extensions

PARMA-CC’s summaries can be used to efficiently answer a 
range of queries. We demonstrate the latter by studying two com-
mon queries, for which we study and compare how PARMA-CC and 
a classical approach can be used.
Predicting the clustering label of a new point q based on the exist-
ing clusters: The latter can be useful in evolving sets. A classical 
approach might decide about q’s clustering label by considering 
the clustering labels of q’s nearest neighbours in D. Using a kd-
tree, nearest neighbour queries have expected and worst-case time 
complexities of O(logN) and O(N2), respectively. On the other 
hand, the approach leveraging the summaries of a PARMA-CC al-
gorithm can assign q the unique ID of Oq ’s root, where Oq is the 
object in which q geometrically falls. The latter is shown as oper-
ation predictLabel in Algorithm 10 l.1-6. As the total number 
of ellipsoids is γ S, predictLabel’s worst-case time complexity 
is O(γ S). Note that, in general, γ S is much smaller than N.
Approximating the distance of a given point q to the nearest point in 
cluster c: With time complexity O(|c|), a classical approach calcu-
lates the distance of each point in c to q and returns the smallest 
one. On the other hand, the approach levering PARMA-CC’s sum-
maries computes the distance of q to each ellipsoid in Oc , where 
Oc is a PARMA-CC object corresponding to cluster c. The latter 
is shown as operation distanceToObject in Algorithm 10. The 
distance between a point and an ellipsoid is determined in O(1)

using the method in [35]. Therefore, distanceToObject’s time 
complexity is O(|O|).
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Algorithm 10 Answering queries using PARMA-CC’s summaries.
1: procedure predictLabel(q)
2: for i ∈ {1, · · · , S} do
3: for e ∈ ϕi .list do
4: if q falls within e then
5: return findRoot(e).ID
6: return noise

7: procedure distanceToObject(O, q)
8: return min

e∈O

{distance between q and e}

Fig. 4. Polyhedron fitting.

7.3. On volumetric summarization methods

Besides the bounding ellipsoid summarization method, PARMA-
CC algorithms can utilize other geometric summarization meth-
ods such as axis-aligned bounding boxes (AABBs) [41] or oriented 
bounding boxes (OBBs) [16]. More generally, we consider bound-
ing polyhedrons. Fig. 4, shows an example cluster of points (repre-
sented by green circles) and a corresponding bounding polyhedron. 
We characterize a bounding polyhedron by a set of normal vectors 
ui for i ∈ {1, · · · , F}, where each ui is a normal vector to two par-
allel faces in the bounding polyhedron.
Fitting a bounding polyhedron around a local cluster c: The minimum 
and maximum values of the orthogonal projections of points in c
onto vector ui determine respectively the left and right faces asso-
ciated with normal vector ui . Note that the orthogonal projection 
of a point onto a vector is simply calculated by their dot product. 
The example in Fig. 4 utilizes three normal vectors u1 , u2 , and u3 . 
Note that the left and right faces associated with each normal vec-
tor are shown in the same colour as the normal vector.
Determining the normal vectors: The normal vectors uis can either 
be chosen randomly or in a systematic way to uniformly sample 
the unit sphere in the space. The number of vectors, F, determines 
the granularity of the volumetric approximation, i.e., increasing 
F increases the approximation accuracy but increases the cost of 
computing the bounding polyhedron. However, with fixed F, the 
cost of fitting a bounding polyhedron is constant per point in c.
Determining whether two bounding polyhedra geomterically overlap:
Two polyhedra P1 and P2 are geometrically overlapping if and 
only if, for all uis, the intervals containing the left and right faces 
in P1 and P2 overlap.

8. Evaluation

We here empirically evaluate PARMA-CC algorithms. The pa-
rameters of the study are the following: the number of threads 
(K), the number of splits (S), the size of the input data (N), the 
number of objects in the input data, the degree of inter-split over-
lap in the input data, and the local clustering algorithm.

