
PARMA-CC: A Family of Parallel Multiphase Approximate Cluster
Combining Algorithms

Downloaded from: https://research.chalmers.se, 2024-03-20 09:11 UTC

Citation for the original published paper (version of record):
Keramatian, A., Gulisano, V., Papatriantafilou, M. et al (2023). PARMA-CC: A Family of Parallel
Multiphase Approximate Cluster Combining Algorithms. Journal of Parallel and Distributed
Computing, 177: 68-88. http://dx.doi.org/10.1016/j.jpdc.2023.02.001

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Journal of Parallel and Distributed Computing 177 (2023) 68–88

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

PARMA-CC: A family of parallel multiphase approximate cluster

combining algorithms ✩

Amir Keramatian ∗, Vincenzo Gulisano ∗, Marina Papatriantafilou ∗, Philippas Tsigas ∗

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 May 2021
Received in revised form 20 September
2022
Accepted 1 February 2023
Available online 20 February 2023

Dataset link: https://
github .com /dcs -chalmers /PARMA-CC

Keywords:
Parallel clustering
Approximation
Data structures
Synchronization

Clustering is a common task in data analysis applications. Despite the extensive literature, the
continuously increasing volumes of data produced by sensors (e.g., rates of several MB/s by 3D scanners
such as LIDAR sensors), and the time-sensitivity of the applications leveraging the clustering outcomes
(e.g., detecting critical situations such as detecting boundary crossing from a robot arm that could
injure human beings) demand for efficient data clustering algorithms that can effectively utilize the
increasing computational capacities of modern hardware. To that end, we leverage approximation and
parallelization, where the former is to scale down the amount of data, and the latter is to scale
up the computation. Regarding parallelization, we explore a design space for synchronization and
workload distribution among the threads. As we study different parts of the design space, we propose
representative Parallel Multiphase Approximate Cluster Combining, abbreviated as PARMA-CC, algorithms.
We show that PARMA-CC algorithms yield equivalent clustering outcomes despite their different
approaches. Furthermore, we show that certain PARMA-CC algorithms can achieve higher efficiency
with respect to certain properties of the data to be clustered. Generally speaking, in PARMA-CC
algorithms, parallel threads compute summaries associated with clusters of data (sub)sets. As the threads
concurrently combine the summaries, they construct a comprehensive summary of the sets of clusters. By
approximating a cluster with its respective geometrical summaries, PARMA-CC algorithms scale well with
increasing data volumes, and, by computing and efficiently combining the summaries in parallel, they
enable latency improvements. PARMA-CC algorithms utilize special data structures that enable parallelism
through in-place data processing. As we show in our analysis and evaluation, PARMA-CC algorithms can
complement and outperform well-established methods, with significantly better timeliness especially
when utilizing multiple threads, while still providing highly accurate results in a variety of data sets,
even with skewed data distributions, which cause the traditional approaches to exhibit their worst-case
behaviour.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Data clustering, the task of grouping data points into sets of
close-by points, is a research thread active since decades. Among
many applications and use-cases, clustering algorithms are utilized
in safety and management applications that monitor environments
to (i) detect areas with high space contention and support deci-
sions to e.g., minimize hazards, plan road networks or schedule

✩ Work supported by SSF project “FiC: Future Factories in the Cloud”, grant
GMT14-0032; VR project “HARE: Self-deploying and Adaptive Data Streaming An-
alytics in Fog Architectures”, nr 2016-03800; VR project ‘Models and Techniques for
Energy-Efficient Concurrent Data Access Designs” Contract nr. 2016-05360.

* Corresponding authors.
E-mail addresses: amir.keramatian@gmail.com (A. Keramatian),

vincenzo.gulisano@chalmers.se (V. Gulisano), ptrianta@chalmers.se
(M. Papatriantafilou), tsigas@chalmers.se (P. Tsigas).
https://doi.org/10.1016/j.jpdc.2023.02.001
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access artic
transport systems, and (ii) identify objects (e.g., a self-driving ve-
hicle) exhibiting dangerous or critical behaviour (e.g., crossing a
geofence or on a collision course with an obstacle). Despite the
large body of work on data clustering (e.g., [40, Ch. 11-16] and ref-
erences therein), deploying such applications, critical in Internet-
of-Things- (IoT-) based systems, remain challenging due to require-
ments such as the following:

• handling large data volumes (for example geolocation data gath-
ered by numerous GPS (Global Positioning System) devices over
a period of time and/or readings from LIDAR (Light Detection
and Ranging) sensors which scan their surroundings via rotat-
ing arrays shooting laser beams, producing several MB/s of point
cloud data),

• time constraints on data processing,
• efficient data processing for a wide range of data properties.
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jpdc.2023.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.02.001&domain=pdf
https://github.com/dcs-chalmers/PARMA-CC
https://github.com/dcs-chalmers/PARMA-CC
http://creativecommons.org/licenses/by/4.0/
mailto:amir.keramatian@gmail.com
mailto:vincenzo.gulisano@chalmers.se
mailto:ptrianta@chalmers.se
mailto:tsigas@chalmers.se
https://doi.org/10.1016/j.jpdc.2023.02.001
http://creativecommons.org/licenses/by/4.0/

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
A parallel approach utilizing approximation can open up pos-
sibilities to appropriately address the above issues. Approximation
reduces the required amount of workload at the expense of ide-
ally small, controllable reduction of accuracy. For example, a re-
cent work proposing MAD-C (Multi-stage Approximate Distributed
Cluster-combining) [25] provides evidence regarding the advan-
tages of approximation. MAD-C, being a distributed algorithm for
approximating the Euclidean clustering algorithm, multiplicatively
reduces the computational workload through approximation at the
cost of marginal reduction in the clustering accuracy.

MAD-C’s approximation approach aligns with the first part of
the “scale down, scale up, scale out” message, summarized by Gib-
bons in [14], and paves the way to consider the second part, which
is about proper utilization of parallelism, already omnipresent in
contemporary computing architectures at all levels. To tackle this
issue, in this work we address questions regarding the following:
Can shared memory boost time efficiency with increased num-
ber of threads? Can work-partitioning for parallelization, time-
efficiency and high-degree of accuracy co-exist? Furthermore, can
adjusting the algorithm according to the data properties improve
time-efficiency? Moreover, as IoT applications leverage numerous
types of data with variety of different properties, can the latter af-
fect how much the available computational capacity is utilized by
an algorithm? These questions are not jointly answered in the lit-
erature (cf. also § 9).

To answer the aforementioned questions, we propose a fam-
ily of Parallel Multiphase Approximate Cluster Combining meth-
ods (PARMA-CC). PARMA-CC algorithms are designed to achieve
high time-efficiency and parallelization over a spectrum of differ-
ent properties of data, through proper synchronization. We show
how to utilize the shared memory in a way that supports par-
allel execution of threads sharing the workload. Because of our
novel data structures and their algorithmic implementations, sev-
eral operations require nearly constant time and enable incremen-
tal, in-place processing, gradually constructing the final result by
connecting pieces of the data structure. We analyse the properties
of PARMA-CC algorithms, and we show they all achieve equivalent
clustering results. Furthermore, we study the time-efficiency and
accuracy of PARMA-CC algorithms, also complementing and com-
paring with well-established methods such as Euclidean clustering
algorithm [36], DBSCAN [11], and PDS-DBSCAN [34]. We supple-
ment the analysis with a detailed experimental study, using both
LIDAR and GPS data sets. Our results show efficiency in scaling
and in preserving accuracy, even with high numbers of threads
and large data sets (that can be challenging for existing cluster-
ing algorithms) and give practical evidence for the results in the
analysis and the benefits of the different approaches for different
properties and correlations of the data features.

The remainder of this paper is organized as follows. In § 2,
we discuss the preliminaries. We outline the design ideas behind
PARMA-CC algorithms in § 3. We propose the detailed algorithmic
description of PARMA-CC algorithms in § 4. In § 5, we describe
our proposed data structures and their algorithmic implementa-
tions. We theoretically analyze PARMA-CC algorithms in § 6. In
§ 7, we present a discussion regarding the trade-offs among the
PARMA-CC algorithms, further use cases, and some generalizations.
We present our empirical evaluation in § 8. We discuss the related
work and conclusions in § 9 and § 10, respectively.

2. Preliminaries

2.1. System model and problem description

We consider a multi-core shared-memory system supporting
parallel executions of K threads, denoted by t1 , t2 , · · · , tK .
Threads access data via read, write and read-modify-write
69
atomic operations. We utilize CAS1 (abbreviating compare-and-
swap) and FAA2 (abbreviating fetch-and-add), two commonly used
read-modify-write atomic operations, supported by all con-
temporary general purpose processors.
Input Data: D denotes the input dataset, a set of N points/obser-
vations, where each observation contains one or more real-valued
features in a metric space (i.e., each feature corresponds to a di-
mension in the input space), over which distances between points
can be calculated. For instance, D can be a point cloud, i.e., a set
of measurements in the 3D space, gathered by one or more LIDAR
sensors, or it can contain geolocation data gathered by several GPS
trackers over a period of time. It is worth noting that a LIDAR sen-
sor gathers a point cloud by targeting laser beams and measuring
the time for the laser beams to get reflected back to the sensor.
Furthermore, the sensor typically rotates to give a 360◦ view [15].
Therefore, a point cloud gathered by such a sensor is angularly
sorted in time.
Problem Description: Given an input dataset D, the goal is to par-
tition D into an unknown number of mutually disjoint sets (a.k.a
clusters) where the points inside each cluster satisfy some pre-
determined distance-based or density-based criteria. To that end,
we aim for an efficient, scalable parallel approximate solution to
assign a clustering label to each point in D according to the clus-
ter to which the point belongs. The approximation, used to reduce
calculations regarding the enforcement of the distance or density
criteria, must have high accuracy. As an end result, each cluster
should be characterized by its point set (i.e., the cluster members)
and also a volumetric representation of the cluster.
Objectives: To solve the aforementioned problem, we aim for a
set of highly parallel, time-efficient, and scalable algorithms tai-
lored for different data properties in order to properly utilize the
available computational power. Regarding guarantees in presence
of concurrency, a common consistency goal is that for every par-
allel execution, there exists a sequential execution that produces
an equivalent result. Furthermore, the algorithms must be able
to combine efficiency and accuracy benefits. Regarding efficiency,
the evaluation criteria are completion time and utilization of par-
allelism which need to be considered in conjunction with the
achieved accuracy. Taking into consideration that literature defines
scalability in various ways (see for example [29]), we evaluate the
parallelism-utilization properties of an approximate concurrent al-
gorithm A via a scaling-factor, i.e., the ratio of the completion time
of the sequential baseline (an exact baseline, as this is the case
in the core of the algorithmic approaches here), to the comple-
tion time of the algorithm A running with K threads, for different
choices of K. The aforementioned metric allows us to study how
much the completion time of an approximate parallel algorithm
changes with respect to the exact sequential baseline for different
number of threads and accuracy values. We measure the accuracy
of an approximate parallel algorithm with respect to the results of
the exact baseline method using rand index [42,26], a commonly
used measure of clustering similarity. Given two clusterings of the
same set, rand index measures the ratio of the number of pairs of
elements that are either clustered together or separately in both
clusterings, to the total number of pairs of elements.

2.2. Background

For several of the technical parts of the algorithm descriptions,
the following algorithmic and concurrency-related terms are use-

1 CAS(var, oldVal, newVal) atomically changes the value stored at var to
newVal if the value stored at var is oldVal and returns “true” in such a case,
else it does not take any effect and returns “false”.

2 FAA(var, delta) atomically adds value delta to the value stored at variable
var and returns the value of the variable.

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
ful to introduce here: A concurrent algorithm is wait-free if all the
threads can make progress independently of each other. A concur-
rent implementation of a data object is linearizable if the effects of
concurrent operations appear instantaneously and are consistent
with the sequential specification of the object [20]. An operation
implementation is in-place if it directly modifies parts of a data
structure without making new copies of the latter.

We consider distance-based and density-based clustering. The
points in a distance-based cluster satisfy some minimum distance
criteria, and the points in density-based clusters form contiguous
region of high-density, separated by contiguous low-density ones.
We review PCL-EC (the Point-Cloud-Library’s Euclidean clustering
algorithm) [36] as a representative of a distance-based cluster-
ing. Representing density-based clustering, we cover DBSCAN [11]
(Density-Based Spatial Clustering of Applications with Noise) and
an established parallel variant, PDSDBSCAN [34]. We refer to PCL-
EC and to DBSCAN as exact sequential distance-based and density-
based baselines, respectively.

PCL-EC partitions a data set into an a priori unknown number
of clusters, so that each cluster has at least minPts points, and
within each cluster, each point lies in ε-radius neighbourhood of at
least another point in the same cluster, for parameters minPts, ε .
Non-clustered points are identified as noise. Using kd-trees for ef-
ficient neighbourhood search, PCL-EC’s expected and worst-case
time complexities are respectively O(N logN) and O(N2), see [36,
Ch. 4].

DBSCAN partitions a data set into an a priori unknown num-
ber of clusters such that a cluster consists of at least one core
point and all the points that are density-reachable from it. Point
p is a core point if it has at least minPts points in its ε-radius
neighbourhood. Point q is directly reachable from p if q lies in the
ε-radius neighbourhood of p. Point q is density-reachable from
p, if q is directly reachable either from p or another core point
that is density-reachable from p. Non-core points that are not
density-reachable from any core-points are outliers [12]. The ex-
pected and worst-case time complexities of DBSCAN are respec-
tively O(N logN) and O(N2) [39].

PDSDBSCAN [34] is a parallel version of DBSCAN. It parallelizes
the work through partitioning the points and merging partial clus-
ters consisting of points, maintained via a disjoint-set data struc-
ture, that facilitates maintaining a collection of disjoint sets sup-
porting in-place union and find operations [10, Ch. 21.1]

3. The PARMA-CC family of algorithms

Clustering is a global aggregate function, and as such it is far
from being an embarrassingly-parallel application; hence, concur-
rency (parallel tasks working on subsets of data) and synchroniza-
tion (putting together the results of the data subsets) imply natural
trade-offs. We propose PARMA-CC algorithms, abbreviating Parallel
Multiphase Approximate Cluster Combining, to explore the design
space for parallelism, in conjunction with appropriately designed
data structures, to provide alternative options for different scenar-
ios.

For the exposition of the algorithms, we consider LIDAR data as
it enables more intuitive descriptions. Nonetheless, the algorithms
can process various types of data, and we evaluate them with LI-
DAR and GPS data.

3.1. High-level view

On one side of the design space, the algorithms in the family
target a coarse-grained synchronization approach through which op-
erations on disjoint elements are performed in a data parallel fash-
ion, but operations on the shared elements are performed in a mu-
tually exclusive manner. On the other side of the design space, the
70
Fig. 1. The design space of PARMA-CC.

algorithms target a fine-grained synchronization approach through
which operations are performed in a fully concurrent fashion in
a wait-free manner. The coarse-grained synchronization approach
utilizes a scheme for data access control that can take advantage
of a work-saving mechanism while the fine-grained synchroniza-
tion approach eliminates the inherent waiting that is present in
the more coarse-grained synchronization one. Furthermore, based
on an orthogonal aspect, the algorithms in the family leverage ei-
ther a static or work-pool based strategy for workload distribution.
Fig. 1 visualizes the aforementioned aspects of the design space.

