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ARTICLE

Inference of glioblastoma migration and
proliferation rates using single time-point images
Emil Rosén1, Hitesh Bhagavanbhai Mangukiya 1, Ludmila Elfineh1, Rebecka Stockgard1, Cecilia Krona 1,

Philip Gerlee2,3 & Sven Nelander 1✉

Cancer cell migration is a driving mechanism of invasion in solid malignant tumors. Anti-

migratory treatments provide an alternative approach for managing disease progression.

However, we currently lack scalable screening methods for identifying novel anti-migratory

drugs. To this end, we develop a method that can estimate cell motility from single end-point

images in vitro by estimating differences in the spatial distribution of cells and inferring

proliferation and diffusion parameters using agent-based modeling and approximate Bayesian

computation. To test the power of our method, we use it to investigate drug responses in a

collection of 41 patient-derived glioblastoma cell cultures, identifying migration-associated

pathways and drugs with potent anti-migratory effects. We validate our method and result in

both in silico and in vitro using time-lapse imaging. Our proposed method applies to standard

drug screen experiments, with no change needed, and emerges as a scalable approach to

screen for anti-migratory drugs.
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D istant metastasis and local invasion are key features of
solid tumors, jointly accounting for 90% of all cancer
deaths1–3. In glioblastoma (GBM), the most common

malignant brain tumor4,5, cancer cells migrate away from the
central tumor mass into healthy brain tissue6–8. Such diffusively
growing cancer cells are out-of-reach for surgical therapy and can
seed tumor growth in crucial structures, such as the brainstem9.
Intriguing new evidence suggests that particular existing GBM
therapies, radiation and VEGF blockers, can sometimes aggravate
GBM invasion10–12. Accordingly, identifying new pharmacolo-
gical inhibitors of GBM cell invasion is a central priority of brain
tumor research, both as a tool to block tumor spread and to
mitigate any invasion-promoting effects of other therapies.

Here, we describe an accelerated and broadly applicable
method for detecting drug-induced changes in the motility of
patient-derived cancer cells grown in adherent culture. Generally,
scoring effects on motility is challenging for two reasons. First,
motility assays are harder to carry out in practice compared to
cell growth assays. In a large majority of screens reported so far,
the effects of drug compounds on migration are measured using
the scratch wound assay, the cheapest and most straightforward
migration assay13–16. Second, motility assays tend to generate
results that are open to interpretation since detected effects are
confounded with proliferation, or technical factors such as
inconsistencies applied when scratching the surface13,16,17. Cer-
tainly, in the particular case of patient-derived GBM cell cultures,
it remains somewhat unclear if motility is a good proxy for
in vivo invasion, which includes engagement with several differ-
ent anatomical structures, such as white matter fibers, the vas-
culature, and neurons. Some of these problems can be solved by
using specialized tools for wound making and measuring cell
proliferation in a parallel experiment17. However, such a meth-
odology requires additional experimental costs and fails to
identify drugs that affect both cell proliferation and migration.
Other migration assays, such as Boyden invasion assays and time-
lapse microscopy, help solve these issues but are more expensive
and complex13.

To remedy this problem, we propose a radically different
method to estimate cell line and treatment-specific migration of
patient-derived cancer cells while jointly measuring cell growth.
The method adds no additional experimental cost. It can be
applied to already generated high-content drug screen data sets
designed to measure cell proliferation. The only requirements are
end-point images of adherent in vitro cell cultures and known
experimental parameters. The estimation is made possible by
measuring differences in the spatial distributions of cells due to
their proliferative and migratory behavior. Our method leverages
combines AI-guided image analysis and an agent-based simula-
tion model to extract both the proliferation rate and diffusion
constant from single end-point images only. Applying the
method to a large sample of untreated and drug-treated patient-
derived cultures (Fig. 1a), we find that in vitro motility of GBM
cells is associated with astrocyte/outer radial glia-like differ-
entiation. We search a library of 94 compounds and nominate
drugs with consistent and subclass-specific effects on cell motility.
We distribute the proposed method as open software.