8.1. Experiment setup

We study the completion time of PARMA-CC algorithms in ac-
cordance with the expected completion time analysis given in 
Theorem 1. To understand the parallelization utilization behaviour 
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of PARMA-CC algorithms, we evaluate their scaling-factors, i.e., the 
ratio of the completion time of the exact sequential baseline to 
the completion time of PARMA-CC algorithms, as a function of K
and S. We also empirically examine the expectations raised in Ob-
servation 2 regarding the behaviour of the algorithms on datasets 
with different degrees of inter-split overlap. Moreover, we study 
the ratio of the local clustering time to the completion time of the 
algorithms in accordance with the analytical results in Lemma 14
to gain insight on how the different phases contribute to the total 
completion time. Furthermore, we evaluate the clustering accuracy 
of PARMA-CC algorithms against the exact baseline using rand in-
dex.4 Finally, we complement the shared memory access and con-
tention analysis in § 6.4 by empirically measuring the average ratio 
of failed CAS operations to the total number of invoked CAS oper-
ations.

We provide the evaluation results corresponding to PARMA-
CC algorithms that utilize PCL-EC (see § 2) as the local clustering 
algorithm. Moreover, in order to evaluate PARMA-CC algorithms 
utilizing a density-based local clustering algorithm, we study the 
scaling-factor and the accuracy of basic PARMA-CC algorithms uti-
lizing DBSCAN as the local clustering algorithm. Accordingly, we 
compare the scaling-factor of the aforementioned algorithms with 
that of PDSDBSCAN (see § 2), which for the latter is the same as 
its speedup. By default, the presented results and discussions refer 
to PARMA-CC algorithms that utilize PCL-EC as the local clustering 
algorithm, unless otherwise stated.
Evaluation data: We use both LIDAR and GPS datasets. Regarding 
LIDAR data, we study a random subset of the point clouds in the 
KITTI dataset [13], collected by a Velodyne laser scanner in urban 
driving. We also study a random subset of the Ford Multi-AV Sea-
sonal dataset [1] which is collected by a fleet of vehicles in a vari-
ety of conditions. Regarding GPS data, we choose a random subset 
of points in the Mopsi route dataset [30], which contains GPS read-
ings (in terms of latitude and longitude) gathered by various users 
doing a wide range of activities (e.g., walking, cycling, skiing, tak-
ing a boat) mostly in Finland. We also study a random subset of 
the GeoLife GPS Trajectories dataset [48,46,47], containing densely 
recorded GPS readings by several users mostly in Beijing city. Fur-
thermore, we study randomly shuffled versions of the GeoLife and 
Mopsi datasets, exhibiting high inter-split overlap. Table 4 gives an 
overview of each bench-marked dataset along with its inter-split 
overlap characterization.
Preprocessing: By imposing a simple threshold, we filter the 
ground (floor) points in the point clouds (otherwise scene objects 
are connected via the ground). Each filtered point cloud in the 
KITTI dataset contains about 40,000 points, and each filtered point 
cloud in our subset of the Ford Multi-AV dataset contains between 
150,000 and 300,000 points. Regarding the GPS datasets, we filter 
sequential duplicate points (the points that correspond to when 
GPS readings were logged while the user was stationary). Our fil-
tered subset of the GeoLife and Mopsi datasets contain more than 
1.4 million and 1.2 million points, respectively. The sizes of the 
bench-marked datasets are shown in Table 4.
Parameters: Our purpose of clustering LIDAR datasets is to detect 
scene objects, and our purpose of clustering GPS datasets is to 
detect areas attracting a lot of users. To that end, we choose ε
and minPts to attain valid ground truth by the baselines. We 
identified that the baseline achieves reasonable clustering of scene 
objects with ε =0.7 and minPts=10 for the KITTI dataset, and 
so it does with ε=0.5 and minPts=100 for the Ford Multi-AV 
dataset. Furthermore, the baseline achieves reasonable clustering 
of GPS readings with ε = 0.1 and minPts= 500 for the Mopsi 
dataset. On the other hand, as the GeoLife dataset contains much 