For i ∈ {1, · · · , S}, dis denote mutually disjoint subsets of D,
where each di is a split of D, and S is the number of splits. Each di
can be, e.g., the i-th chunk of N/S consecutive points in D. Fig. 2a
shows a hypothetical dataset D being split into four splits. In a
PARMA-CC algorithm, K threads in parallel cluster the splits and
summarize the locally detected clusters. Afterwards, the threads
combine the local summaries to create a holistic summary. Lastly,
according to the combined summary, points in D are relabeled.
Alg. 1 shows the high-level description of a PARMA-CC algorithm.
We will see how each PARMA-CC algorithm is designed based on
its position in the design space in Fig. 1. Furthermore, we will see
that PARMA-CC algorithms yield equivalent clustering results.

Algorithm 1 Outline of the three phases of a PARMA-CC algorithm.
1: let K be the number of CPU threads
2: let d1, · · · , dS be splits of D
3: let F be an appropriately designed shared data structure
4: for all K threads in parallel do
5: phase I:
6: while ∃ di to be clustered do
7: cluster di and summarize its local clusters in F
8: index the summaries in split-summary ϕi
9: announce the creation of ϕi

10: phase II:
11: create objects by detecting and grouping matching summaries in F
12: phase III (starts when all threads have reached here):
13: while ∃ di to be relabeled do
14: relabel the points in di according to the combined results

3.1.1. Challenges
The high-level design in Algorithm 1 implies challenges regard-

ing data structures, workload distribution, and synchronization,
outlined in the following:
Data Structures: The design and algorithmic implementation of the
shared data structure in Algorithm 1 (denoted by F) must be car-
ried out with regard to concurrent updates by several threads as
well as in-place operations to further facilitate scaling-up through
shared memory parallelism.
Workload Distribution: The workload distribution and work-partition-
ing mechanism among the threads in a PARMA-CC algorithm must

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Fig. 2. (a) Dataset split into four splits. (b) Split summaries of local clusters. (c) Hierarchy H of mapCombining operations in a hierarchical PARMA-CC algorithm. (d) el-
lipsoidLinking operations in a flat PARMA-CC algorithm.
facilitate effective collaboration with minimal synchronization and
contention overheads.
Synchronization: The synchronization and communication among
the threads in all PARMA-CC algorithms must ensure consistency
(in the final outcome) despite the diverse algorithmic choices sug-
gested in the design space in Fig. 1.

3.2. Rudiments and definitions

Here we provide general details relevant to all PARMA-CC al-
gorithms. For better intuition, we use a summarization technique
utilizing bounding ellipsoids for the exposition of the methods.
However, we will see in § 7 that the choice of the summarization
technique is orthogonal to the behaviour of PARMA-CC algorithms.

Definition 1. [Objects, Split-summaries, Maps]

• A local cluster is a cluster of points identified by a clustering
algorithm (e.g., DBSCAN or PCL-EC) performed on a split of the
input data. A bounding ellipsoid is a volumetric summary of a
local cluster.

• A pair of ellipsoids 〈e1, e2〉 can overlap directly or indirectly;
e1and e2 directly overlap if e1 and e2 geometrically overlap;
e1 and e2 indirectly overlap if there is an ellipsoid e′ such that
both pairs 〈e1, e′〉 and 〈e2, e′〉 overlap, either directly or indi-
rectly.

• A split-summary ϕi is a set of ellipsoids corresponding to the
detected clusters in the i-th split. Fig. 2b shows the split-
summaries corresponding to the data splits in Fig. 2a.

• An object consists of a set of mutually overlapping ellipsoids.
Given an ellipsoid e, let Oe denote the object in which e be-
longs.

• Two objects overlap if there is at least a pair of overlapping el-
lipsoids (one in each object). Two overlapping objects can get
merged, forming a bigger object containing all the ellipsoids in
the original objects.

• A map is a set of objects. Fig. 3 shows several maps.

At the heart of each PARMA-CC algorithm lies a shared data
structure called the ellipsoid forest, denoted by F in Algorithm 1.
An ellipsoid forest enables multi-threaded in-place processing and ac-
cess to ellipsoids, supporting efficient indexing and retrieval of objects
in maps and ellipsoids in objects and split-summaries. At the end of
phase I, each ellipsoid, summarizing a local cluster, becomes a sin-
gleton in the ellipsoid forest upon creation. As the forest evolves in
phase II, overlapping ellipsoids get grouped together, i.e., by form-
ing objects.

Definition 2. [Ellipsoid Forest - Extended Disjoint Set Data Struc-
ture] We propose to implement the ellipsoid forest as an extended
71
disjoint-set data structure [10, Ch. 21], i.e., a data structure that can
store disjoint sets of ellipsoids, representing growing objects. Here,
in a disjoint-set, a tree represents an object, and the root of a given
tree is called the representative of the associated object. Similar to
a disjoint-set, an ellipsoid forest supports the following operations:
(i) findRoot returns the representative of the object containing
a given ellipsoid, and (ii) merge replaces two given objects with
their union.

We propose two extensions of the disjoint-set data structure,
resulting in two variants of an ellipsoid forest data structure, in
particular through the following:

• operation mapCombining, which, given maps �i and �j , for
each O in �i and O′ in �j , merges O and O′ if they overlap, and
it returns a new map that indexes the resulting objects (merged
and not merged objects of �i and �j). The operation is to be
invoked in a synchronized, hierarchical order, to produce a final
map by combining evolving partial maps, and hence we name
the extended data structure hierarchical ellipsoid forest; or

• operation ellipsoidLinking, which, given split-summaries
ϕi and ϕj , for each pair of ellipsoids eand e′ in ϕi and ϕj , if they
overlap, merges the objects they are part of, i.e., Oe and Oe′ .
The operation does not return any index, it only updates internal
links in the composite data structure. It can be invoked concur-
rently in an asynchronous fashion, to perform linking between
all pairs of split-summaries, and hence we name the extended
data structure flat ellipsoid forest.

Table 1 summarizes the ellipsoid forests’ extended API.

3.2.1. The three phases of a PARMA-CC algorithm
Having introduced the concept of the ellipsoid forest, we give a

refined outline of a PARMA-CC-family algorithm.
Phase I: The goal here is to efficiently organize volumetric sum-
maries of local clusters in the shared memory, facilitating efficient
operations in phase II. To that end, the threads collaboratively clus-
ter the data splits and create the split-summaries ϕis. The afore-
mentioned steps are outlined in Algorithm 1 l.6-9.
Phase II: The objective in this phase, outlined in Algorithm 1 l. 11,
is to concurrently detect and group overlapping ellipsoids in the
ellipsoid forest in a scalable manner.
Phase III: This phase’s objective is to assign clustering labels to
points in D such that all points that relate to the same object are
given the same label, different from labels of points that belong to
other objects. Therefore, to relabel the points associated with the
ellipsoids in a certain object, we use the identity of the root of the
associated object in the ellipsoid forest, retrieved by findRoot.
To make sure that the objects in the ellipsoid forest do not change
any more when this phase is executed, a thread should start its
phase III only after all threads have finished their phase II. The
aforementioned steps are outlined in Algorithm 1 l.13-14.

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Fig. 3. Maps in a hierarchical PARMA-CC algorithm. Delimiting boxes indicate detected objects in each map. (a) Initial contents of the maps. (b) Maps �1 and �3 after
operations �1:=mapCombining(�1,�2) and �3:=mapCombining(�3,�4), respectively. (c) �1 after operation �1:=mapCombining(�1,�3).

Table 1
Ellipsoid Forest’s Extended API (the algorithmic implementations are presented in § 5).

operation forest type description

mapCombining(�i , �j) hierarchical for each O in �i and each O
′ in �j , merges O and O

′ if O and O
′ overlap, returns the combined map

ellipsoidLinking(ϕi , ϕj) flat for each e in ϕi and each e′ in ϕj , merges objects Oe and Oe′ if Oe and Oe′ overlap
The algorithmic details of phases I-III are determined based on
the choices in the design space of PARMA-CC algorithms. Partic-
ularly, the algorithmic details of phases I and III are determined
based on the workload distribution aspect of the design space, and
the algorithmic details of phase II are determined based on the
synchronization aspect of the design space. We elaborate on the
two aspects of the design space in the following subsection.

3.3. The design space of PARMA-CC algorithms

We explained in § 3.1 that PARMA-CC algorithms cover a design
space concerning two orthogonal aspects: (i) synchronization, and
(ii) workload distribution. We study the synchronization and work-
load distribution aspects of the design space in § 3.3.1 and § 3.3.2,
respectively.

3.3.1. Synchronization via hierarchical ellipsoid forest vs
synchronization via flat ellipsoid forest

The synchronization aspect of the design space mainly con-
cerns the manner in which overlapping ellipsoids are detected and
grouped together. As ellipsoids are stored in the ellipsoid forest,
the key element regarding this aspect is the ellipsoid forest. As
noted in Definition 2, there are two forest types, named hierarchi-
cal and flat. From now on, a hierarchical PARMA-CC algorithm is
one that utilizes the hierarchical forest, and a flat PARMA-CC algo-
rithm is one that utilizes the flat forest.

In a hierarchical PARMA-CC algorithm, the order of performing
operations is synchronized via a tree H, spanning over nodes that
represent maps in the process of constructing the overall outcome
(cf. Definition 1). Particularly, every node in H instructs perform-
ing mapCombining on two maps. Operations in disjoint branches
of H can be performed concurrently, but in the same branch,
the order of performing the operations must follow the hierarchy,
starting from the leaves and continuing upwards. Fig. 2c shows a
hierarchy applicable on the maps in Fig. 3a, i.e., the maps initi-
ated by the split-summaries in Fig. 2b. Accordingly, Fig. 3b shows
the contents of maps �1 and �3 after operations �1:= mapCom-
bining(�1,�2) and �3:= mapCombining(�3,�4), respectively.
Finally, Fig. 3c shows the content of �1 after operation �1:= map-
Combining(�1,�3). In Fig. 3, the objects in each map are distin-
guished by delimiting boxes.
72
In a flat PARMA-CC algorithm, there is no need to synchronize
the order of performing operations because ellipsoidLinking
utilizes asynchronous concurrent linearizable operations (similar
to [23]) which makes it possible to perform consistently the el-
lipsoidLinking operations (which are commutative and asso-
ciative, as we show in the more detailed description sections) in
a fully concurrent fashion on all pairs of split-summaries. Fig. 2d
outlines the ellipsoidLinking operations corresponding to
the split-summaries in Fig. 2b. Note that performing the ellip-
soidLinking operations in Fig. 2d will result in detecting the
same objects shown in Fig. 3c.

3.3.2. Basic workload distribution vs flexible workload distribution
Another key aspect of the design space (as we outlined in the

beginning of the section and in Fig. 1), is the distribution of the lo-
cal clustering and local relabeling tasks (i.e., phase I and phase III
workload) among the threads. To that end, PARMA-CC algorithms
are categorized into two groups. In the first group, which we refer
to as basic, the workload in phase I and phase III are distributed
among the threads in a work-sharing [8] style by statically assign-
ing each task to a processor. In the second group, which we refer
to as flexible, the workload is partitioned into a large number of
tasks (larger than the number of threads in the system) available
as a shared pool, from which the threads compete to take tasks in
a work-stealing [8] fashion. From now on, a basic PARMA-CC algo-
rithm is one that utilizes the basic workload distribution approach,
and a flexi PARMA-CC is one that utilizes the flexible workload dis-
tribution approach.
Basic Workload Distribution: The basic workload distribution as-
sumes a one-to-one relation between the number of threads (K)
and the number of splits (S). Concretely, for each i ∈ {1, · · · , K},
the local clustering and relabeling tasks associated with di are per-
formed statically assigned to thread ti .
Flexible Workload Distribution: Notice that in a basic workload dis-
tribution, the duration of performing the local clustering tasks can
vary between splits even when they contain the same number of
points and the threads are equally fast. The latter is due to the fact
that the local clustering algorithm employs a spatial data structure
for indexing the points. Consequently, with different distributions
of points in each split, the associated cost of using the data struc-
ture varies. Hence, the threads that finish their local clustering task

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
earlier will have to wait in subsequent phases of the algorithm.
To alleviate the aforementioned problem, a flexi PARMA-CC algo-
rithm breaks down the local clustering and local relabeling tasks
into fine-grained chunks by allowing S to be larger than K. A flexi
PARMA-CC algorithm accommodates a shared pool of local cluster-
ing and relabeling tasks which can be booked by each thread in a
wait-free manner.

4. Detailed description of PARMA-CC algorithms

We cover basic and flexi PARMA-CC algorithms in § 4.1 and
§ 4.2, respectively.

4.1. Basic members of the PARMA-CC family

Hierarchical Parallel Multiphase Approximate Cluster Combin-
ing, abbreviated as PARMAH , and Flat Parallel Multiphase Approxi-
mate Cluster Combining, abbreviated as PARMAF , are the two basic
members of the PARMA-CC family. We introduce PARMAH in § 4.1.1
and PARMAF in § 4.1.2. In § 4.2, we discuss how PARMAH and
PARMAF serve as a basis for the flexi members of the family.3

Algorithm 2 PARMAH algorithm.
1: let H be a combine hierarchy
2: let each mapCombining in H be uniquely associated with a thread
3: let S:=K
4: for all thread ti | i ∈ {1, · · · , K} in parallel do
5: phase I:
6: cluster di & summarize its local clusters
7: index the summaries in ϕi
8: �i := ϕi
9: signal the responsible thread on the first level of H that �i is ready

10: phase II:
11: if ti is responsible for mapCombining(�m,�n) then
12: wait to receive signals that �m and �n are ready
13: �m:= mapCombining(�m, �n)

14: signal the responsible thread in the next level of H (if any) that �m is
ready

15: phase III (starts when all threads have reached here):
16: relabel the points in di based on their objects

Algorithm 3 PARMAF algorithm.
1: let V be {vm,n|m, n ∈ {1, 2, · · · , S}, m < n} (see Definition 3)
2: let S:=K
3: for all thread ti | i ∈ {1, · · · , K} do
4: phase I:
5: cluster di & summarize its local clusters
6: index the summaries in ϕi
7: for all v ∈ V|v = vi,x or v = vx,i do
8: atomically increment v //e.g., using FAA
9: phase II:

10: while ∃(m, n) | corresponding task to vm,n not booked do
11: if corresponding task to vm,n is booked // (e.g. using CAS(vm,n , 2, 3))

then
12: ellipsoidLinking(ϕm,ϕn)
13: phase III (starts when all threads have reached here):
14: relabel the points in di based on their objects

4.1.1. PARMAH
PARMAH is a basic PARMA-CC algorithm that utilizes the hierar-

chical ellipsoid forest (see § 3.3). In PARMAH , each mapCombin-
ing in hierarchy H is uniquely associated with a thread which
is responsible for performing the associated mapCombining. To
make sure that the contents of the maps are finalized before a

3 The gray lines in the pseudocodes indicate parts that have been described in
previous sections and are marked in this way to facilitate the focus of the different
parts of each algorithm.
73
thread performs its mapCombining, it must wait until it receives
signals that the associated maps are ready. Algorithm 2 gives a
high-level view of PARMAH . We study phase I and phase II of
PARMAH in the following. We avoid repeating phase III of PARMAH
because it is identical to the provided details of the corresponding
phase in § 3.2.1.
Phase I: After having created the split-summary ϕi , thread ti
initializes map �i by the content of ϕi , as indicated in Algo-
rithm 2 l.8. Afterwards, ti signals the responsible thread on the
first level of H that �i is ready.
Phase II: Assuming ti is responsible for mapCombining(�m,
�n), after having received the signals that �m and �n are ready,
ti performs the associated mapCombining and updates �m, as
indicated in Algorithm 2 l.13. Then, ti signals the responsible
thread in the next level of H (if any) that �m is ready, as shown
in Algorithm 2 l.14.