Results
Effects of proliferation and migration can be observed in the
spatial distribution of cells. A typical readout while screening for
cell proliferation is an end-point image of adherent cells. Pro-
liferation rates can be estimated by counting the number of cells
in the image and comparing it with the cell density of the initial
number of seeded cells. However, we also note that the spatial
distribution of cells may differ between cells from different

patients (Fig. 1c, f). In some cases, cells are uniformly distributed
(Fig. 1f), while in others, cells are clustered together (Fig. 1c).

We constructed an agent-based model simulating cell pro-
liferation and motility of adherent cell cultures. Cells are initially
seeded uniformly in a simulated well, dividing at a rate α, dying at
a rate μ, and moving according to Brownian motion with
diffusion constant D (Fig. 1b). Additionally, collision forces are
applied to each cell such that cells are distanced at least two cell
radii apart and do not leave the well. We then compare the end-
point states of two such simulations with identical parameters
except for the diffusion constant (Fig. 1d, g). Cells in the
simulation with lower diffusion constant tend to be clustered
together (Fig. 1d), while those with higher diffusion are uniformly
distributed (Fig. 1g). The pair correlation function (PCF)
measures the relative cell density as a function of distance from
each cell. It can capture the differences in spatial cell distributions
when applied to both the simulated and real data18 (Fig. 1e, h).
For cells with high motility, the PCF will be constant around one
(Fig. 1h), while the PCF for low motility cells will have a peak at a
distance of two cell radii (Fig. 1e). In both cases, the PCF is zero
for distances less than two cell radii due to repulsive cell-cell
forces at those distances.

Joint estimation of migration and proliferation using single-
end-point images. We sought to determine if it is possible to
estimate cell migration using end-point images only by counting
the number of cells, computing the PCF, and utilizing the agent-
based model. Approximate Bayesian computation (ABC) can be
used to estimate parameters in a stochastic computational
model19, such as an agent-based model. By creating simulations
with randomly selected parameter values, we retain simulations
sufficiently close to the real data. The distribution of the retained
parameter values will then approximate the true posterior dis-
tribution of the model parameters.

As a first step, we generated simulated end-point states using
the agent-based model to see if the method could estimate the
parameters from data generated by itself. Proliferation rate,
diffusion constant, and cell radius varied between simulations
while other parameters were kept constant. We computed the
PCF and number of cells at the end of the simulation and
estimated the model parameters of 1000 simulations for each
simulation. For each parameter posterior, we calculated a point
estimate by taking the mode of the posterior distribution (Fig. 2a,
Supplementary Fig. 1a). The correlation between estimated and
real proliferation rates were high (R= 0.87, p < 0.001, n= 1095),
with a lower error for more proliferative cells (Supplementary
Fig. 1b). The correlation between the real and estimated diffusion
constant was lower (Fig. 2b), but still high (R= 0.50, p < 0.001,
n= 1095). We could also estimate the cell radius (R= 0.52,
p < 0.001, n= 1095, Supplementary Fig. 1c). Similar to the
proliferation rate estimates, the diffusion constant estimates were
more accurate for cells with higher proliferation (Fig. 2c).
Theoretically, if there is no proliferation, both stationary and
cells with arbitrarily high diffusion constants will have the same
spatial distribution. Thus, the ABC algorithm may accept
unrealistically high diffusion constant estimates in cases with a
low proliferation rate.

We noticed that there was a weak correlation between the
estimated diffusion constants and proliferation rates (R=−0.16,
p < 0.001, n= 1095), despite that all parameters were independent
in the simulation. However, if we only included simulations with
proliferation rate log10α>� 5:9 (doubling time < 9 days), the
correlation disappeared (R= 0.009, p= ns). Thus, for all further
experiments, we only measure the diffusion constant for wells
with sufficiently high proliferation (log10α>� 5:9). Similarly, we
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found a weak (Rs=−0.14, p < 0.05, n= 1095, Supplementary
Fig. 1D) correlation between cell radius and diffusion, indicating
that cell radius induces a small bias on the diffusion estimates.
However, the bias is relatively small, and we do not expect huge
variations in cell radius.