4 https://github .com /bjoern -andres /partition -comparison.

https://github.com/bjoern-andres/partition-comparison
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Table 4
Summary of the bench-marked datasets, showing the characteristics and the chosen clustering parameters for each dataset.

dataset KITTI FORD GEOLIFE, shuffled GEOLIFE MOPSI, shuffled MOPSI

number of points 40,000 150,000-300,000 1.4 million 1.2 million
inter-split overlap low low medium, high medium, high

(ε, minPts) (0.7, 10) (0.5, 100) (0.001, 500), (0.001, 500/S) (0.1, 500), (0.1, 500/S)

number of splits (S) {2, 3, 4, 5, 10, 15, 20, 30, 36, 40, 50, 60, 70, 140} {2, 3, 4, 5, 10, 15, 20, 30, 36, 40, 50, 60, 70, 100, 200, 400, 600}

number of threads {2, 3, 4, 5, 10, 15, 20, 30, 36, 40, 50, 60, 70}
Table 5
Highlights of average elapsed completion time (in seconds) for different meth-
ods and datasets with a variety of parameters.

dataset KITTI FORD GeoLife Mopsi

PCL 0.3598 1.8459 950 9829

K
=2

0

PARMAH 0.0756 0.2304 21.6 91.7

PARMAF 0.0762 0.2063 22.5 100.1

FLEXI-PARMAH 0.0259 0.1074

S
=1

40 1.3 3.24

S
=6

00

FLEXI-PARMAF 0.0224 0.1016 1.5 3.5

K
=4

0

PARMAH 0.0429 0.1363 13.7 35.2

PARMAF 0.0418 0.1387 14.5 38.3

FLEXI-PARMAH 0.0241 0.0800

S
=1

40 0.94 2.06
S

=6
00

FLEXI-PARMAF 0.0178 0.0803 0.97 2.16

K
=7

0

PARMAH 0.0335 0.1038 4.9 19.9

PARMAF 0.0601 0.1096 6.7 25.3

FLEXI-PARMAH 0.0411 0.0827

S
=1

40 0.8 1.54

S
=6

00

FLEXI-PARMAF 0.0295 0.0756 0.85 1.58

denser recordings, the baseline achieves reasonable clustering with 
parameters ε=0.001 and minPts=500 for this dataset. For the 
LIDAR datasets, we execute flexi PARMA-CC algorithms choosing 
20, 40, 70, and 140 for S. For the GPS datasets, as they contain 
much more points than the LIDAR datasets, we choose S among 
100, 200, 400, and 600. We perform the experiments with up to 
70 threads, except for the experiments in which S is less than 70, 
where we choose up to S threads. As the distribution of the points 
in randomly shuffled datasets becomes uniform among the splits, 
we adjust minPts with respect to S by using minPts/S. The 
aforementioned adjustment is a common practice, e.g., [17]. The 
chosen clustering parameters are summarized in Table 4 for each 
dataset.
Evaluation setup: We implemented PARMA-CC algorithms5 in C++ 
and used GNU scientific library for matrix algebra. We used POSIX 
threads for multi-threaded programming. We used PCL’s imple-
mentation of PCL-EC [37]. We employed elapsed real time to mea-
sure completion times. Experiments were run on a 2.10 GHz In-
tel(R) Xeon(R) E5-2695 system with 36 cores on two sockets (18 
cores per socket, each core supporting two hyper-threads) and 64 
GB memory in total, running Ubuntu 16.04. We only used hyper 
threading when there were more threads than the actual number 
of cores.