4.1.2. PARMAF
PARMAF is a basic PARMA-CC algorithm that utilizes the flat

ellipsoid forest (see § 3.3). In PARMAF the elements in the ellip-
soid forest are accessed and modified in a fully concurrent manner,
i.e. no ordering is required. The latter holds because PARMAF uti-
lizes the ellipsoidLinking operations to detect and group the
overlapping ellipsoids. We will cover the algorithmic implementa-
tion of the data structure associated with ellipsoidLinking
and their consistency guarantees in the presence of concurrent op-
erations in § 5.3.

In PARMAF , the ellipsoidLinking tasks are distributed
among the threads based on the availability of tasks and the avail-
ability of unoccupied threads. To that end, each thread, after hav-
ing performed the local clustering task and having created the
associated split-summary, should reveal the availability of the new
split-summary and the associated ellipsoidLinking tasks to
the rest of the threads, so the unoccupied threads can perform the
associated tasks. We propose to utilize an array V, for storing the
status of the ellipsoidLinking tasks:

Definition 3. Let V be a set of status values, each one associated
with an ellipsoidLinking task on a certain pair of maps. As
ellipsoidLinking is symmetric, V is defined as {vm,n|m, n ∈
{1, 2, · · · , S}, m < n}, where vi, j indicates the status of ellip-
soidLinking(ϕm, ϕn) and can have any of the following values:
0: when neither ϕm nor ϕn is created (initial value); 1: when one
of ϕm or ϕn is ready; 2: when both ϕm and ϕn are ready, but
ellipsoidLinking(ϕm, ϕn) is not yet booked, 3: when el-
lipsoidLinking(ϕm, ϕn) is booked (to be performed by the
thread that booked it).

To make sure concurrent updates on V are performed correctly,
the threads use atomic synchronization primitives to update the sta-
tus values.

Algorithm 3 outlines PARMAF . We study phase I and phase II of
PARMAF in the following. We avoid repeating phase III of PARMAF
because it is identical to the provided details of the corresponding
phase in § 3.2.1.
Phase I: In this phase, after having created split-summary ϕi ,
thread ti updates the status values of the affected ellip-
soidLinking tasks. To that end, it atomically increments the
status values of each affected task (e.g., by performing FAA), as
shown in Algorithm 3 l.7-8.
Phase II: A thread in this phase keeps iterating through the status
values in V. As the thread finds a task which is not booked yet, it
tries to atomically book the task (e.g., via CAS operation to change
its status from two to three). Upon successful booking, the thread
performs the respective task. The aforementioned steps are shown
in Algorithm 3 l.10-l.12.

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
4.2. Flexi members of the PARMA-CC family

A flexi PARMA-CC targets flexible workload distribution among
the threads, in particular dividing the local clustering and local
relabeling tasks into fine-grained chunks, through allowing S to
be larger than K. Following the discussion in § 3.3.2, the flexi-
ble workload distribution decreases the potential amount of the
threads’ waiting time; therefore, it increases the utilization of re-
sources. We introduce FLEXI-PARMAH , and FLEXI-PARMAF , flexi
versions of PARMAH and PARMAF , respectively.

4.2.1. Flexi shared phases
As there is not a one-to-one correspondence between the data

splits and the threads, we design a wait-free booking mechanism
for performing the local clustering and local relabeling tasks, which
we explain in the following.
Phase I: The goal here is to perform parallel local clustering of S
splits with K threads. Let LCT, abbreviating Local Clustering Tasks,
be a boolean array of size S, where each index shows if the as-
sociated local clustering task has been performed. The booking
mechanism is similar to the one introduced in § 4.1.2. Phase Iis
shown in Algorithm 5 and Algorithm 4 for the flexi PARMA-CC al-
gorithms. The lines marked by � indicate the preparation step for
phase II.
Phase III: The goal here is to perform parallel local relabeling of
S splits with K threads. To that end, we utilize a boolean array
of size S named LRT, abbreviating Local Relabeling Tasks, in the
same fashion as explained for LCT. Phase III in Algorithm 5 and
Algorithm 4 outline the relabeling steps in flexi PARMA-CC algo-
rithms.

We review the uncovered details of FLEXI-PARMAH and
FLEXI-PARMAF , in § 4.2.2 and § 4.2.3, respectively.

4.2.2. FLEXI-PARMAH
The goal of this algorithm is to reduce the amount of time that

a thread waits for its descendants’ maps. To that end, this algo-
rithm utilizes an agile mechanism to generate the combine hierar-
chy H on the fly. Notably, H is determined based on the order in
which the maps become available. The latter is achieved by utiliz-
ing a multithreaded queue Q, which holds the indices of the ready
maps. As the preparation step (�), for each local clustering task
that a thread performs, it inserts the index of the associated map
in Q. In phase II, a thread tries to pop two indices from Q. If two
indices are popped successfully, then it performs mapCombining
on associated maps, and it will insert the index of the resulting
map in Q. This process continues until (S -1) mapCombining op-
erations are performed. To that end, the total number of performed
tasks is kept as a global variable that gets incremented atomically.
When (S -1) tasks are performed, there is only one map index in
Q, which indexes all the objects in the forest.

In Algorithm 4 and Algorithm 5 the lines marked by � indicate
the preparation step for phase II.

4.2.3. FLEXI-PARMAF
This is a flexi version of PARMAF . As the preparation step (�),

for each local clustering task that a thread performs, the thread
updates the status values of the affected ellipsoidLinking
tasks, using the technique explained in § 4.1.2. Algorithm 5 out-
lines FLEXI-PARMAF .

5. The ellipsoid forest data structures and algorithmic
implementation

In this section, we introduce the algorithmic implementation
of the ellipsoid forest data structure. We start by introducing the
74
Algorithm 4 FLEXI-PARMAH algorithm.
1: let LCT and LRT be shared arrays of size S initialized to 0
2: let Q be a multithreaded queue
3: let totalNumberOfCombines be initialized to 0
4: for all K threads in parallel do
5: phase I:
6: for splitID ∈ {1, · · · , S} do
7: if CAS(LCT[splitID], 0, 1) then
8: cluster dsplitID & summarize its local clusters
9: index the summaries in ϕsplitID

10: �splitID := ϕsplitID
11: Q.push(splitID)(�)
12: phase II:
13: while totalNumberOfCombines < S− 1 do
14: if Q.tryPop(i, j) == success then
15: �i := mapCombining(�i , �j)
16: FAA (totalNumberOfCombines, 1)
17: Q.push(i)
18: phase III (starts when all threads have reached here):
19: for splitID ∈ {1, · · · , S}
20: if CAS(LRT[splitID], 0, 1) then
21: relabel the points in dsplitID based on their objects

Algorithm 5 FLEXI-PARMAF algorithm.
1: let LCT and LRT be shared arrays of size S initialized with 0
2: let V be {vi, j |i, j ∈ {1, 2, · · · , S}, i < j} (see Definition 3)
3: for all K threads in parallel do
4: phase I:
5: for splitID ∈ {1, · · · , S} do
6: if CAS(LCT[splitID], 0, 1) then
7: cluster dsplitID & summarize its local clusters
8: index the summaries in ϕsplitID
9: for all v ∈ V|v = vsplitID,x or v = vx,splitID do

10: FAA(v, 1)(�)
11: phase II:
12: while ∃(i, j) | vi,j 	= 3 do
13: if CAS(vi,j , 2, 3) then
14: ellipsoidLinking(ϕi ,ϕj)
15: phase III (starts when all threads have reached here):
16: for splitID ∈ {1, · · · , S}
17: if CAS(LRT[splitID], 0, 1) then
18: relabel the points in dsplitID based on their objects

bounding ellipsoid data structure. Afterwards, we study the algo-
rithmic implementation of the hierarchical and flat forests in § 5.2
and § 5.3, respectively.

5.1. The bounding ellipsoid data structure

In our design, each (bounding) ellipsoid is instantiated in the
shared memory and automatically becomes an element in the
forest upon creation. The data structure supporting an ellipsoid
contains μ and � used to represent the ellipsoid’s centroid vec-
tor and covariance matrix, respectively (see § 2.2). Furthermore, it
also contains certain fields that are required to maintain the mem-
bership of an ellipsoid in the forest. To that end, a unique ID is
required to identify the ellipsoid in the forest. Furthermore, a par-
ent pointer, initialized to null, is utilized to support the structure
of the trees in the forest. Moreover, an ellipsoid requires a next
pointer and a rank value. As we explain in § 5.2, the next point-
ers facilitate efficient enumeration of ellipsoids in objects, and the
rank values regulate the heights of the trees resulting from a map-
Combining operation.

For a given cluster c, μ and � of the associated bounding el-
lipsoid are respectively the sample mean and sample covariance
of the points in c, which can be calculated with O(1) time com-
plexity. Similarly, the other fields of the bounding ellipsoid data
structure can be initialized with O(1) time complexity. Further-
more, given two ellipsoids, we can determine if they geometrically
overlap, using the method described in [2] with O(1) time com-
plexity.

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
5.2. The algorithmic implementation of hierarchical ellipsoid forest

As noted in § 3.3.1, in a hierarchical forest, mapCombining
operations are performed according to a combine hierarchy H,
which regulates the concurrent accesses and operations in the for-
est. Furthermore, the objects are represented by enhanced trees in
a hierarchical forest. An enhanced tree facilitates iterating through
the ellipsoids in the associated object with constant time per
ellipsoid. The latter is achieved by making the ellipsoids in an
enhanced tree form a circular linked-list via the next pointers
(see § 5.1).

5.2.1. Compound operation
Operation mapCombining: Given maps �i and �j , for each

pair of objects 〈O, O′〉, where O ∈ �i and O
′ ∈ �j , mapCombin-

ing merges O and O
′ if they overlap. Afterwards, the objects in

�j get linked to �i . Finally, potential duplicate objects in �i are
removed. To that end, an unset flag is associated with the root of
every object in �i . Then, every pointer in �i ’s linked-list is iter-
ated: the flag of the associated object’s root gets marked if it is
not already marked. Otherwise, the corresponding pointer gets re-
moved from �i ’s linked-list because another pointer in �i already
points to the same object. Algorithm 6 outlines the algorithmic im-
plementation of mapCombining.

Enhancements (i) For improved amortized time complexity, we
adopt the path-compression and union-by-rank heuristics [10]; the
former flattens the trees, and the latter controls the growth of
depth of the trees. To that end, the rank value (see § 5.1), initially
zero, is assigned to each ellipsoid.

(ii) Note that mapCombining(�i , �j) checks all pairs of ob-
jects in �i and �j to merge the overlapping ones. Suppose object
O in �i and object O

′ in �j do not overlap. To determine this,
mapCombining has to check all pairs of ellipsoids in O and O

′ .
To avoid this worst-case behaviour, we propose a work-saving test
that utilizes delimiting boxes.

Definition 4. An object’s delimiting box is the smallest axis-aligned
cuboid encapsulating the ellipsoids in the object.

The delimiting-box test: If the delimiting boxes of objects O and O
′

do not geometrically overlap, then O and O′ do not overlap, hence
effectively saving pairwise checks of the ellipsoids in O and O′ .

Algorithm 6 Operation mapCombining in a hierarchical ellipsoid
forest.

1: procedure mapCombining(�i , �j)
2: for O ∈ �i .list & O′ ∈ �j .list do
3: if overlap(O, O′) then
4: mergeH(O, O′)
5: �i .list.pushAll(�j .list)
6: unmark all objects in �.list
7: for O ∈ �.list do
8: if findRootH(O).marked then
9: �.list.remove(O)

10: else
11: findRootH(O).marked:= 1
12: return �i

5.2.2. Auxiliary operations
In the hierarchical forest, any ellipsoid in an object can be used

to represent the object because all the ellipsoids in the object can
be accessed via the circular linked-list. Furthermore, the represen-
tative (i.e., the root) of the object can be accessed by following the
parent pointers. With this note in mind, we introduce the basic
operations.
75
Algorithm 7 Auxiliary operations in a hierarchical ellipsoid forest.

1: procedure overlap(O, O′)
2: if ¬overlap(O.dBox, O

′.dBox)
then

3: return false
4: for e ∈ O & e′ ∈ O

′ do
5: if e and e′ overlap then
6: return true
7: return false

8: procedure mergeH(O, O′)
9: e :=findRootH(O)

10: e′ :=findRootH(O
′)

11: linkH(e, e′)
12: swap(e.next, e′.next)
13: findRootH(e).dBox :=

union(e.dBox, e′.dBox)

14: procedure findRootH(e)
15: if e.parent == ∅ then
16: return e
17: else
18: e.parent:=find-

RootH(e.parent)
19: return e.parent

20: procedure linkH(e, e′)
21: if e.rank > e′.rank then
22: e′.parent := e
23: else
24: e.parent := e′
25: if e.rank == e′.rank then
26: e′.rank := e′.rank + 1

Operation overlap: Given objects O1 and O2, this operation
determines if O1 and O2 overlap. Algorithm 7 shows the algo-
rithmic implementation of overlap with the delimiting box test.
Note that Algorithm 7 l.4 utilizes the circular linked-lists of the
enhanced trees to iterate over each ellipsoid in constant time.

Operation mergeH: Given objects O1 and O2, this operation
unifies the enhanced trees corresponding to O1 and O2 into a
single enhanced tree in the hierarchical forest. First of all, the
roots/representatives of the two objects are retrieved using the
findRoot operation. Second, the aforementioned roots are linked
via a call to the linkH operation. Third, to make the ellipsoids
in the new enhanced tree form a circular linked-list, the circular
linked-lists associated with O1 and O2 are unified by swapping the
next pointers of the roots. Finally, the delimiting box of the new
object is adjusted so that it encompasses the delimiting boxes of
O1 and O2. The operation is conducted in-place, avoiding unnec-
essary data copying or moving

Operation findRootH: Given an ellipsoid e, findRootH tra-
verses the chain of parent pointers until it reaches the root of the
object in which e is a member. A recursive implementation of the
findRootH operation with the path-compression heuristic is pro-
vided in Algorithm 7, where, as the recursion unwinds on a path
to a root, the parent pointers start pointing to the root. Further-
more, given an ellipsoid in an object O, findRootH returns the
root ellipsoid in O.

Operation linkH: This operation links two ellipsoids e and
e′ , as the roots of two distinct objects, using the union-by-rank
heuristic. To that end, linkH sets the parent pointer of the one
with the lower rank to the other one (i.e., attaching the shorter
tree to the taller tree). If e and e′ have the same rank, then one of
them is chosen to be the new root, and its rank gets incremented.
Algorithm 7 outlines the linkH operation.

5.3. The algorithmic implementation of flat ellipsoid forest

As we explained in Definition 2, the flat forest extends the dis-
joint set data structure by the ellipsoidLinking operation.
The flat forest allows concurrent wait-free execution of ellip-
soidLinking operations in any order by utilizing fine-grained
synchronization primitives as proposed in [23].

5.3.1. Compound operation
Operation ellipsoidLinking: Given split-summaries ϕi

and ϕj , this operation checks whether each ellipsoid pair 〈e, e′〉,
where e belongs to ϕi and e′ belongs to ϕj , overlaps. In that case,
it merges the objects associated with e and e′ . Algorithm 8 out-
lines the algorithmic implementation of ellipsoidLinking.

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Table 2
Table of Notation.

N � number of points in the input dataset
K � number of threads
S � number of data splits
γ � number of local clusters in a data split

|O| � number of ellipsoids in object O
‖�‖ � sum of number of ellipsoids in objects

in �
α(.) � inverse Ackermann function
Algorithm 8 Operation ellipsoidLinking in a flat ellipsoid
forest.

1: procedure ellipsoidLinking(ϕi ,ϕj)
2: for e ∈ ϕi .list & e′ ∈ ϕj .list do
3: if e and e′ overlap then
4: mergeF(e, e′)

Algorithm 9 Auxiliary operations in a flat ellipsoid forest. The last
executed step marked by an asterisk gives the linearization point.
Adapted from [23].