As a next step, we aimed to see if using only end-point images
would give similar estimates as those estimated from tracked cells
from in vitro time-lapse data. We generated a time-lapse of
phase-contrast images of adherent cells using an automated
imaging system (IncuCyte S3). The cells were imaged in 96-well
plates over 4 days with 1-h intervals between images. The
experiments were repeated for five different initial cell densities,
and ten different GBM patient-derived cell cultures (PDCs) from
the Human Glioblastoma Cell Culture resource (HGCC)20. The
cells in each image were segmented using a deep convolutional
neural network (DCNN) and tracked over time (Supplementary

Fig. 2A–D). We calculated the proliferation rate by fitting an
exponential function to the cell count in each frame. Additionally,
using all tracked cells, we computed the mean square displace-
ment (MSD) for each well, where the diffusion constant equals
the slope of the MSD21. Of the 400 wells in the experiment, 54
wells were removed due to an insufficient proliferation rate. We
compared the correlation between the model parameters
estimated using all time points to those estimated from end-
point images only. The diffusion constant estimates were more
reliable for wells with a higher proliferation rate and initial cell
density than wells with a low proliferation rate (Fig. 2d). As an
additional requirement, we require the number of seeded
cells > 125 (equivalent to 16 initial cells in the simulation) for
accurate diffusion constant estimates, leaving 273 wells. Overall,
the correlation between both the proliferation (Rs= 0.51,
p < 0.001, n= 273, Supplementary Fig. 3a) and diffusion

Fig. 1 Endpoint imaging reveals different spatial cell distributions for low and highly migratory cells. a Overview of glioblastoma drug screen experiment
using patient-derived cell cultures. b Schematic of an individual agent-based cell migration model. c, f Endpoint image of two untreated cell cultures with
different spatial distributions. d, g The end state of an individual agent-based simulation with equivalent proliferation but different diffusion. e, h Spatial cell
distribution is captured in the pair correlation function. c–e Examples of low diffusion. f–h Examples of high diffusion. a, b contain clipared generated by
Biorender.com. Scale bar is 100 μm.
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(Rs= 0.42, p < 0.001, n= 273, Fig. 2e) estimates were high. The
correlation coefficients were higher for both the proliferation
(Rs= 0.73, n= 10, Supplementary Fig. 3b) and diffusion (Rs=
0.83, n= 10, Fig. 2f) when aggregating measurements over
each PDC.

In a drug screen setting, treatments often induce cell death,
which was not included in the above simulations. To investigate

how cell death might affect the method, we created an additional
set of simulations with varying death rates (μ between 50–90% of α)
while omitting the death rate during estimation. The model
estimated the net proliferation rate (α− μ) instead of the actual
proliferation rate (Supplementary Fig. 1e). Although the added
death rate induced a change to the PCF (Supplementary Fig. 1f), we
noticed no correlation between the known death rate and the

Fig. 2 Approximate Bayesian computation (ABC) and individual agent-based model can identify low and highly diffusive cell populations from both
simulated and real data using endpoint images. a Example of the approximate diffusion posterior of the marked point in b. The solid and dotted line shows
the real and estimated value, respectively. b Estimated diffusion parameters compared to real parameters from simulated data using 270 initial cells.
Darker colored points have a higher proliferation rate. c RMSE between estimated and real diffusion parameters depends on the number of seeded cells and
proliferation rate from simulation. d Spearman correlation between diffusion computed using endpoint images compared to diffusion estimates from
tracked cells from the time-lapse validation experiment. Missing data in c, d due to early exit of simulations with improbable high cell count or if the
number of wells in a bin was less than 10. e The diffusion constant was estimated from each well using tracked cells using time-lapse data compared with
using an individual-based model and a single end-point image. f As in (e) but with wells aggregated over cell cultures; error bars as 95% confidence
intervals. a, c n= 1095 simulations. (d-Ee n= 346 wells, n≈ 20 wells/bin. 54 wells with low proliferation were removed. f n= 10 cell cultures.
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estimated diffusion constant (Rs=−0.08, p= ns, n= 109, Supple-
mentary Fig. 1g). We further measured how the convergence rate
of the diffusion constant was affected by death rate. While the
estimates converged, we noted that the errors were consistently
higher compared with simulations with no death rate (Methods,
Supplementary Fig. 7e, g). Introducing cell death thus does not bias
the diffusion estimates, but does make estimation more
challenging.