8.2. Completion time and the scaling-factor of PARMA-CC algorithms

Graphs plotted in the left Y-axes of Fig. 5 show the scaling-
factor of PARMA-CC algorithms for different datasets with varying 
choices of K and S for the basic and flexi PARMA-CC algorithms. 
Besides, some highlights of the completion times are presented 
in Table 5 using varying number of threads and splits. Further-
more, the results of PCL-EC, as an exact sequential baseline, are 
included for the reference.

The results show that, with appropriate choices of S and large 
enough number of threads, PARMA-CC algorithms can be several 
orders of magnitude faster than the exact sequential baseline. Fur-

5 https://github .com /dcs -chalmers /PARMA-CC.
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thermore, the scaling-factor of PARMA-CC algorithms demonstrates 
a super-linear behaviour with respect to K or S for the Geo-
Life and Mopsi datasets. As both GeoLife and Mopsi datasets have 
highly skewed distributions, the complexity of the exact sequen-
tial baseline is O(N2). The latter holds because the spatial data 
structure used to find ε-neighbourhoods is not able to operate effi-
ciently with skewed data distributions. On the other hand, PARMA-
CC algorithms reduce the completion time of the local clustering 
quadratically in K or S, by splitting the data and by approxima-
tion.

We notice that with a large enough choice of S, a flexi PARMA-
CC algorithm achieves a higher scaling-factor than its basic coun-
terpart. For example, with S being 600, the scaling-factor of a 
flexi PARMA-CC algorithm is about 6 times that of a basic PARMA-
CC algorithm, as shown in Fig. 5c and Fig. 5s. Moreover, for each 
dataset, we observe that the scaling-factor of the flexi PARMA-CC 
algorithms tends to increase with greater S values. The latter is in 
accordance with Observation 1, stating the effect of increasing S
on decreasing the completion time of local clustering. Furthermore, 
similar to the basic PARMA-CC algorithms, we observe super-linear 
growth of the scaling-factor for flexi PARMA-CC algorithms on the 
GeoLife and Mopsi datasets. Regarding smaller sets of data, we ob-
serve that increasing the number of threads beyond a certain point 
does not further decrease the execution time, as there is less work 
to be done and the benefit from distributing is opposed by the cost 
of coordination (Fig. 5m, Fig. 5q, Fig. 5n, Fig. 5r).

8.2.1. Spatio-temporal properties and the scaling-factor of PARMA-CC 
algorithms

On the KITTI and FORD datasets (with low inter-split overlap), 
FLEXI-PARMAF achieves the highest scaling-factor. The latter is 
shown in the left Y-axes in Fig. 5q-5r, and it is in accordance with 
Observation 2. On the other hand, FLEXI-PARMAH achieves the 
highest scaling-factor on the GeoLife and Mopsi datasets, see the 
zoomed graphs Fig. 6c and Fig. 6d, respectively.

The left Y-axes in Fig. 6a and Fig. 6b respectively show the 
scaling-factor of the basic PARMA-CC algorithms on the randomly 
shuffled GeoLife and Mopsi, datasets exhibiting high inter-split 
overlap. The results show PARMAH typically achieves a higher 
scaling-factor than FLEXI-PARMAF on the randomly shuffled 
datasets. The latter is in accordance with Observation 2. An-
other important observation is that PARMA-CC algorithms typically 
achieve higher scaling-factors on the randomly shuffled datasets. 
The latter holds because the splits of a randomly shuffled dataset 
contain approximately similar distributions, alleviating the worst-
case behaviour of spatial data structures such as kd-tree.