1: procedure findRootF(e)
2: while e.parent 	= ∅

∗ do
3: e:=e.parent
4: return e

5: procedure mergeF(e, e′)
6: while true do
7: e := findRootF(e)

8: e′ := findRootF(e′)
9: if e.ID< e′.ID then

10: if CAS(e.parent, ∅, e′)∗ then
11: return
12: else if (e.ID== e′.ID)∗ then
13: return
14: else if e.ID> e′.ID then
15: if CAS(e′.parent, ∅, e)∗ then
16: return

5.3.2. Auxiliary operations
Operation findRootF: Given an ellipsoid e, this operation fol-

lows the parent pointers from e until it reaches the root of the
object in which e belongs.

Operation mergeF: Given two ellipsoids e and e′ , this oper-
ation merges the trees in the forest that are associated with e
and e′ . First of all, utilizing the findRootF operation, the rep-
resentatives of the objects associated with e and e′ are found.
Afterwards, the parent pointer of the object representative with
the lower ID value gets linked to the object representative with
the higher ID value. As there are concurrent accesses to the el-
ements in the forest, there might be other threads that link the
aforementioned parent pointer to another ellipsoid. Therefore, the
implementation shown in Algorithm 9 utilizes CAS to atomically
update the parent pointers. If the CAS operation fails when chang-
ing a parent pointer, it means that the parent pointer was already
changed by some other thread (executing an overlapping ellip-
soidLinking operation involving some ellipsoid(s) belonging to
the same object(s)) in the meantime. Therefore, the roots of the
associated objects are recalculated, and then the same mechanism
tries to link them. The aforementioned steps continue in the retry
loop (shown in Algorithm 9 l.6-l.16) until the roots of the associ-
ated objects get linked (by any of the threads). The operation is
conducted in-place, avoiding unnecessary data copying or moving.

5.4. Discussion on system aspects

The proposed algorithmic descriptions of PARMA-CC algorithms
incorporate a simple scheduler [8] for parallel execution of tasks.
Such a choice allows us to uncover the algorithm properties of the
design space and as well as the behaviour of the ellipsoid forests.
In general, parallel execution of tasks in PARMA-CC algorithms can
be scheduled using any off-the-shelf parallelization library, such as
OpenMP [22], TBB [45], and Cilk [7]. Using such parallelization li-
76
braries is orthogonal to the scope of this work as it introduces
new aspects and trade-offs to the study. Nevertheless, using such
libraries can facilitate scheduling and executing finer parallel tasks.
For instance, each invocation of ellipsoidLinking operation
be decomposed into several parallelization tasks. As shown in Al-
gorithm 8, there is no dependency between the iterations of the
for loop in ellipsoidLinking; therefore, each iteration of the
aforementioned for loop can be performed in parallel.

6. Analysis

We provide an analytical study of PARMA-CC algorithms.
Notation: Let γ be an upper bound on the number of locally de-
tected clusters in a split of data. For an object O, let |O|, i.e., size
of O, be the total number of ellipsoids in O. Considering a hier-
archical PARMA-CC algorithm, for a map �, let ‖�‖ the number
of all the ellipsoids in �. Table 2 summarizes the notations in this
section.

6.1. Ellipsoid forest analysis

6.1.1. Hierarchical ellipsoid forest

Lemma 1. [Adapted from Lemma 21.13 in [10]] The worst-case and
amortized time complexity of each findRootH operation is respec-
tively O(log(γ S)) and O(α(γ S)), where α(.) is the inverse Ackermann
function.

Note that α(.) is a very slowly growing function where α(x) < 5
for x < 1080.

Lemma 2. The worst-case time complexity of each overlap operation
on objects O1 and O2 is O(|O1||O2|).

Lemma 3. The worst-case and amortized time complexity of each
mergeH operation is respectively O(log(γ S)) and O(α(γ S)).

Proof. A mergeH calls (i) three findRootH operations, (ii) one
linkH operation, and (iii) swapping the values of two pointers.
According to Lemma 1, the worst-case and amortized time com-
plexity of (i) is respectively O(log(γ S)) and O(α(γ S)). (ii) and
(iii) are performed with O(1) time complexity.

Lemma 4. The worst-case and amortized time complexities of each
mapCombining operation on �i and �j are bounded from above by
O

(
log(γ S).||�i||.||�j||

)
and O

(
α(γ S).||�i||.||�j||

)
, respectively.

The above follows from deriving an upper bound on the sum-
mation of time complexities of operations overlap and mergeH
as performed by the mapCombining operation. Note that the
bound for the amortized complexity is loose for two reasons: (i) As
soon as O and O′ are found to have overlapping ellipsoids, over-
lap returns true without further investigation of the remaining
cases, see Algorithm 7 l.5-6. (ii) When objects O and O

′ do not
overlap, with high probability, the delimiting boxes of O and O

′
do not overlap either; therefore, saving the comparisons of ellip-
soids in O and O′ .

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
6.1.2. Flat ellipsoid forest

Lemma 5. [adapted from Theorem 1 in [23]] Any concurrent execution
order of findRootF and mergeF is linearizable and wait-free.

Lemma 6. [adapted from Theorem 2 in [23]] The probability that each
findRootF and each mergeF perform O (log (γ S)) steps is at least
1 − 1

γ S .

Lemma 7. The expected asymptotic time complexity of each find-
RootF and each mergeF is O (log (γ S)).

Proof. Based on Lemma 6, the probability that each findRootF
and each mergeF perform �(γ S) steps (the maximum possible
height of a tree in the ellipsoid forest) is at most 1

γ S . Therefore,
the expected time complexity of each findRootF and mergeF
is less than or equal to (1 − 1

γ S)O (log (γ S)) + 1
γ S�(γ S), yielding

the bound O (log (γ S)).

Lemma 8. The expected asymptotic time complexity of each ellip-
soidLinking operation is O

(
γ 2 log (γ S)

)
.

Proof. Consider ellipsoidLinking on two given maps. Due to
the linearity of expectation, the expected time complexity of el-
lipsoidLinking is the sum of expected time complexities of
the mergeF operations that it performs. Consider two given maps.
The maximum number of times that ellipsoidLinking can
perform the mergeF on the two maps is at most O(γ 2) times
(the number of pairs of ellipsoids in the two maps), where each
mergeF has expected time complexity of O (log (γ S)) according
to Lemma 7.

6.2. Safety and completeness properties of PARMA-CC algorithms

Lemma 9. Operations and mapCombining and ellipsoidLink-
ing satisfy the commutative and associative properties.

The above follows from the descriptions and the algorithmic
implementations introduced in § 5.2 and § 5.3.

Lemma 10. For any concurrent execution of a PARMA-CC algorithm,
there exists a sequential execution that produces an equivalent result.

Proof. We argue how to build an equivalent sequential execution
corresponding to a concurrent execution of a PARMA-CC algorithm.
Similar to the concurrent execution, the equivalent sequential algo-
rithm splits the input dataset into S splits and operates in three
matching phases, except for the synchronization details, which
are not needed in the equivalent sequential execution. Regarding
phase I, the signalling mechanism in PARMAH (shown in Algo-
rithm 2 l.9), updating the status values in PARMAF (shown in Al-
gorithm 3 l.7-8), insertions in Q in FLEXI-PARMAH (shown in Al-
gorithm 4 l.11), and updating the status values in FLEXI-PARMAF
(shown in Algorithm 5 l.9-10) are not needed in the equivalent se-
quential algorithm. Note that besides the aforementioned synchro-
nization details, the rest of the operations in phase I of a PARMA-
CC execution are performed in a data parallel fashion. Therefore,
in phase I, the equivalent sequential algorithm can perform the lo-
cal clustering tasks and create the split-summaries in any arbitrary
order. The same argument also holds regarding phase III of the
equivalent sequential algorithm. We explain how to construct the
rest of the equivalent sequential execution (i.e., phase II) for the
hierarchical and flat PARMA-CC algorithms in the following:
77
Hierarchical: A hierarchical PARMA-CC algorithm performs map-
Combining (see Algorithm 6) operations in the hierarchical forest
according to hierarchy H, where H can either be predetermined as
in PARMAH or be dynamically determined as in FLEXI-PARMAH .
In either case, mapCombining operations are performed with
respect to the following rules: (P1) mapCombining operations
corresponding to disjoint subtrees in H can be performed in par-
allel. (P2) mapCombining operations which have an ancestor-
descendant relation in H never modify the same sets in the forest
simultaneously. (P3) Each ellipsoid belongs to only one object both
before and after a mapCombining operation. (P4) All pairs of
objects that have overlapping ellipsoids are merged in the final
map. Therefore, in phase II, the equivalent sequential algorithm can
sequentially perform mapCombining operations following any ar-
bitrary hierarchy H and get the same set of objects because oper-
ation mapCombining satisfies the commutative and associative
properties (see Lemma 9).

Flat: The threads in a flat PARMA-CC algorithm perform el-
lipsoidLinking (see Algorithm 8) operations on all pairs of
split-summaries (i.e., elements of V as defined in Definition 3).
We show in the following that any arbitrary (due to concurrency)
inter-leaving of ellipsoidLinking operations, results in the
same set of objects.

1. Each ellipsoidLinking operation in V is performed exactly
once. The latter holds because each thread tries to atomically
book available an ellipsoidLinking operation via perform-
ing CAS on the corresponding status value (see Definition 3),
as long as there are available ellipsoidLinking operations
left.

2. As the threads perform ellipsoidLinking operations, con-
current executions of operation mergeF might be performed.

3. As any concurrent execution of mergeF is linearizable (see
Lemma 5), and operation ellipsoidLinking satisfies the
commutative and associative properties (see Lemma 9), the
same set of objects gets formed in the ellipsoid forest regard-
less of linearization of the mergeF operations.

Based on the sequence of arguments in (1), (2), and (3), any
concurrent execution of ellipsoidLinking operations on all
pairs of split-summaries results in the same set of objects. There-
fore, in phase II, the equivalent sequential algorithm can sequen-
tially perform ellipsoidLinking in any arbitrary order and
get the same set of objects.

Definition 5 (The Completeness Property). An ellipsoid forest satisfies
the completeness property when the following condition holds for
each pair of ellipsoids 〈ei, ej〉 in the forest: The pair 〈ei, ej〉 is
directly or indirectly overlapping (see Definition 1) if and only if
there exists an object O such that ei ∈ O and ej ∈ O.

Lemma 11 (Completeness in PARMAH). By the end of phase II in
PARMAH , the completeness property holds in the associated hierarchi-
cal ellipsoid forest.

Proof. We first prove the statement in the following direction: If
the pair 〈ei, ej〉 is directly or indirectly overlapping, then, by the
end of phase II, there exists an object O such that ei ∈ O and
ej ∈ O. To that end, consider phase I, when ei is a member of
Oi′ in map �i , and ej is a member of O j′ in map �j . If the pair
〈ei, ej〉 is directly overlapping, then Oi′ and O j′ are merged when
mapCombining operation is performed on the maps containing
ei and ej (such a mapCombining operation is guaranteed to
exist as H is a spanning tree, see § 3.3.1). On the other hand, sup-
pose the pair 〈ei, ej〉 is indirectly overlapping via ellipsoid ek

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
(i.e., ellipsoids in each of the pairs 〈ei, ek〉 and 〈ej, ek〉 are di-
rectly overlapping), where ek belongs to object Ok′ , at the end of
phase I, in �k. After mapCombining operations are performed on
�i , �j , and �k in the order specified by H, there will be an ob-
ject containing ei , ej , and ek . The latter holds regardless of the
hierarchy specified by H because the mapCombining operation
satisfies the commutative property (see Lemma 9). This argument
can be extended inductively to cover all the cases in which ei and
ej are indirectly overlapping.

Now we prove the statement in the opposite direction: If there
exists an object O such that ei ∈ O and ej ∈ O, then the pair
〈ei, ej〉 is directly or indirectly overlapping. Towards a contradic-
tion, suppose the pair 〈ei, ej〉 is neither directly nor indirectly
overlapping, but ei ∈ O and ej ∈ O. The latter implies that, at
some point in phase II, the mapCombining operation combined
non-overlapping objects, a contradiction.

Lemma 12 (Completeness in PARMAF). By the end of phase II in
PARMAF , the completeness property holds in the associated flat ellip-
soid forest.

Proof. We first prove the statement in the following direction: If
the pair 〈ei, ej〉 is directly or indirectly overlapping, then there
exists an object O such that ei ∈ O and ej ∈ O. To that end
suppose ei ∈ ϕi and ej ∈ ϕj . If the pair 〈ei, ej〉 is directly over-
lapping, then, through the call to ellipsoidLinking(ϕi, ϕj), ei
and ej will become members of the same object. On the other
hand, if the pair 〈ei, ej〉 is indirectly overlapping with just an
ellipsoid ek ∈ ϕk in between (i.e., ellipsoids in each of the pairs
〈ei, ek〉 and 〈ej, ek〉 are directly overlapping), then there will
be an object containing ei and ej (as well as ek) after el-
lipsoidLinking(ϕi, ϕk) and ellipsoidLinking(ϕj, ϕk) are
completed. This argument can be inductively extended to cover all
the cases in which ei and ej are indirectly overlapping.

The proof in the opposite direction is made with contradiction,
similar to the one provided in the proof of Lemma 11.

Lemma 13 (Completeness in Flexi PARMA-CC Algorithms). At the end of
phase II, the ellipsoid forest in a flexi PARMA-CC satisfies the complete-
ness property.

Proof. For a given hierarchical/flat flexi PARMA-CC algorithm op-
erating on S splits, consider a hierarchical/flat basic PARMA-CC
algorithm that operates with K=S threads. The two algorithms
produce equivalent ellipsoid forests because both mapCombin-
ing and ellipsoidLinking satisfy the commutative prop-
erty. Therefore, the ellipsoid forest at the end of phase II of the
flexi PARMA-CC algorithm satisfies the completeness property sim-
ilar to the basic PARMA-CC algorithm (based on Lemma 11 and
Lemma 12).

Corollary 1. With fixed minPts, ε , and S, PARMA-CC algorithms yield
the same clustering for the same input dataset.

6.3. Completion time behaviour of PARMA-CC algorithms

Here we analyze the completion time behaviour of the algo-
rithms in the PARMA-CC family.
Assumptions:

• As D can contain several hundreds of thousands of points, but
the number of splits is limited to a few hundreds, we assume
N � S ≥ K. Furthermore, we assume N � γ because a local
cluster can typically contain a large number of points.
78
• The local clustering algorithm (for instance PCL-EC or DBSCAN)
uses a kd-tree to perform ε-neighbourhood queries.

• The total number of ellipsoids in an ellipsoid forest (γ S) is
smaller than 1080 for all the possible use-cases. Therefore, all
occurrences of the inverse Ackermann function are substituted
with O(1).

Lemma 14. The following statements hold regarding the completion
time of different phases of a PARMA-CC algorithm:

• The expected completion time of phase Iis O(NK log (NS)).
• The expected completion time of phase II of a hierarchical PARMA-CC

algorithm is O(γ 2S2).
• The expected completion time of phase II of a flat PARMA-CC algo-

rithm is O
(

γ 2S2

K log (γ S)
)

.

• The expected completion time of phase III in a hierarchical PARMA-CC
algorithm is O(NK).

• The expected completion time of phase III in a flat PARMA-CC algo-
rithm is O

(N
K log (γ S)

)
.

Proof. We prove each statement in the following:

• We prove the statement for basic and flat PARMA-CC algo-
rithms:

– In case of a basic PARMA-CC algorithm (S = K): As the
workload is distributed evenly among the K threads, the
expected completion time of a data split clustering is
O(NK log (NK)).