Our results show that it is possible to estimate the diffusion
constant from end-point images only, given that the net
proliferation rate and number of cells in the image are sufficiently
high. Although the method cannot directly estimate the death
rate, it can measure treated cells’ net proliferation rate and
diffusion constant. We conclude that the method is suitable to
screen for treatment effects on cell migration and proliferation.

Estimating cell migration from a large cohort of glioblastoma
cells. After validating the method, we sought to apply our method
to end-point images of a large-scale drug screen22 (Fig. 1a). The
screen was generated from a cohort of GBM PDCs from HGCC
treated with small molecules20. The study consisted of three
phases, iteratively reducing and selecting promising drugs, based
on responses measured by the Alamar Blue assay while increasing
the number of PDCs in each phase20. We opted to use phase 3 of
the study due to superior image quality. As a first step, we aimed
to characterize the 41 PDC-specific diffusion constant of
untreated cells included in phase 3.

Similar to the previous experiment, we identified individual
cells using a DCNN (Supplementary Fig. 2f–h) and estimated
model parameters using ABC and the PCF for each well. Multiple
sets of 100,000 simulations were created, each set with a different
amount of seeded cells to match the experimental parameters
used in the drug screen. To identify PDCs with acceptable
diffusion constant estimates, we removed all PDCs where at least
50% of the untreated wells had insufficient proliferation rate
(log10α <− 5.9, n= 94 wells / PDC, Supplementary Fig. 4a, b).
After filtering, 32 PDCs (78%) were retained. The mean of the
log10 estimates was used as a point estimate for each PDC.

The diffusion constant varied between the PDCs (p < 0.001,
n= 32 PDCs, n= 94 wells/PDC, Fig. 3a), with some PDCs that
were practically stationary. We did not, however, find an
association between the PDC-specific proliferation rate and
diffusion constant (Rs=−0.04, p= ns, n= 32, Fig. 3b). Addi-
tionally, we found that the estimated cell radius varied around
5 μm Supplementary Fig. 4c, and were highly similar to the cell
radius measured from the images (Rs= 0.73, p < 0.001, n= 32,
Supplementary Fig. 4d. The method can thus infer cell nuclei size
from the PCF alone. Additionally, we found a positive correlation
between the measured cell radius and estimated diffusion
(Rs= 0.44, p < 0.05, n= 32, Supplementary Fig. 4e). This
correlation was not found in our simulations and is, therefore,
unlikely to be due to the estimation procedure. The correlation
between cell radius and diffusion is interesting and warrants
further studies.

Transcriptomic differences drive adherent cell migration.
HGCC includes gene expression data for 100 PDCs, including the
41 PDCs in the drug screen data set. We sought to understand if
there were any transcriptomic differences between PDCs with
high and low motility. We constructed a p-value histogram for
the p values computed between proliferation (Supplementary
Fig. 5a) and diffusion (Supplementary Fig. 5b) with each gene.
There was a clear enrichment for low p values for the diffusion
estimates. Next, we computed the three principal components of
the gene expression data using all 100 PDCs. Spearman’s

correlation coefficient was calculated between the proliferation
rate and diffusion constant for each principal component. We
found that the second principal component was significantly
correlated with the diffusion constant (padj < 0.05, n= 32,
Fig. 3c) with an R2= 0.22. Assuming that the second principal
component represented a migratory signature, we sought to
define it using all 100 PDCs. We used single-sample gene set
enrichment analysis (SSGSEA) to get an enrichment score for
each PDC and gene set of interest (Supplementary Data). Next,
we computed the enrichment score between the invasive sig-
nature and gene sets (Fig. 3d, e).