8.2.2. Approximate DBSCAN clustering and the scaling-factor of 
PARMA-CC algorithms

The left axes in Fig. 7a-7d show the average scaling-factor of 
the basic PARMA-CC algorithms that utilize DBSCAN as the lo-
cal clustering algorithm on the KITTI, FORD, GeoLife, and Mopsi 
datasets. For comparison, the speed-up of PDSDBSCAN (an ex-
act parallel DBSCAN algorithm reviewed in § 2) is also provided 
in Fig. 7. Note that PDSDBSCAN fails to produce a proper cluster-
ing in Fig. 7c and crashes as it runs out of memory in Fig. 7d. The 
results show that PARMA-CC algorithms facilitate multiple times 

https://github.com/dcs-chalmers/PARMA-CC
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Fig. 5. The scaling-factor and rand index clustering accuracy of PARMA-CC algorithms. The scaling-factor of a PARMA-CC algorithm running with K threads is defined as 
the ratio of the completion time of the exact sequential baseline to the completion time of PARMA-CC algorithm running with K threads. Given a fixed S, all PARMA-CC 
algorithms achieve the same clustering accuracy.

Fig. 6. The scaling-factor and rand-index clustering accuracy of basic PARMA-CC algorithms on the shuffled GeoLife and Mopsi datasets in (a) and (b). Zoomed scaling-factor 
and accuracy of flexi PARMA-CC algorithms on GeoLife and Mopsi datasets in (c) and (d).
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Fig. 7. The scaling-factor and rand index clustering accuracy of basic PARMA-CC algorithms utilizing DBSCAN as the local clustering algorithm. For comparison, the speed-up 
of PDSDBSCAN (an exact parallel DBSCAN algorithm) is proved. In (c), PDSDBSCAN does not produce a proper DBSCAN clustering. In (d), PDSDBSCAN crashes as it runs out 
of memory. The right Y-axes show the clustering accuracy of basic PARMA-CC algorithms.

Fig. 8. The scaling-factor of FLEXI-PARMAH and FLEXI-PARMAF as a function of K and S (for K ≤ S) demonstrated by heat maps for different datasets. Moving between 
the columns of each heat-map indicates the effect of parallelization, and moving between the rows of each heat-map indicates the effect of approximation.
faster DBSCAN clustering through utilization of approximation and 
parallelization.

8.2.3. Effects of parallelization and approximation on the scaling-factor 
of PARMA-CC algorithms

We have seen so far how PARMA-CC algorithms utilize approx-
imation and parallelization to gain in timeliness. We here aim 
to gain insight into the effects of approximation and paralleliza-
tion on the scaling-factor. To that end, the heat maps in Fig. 8
summarize the scaling-factor behaviour of FLEXI-PARMAH and 
FLEXI-PARMAF for KITTI, FORD, GeoLife, and Mopsi datasets as 
a function of the number of threads and the number of splits 
via heat-maps (brighter colours indicate greater scaling-factors and 
the green parts correspond to the cases in which K is larger than 
S). Note that PARMA-CC algorithms yield equivalent clustering re-
sults with a fixed value of S (see Corollary 1). Therefore, moving 
between the columns of each heat-map indicates the effect of par-
allelization (i.e., number of threads), and moving between the rows 
of each heat-map indicates the effect of approximation.

8.3. Relative ratio of local clustering to the completion time

Fig. 9 shows the ratio of the duration of longest phase Ito the 
completion time in PARMA-CC algorithms. In all cases, with small 
values for K and S, ratio is very close to one because the lo-
cal clustering phase constitutes the most significant duration in 
a PARMA-CC algorithm. Generally, for each dataset, as K or S in-
creases, the aforementioned ratio decreases accordingly. The latter 
indicates the presence of two opposing phenomena. Firstly, the 
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local clustering tasks get distributed more evenly among the work-
ers, resulting in higher scaling-factor values. On the other hand, as 
indicated in Observation 1, too large values for K and/or S can 
increase the expected completion time of phase II, resulting in 
smaller scaling-factor values. In § 8.2, we empirically studied the 
joint effects of the aforementioned opposing phenomena on the 
overall completion time and the scaling-factor of PARMA-CC algo-
rithms.

8.4. Clustering accuracy

The right Y-axes in Fig. 5a and Fig. 5b show the average accu-
racy of basic on the KITTI and FORD datasets, respectively. Further-
more, Fig. 5c and Fig. 5d show the accuracy of basic PARMA-CC 
algorithms on the GeoLife and Mopsi datasets, respectively.