– In case of a flexi PARMA-CC algorithm (S > K): There are S
local clustering tasks to be shared by K threads, and as each
split contains N/S points, the expected completion time of
a data split clustering is O(NS log (NS)). Therefore, the ex-
pected completion time of K threads concurrently perform-
ing local clustering is O

(S
K
N
S log (NS)

) =O(NK log (NS)).

Other computational steps in phase I of a PARMA-CC (i.e., fit-
ting bounding ellipsoids, applying synchronization primitives,
pushing elements into a queue) are asymptotically dominated
by O(NK log (NS)).

• Summing up the amortized time complexities of all mapCom-
bining operations (see Lemma 4), the expected total time
complexity of all mapCombining operations is bounded from
above by O(γ 2S2), which is a loose bound based on the proof
of Lemma 4.

• In phase II of a flat PARMA-CC algorithm, there are O(S2) el-
lipsoidLinking operations which are shared by K threads
running in parallel. Considering the fine granularity of the el-
lipsoidLinking operations, each thread performs O(S2/K)

ellipsoidLinking operations. Applying the linearity of ex-
pectation over the expected time complexity of each ellip-
soidLinking (given in Lemma 8) yields the result.

• We prove the statement for basic and flat PARMA-CC algo-
rithms:

– In case of a basic PARMA-CC algorithm (S = K): As the
workload is distributed evenly among the K threads, each
thread relabels O(NK) points.

– In case of a flexi PARMA-CC algorithm (S > K): There
are S local relabeling tasks to be shared by K threads,
and as each split contains N/S points, each thread relabels
O

(S
K
N
S

) =O(NK) points.

The amortized time complexity of relabeling each point is O(1)

because finding the root of the associated tree, via performing

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Table 3
Algorithms in the PARMA-CC family (SP stands for synchronization primitives).

Synchronization
Algorithm Ellipsoid Forest/Combine Order Basic/Flexi Phase I Phase II Phase III Preferred Data Properties

PARMAH Hierarchical/predetermined Basic - SP - arbitrarily ordered
PARMAF Flat/dynamic Basic - SP - spatio-temporal (e.g. LIDAR)
FLEXI-PARMAF Flat/dynamic Flexi SP SP SP spatio-temporal (e.g. LIDAR)
FLEXI-PARMAH Hierarchical/dynamic Flexi Ready Queue + SP SP SP arbitrarily ordered
findRootH (Lemma 1), and then retrieving the root’s ID are
the only required steps for each point. The expected completion
time can be driven by taking a summation over the amortized
time complexities of relabeling each point.

• This statement is proven similar to the previous one. Due to
the linearity of expectation, summing the expected comple-
tion times of O(NK) findRootF operations (given in Lemma 7)
yields the result.

Observation 1. Lemma 14 indicates the following trade-off between the
expected completion time of phase I and the expected completion time
of phase II: the dominating factor in the completion time of a PARMA-CC
algorithm, i.e., the local clustering in phase I, can be reduced by increas-
ing K and/or S. However, too large values for K and/or S increase the
expected completion time of phase II.

Theorem 1. The expected completion time of a PARMA-CC algorithm un-
der the given assumptions is O(NK log (NS)).

Proof. The theorem follows from taking the dominating asymptotic
term in Lemma 14.

6.4. On shared memory accesses and contention

As discussed in § 5.1, the operations on the data structure are
in-place, avoiding unnecessary copies and moves of data. Regard-
ing contention on the shared memory in different PARMA-CC al-
gorithms, note that there is none in PARMAH because the compu-
tations that each thread performs follow a predetermined partial
order that ensures that concurrent operations touch disjoint data
only. The number of occasions in which shared memory contention
can take place in FLEXI-PARMAH is proportionate to S, i.e., the
number of shared tasks. On the other hand, the number of shared
tasks in flat PARMA-CC algorithms is proportionate to S2, deter-
mined by the number of ellipsoidLinking operations. Note
that this shared memory contention discussion is complementary
to the expected completion time analysis in Lemma 14, which,
among other factors, takes into account the expected number of
retries that have to be performed because of memory contention,
where necessary.

Note when X threads concurrently perform a CAS operation on
a memory location, only one of them succeeds and X− 1 threads
fail. Therefore, to measure memory contention, we consider the
average ratio of failed CAS operations to the total number of in-
voked CAS operations. Exact measurements for the ratio of failed
CAS operations to the total number of invoked CAS operation are
data-dependent and execution-dependent. In the worst-case, the
aforementioned ratio can be as large as 1 − 1

K , indicating one suc-
cessful CAS against K− 1 unsuccessful CAS for all the invocations.
In the algorithmic implementation of PARMA-CC, some invocations
of CAS operations can be avoided; e.g., a thread does not need
to invoke a CAS to book a local clustering task which is already
booked or completed (see Algorithm 4 l.7 and Algorithm 5 l.6).
The same also applies for booking local clustering tasks and el-
lipsoidLinking operations. We empirically measure the afore-
mentioned ratio in § 8.5.
79
7. Discussion on the utilization and the building components of
the algorithms

7.1. On which PARMA-CC algorithm to choose

Let inter-split overlap refer to the amount of overlap between
local clusters in different splits. With high inter-split overlap, uti-
lizing the hierarchical forest can result in a higher scaling-factor
compared to utilizing the flat forest. First of all, as the inter-split
overlap increases, the average number of ellipsoids in different
objects increases. Consecutively, the computational savings of the
delimiting-box test increase as a result of skipping the comparison
of ellipsoids in non-overlapping objects. On the other hand, the
amount of concurrent updates on overlapping elements in a flat
forest is directly proportional to the inter-split overlap. Therefore,
threads performing ellipsoidLinking in a flat forest have to
retry (see Algorithm 9 l.6) for more number of times for successful
linking as the inter-split overlap increases.

Observation 2. With the splitting mechanism outlined in § 3.2 and input
data having a spatio-temporal locality (e.g., an angularly sorted LIDAR
point cloud), the inter-split overlap is low. Therefore, we expect the flat
PARMA-CC algorithms to scale better under the aforementioned condi-
tions. On the contrary, we expect the hierarchical PARMA-CC algorithms
to scale better on arbitrarily ordered datasets that exhibit high inter-split
overlap. Table 3 summarises the PARMA-CC algorithms.

7.2. Use cases implying extensions

PARMA-CC’s summaries can be used to efficiently answer a
range of queries. We demonstrate the latter by studying two com-
mon queries, for which we study and compare how PARMA-CC and
a classical approach can be used.
Predicting the clustering label of a new point q based on the exist-
ing clusters: The latter can be useful in evolving sets. A classical
approach might decide about q’s clustering label by considering
the clustering labels of q’s nearest neighbours in D. Using a kd-
tree, nearest neighbour queries have expected and worst-case time
complexities of O(logN) and O(N2), respectively. On the other
hand, the approach leveraging the summaries of a PARMA-CC al-
gorithm can assign q the unique ID of Oq ’s root, where Oq is the
object in which q geometrically falls. The latter is shown as oper-
ation predictLabel in Algorithm 10 l.1-6. As the total number
of ellipsoids is γ S, predictLabel’s worst-case time complexity
is O(γ S). Note that, in general, γ S is much smaller than N.
Approximating the distance of a given point q to the nearest point in
cluster c: With time complexity O(|c|), a classical approach calcu-
lates the distance of each point in c to q and returns the smallest
one. On the other hand, the approach levering PARMA-CC’s sum-
maries computes the distance of q to each ellipsoid in Oc , where
Oc is a PARMA-CC object corresponding to cluster c. The latter
is shown as operation distanceToObject in Algorithm 10. The
distance between a point and an ellipsoid is determined in O(1)

using the method in [35]. Therefore, distanceToObject’s time
complexity is O(|O|).

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
Algorithm 10 Answering queries using PARMA-CC’s summaries.
1: procedure predictLabel(q)
2: for i ∈ {1, · · · , S} do
3: for e ∈ ϕi .list do
4: if q falls within e then
5: return findRoot(e).ID
6: return noise

7: procedure distanceToObject(O, q)
8: return min

e∈O

{distance between q and e}

Fig. 4. Polyhedron fitting.

7.3. On volumetric summarization methods

Besides the bounding ellipsoid summarization method, PARMA-
CC algorithms can utilize other geometric summarization meth-
ods such as axis-aligned bounding boxes (AABBs) [41] or oriented
bounding boxes (OBBs) [16]. More generally, we consider bound-
ing polyhedrons. Fig. 4, shows an example cluster of points (repre-
sented by green circles) and a corresponding bounding polyhedron.
We characterize a bounding polyhedron by a set of normal vectors
ui for i ∈ {1, · · · , F}, where each ui is a normal vector to two par-
allel faces in the bounding polyhedron.
Fitting a bounding polyhedron around a local cluster c: The minimum
and maximum values of the orthogonal projections of points in c
onto vector ui determine respectively the left and right faces asso-
ciated with normal vector ui . Note that the orthogonal projection
of a point onto a vector is simply calculated by their dot product.
The example in Fig. 4 utilizes three normal vectors u1 , u2 , and u3 .
Note that the left and right faces associated with each normal vec-
tor are shown in the same colour as the normal vector.
Determining the normal vectors: The normal vectors uis can either
be chosen randomly or in a systematic way to uniformly sample
the unit sphere in the space. The number of vectors, F, determines
the granularity of the volumetric approximation, i.e., increasing
F increases the approximation accuracy but increases the cost of
computing the bounding polyhedron. However, with fixed F, the
cost of fitting a bounding polyhedron is constant per point in c.
Determining whether two bounding polyhedra geomterically overlap:
Two polyhedra P1 and P2 are geometrically overlapping if and
only if, for all uis, the intervals containing the left and right faces
in P1 and P2 overlap.

8. Evaluation

We here empirically evaluate PARMA-CC algorithms. The pa-
rameters of the study are the following: the number of threads
(K), the number of splits (S), the size of the input data (N), the
number of objects in the input data, the degree of inter-split over-
lap in the input data, and the local clustering algorithm.

8.1. Experiment setup

We study the completion time of PARMA-CC algorithms in ac-
cordance with the expected completion time analysis given in
Theorem 1. To understand the parallelization utilization behaviour
80
of PARMA-CC algorithms, we evaluate their scaling-factors, i.e., the
ratio of the completion time of the exact sequential baseline to
the completion time of PARMA-CC algorithms, as a function of K
and S. We also empirically examine the expectations raised in Ob-
servation 2 regarding the behaviour of the algorithms on datasets
with different degrees of inter-split overlap. Moreover, we study
the ratio of the local clustering time to the completion time of the
algorithms in accordance with the analytical results in Lemma 14
to gain insight on how the different phases contribute to the total
completion time. Furthermore, we evaluate the clustering accuracy
of PARMA-CC algorithms against the exact baseline using rand in-
dex.4 Finally, we complement the shared memory access and con-
tention analysis in § 6.4 by empirically measuring the average ratio
of failed CAS operations to the total number of invoked CAS oper-
ations.

We provide the evaluation results corresponding to PARMA-
CC algorithms that utilize PCL-EC (see § 2) as the local clustering
algorithm. Moreover, in order to evaluate PARMA-CC algorithms
utilizing a density-based local clustering algorithm, we study the
scaling-factor and the accuracy of basic PARMA-CC algorithms uti-
lizing DBSCAN as the local clustering algorithm. Accordingly, we
compare the scaling-factor of the aforementioned algorithms with
that of PDSDBSCAN (see § 2), which for the latter is the same as
its speedup. By default, the presented results and discussions refer
to PARMA-CC algorithms that utilize PCL-EC as the local clustering
algorithm, unless otherwise stated.
Evaluation data: We use both LIDAR and GPS datasets. Regarding
LIDAR data, we study a random subset of the point clouds in the
KITTI dataset [13], collected by a Velodyne laser scanner in urban
driving. We also study a random subset of the Ford Multi-AV Sea-
sonal dataset [1] which is collected by a fleet of vehicles in a vari-
ety of conditions. Regarding GPS data, we choose a random subset
of points in the Mopsi route dataset [30], which contains GPS read-
ings (in terms of latitude and longitude) gathered by various users
doing a wide range of activities (e.g., walking, cycling, skiing, tak-
ing a boat) mostly in Finland. We also study a random subset of
the GeoLife GPS Trajectories dataset [48,46,47], containing densely
recorded GPS readings by several users mostly in Beijing city. Fur-
thermore, we study randomly shuffled versions of the GeoLife and
Mopsi datasets, exhibiting high inter-split overlap. Table 4 gives an
overview of each bench-marked dataset along with its inter-split
overlap characterization.
Preprocessing: By imposing a simple threshold, we filter the
ground (floor) points in the point clouds (otherwise scene objects
are connected via the ground). Each filtered point cloud in the
KITTI dataset contains about 40,000 points, and each filtered point
cloud in our subset of the Ford Multi-AV dataset contains between
150,000 and 300,000 points. Regarding the GPS datasets, we filter
sequential duplicate points (the points that correspond to when
GPS readings were logged while the user was stationary). Our fil-
tered subset of the GeoLife and Mopsi datasets contain more than
1.4 million and 1.2 million points, respectively. The sizes of the
bench-marked datasets are shown in Table 4.
Parameters: Our purpose of clustering LIDAR datasets is to detect
scene objects, and our purpose of clustering GPS datasets is to
detect areas attracting a lot of users. To that end, we choose ε
and minPts to attain valid ground truth by the baselines. We
identified that the baseline achieves reasonable clustering of scene
objects with ε =0.7 and minPts=10 for the KITTI dataset, and
so it does with ε=0.5 and minPts=100 for the Ford Multi-AV
dataset. Furthermore, the baseline achieves reasonable clustering
of GPS readings with ε = 0.1 and minPts= 500 for the Mopsi
dataset. On the other hand, as the GeoLife dataset contains much

4 https://github .com /bjoern -andres /partition -comparison.

https://github.com/bjoern-andres/partition-comparison

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Table 4
Summary of the bench-marked datasets, showing the characteristics and the chosen clustering parameters for each dataset.

dataset KITTI FORD GEOLIFE, shuffled GEOLIFE MOPSI, shuffled MOPSI

number of points 40,000 150,000-300,000 1.4 million 1.2 million
inter-split overlap low low medium, high medium, high

(ε, minPts) (0.7, 10) (0.5, 100) (0.001, 500), (0.001, 500/S) (0.1, 500), (0.1, 500/S)

number of splits (S) {2, 3, 4, 5, 10, 15, 20, 30, 36, 40, 50, 60, 70, 140} {2, 3, 4, 5, 10, 15, 20, 30, 36, 40, 50, 60, 70, 100, 200, 400, 600}

number of threads {2, 3, 4, 5, 10, 15, 20, 30, 36, 40, 50, 60, 70}
Table 5
Highlights of average elapsed completion time (in seconds) for different meth-
ods and datasets with a variety of parameters.

dataset KITTI FORD GeoLife Mopsi

PCL 0.3598 1.8459 950 9829

K
=2

0

PARMAH 0.0756 0.2304 21.6 91.7

PARMAF 0.0762 0.2063 22.5 100.1

FLEXI-PARMAH 0.0259 0.1074

S
=1

40 1.3 3.24

S
=6

00

FLEXI-PARMAF 0.0224 0.1016 1.5 3.5

K
=4

0

PARMAH 0.0429 0.1363 13.7 35.2

PARMAF 0.0418 0.1387 14.5 38.3

FLEXI-PARMAH 0.0241 0.0800

S
=1

40 0.94 2.06
S

=6
00

FLEXI-PARMAF 0.0178 0.0803 0.97 2.16

K
=7

0

PARMAH 0.0335 0.1038 4.9 19.9

PARMAF 0.0601 0.1096 6.7 25.3

FLEXI-PARMAH 0.0411 0.0827

S
=1

40 0.8 1.54

S
=6

00

FLEXI-PARMAF 0.0295 0.0756 0.85 1.58

denser recordings, the baseline achieves reasonable clustering with
parameters ε=0.001 and minPts=500 for this dataset. For the
LIDAR datasets, we execute flexi PARMA-CC algorithms choosing
20, 40, 70, and 140 for S. For the GPS datasets, as they contain
much more points than the LIDAR datasets, we choose S among
100, 200, 400, and 600. We perform the experiments with up to
70 threads, except for the experiments in which S is less than 70,
where we choose up to S threads. As the distribution of the points
in randomly shuffled datasets becomes uniform among the splits,
we adjust minPts with respect to S by using minPts/S. The
aforementioned adjustment is a common practice, e.g., [17]. The
chosen clustering parameters are summarized in Table 4 for each
dataset.
Evaluation setup: We implemented PARMA-CC algorithms5 in C++
and used GNU scientific library for matrix algebra. We used POSIX
threads for multi-threaded programming. We used PCL’s imple-
mentation of PCL-EC [37]. We employed elapsed real time to mea-
sure completion times. Experiments were run on a 2.10 GHz In-
tel(R) Xeon(R) E5-2695 system with 36 cores on two sockets (18
cores per socket, each core supporting two hyper-threads) and 64
GB memory in total, running Ubuntu 16.04. We only used hyper
threading when there were more threads than the actual number
of cores.