We found a strong association (padj < 10−14) between the
classical subtype and migration as well as an association with
astrocyte and radial glia signatures (Fig. 3d, Supplementary
Fig. 5c). The mesenchymal subtype, by contrast, was not
particularly associated with the diffusion constant. Matching to
the Reactome database (Supplementary Fig. 5d), we found
associations to the Ephrin receptor, L1 cell adhesion molecule,
and FGF receptor and EGF receptor pathways, each of which
have been implicated in GBM invasion23,24. From Gene Ontology
and Hallmarks, we got Adherens junctions, TGF-beta, and
Hedgehog pathways as key hits, all consistent with a migratory
and invasive phenotype (Supplementary Fig. 5e–f). We further
used transcription factor (TF) target gene sets from CREEDS to
identify possible TF regulators of invasion (Fig. 3e). The top hit
was SOX3, which is consistent with recent evidence25, and the top
10 list of associations also contained ASCL126 as well as
interesting new suggestions, like HES6 and ZEB2.

Jointly, these findings show that migration phenotypes are
strongly associated with known migration pathways. Our data
strengthen evidence of a classical subtype GBM cells expressing
radial glia markers as particularly invasive and point toward novel
TF targets to be explored.

Most drugs affected glioblastoma cell migration. Phase 3 of the
study also included end-point images of cells treated by 94 dif-
ferent drugs at 11 concentrations. The drugs used in this study
were specifically selected in previous phases due to reducing cell
viability, as inferred from a metabolic assay. Since accurate dif-
fusion constant estimates are only possible if the net proliferation
rate is sufficient, the diffusion constant estimates are unavailable
when using cytotoxic drug concentrations. We calculated a
threshold for each PDC and drug pair and retained all treated
wells with a concentration lower than a calculated threshold. The
threshold was calculated to maximize the number of retained
wells with high proliferation and removed wells with an insuffi-
cient proliferation rate. We only retained PDC and drug pairs
with at least three unique treatment concentrations as an addi-
tional requirement. Further, drugs with less than 5 retained PDCs
were also removed. After filtering, 92 drugs remained.

We estimated the dose-dependent effects of each drug on both
the proliferation rate and diffusion constant using a linear mixed-
effects model. Such a model is suitable for measuring drug effects
on individual PDCs while sharing information across PDCs and
drugs. Not surprisingly, all drugs reduced the proliferation rate in
a dose-dependent fashion (Fig. 4a). However, more interestingly,
most drugs either reduced or increased the diffusion constant,
with a clear enrichment of low p values indicating that this was
not simply due to random noise (Fig. 4b). After adjustment for
multiple corrections, three drugs, dasatinib (padj < 0.001),
pitavastatin (padj < 0.01), and paclitaxel (padj < 0.05) significantly
reduced the diffusion constant at the α= 0.05 level (Fig. 4a).
Three more drugs, camptothecin, homoharringtonine, and
nilotinib, significantly reduced the diffusion constant at the
alpha= 0.25 level. Taking dasatinib as an example, we could see a
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dose-dependent structural change in wells (Fig. 4c). As the dosage
increases, cells become visibly less uniformly distributed. Mean-
while, six drugs significantly increased the diffusion constant at
the α= 0.05 level. For nine drugs, we also investigated PDC-
specific effects on diffusion (Supplementary Fig. 6a), but could
not find any meaningful differences.

We found that most drugs affected the PCF and induced a
change in cell migration. While all drugs reduced net prolifera-
tion, drugs either increased or decreased cell migration.