Similarly, the right Y-axes in Fig. 5e-5t show the clustering ac-
curacy of the flexi PARMA-CC algorithms for varying choices of 
S for each dataset. Note that, in each case, with a fixed value of 
S, PARMA-CC algorithms achieve the same clustering accuracy, as 
noted in Corollary 1.

The right Y-axes in Fig. 6a and Fig. 6b show the accuracy of 
basic PARMA-CC algorithms on the shuffled GeoLife and shuffled 
Mopsi, respectively.

The right Y-axes in Fig. 7a, Fig. 7b, Fig. 7c, and Fig. 7d shows 
the accuracy of basic PARMA-CC algorithms utilizing DBSCAN as 
the local clustering algorithm on the KITTI, FORD, GeoLife, and 
Mopsi datasets, respectively.

The results show that, although as S increases, the cluster-
ing accuracy of PARMA-CC algorithms gradually decreases, in most 
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Fig. 9. Ratio of the duration of longest phase Ito the completion time in PARMA-CC algorithms.
cases it stays high and this is due to the summarization proper-
ties of the bounding ellipsoids. Furthermore, PARMA-CC algorithms 
that utilize the Euclidean clustering algorithm are able to better 
keep up the accuracy compared to PARMA-CC algorithms that uti-
lize DBSCAN.

8.5. Shared memory contention

As mentioned in § 6.4, there is no shared memory contention 
in PARMAH , and the number of occasions in which shared mem-
ory contention can take place in FLEXI-PARMAH is significantly 
smaller than that of flat PARMA-CC algorithms (the aforemen-
tioned statements are also supported by the empirical measure-
ments in Appendix A). Therefore, we focus on shared memory con-
tention in flat PARMA-CC algorithms. Fig. 10 shows shared memory 
contention in those algorithms, as the average ratio of failed CAS
operations to the total number of invoked CAS operations for K
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≤ S. Specifically, Fig. 10a, Fig. 10b, Fig. 10c, and Fig. 10d show the 
shared memory contention in PARMAF and FLEXI-PARMAF on the 
KITTI, FORD, GeoLife, and Mopsi datasets, respectively. The results 
show that shared memory contention in PARMAF is higher than 
that of FLEXI-PARMAF , with a few exceptions. Furthermore, the 
results suggest that contention in FLEXI-PARMAF gets lower by 
choosing larger values of S, as it increases the number of shared 
tasks. However, the contention increases again if the chosen num-
ber of splits is too large for the amount of data, indicating that too 
large S values should be avoided for proper use of the algorithms.

8.6. Summary of the empirical evaluation

We studied timing and accuracy performance of PARMA-CC al-
gorithms in a variety of situations. We saw how PARMA-CC al-
gorithms can also have super-linear scaling-factors, as a result of 
approximation, when the datasets are skewed. We also saw that 
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Fig. 10. The average ratio of failed CAS operations to the total number of invoked CAS operations in flat PARMA-CC algorithms (for K ≤ S).
the local clustering is the dominant factor in the execution of a 
PARMA-CC algorithm. To that end, we noted that flexi PARMA-CC 
algorithms yield higher scaling-factors by increasing S (the num-
ber of data splits), up to a point justified by the volume of the 
data (the splits should not become too small, else the benefits of 
work-partitioning get counter-balanced by the overhead to coor-
dinate the latter). Furthermore, with lower inter-split overlap, we 
observed that the flat PARMA-CC algorithms yield higher scaling-
factors than the hierarchical PARMA-CC algorithms, and we noticed 
that the hierarchical PARMA-CC algorithms achieve higher scaling-
factors when the inter-split overlap is high. We also showed in 
practice the trade-off between S and the scaling-factor when data 
is not too big, as well as the clustering accuracy of the algorithms, 
showing the advantage of suitable choice of S for utilizing the ad-
vantageous properties of PARMA-CC algorithms.