8.2. Completion time and the scaling-factor of PARMA-CC algorithms

Graphs plotted in the left Y-axes of Fig. 5 show the scaling-
factor of PARMA-CC algorithms for different datasets with varying
choices of K and S for the basic and flexi PARMA-CC algorithms.
Besides, some highlights of the completion times are presented
in Table 5 using varying number of threads and splits. Further-
more, the results of PCL-EC, as an exact sequential baseline, are
included for the reference.

The results show that, with appropriate choices of S and large
enough number of threads, PARMA-CC algorithms can be several
orders of magnitude faster than the exact sequential baseline. Fur-

5 https://github .com /dcs -chalmers /PARMA-CC.
81
thermore, the scaling-factor of PARMA-CC algorithms demonstrates
a super-linear behaviour with respect to K or S for the Geo-
Life and Mopsi datasets. As both GeoLife and Mopsi datasets have
highly skewed distributions, the complexity of the exact sequen-
tial baseline is O(N2). The latter holds because the spatial data
structure used to find ε-neighbourhoods is not able to operate effi-
ciently with skewed data distributions. On the other hand, PARMA-
CC algorithms reduce the completion time of the local clustering
quadratically in K or S, by splitting the data and by approxima-
tion.

We notice that with a large enough choice of S, a flexi PARMA-
CC algorithm achieves a higher scaling-factor than its basic coun-
terpart. For example, with S being 600, the scaling-factor of a
flexi PARMA-CC algorithm is about 6 times that of a basic PARMA-
CC algorithm, as shown in Fig. 5c and Fig. 5s. Moreover, for each
dataset, we observe that the scaling-factor of the flexi PARMA-CC
algorithms tends to increase with greater S values. The latter is in
accordance with Observation 1, stating the effect of increasing S
on decreasing the completion time of local clustering. Furthermore,
similar to the basic PARMA-CC algorithms, we observe super-linear
growth of the scaling-factor for flexi PARMA-CC algorithms on the
GeoLife and Mopsi datasets. Regarding smaller sets of data, we ob-
serve that increasing the number of threads beyond a certain point
does not further decrease the execution time, as there is less work
to be done and the benefit from distributing is opposed by the cost
of coordination (Fig. 5m, Fig. 5q, Fig. 5n, Fig. 5r).

8.2.1. Spatio-temporal properties and the scaling-factor of PARMA-CC
algorithms

On the KITTI and FORD datasets (with low inter-split overlap),
FLEXI-PARMAF achieves the highest scaling-factor. The latter is
shown in the left Y-axes in Fig. 5q-5r, and it is in accordance with
Observation 2. On the other hand, FLEXI-PARMAH achieves the
highest scaling-factor on the GeoLife and Mopsi datasets, see the
zoomed graphs Fig. 6c and Fig. 6d, respectively.

The left Y-axes in Fig. 6a and Fig. 6b respectively show the
scaling-factor of the basic PARMA-CC algorithms on the randomly
shuffled GeoLife and Mopsi, datasets exhibiting high inter-split
overlap. The results show PARMAH typically achieves a higher
scaling-factor than FLEXI-PARMAF on the randomly shuffled
datasets. The latter is in accordance with Observation 2. An-
other important observation is that PARMA-CC algorithms typically
achieve higher scaling-factors on the randomly shuffled datasets.
The latter holds because the splits of a randomly shuffled dataset
contain approximately similar distributions, alleviating the worst-
case behaviour of spatial data structures such as kd-tree.

8.2.2. Approximate DBSCAN clustering and the scaling-factor of
PARMA-CC algorithms

The left axes in Fig. 7a-7d show the average scaling-factor of
the basic PARMA-CC algorithms that utilize DBSCAN as the lo-
cal clustering algorithm on the KITTI, FORD, GeoLife, and Mopsi
datasets. For comparison, the speed-up of PDSDBSCAN (an ex-
act parallel DBSCAN algorithm reviewed in § 2) is also provided
in Fig. 7. Note that PDSDBSCAN fails to produce a proper cluster-
ing in Fig. 7c and crashes as it runs out of memory in Fig. 7d. The
results show that PARMA-CC algorithms facilitate multiple times

https://github.com/dcs-chalmers/PARMA-CC

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Fig. 5. The scaling-factor and rand index clustering accuracy of PARMA-CC algorithms. The scaling-factor of a PARMA-CC algorithm running with K threads is defined as
the ratio of the completion time of the exact sequential baseline to the completion time of PARMA-CC algorithm running with K threads. Given a fixed S, all PARMA-CC
algorithms achieve the same clustering accuracy.

Fig. 6. The scaling-factor and rand-index clustering accuracy of basic PARMA-CC algorithms on the shuffled GeoLife and Mopsi datasets in (a) and (b). Zoomed scaling-factor
and accuracy of flexi PARMA-CC algorithms on GeoLife and Mopsi datasets in (c) and (d).
82

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Fig. 7. The scaling-factor and rand index clustering accuracy of basic PARMA-CC algorithms utilizing DBSCAN as the local clustering algorithm. For comparison, the speed-up
of PDSDBSCAN (an exact parallel DBSCAN algorithm) is proved. In (c), PDSDBSCAN does not produce a proper DBSCAN clustering. In (d), PDSDBSCAN crashes as it runs out
of memory. The right Y-axes show the clustering accuracy of basic PARMA-CC algorithms.

Fig. 8. The scaling-factor of FLEXI-PARMAH and FLEXI-PARMAF as a function of K and S (for K ≤ S) demonstrated by heat maps for different datasets. Moving between
the columns of each heat-map indicates the effect of parallelization, and moving between the rows of each heat-map indicates the effect of approximation.
faster DBSCAN clustering through utilization of approximation and
parallelization.

8.2.3. Effects of parallelization and approximation on the scaling-factor
of PARMA-CC algorithms

We have seen so far how PARMA-CC algorithms utilize approx-
imation and parallelization to gain in timeliness. We here aim
to gain insight into the effects of approximation and paralleliza-
tion on the scaling-factor. To that end, the heat maps in Fig. 8
summarize the scaling-factor behaviour of FLEXI-PARMAH and
FLEXI-PARMAF for KITTI, FORD, GeoLife, and Mopsi datasets as
a function of the number of threads and the number of splits
via heat-maps (brighter colours indicate greater scaling-factors and
the green parts correspond to the cases in which K is larger than
S). Note that PARMA-CC algorithms yield equivalent clustering re-
sults with a fixed value of S (see Corollary 1). Therefore, moving
between the columns of each heat-map indicates the effect of par-
allelization (i.e., number of threads), and moving between the rows
of each heat-map indicates the effect of approximation.

8.3. Relative ratio of local clustering to the completion time

Fig. 9 shows the ratio of the duration of longest phase Ito the
completion time in PARMA-CC algorithms. In all cases, with small
values for K and S, ratio is very close to one because the lo-
cal clustering phase constitutes the most significant duration in
a PARMA-CC algorithm. Generally, for each dataset, as K or S in-
creases, the aforementioned ratio decreases accordingly. The latter
indicates the presence of two opposing phenomena. Firstly, the
83
local clustering tasks get distributed more evenly among the work-
ers, resulting in higher scaling-factor values. On the other hand, as
indicated in Observation 1, too large values for K and/or S can
increase the expected completion time of phase II, resulting in
smaller scaling-factor values. In § 8.2, we empirically studied the
joint effects of the aforementioned opposing phenomena on the
overall completion time and the scaling-factor of PARMA-CC algo-
rithms.

8.4. Clustering accuracy

The right Y-axes in Fig. 5a and Fig. 5b show the average accu-
racy of basic on the KITTI and FORD datasets, respectively. Further-
more, Fig. 5c and Fig. 5d show the accuracy of basic PARMA-CC
algorithms on the GeoLife and Mopsi datasets, respectively.

Similarly, the right Y-axes in Fig. 5e-5t show the clustering ac-
curacy of the flexi PARMA-CC algorithms for varying choices of
S for each dataset. Note that, in each case, with a fixed value of
S, PARMA-CC algorithms achieve the same clustering accuracy, as
noted in Corollary 1.

The right Y-axes in Fig. 6a and Fig. 6b show the accuracy of
basic PARMA-CC algorithms on the shuffled GeoLife and shuffled
Mopsi, respectively.

The right Y-axes in Fig. 7a, Fig. 7b, Fig. 7c, and Fig. 7d shows
the accuracy of basic PARMA-CC algorithms utilizing DBSCAN as
the local clustering algorithm on the KITTI, FORD, GeoLife, and
Mopsi datasets, respectively.

The results show that, although as S increases, the cluster-
ing accuracy of PARMA-CC algorithms gradually decreases, in most

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Fig. 9. Ratio of the duration of longest phase Ito the completion time in PARMA-CC algorithms.
cases it stays high and this is due to the summarization proper-
ties of the bounding ellipsoids. Furthermore, PARMA-CC algorithms
that utilize the Euclidean clustering algorithm are able to better
keep up the accuracy compared to PARMA-CC algorithms that uti-
lize DBSCAN.

8.5. Shared memory contention

As mentioned in § 6.4, there is no shared memory contention
in PARMAH , and the number of occasions in which shared mem-
ory contention can take place in FLEXI-PARMAH is significantly
smaller than that of flat PARMA-CC algorithms (the aforemen-
tioned statements are also supported by the empirical measure-
ments in Appendix A). Therefore, we focus on shared memory con-
tention in flat PARMA-CC algorithms. Fig. 10 shows shared memory
contention in those algorithms, as the average ratio of failed CAS
operations to the total number of invoked CAS operations for K
84
≤ S. Specifically, Fig. 10a, Fig. 10b, Fig. 10c, and Fig. 10d show the
shared memory contention in PARMAF and FLEXI-PARMAF on the
KITTI, FORD, GeoLife, and Mopsi datasets, respectively. The results
show that shared memory contention in PARMAF is higher than
that of FLEXI-PARMAF , with a few exceptions. Furthermore, the
results suggest that contention in FLEXI-PARMAF gets lower by
choosing larger values of S, as it increases the number of shared
tasks. However, the contention increases again if the chosen num-
ber of splits is too large for the amount of data, indicating that too
large S values should be avoided for proper use of the algorithms.

8.6. Summary of the empirical evaluation

We studied timing and accuracy performance of PARMA-CC al-
gorithms in a variety of situations. We saw how PARMA-CC al-
gorithms can also have super-linear scaling-factors, as a result of
approximation, when the datasets are skewed. We also saw that

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Fig. 10. The average ratio of failed CAS operations to the total number of invoked CAS operations in flat PARMA-CC algorithms (for K ≤ S).
the local clustering is the dominant factor in the execution of a
PARMA-CC algorithm. To that end, we noted that flexi PARMA-CC
algorithms yield higher scaling-factors by increasing S (the num-
ber of data splits), up to a point justified by the volume of the
data (the splits should not become too small, else the benefits of
work-partitioning get counter-balanced by the overhead to coor-
dinate the latter). Furthermore, with lower inter-split overlap, we
observed that the flat PARMA-CC algorithms yield higher scaling-
factors than the hierarchical PARMA-CC algorithms, and we noticed
that the hierarchical PARMA-CC algorithms achieve higher scaling-
factors when the inter-split overlap is high. We also showed in
practice the trade-off between S and the scaling-factor when data
is not too big, as well as the clustering accuracy of the algorithms,
showing the advantage of suitable choice of S for utilizing the ad-
vantageous properties of PARMA-CC algorithms.

9. Related work

PARMAH , the first parallel multiphase approximate clustering
combining algorithm, was introduced and explored in [24]. The
present paper extends the study of PARMA-CC algorithms by con-
sidering a design space along two orthogonal aspects. The first
aspect considers how the threads synchronize and collaborate, and
the second aspect considers how the workload gets distributed
among the threads. As a result, the present paper introduces opti-
mized algorithms targeting different places in the design space. As
suggested by the extensive empirical evaluation, different PARMA-
CC algorithms can be utilized according to certain properties of the
data to be clustered.

In the following, we present three categories of clustering algo-
rithms relevant to PARMA-CC algorithms.
CAT1 The methods in this category can directly be embedded in
PARMA-CC algorithms as a local clustering algorithm to gain the
parallelism benefits of PARMA-CC algorithms. For example, instead
of DBSCAN, DENCLUE [21], STING [44], or OPTICS [4], and their ap-
proximate variants (see CAT3) can be employed. The algorithms in
this category can utilize spatial data structures such as kd-trees [6],
Octrees [31], R-trees [19], M-trees [9], and navigating nets [28].
Similarly, PARMA-CC algorithms can also incorporate the utiliza-
tion of such spatial data structures in the local clustering phase.
Moreover, with appropriately formed input, one can also employ
Lisco [33], which is a single-pass continuous version of PCL-EC
with faster ε-neighbourhood radius search via exploiting the an-
gularly sorted readings of a LIDAR sensor.
CAT2 These methods boost the performance of classical clustering
algorithms such as DBSCAN through parallelization. For instance,
Highly Parallel DBSCAN [17], HPDBSCAN, is an OpenMP/MPI hybrid
algorithm that redistributes the points to distinct computational
units that perform the local clustering tasks. Then, the local clus-
ters that need to get merged are identified, and thus appropriate
cluster relabeling rules get generated, broadcasted, and applied lo-
85
cally. HPDBSCAN offers good scalability; however, when the data
is skewed, its performance degrades severely. On the other hand,
PARMA-CC algorithms can deal significantly better with skewed
data as shown in the empirical evaluation. Moreover, PARMA-CC
algorithms’ approach to utilize the shared memory via in-place
operations is more efficient that OpenMP’s relaxed consistency
memory model in which multiple copies of the same data might
exist [22]. G-DBSCAN [3] is a parallel version of DBSCAN using
GPU that employs a graph structure for indexing data. Other ef-
forts on parallelizing DBSCAN employ a master-slave architecture,
e.g., [5]. Nevertheless, PARMA-CC algorithms follow the orthogonal
approach of scaling up before scaling out.
CAT3 Methods in this category sacrifice clustering accuracy to gain
performance. For example, ρ-approximate DBSCAN [39], and STING
(also in CAT1) which are both grid-based methods. The former
gives a result that is sandwiched between those of DBSCAN with
parameters (ε, minPts) and (ε(1 + ρ), minPts), for an arbitrary
small ρ . With a constant input dimensionality d, ρ-approximate
DBSCAN has an expected O(N) complexity. [12]. However, the
number of neighbouring cells, O(1 + (1/ρ)d−1), grows exponen-
tially with the number of dimensions [39]. STING builds a hierar-
chical grid structure that divides the spatial area into rectangular
cells, at a different resolution per level. Each cell summarizes the
points it contains, thus approximating the clustering result of DB-
SCAN. With a smaller granularity step, the approximation gets bet-
ter, but the number of bottom layer cells increases. Moreover, same
as other grid-based methods, the number of grid cells increase ex-
ponentially with the number of input dimensions. Other methods
integrate approximate nearest neighbour search techniques (e.g.,
those based on locality sensitive hashing) into DBSCAN, e.g., [39].
Another approximation approach is to cluster sampled data. To that
end, for example, the dynamic (biased) sampling method in [27]
can be utilized. The aforementioned techniques can as well be em-
bedded in PARMA-CC algorithms.