Cell tracking confirm anti-migratory drugs. We used four PDCs
to validate the effect of three of the anti-migratory drugs, dasatinib,
paclitaxel, and pitavastatin, as well as four of the pro-migratory
drugs, colchicine, ciclopirox, nocodazole, and thapsigargin. We failed
to acquire one drug, pitavastatin and used simvastatin as a repla-
cement instead. Two GSK3-inhibitors; an indirubin derivative
(7BIO), AZD2858, as well as the RhoA inhibitor CCG-1424, pre-
viously implicated to have anti-migratory effects in GBM27–29, were
also added to the panel. Cells were imaged every 30min, tracked,

Fig. 3 Characterization of glioma cell culture specific migration rates. a The estimated diffusion constant for 32 patient-derived glioblastoma cell cultures
(PDCs). b The relationship between the diffusion constant and proliferation rate. c Spearman correlation coefficient between the first three principal
components derived from gene expression data with the proliferation rate and diffusion constant (n= 32). d, e Enrichment scores between the migration
signature and (d) GBM subtypes and cell types and (e) transcription factors. The Y-axis represents signed log10 Bonferroni corrected p values. Positive
values were positively correlated with the migratory signature.
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and treated at 11 different concentrations, with two replicates at each
concentration. Similar to the untreated validation experiment, we
used all images and cell tracking, and not just the end-point, to
estimate migration. We first aimed to find concentrations with
between 0–20% proliferative capacity compared with untreated
controls to identify sub-lethal dosages. We then measured the dose-
dependent effect on the diffusion constant at sublethal concentra-
tions (Fig. 5a) as well as cell growth (Supplementary Fig. 6b–k).

Dasatinib significantly reduced migration in three of the four
PDCs (Fig. 5b). The exception was U3034MG, which had
increased migration at low dosages. Paclitaxel greatly reduced
migration at low dosages, but gradually increased migration as
the dose increased further (Fig. 5c). We were unable to measure
migratory effects at sublethal doses for U3013MG as it was very
sensitive to paclitaxel. However, it seemed to respond similarly to
the other PDCs. Simvastatin had a strong anti-migratory effect on
U3180MG cells (p < 0.05, n= 14 wells) and a weaker effect
(p < 0.001, n= 16 wells) on U3220MG cells (Fig. 5d). We
observed no effect for simvastatin on the other two PDCs. At
lethal doses, cells were greatly deformed and nonmotile.

Thapsigargin was predicted to increase migration. However, it
reduced migration for three of the PDCs (p < 0.001, Fig. 5e). We
saw no effect on Nocodazole treated cells (Fig. 5f). Ciclopirox-
treated cells showed mixed responses with no clear effect on
sublethal doses (Fig. 5g). Colchicine increased the migration for
three of the PDCs (p < 0.05, Fig. 5h).

Interestingly, all three anti-migratory drugs that were addi-
tionally added reduced migration in U3180MG (p < 0.001,

Fig. 5i–k). Only AZD2858 reduced migration for multiple PDCs.
Comparing the anti-migratory effects with their growth-reducing
effects, dasatinib and thapsigargin had the highest magnitude and
affected the most PDCs (Fig. 5a).

In the validation experiment, our method identified three out
of four anti-migratory drugs. Further, it correctly discarded three
drugs that either increased or had no effect on cell migration. The
anti-migratory drugs included from previous studies of GBM
significantly reduced cell migration in at least one of the four cell
cultures. We conclude that our method could significantly
improve the selection of drugs chosen for more expensive
in vitro or in vivo downstream experiments.

Discussion
We presented a method for measuring cell growth and migration
jointly using end-point images of adherent in vitro cultures. The
method applies to images generated from high-content screening
experiments and can be retrofitted to pre-existing data sets. It is
thus possible to measure cell migration without requiring tem-
poral data or specialized assays, at no additional experimental
cost. This was made possible by simulating adherent cell behavior
in silico using an agent-based simulation and comparing simu-
lated results with real data using approximate Bayesian com-
puting. Importantly, our method measures migration effects
independent of proliferation effects, which is otherwise a com-
mon confounder. We applied our method to a large-scale high-
content GBM drug screening dataset and estimated both the

Fig. 4 Treatments affect both proliferation and migration. a Treatment effects on diffusion and proliferation for each increment in dose, estimated using a
linear mixed-effects model. The color indicates the log10 q-value of the diffusion effects. Treatments below and above the horizontal dotted line reduce and
increase cell diffusion, respectively. Red and orange circled points represent drugs with padj < 0.05 and 0.25, respectively. b Histogram of p values of
treatment effects on diffusion. c Representative images of dasatinib-treated U3013MG cells. Scale bar is 100 μm. a, b n= 32 cell cultures and n= 3–12 drug
concentrations for each treatment estimate (point).
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treated and untreated diffusion constant for multiple patient-
derived cells and drugs22. After filtering, we could estimate the
diffusion constant for 32 PDCs and the effect of 92 drugs on cell
migration.