9. Related work

PARMAH , the first parallel multiphase approximate clustering 
combining algorithm, was introduced and explored in [24]. The 
present paper extends the study of PARMA-CC algorithms by con-
sidering a design space along two orthogonal aspects. The first 
aspect considers how the threads synchronize and collaborate, and 
the second aspect considers how the workload gets distributed 
among the threads. As a result, the present paper introduces opti-
mized algorithms targeting different places in the design space. As 
suggested by the extensive empirical evaluation, different PARMA-
CC algorithms can be utilized according to certain properties of the 
data to be clustered.

In the following, we present three categories of clustering algo-
rithms relevant to PARMA-CC algorithms.
CAT1 The methods in this category can directly be embedded in 
PARMA-CC algorithms as a local clustering algorithm to gain the 
parallelism benefits of PARMA-CC algorithms. For example, instead 
of DBSCAN, DENCLUE [21], STING [44], or OPTICS [4], and their ap-
proximate variants (see CAT3) can be employed. The algorithms in 
this category can utilize spatial data structures such as kd-trees [6], 
Octrees [31], R-trees [19], M-trees [9], and navigating nets [28]. 
Similarly, PARMA-CC algorithms can also incorporate the utiliza-
tion of such spatial data structures in the local clustering phase. 
Moreover, with appropriately formed input, one can also employ 
Lisco [33], which is a single-pass continuous version of PCL-EC 
with faster ε-neighbourhood radius search via exploiting the an-
gularly sorted readings of a LIDAR sensor.
CAT2 These methods boost the performance of classical clustering 
algorithms such as DBSCAN through parallelization. For instance, 
Highly Parallel DBSCAN [17], HPDBSCAN, is an OpenMP/MPI hybrid 
algorithm that redistributes the points to distinct computational 
units that perform the local clustering tasks. Then, the local clus-
ters that need to get merged are identified, and thus appropriate 
cluster relabeling rules get generated, broadcasted, and applied lo-
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cally. HPDBSCAN offers good scalability; however, when the data 
is skewed, its performance degrades severely. On the other hand, 
PARMA-CC algorithms can deal significantly better with skewed 
data as shown in the empirical evaluation. Moreover, PARMA-CC 
algorithms’ approach to utilize the shared memory via in-place 
operations is more efficient that OpenMP’s relaxed consistency 
memory model in which multiple copies of the same data might 
exist [22]. G-DBSCAN [3] is a parallel version of DBSCAN using 
GPU that employs a graph structure for indexing data. Other ef-
forts on parallelizing DBSCAN employ a master-slave architecture, 
e.g., [5]. Nevertheless, PARMA-CC algorithms follow the orthogonal 
approach of scaling up before scaling out.
CAT3 Methods in this category sacrifice clustering accuracy to gain 
performance. For example, ρ-approximate DBSCAN [39], and STING 
(also in CAT1) which are both grid-based methods. The former 
gives a result that is sandwiched between those of DBSCAN with 
parameters (ε, minPts) and (ε(1 + ρ), minPts), for an arbitrary 
small ρ . With a constant input dimensionality d, ρ-approximate 
DBSCAN has an expected O(N) complexity. [12]. However, the 
number of neighbouring cells, O(1 + (1/ρ)d−1), grows exponen-
tially with the number of dimensions [39]. STING builds a hierar-
chical grid structure that divides the spatial area into rectangular 
cells, at a different resolution per level. Each cell summarizes the 
points it contains, thus approximating the clustering result of DB-
SCAN. With a smaller granularity step, the approximation gets bet-
ter, but the number of bottom layer cells increases. Moreover, same 
as other grid-based methods, the number of grid cells increase ex-
ponentially with the number of input dimensions. Other methods 
integrate approximate nearest neighbour search techniques (e.g., 
those based on locality sensitive hashing) into DBSCAN, e.g., [39]. 
Another approximation approach is to cluster sampled data. To that 
end, for example, the dynamic (biased) sampling method in [27]
can be utilized. The aforementioned techniques can as well be em-
bedded in PARMA-CC algorithms.