10. Conclusions

To address the problem of parallel approximate distance- and
density-based clustering, we explored a design space for synchro-
nization and workload distribution among the threads. To cover
different parts of the design space, we proposed representative
PARMA-CC algorithms. We analytically and empirically provided
evidence regarding capabilities of PARMA-CC algorithms to balance
scaling and accuracy as well as to tolerate skewed data distribu-
tions. Furthermore, our studies show that certain properties in the
input dataset can determine which PARMA-CC algorithm to choose
for the best performance. Moreover, we showed that all PARMA-
CC algorithms yield equivalent clustering results. We saw, further-
more, that the approximation technique can result in super-linear
scaling-factor in the number of threads, with only marginal loss
in accuracy. In general our results show that high-quality approx-

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
imate clustering can be several orders of magnitude faster than
exact clustering. Based on the results of our extensive study of
PARMA-CC algorithms, we provide some general guidelines related
to parallel approximate data processing in the following:

• Regarding parallelization: In addition to the nature of the data
processing task, some intrinsic properties of data also influence
the required amount of synchronization among the threads.
Fine-grained synchronization techniques are beneficial until cer-
tain threshold, but when heavy synchronization is needed,
lock-based data parallel approaches can be more efficient. For
example, several threads in a flat PARMA-CC algorithm can
concurrently merge overlapping ellipsoids in split-summaries.
Nonetheless, if the number of overlapping ellipsoids is large
(which is a factor determined by the input data), then a large
portion of fine-grained synchronization primitives will fail due
to contention; consequently, the corresponding threads will
need to retry. On the other hand, a thread in a hierarchical
PARMA-CC algorithm can merge as many overlapping objects as
required without any interruption, while other threads can in
parallel merge the ellipsoids in mutually disjoint sets of objects.

• Regarding data structures: The choice of the data structures
(and the computational complexity of the required functionali-
ties) should be in accordance with the data processing task. For
example, PARMA-CC algorithms utilize a union-set data struc-
ture supporting efficient union and find operations, which is
in accordance with the agglomerative [32] nature of PARMA-CC
algorithms. On the other hand, for a divisive [38] data clustering
approach, the union-set data structure is probably not a good
choice as it does not support efficient separation of sets. From
an algorithmic implementation point of view, it is beneficial if
the data structures support in-place operations utilizing pointer
manipulation techniques.

• Regarding skewed data distributions: Classical data indexing
methods used for data clustering can result in quadratic com-
plexity in terms of the size of data under skewed data distri-
butions. Our results show approximation can be a key idea for
alleviating the challenges imposed by high skewness. Further-
more, our work shows that splitting a highly skewed data into
a number of portions with similar distributions, and performing
the required computation on the portions separately and then
aggregating the results can reduce the required workload. De-
spite its approximate nature, our results show such an approach
can attain high clustering accuracy.

We expect that PARMA-CC algorithms can facilitate pipeline
processing of point clouds, especially combined with stream-
processing oriented data structures as proposed in [18,43] and
given the discussion about possible use-cases and associated
queries in the respective section. Considering the observed paral-
lelism-induced benefits of PARMA-CC algorithms, a possible future
venue of studies and experiments is to adapt PARMA-CC algo-
rithms to GPU enabled systems.

CRediT authorship contribution statement

Amir Keramatian: Conceptualization, Methodology, Gather-
ing Data, Software, Writing, Reviewing and Editing. Vincenzo
Gulisano: Conceptualization, Methodology, Supervision, Writing,
Reviewing and Editing. Marina Papatriantafilou: Conceptualiza-
tion, Methodology, Supervision, Writing, Reviewing and Editing.
Philippas Tsigas: Conceptualization, Methodology, Supervision,
Writing, Reviewing and Editing.
86
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Software and data are available on github: https://github .com /
dcs -chalmers /PARMA-CC

Appendix A

Fig. 11 shows the number of occasions in which shared mem-
ory contention can take place in PARMA-CC algorithms as the aver-
age number of failed CAS operations. The results show that mem-
ory contention in PARMAH is significantly lower than flat PARMA-
CC algorithms.

References

[1] Siddharth Agarwal, Ankit Vora, Gaurav Pandey, Wayne Williams, Helen
Kourous, James R. McBride, Ford multi-av seasonal dataset, CoRR, arXiv:2003 .
07969 [abs], 2020.

[2] Salvatore Alfano, Meredith Greer, Determining if two solid ellipsoids intersect,
J. Guid. Control Dyn. 26 (2003) 106–110.

[3] Guilherme Andrade, Gabriel Spada Ramos, Daniel Madeira, Rafael Sachetto
Oliveira, Renato Ferreira, Leonardo C. da Rocha, G-DBSCAN: a GPU acceler-
ated algorithm for density-based clustering, in: Vassil, N. Alexandrov, Michael
Lees, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, Peter M.A. Sloot (Eds.), Pro-
ceedings of the International Conference on Computational Science, ICCS 2013,
Barcelona, Spain, 5-7 June, 2013, in: Procedia Computer Science, vol. 18, Else-
vier, 2013, pp. 369–378.

[4] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander Optics, Or-
dering points to identify the clustering structure, in: Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data, SIGMOD ’99,
ACM, New York, NY, USA, 1999, pp. 49–60.

[5] Domenica Arlia, Massimo Coppola, Experiments in parallel clustering with
DBSCAN, in: Rizos Sakellariou, John A. Keane, John R. Gurd, Len Freeman
(Eds.), Euro-Par 2001: Parallel Processing, 7th International Euro-Par Confer-
ence, Manchester, UK, August 28-31, 2001, Proceedings, in: Lecture Notes in
Computer Science, vol. 2150, Springer, 2001, pp. 326–331.

[6] Jon Louis Bentley, K-d trees for semidynamic point sets, in: Proc. of the 6th
Symp. on Comp. Geometry, Berkeley, CA, USA, June 6–8, 1990, ACM, 1990,
pp. 187–197.

[7] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, Yuli Zhou, Cilk: An efficient multithreaded runtime
system, J. Parallel Distrib. Comput. 37 (1) (1996) 55–69.

[8] Robert D. Blumofe, Charles E. Leiserson, Scheduling multithreaded computa-
tions by work stealing, J. ACM 46 (5) (1999) 720–748.

[9] Paolo Ciaccia, Marco Patella, Pavel Zezula, M-tree: an efficient access method
for similarity search in metric spaces, in: VLDB’97, Proc. of 23rd Int. Conf. on
Very Large Data Bases, M. Kaufmann, 1997, pp. 426–435.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Intro-
duction to Algorithms, 3rd edition, MIT Press, 2009.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, A density-based al-
gorithm for discovering clusters in large spatial databases with noise, in: Pro-
ceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA, AAAI Press, 1996, pp. 226–231.

[12] Junhao Gan, Yufei Tao, Dbscan revisited: mis-claim, un-fixability, and ap-
proximation, in: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’15, ACM, New York, NY, USA, 2015,
pp. 519–530.

[13] Andreas Geiger, Philip Lenz, Christoph Stiller, Raquel Urtasun, Vision meets
robotics: the KITTI dataset. I, J. Robot. Res. 32 (11) (2013) 1231–1237.

[14] Phillip B. Gibbons, Big data: scale down, scale up, scale out, in: 2015 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2015, Hy-
derabad, India, May 25-29, 2015, IEEE Computer Society, 2015, p. 3.

[15] Craig L. Glennie, Derek D. Lichti, Static calibration and analysis of the velo-
dyne HDL-64E S2 for high accuracy mobile scanning, Remote Sens. 2 (6) (2010)
1610–1624.

[16] Stefan Gottschalk, Ming C. Lin, Dinesh Manocha, Obbtree: a hierarchical struc-
ture for rapid interference detection, in: John Fujii (Ed.), Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH 1996, New Orleans, LA, USA, August 4-9, 1996, ACM, 1996,
pp. 171–180.

https://github.com/dcs-chalmers/PARMA-CC
https://github.com/dcs-chalmers/PARMA-CC
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib814B44D4B10F43E628DD1E416DCFF34Bs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib814B44D4B10F43E628DD1E416DCFF34Bs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib814B44D4B10F43E628DD1E416DCFF34Bs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib78A196DE8356D7F9141467E0009076C3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib78A196DE8356D7F9141467E0009076C3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD7718000C25DE05A38CAC69BCE5C677Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD7718000C25DE05A38CAC69BCE5C677Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD7718000C25DE05A38CAC69BCE5C677Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD7718000C25DE05A38CAC69BCE5C677Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD7718000C25DE05A38CAC69BCE5C677Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD7718000C25DE05A38CAC69BCE5C677Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD7718000C25DE05A38CAC69BCE5C677Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibBACFF36769236D5D8589DACF1C01B727s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibBACFF36769236D5D8589DACF1C01B727s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibBACFF36769236D5D8589DACF1C01B727s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibBACFF36769236D5D8589DACF1C01B727s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibFDEEBBD420E3438F771B11BE0C396EA7s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibFDEEBBD420E3438F771B11BE0C396EA7s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibFDEEBBD420E3438F771B11BE0C396EA7s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibFDEEBBD420E3438F771B11BE0C396EA7s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibFDEEBBD420E3438F771B11BE0C396EA7s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib3F20AADAE841E30F8155F42907F6327As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib3F20AADAE841E30F8155F42907F6327As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib3F20AADAE841E30F8155F42907F6327As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib09F8C9AF5D4D40E4769FACC8617ED21Cs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib09F8C9AF5D4D40E4769FACC8617ED21Cs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib09F8C9AF5D4D40E4769FACC8617ED21Cs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD90CFCB998894FD5365FEC15585536E9s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibD90CFCB998894FD5365FEC15585536E9s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib2779D723F306C6F425112EA7327DB15As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib2779D723F306C6F425112EA7327DB15As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib2779D723F306C6F425112EA7327DB15As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib616478280E1344FA4EC96CE975610701s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib616478280E1344FA4EC96CE975610701s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib72E563D77ED5FED1189E5B2B6E8E1273s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib72E563D77ED5FED1189E5B2B6E8E1273s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib72E563D77ED5FED1189E5B2B6E8E1273s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib72E563D77ED5FED1189E5B2B6E8E1273s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib6E701EA4C63F0E426C55925B25AB374Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib6E701EA4C63F0E426C55925B25AB374Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib6E701EA4C63F0E426C55925B25AB374Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib6E701EA4C63F0E426C55925B25AB374Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib3AA9B0E31F3F99BC99C980779996307Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib3AA9B0E31F3F99BC99C980779996307Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibF97EA1A0E4E8DE7C13B4EA351D484D0As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibF97EA1A0E4E8DE7C13B4EA351D484D0As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibF97EA1A0E4E8DE7C13B4EA351D484D0As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibA0E06246840FE4E96E92C140BB5B9E50s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibA0E06246840FE4E96E92C140BB5B9E50s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibA0E06246840FE4E96E92C140BB5B9E50s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib419F82458D62346B18FFDE42B35E3246s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib419F82458D62346B18FFDE42B35E3246s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib419F82458D62346B18FFDE42B35E3246s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib419F82458D62346B18FFDE42B35E3246s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib419F82458D62346B18FFDE42B35E3246s1

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88

Fig. 11. The average number of failed CAS operations in PARMA-CC algorithms (for K ≤ S).
[17] Markus Götz, Christian Bodenstein, Morris Riedel, Hpdbscan: highly paral-
lel dbscan, in: Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, MLHPC ’15, ACM, New York, NY, USA,
2015, pp. 2:1–2:10.

[18] Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Papatri-
antafilou, Philippas Tsigas, Deterministic real-time analytics of geospatial data
streams through scalegate objects, in: Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, ACM, 2015, pp. 316–317.

[19] Antonin Guttman, R-trees: A dynamic index structure for spatial searching, in:
Proc. SIGMOD’84, ACM Press, 1984, pp. 47–57.

[20] Maurice Herlihy, Wait-free synchronization, ACM Trans. Program. Lang. Syst.
13 (1) (January 1991) 124–149.

[21] Alexander Hinneburg, Daniel A. Keim, An efficient approach to clustering in
large multimedia databases with noise, in: Proceedings of the Fourth Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD-98), New
York, USA, August 27-31, 1998, AAAI Press, 1998, pp. 58–65.

[22] Jay P. Hoeflinger, Bronis R. de Supinski, The openMP memory model, in:
Matthias S. Müller, Barbara M. Chapman, Bronis R. de Supinski, Allen D. Mal-
ony, Michael Voss (Eds.), OpenMP Shared Memory Parallel Programming - In-
ternational Workshops, IWOMP 2005 and IWOMP 2006, Eugene, OR, USA, June
1-4, 2005, Reims, France, June 12–15, 2006, in: Lecture Notes in Computer Sci-
ence, vol. 4315, Springer, 2005, pp. 167–177.

[23] Siddhartha V. Jayanti, Robert E. Tarjan, A randomized concurrent algorithm for
disjoint set union, in: George Giakkoupis (Ed.), Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL,
USA, July 25-28, 2016, ACM, 2016, pp. 75–82.

[24] Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, Philippas Tsigas,
PARMA-CC: parallel multiphase approximate cluster combining, in: Proceedings
of the 21st International Conference on Distributed Computing and Network-
ing, ICDCN 2020, New York, NY, USA, Association for Computing Machinery,
2020.

[25] Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, Philippas Tsigas,
MAD-C: multi-stage approximate distributed cluster-combining for obstacle de-
tection and localization, J. Parallel Distrib. Comput. 147 (2021) 248–267.

[26] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué, Thomas
Brox, Bjoern Andres, Efficient decomposition of image and mesh graphs by
lifted multicuts, in: ICCV, 2015.

[27] George Kollios, Dimitrios Gunopulos, Nick Koudas, Stefan Berchtold, Efficient
biased sampling for approximate clustering and outlier detection in large data
sets, IEEE Trans. Knowl. Data Eng. 15 (5) (September 2003) 1170–1187.
87
[28] Robert Krauthgamer, James R. Lee, Navigating nets: simple algorithms for prox-
imity search, in: Proc. of the Fifteenth Annual ACM-SIAM Symp. on Discrete
Algorithms, SODA 2004, SIAM, 2004, pp. 798–807.

[29] V.P. Kumar, A. Gupta, Analyzing scalability of parallel algorithms and architec-
tures, J. Parallel Distrib. Comput. 22 (3) (1994) 379–391.

[30] Radu Mariescu-Istodor, Pasi Fränti, Grid-based method for GPS route analysis
for retrieval, ACM Trans. Spatial Algorithms Syst. 3 (3) (2017) 8:1–8:28.

[31] Donald Meagher, Geometric modeling using octree encoding, Comput. Graph.
Image Process. 19 (1) (1982) 85.

[32] Daniel Müllner, Modern hierarchical, agglomerative clustering algorithms,
CoRR, arXiv:1109 .2378 [abs], 2011.

[33] Hannaneh Najdataei, Yiannis Nikolakopoulos, Vincenzo Gulisano, Marina Papa-
triantafilou, Continuous and parallel lidar point-cloud clustering, in: 38th IEEE
International Conference on Distributed Computing Systems, ICDCS 2018, Vi-
enna, Austria, July 2-6, 2018, IEEE Computer Society, 2018, pp. 671–684.

[34] Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik
Manne, Alok Choudhary, A new scalable parallel dbscan algorithm using the
disjoint-set data structure, in: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC ’12, Wash-
ington, DC, USA, IEEE Computer Society Press, 2012.

[35] Stephen B. Pope, Algorithms for ellipsoids, Cornell Univ., Rep. No. FDA, 2008.
[36] Radu Bogdan Rusu, Semantic 3d object maps for everyday manipulation in hu-

man living environments, Künstl. Intell. 24 (4) (Nov 2010) 345–348.
[37] Radu Bogdan Rusu, Steve Cousins, 3d is here: point cloud library (PCL), in:

IEEE International Conference on Robotics and Automation, ICRA 2011, Shang-
hai, China, 9-13 May 2011, IEEE, 2011, pp. 9–13.

[38] Sergio M. Savaresi, Daniel L. Boley, Sergio Bittanti, Giovanna Gazzaniga, Cluster
selection in divisive clustering algorithms, in: Robert L. Grossman, Jiawei Han,
Vipin Kumar, Heikki Mannila, Rajeev Motwani (Eds.), Proceedings of the Second
SIAM International Conference on Data Mining, Arlington, VA, USA, April 11-13,
2002, SIAM, 2002, pp. 299–314.

[39] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, Xiaowei Xu, Db-
scan revisited, revisited: why and how you should (still) use dbscan, ACM
Trans. Database Syst. 42 (3) (July 2017) 19:1–19:21.

[40] Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, Fourth
Edition, 4th edition, Academic Press, Inc., Orlando, FL, USA, 2008.

[41] Gino van den Bergen, Efficient collision detection of complex deformable mod-
els using AABB trees, J. Graph. GPU Game Tools 2 (4) (1997) 1–13.

[42] Silke Wagner, Dorothea Wagner, Comparing clusterings - an overview, Technical
Report 4, Universität Karlsruhe (TH), 2007.

[43] Ivan Walulya, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vincenzo
Gulisano, Marina Papatriantafilou, Philippas Tsigas Viper, A module for

http://refhub.elsevier.com/S0743-7315(23)00016-3/bib9E3B96C4AE553A8F30BED308F676377Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib9E3B96C4AE553A8F30BED308F676377Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib9E3B96C4AE553A8F30BED308F676377Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib9E3B96C4AE553A8F30BED308F676377Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib26B5E896EE84F9A0FF4009F330FB48BCs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib26B5E896EE84F9A0FF4009F330FB48BCs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib26B5E896EE84F9A0FF4009F330FB48BCs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib26B5E896EE84F9A0FF4009F330FB48BCs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibB12DE63BA308A29CDB78FD25196DC026s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibB12DE63BA308A29CDB78FD25196DC026s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib8720AE9174C7D94AE6B33DAD6E4EFB6Cs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib8720AE9174C7D94AE6B33DAD6E4EFB6Cs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib616606D572DC8B1CB322BBC9E2209E2Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib616606D572DC8B1CB322BBC9E2209E2Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib616606D572DC8B1CB322BBC9E2209E2Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib616606D572DC8B1CB322BBC9E2209E2Ds1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibC9BCD8C3382E8B2219E13E979CB78BB3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibC9BCD8C3382E8B2219E13E979CB78BB3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibC9BCD8C3382E8B2219E13E979CB78BB3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibC9BCD8C3382E8B2219E13E979CB78BB3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibC9BCD8C3382E8B2219E13E979CB78BB3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibC9BCD8C3382E8B2219E13E979CB78BB3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib61BD9D9C0B88E6D95FE737A8EEA264EDs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib61BD9D9C0B88E6D95FE737A8EEA264EDs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib61BD9D9C0B88E6D95FE737A8EEA264EDs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib61BD9D9C0B88E6D95FE737A8EEA264EDs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib1B8A72403FD27E2B10AF585832B3E172s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib1B8A72403FD27E2B10AF585832B3E172s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib1B8A72403FD27E2B10AF585832B3E172s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib1B8A72403FD27E2B10AF585832B3E172s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib1B8A72403FD27E2B10AF585832B3E172s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibDC86CDE33E9CEB5DE58628429C8EEAADs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibDC86CDE33E9CEB5DE58628429C8EEAADs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibDC86CDE33E9CEB5DE58628429C8EEAADs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib82DC59DFB767B178B23B133600DBB4D3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib82DC59DFB767B178B23B133600DBB4D3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib82DC59DFB767B178B23B133600DBB4D3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibA5DC70D3DF262BF202ADC63C6B7CD8A1s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibA5DC70D3DF262BF202ADC63C6B7CD8A1s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibA5DC70D3DF262BF202ADC63C6B7CD8A1s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib0223D400584C9E7EE6DDA2986C45DE1Bs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib0223D400584C9E7EE6DDA2986C45DE1Bs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib0223D400584C9E7EE6DDA2986C45DE1Bs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibE4C90B736048810EB6A831A7C3515D7As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibE4C90B736048810EB6A831A7C3515D7As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibE676B9F8BF503708C598B01CBB337A7Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibE676B9F8BF503708C598B01CBB337A7Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib14B2F58BB8512EFF41E6F9828F282C24s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib14B2F58BB8512EFF41E6F9828F282C24s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibECDC2C5B153ABC3DE44F99D58BAA6AB9s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibECDC2C5B153ABC3DE44F99D58BAA6AB9s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibF90C60088B94E9214CA24411C10D198As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibF90C60088B94E9214CA24411C10D198As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibF90C60088B94E9214CA24411C10D198As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibF90C60088B94E9214CA24411C10D198As1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibB022046FAE4C1A98FAAFB39A6534875Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibB022046FAE4C1A98FAAFB39A6534875Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibB022046FAE4C1A98FAAFB39A6534875Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibB022046FAE4C1A98FAAFB39A6534875Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibB022046FAE4C1A98FAAFB39A6534875Es1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib11AA5B75F0AD31D09951CBEB12EE2590s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib7F87C3C740DBC013AC648F3CEA23617Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib7F87C3C740DBC013AC648F3CEA23617Fs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibEE2DD698084579F52A7A49DFBCEE8761s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibEE2DD698084579F52A7A49DFBCEE8761s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibEE2DD698084579F52A7A49DFBCEE8761s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibCD3266A6C865CDEB4500FE69A76CCF67s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibCD3266A6C865CDEB4500FE69A76CCF67s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibCD3266A6C865CDEB4500FE69A76CCF67s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibCD3266A6C865CDEB4500FE69A76CCF67s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibCD3266A6C865CDEB4500FE69A76CCF67s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibE011CE22AD80908AE6AF204FBE80F673s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibE011CE22AD80908AE6AF204FBE80F673s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibE011CE22AD80908AE6AF204FBE80F673s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibBD6816C86BB3A6E15ED581EEF4188208s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bibBD6816C86BB3A6E15ED581EEF4188208s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib3AA5940A63F159EC37A45E2F48D8EBECs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib3AA5940A63F159EC37A45E2F48D8EBECs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib9F6D6FC3962F1D0ED6E451D8F556AFA4s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib9F6D6FC3962F1D0ED6E451D8F556AFA4s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib163D67FBC4B8B7B7DA86FD1165603E96s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib163D67FBC4B8B7B7DA86FD1165603E96s1

A. Keramatian, V. Gulisano, M. Papatriantafilou et al. Journal of Parallel and Distributed Computing 177 (2023) 68–88
communication-layer determinism and scaling in low-latency stream process-
ing, Future Gener. Comput. Syst. 88 (2018) 297–308.

[44] Wei Wang, Jiong Yang, Richard R. Muntz, Sting: a statistical information grid
approach to spatial data mining, in: Proceedings of the 23rd International Con-
ference on Very Large Data Bases, VLDB ’97, Morgan Kaufmann Publishers Inc.,
1997, pp. 186–195.

[45] Thomas Willhalm, Nicolae Popovici, Putting intel threading building blocks to
work, in: 1st Int. Workshop on Multicore Software Eng., IWMSE ’08, ACM,
2008, pp. 3–4.

[46] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, Wei-Ying Ma, Understanding mo-
bility based on GPS data, in: Hee Yong Youn, We-Duke Cho (Eds.), UbiComp
2008: Ubiquitous Computing, 10th International Conference, UbiComp 2008,
Seoul, Korea, September 21-24, 2008, Proceedings, in: ACM International Con-
ference Proceeding Series, vol. 344, ACM, 2008, pp. 312–321.

[47] Yu Zheng, Xing Xie, Wei-Ying Ma. Geolife, A collaborative social networking
service among user, location and trajectory, IEEE Data Eng. Bull. 33 (2) (2010)
32–39.

[48] Yu Zheng, Lizhu Zhang, Xing Xie, Wei-Ying Ma, Mining interesting locations
and travel sequences from GPS trajectories, in: Juan Quemada, Gonzalo León,
Yoëlle S. Maarek, Wolfgang Nejdl (Eds.), Proceedings of the 18th International
Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24,
2009, ACM, 2009, pp. 791–800.

Amir Keramatian received the B.Sc. degree in
Computer Engineering from Isfahan University of
Technology, the M.Sc. degree in Artificial Intelligence
from Sharif University of Technology, and the Ph.D.
degree in Computer Science and Engineering from the
Networks and Systems Division at Chalmers Univer-
sity of Technology. Amir’s research interests include
distributed and parallel processing, data structures,
algorithms, pattern recognition, signal processing, and

machine learning.

Vincenzo Gulisano Associate Professor in the Net-
works and Systems Division at Chalmers University of
Technology. His research focuses on data processing
and distributed / parallel / elastic and fault-tolerant
data streaming. Dr. Vincenzo Gulisano holds a Ph.D.
in Computer Science from the Polytechnic University
of Madrid, Spain.
88
Marina Papatriantafilou Associate Professor, Chal-
mers Un.; earlier with the Max-Planck Inst. for Com-
puter Science, Saarbruecken and CWI, Amsterdam,
Ph.D. degree from the Computer Science and Infor-
matics Dept., Patras Un. Member of Network of Na-
tional Contacts ACM-WE NeNaC. Research interests:
efficient and robust parallel, distributed, stream pro-
cessing and applications in multiprocessor, multicore
and distributed, cyberphysical systems; synchroniza-

tion, consistency, fault-tolerance.

Philippas Tsigas received the B.Sc. degree in math-
ematics and the Ph.D. degree in computer engineer-
ing and informatics from the University of Patras,
Greece. He was at the National Research Institute for
Mathematics and Computer Science, Amsterdam, The
Netherlands (CWI), and at the Max-Planck Institute
for Computer Science, Saarbrucken, Germany, before.
At present, he is a professor in the Department of
Computing Science at Chalmers University of Technol-

ogy, Sweden. His research interests include concurrent data structures and
algorithmic libraries for multiprocessor and many-core systems, commu-
nication and synchronization in parallel systems, power aware computing,
fault-tolerant computing, autonomic computing, and scalable data stream-
ing.

http://refhub.elsevier.com/S0743-7315(23)00016-3/bib163D67FBC4B8B7B7DA86FD1165603E96s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib163D67FBC4B8B7B7DA86FD1165603E96s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib79FE30E3EC9F8D6C7C7C034B24D87BD4s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib79FE30E3EC9F8D6C7C7C034B24D87BD4s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib79FE30E3EC9F8D6C7C7C034B24D87BD4s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib79FE30E3EC9F8D6C7C7C034B24D87BD4s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib51F35398BCEDAC9E222E0695D6B72785s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib51F35398BCEDAC9E222E0695D6B72785s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib51F35398BCEDAC9E222E0695D6B72785s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib36444AC21A67FAA9A20A3A4CD08EE5C3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib36444AC21A67FAA9A20A3A4CD08EE5C3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib36444AC21A67FAA9A20A3A4CD08EE5C3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib36444AC21A67FAA9A20A3A4CD08EE5C3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib36444AC21A67FAA9A20A3A4CD08EE5C3s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib1D1C5FF6044FF7E1BA59546B25968AF1s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib1D1C5FF6044FF7E1BA59546B25968AF1s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib1D1C5FF6044FF7E1BA59546B25968AF1s1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib58C208A0A4CFA8E7A4A5B6B7EE8CBABCs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib58C208A0A4CFA8E7A4A5B6B7EE8CBABCs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib58C208A0A4CFA8E7A4A5B6B7EE8CBABCs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib58C208A0A4CFA8E7A4A5B6B7EE8CBABCs1
http://refhub.elsevier.com/S0743-7315(23)00016-3/bib58C208A0A4CFA8E7A4A5B6B7EE8CBABCs1

	PARMA-CC: A family of parallel multiphase approximate cluster combining algorithms
	1 Introduction
	2 Preliminaries
	2.1 System model and problem description
	2.2 Background

	3 The PARMA-CC family of algorithms
	3.1 High-level view
	3.1.1 Challenges

	3.2 Rudiments and definitions
	3.2.1 The three phases of a PARMA-CC algorithm

	3.3 The design space of PARMA-CC algorithms
	3.3.1 Synchronization via hierarchical ellipsoid forest vs synchronization via flat ellipsoid forest
	3.3.2 Basic workload distribution vs flexible workload distribution

	4 Detailed description of PARMA-CC algorithms
	4.1 Basic members of the PARMA-CC family
	4.1.1 PARMAH
	4.1.2 PARMAF

	4.2 Flexi members of the PARMA-CC family
	4.2.1 Flexi shared phases
	4.2.2 FLEXI-PARMAH
	4.2.3 FLEXI-PARMAF

	5 The ellipsoid forest data structures and algorithmic implementation
	5.1 The bounding ellipsoid data structure
	5.2 The algorithmic implementation of hierarchical ellipsoid forest
	5.2.1 Compound operation
	Enhancements

	5.2.2 Auxiliary operations

	5.3 The algorithmic implementation of flat ellipsoid forest
	5.3.1 Compound operation
	5.3.2 Auxiliary operations

	5.4 Discussion on system aspects

	6 Analysis
	6.1 Ellipsoid forest analysis
	6.1.1 Hierarchical ellipsoid forest
	6.1.2 Flat ellipsoid forest

	6.2 Safety and completeness properties of PARMA-CC algorithms
	6.3 Completion time behaviour of PARMA-CC algorithms
	6.4 On shared memory accesses and contention

	7 Discussion on the utilization and the building components of the algorithms
	7.1 On which PARMA-CC algorithm to choose
	7.2 Use cases implying extensions
	7.3 On volumetric summarization methods

	8 Evaluation
	8.1 Experiment setup
	8.2 Completion time and the scaling-factor of PARMA-CC algorithms
	8.2.1 Spatio-temporal properties and the scaling-factor of PARMA-CC algorithms
	8.2.2 Approximate DBSCAN clustering and the scaling-factor of PARMA-CC algorithms
	8.2.3 Effects of parallelization and approximation on the scaling-factor of PARMA-CC algorithms

	8.3 Relative ratio of local clustering to the completion time
	8.4 Clustering accuracy
	8.5 Shared memory contention
	8.6 Summary of the empirical evaluation

	9 Related work
	10 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