10. Conclusions

To address the problem of parallel approximate distance- and 
density-based clustering, we explored a design space for synchro-
nization and workload distribution among the threads. To cover 
different parts of the design space, we proposed representative 
PARMA-CC algorithms. We analytically and empirically provided 
evidence regarding capabilities of PARMA-CC algorithms to balance 
scaling and accuracy as well as to tolerate skewed data distribu-
tions. Furthermore, our studies show that certain properties in the 
input dataset can determine which PARMA-CC algorithm to choose 
for the best performance. Moreover, we showed that all PARMA-
CC algorithms yield equivalent clustering results. We saw, further-
more, that the approximation technique can result in super-linear 
scaling-factor in the number of threads, with only marginal loss 
in accuracy. In general our results show that high-quality approx-
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imate clustering can be several orders of magnitude faster than 
exact clustering. Based on the results of our extensive study of 
PARMA-CC algorithms, we provide some general guidelines related 
to parallel approximate data processing in the following:

• Regarding parallelization: In addition to the nature of the data 
processing task, some intrinsic properties of data also influence 
the required amount of synchronization among the threads. 
Fine-grained synchronization techniques are beneficial until cer-
tain threshold, but when heavy synchronization is needed, 
lock-based data parallel approaches can be more efficient. For 
example, several threads in a flat PARMA-CC algorithm can 
concurrently merge overlapping ellipsoids in split-summaries. 
Nonetheless, if the number of overlapping ellipsoids is large 
(which is a factor determined by the input data), then a large 
portion of fine-grained synchronization primitives will fail due 
to contention; consequently, the corresponding threads will 
need to retry. On the other hand, a thread in a hierarchical 
PARMA-CC algorithm can merge as many overlapping objects as 
required without any interruption, while other threads can in 
parallel merge the ellipsoids in mutually disjoint sets of objects.

• Regarding data structures: The choice of the data structures 
(and the computational complexity of the required functionali-
ties) should be in accordance with the data processing task. For 
example, PARMA-CC algorithms utilize a union-set data struc-
ture supporting efficient union and find operations, which is 
in accordance with the agglomerative [32] nature of PARMA-CC 
algorithms. On the other hand, for a divisive [38] data clustering 
approach, the union-set data structure is probably not a good 
choice as it does not support efficient separation of sets. From 
an algorithmic implementation point of view, it is beneficial if 
the data structures support in-place operations utilizing pointer 
manipulation techniques.

• Regarding skewed data distributions: Classical data indexing 
methods used for data clustering can result in quadratic com-
plexity in terms of the size of data under skewed data distri-
butions. Our results show approximation can be a key idea for 
alleviating the challenges imposed by high skewness. Further-
more, our work shows that splitting a highly skewed data into 
a number of portions with similar distributions, and performing 
the required computation on the portions separately and then 
aggregating the results can reduce the required workload. De-
spite its approximate nature, our results show such an approach 
can attain high clustering accuracy.

We expect that PARMA-CC algorithms can facilitate pipeline 
processing of point clouds, especially combined with stream-
processing oriented data structures as proposed in [18,43] and 
given the discussion about possible use-cases and associated 
queries in the respective section. Considering the observed paral-
lelism-induced benefits of PARMA-CC algorithms, a possible future 
venue of studies and experiments is to adapt PARMA-CC algo-
rithms to GPU enabled systems.
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Appendix A

Fig. 11 shows the number of occasions in which shared mem-
ory contention can take place in PARMA-CC algorithms as the aver-
age number of failed CAS operations. The results show that mem-
ory contention in PARMAH is significantly lower than flat PARMA-
CC algorithms.
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