Using principal component regression, we found that the
second principal component of the gene expression data could

predict migratory behavior. Thus, significant differences in the
genome also caused significant differences in adherent migration.
Particularly, we find that it is the astrocyte-like or classical sub-
type that is most correlated with migration, rather than the
mesenchymal subtype. Additionally, we identify candidate genes,
such as the transcription factor ZEB2, that could be driving cell

Fig. 5 Time-lapse imaging confirms anti-migratory treatment effects. a Treatment effects on cell migration for 50% reduced growth for 10 compounds.
Growth refers to the reduced rate of proliferation. *p < 0.05, **p < 0.01, ***p < 0.001. b–k Dose-response curves for the diffusion constant for dasatinib,
paclitaxel, simvastatin, thapsigargin, nocodazole, ciclopirox, colchicine, AZD2858, CCG1423, and indirubin respectively. Points indicate individual wells
while the line shows the mean effect. The colors indicate different PDCs and match the colors and legend in (a). Solid and black outlines around points
correspond to sublethal doses with less than 20% and 0% growth, respectively. n= 4 cell cultures, n= 24 wells and n= 144 images per well. Shaded
regions indicate 95% confidence intervals.
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migration. Although this study was focused on screening for anti-
migratory drugs, we believe that these findings warrant further
exploration.

We found that most drugs had either positive or negative
effects on migration. Thus, it would be beneficial to further
explore drugs that both reduce cell growth and migration. By
validating our findings using time-lapse imaging, we found that
our method could significantly improve our selection of drugs by
finding drugs with multiple beneficial effects. Our method iden-
tified dasatinib as a promising drug, reducing both cell growth
and migration. Dasatinib is known for its anti-migratory effects in
multiple cancers, including GBM30,31. It has previously been
investigated in a phase 2 trial aimed at reducing invasion induced
by the anti-VEGF drug bevacizumab, although it failed to
improve survival31. We found that another tyrosine kinase inhi-
bitor, nilotinib, also reduced migration. Interestingly, we found
that paclitaxel, which hyper-stabilizes microtubules, also reduced
migration. Contrary, drugs which depolymerize microtubules,
such as colchicine and nocodazole, instead increased migration.
Paclitaxel is known to reduce migration in GBM but has been of
limited application so far as it does not cross the blood-brain
barrier32,33. We additionally found that statins show an anti-
migratory effect and could be explored further.

Our method is based on two requirements to work. First, cells
need to proliferate to measure diffusion. Slowly growing cells do
not form large enough clusters to detect changes in the pair
correlation function. In our study, we found that 78% had high
enough proliferation. Additionally, 55% of the PDCs with low
proliferation had practically no growth, indicating that these cells
should not be considered a good model for GBM regardless of the
assay. Hence, we were able to measure the diffusion of 90% of the
relevant PDCs included in the study. However, this requirement
also prevents the method from estimating cell migration at lethal
drug concentrations. We argue that anti-migratory effects matter
the most at sublethal concentrations. At lethal concentrations, the
cells are effectively neutralized or dying, and reducing migration
will likely be of low benefit. Second, the model assumes Brownian
motion. However, cells might cluster not because of proliferation,
but also due to cell-cell adhesion or attraction. From studying the
cell movement in the time-lapse experiments, we found no rele-
vant cell-cell adhesion or attraction in nine PDCs (Supplementary
Fig. 3c, d). But, in one PDC, we observed excessive clustering due
to cell-cell interactions Supplementary Fig. 3e. In this case, the
image analysis failed to recognize single cells and we were unable
to measure either migration or proliferation. In the drug-screen
experiment, we automatically identified images where single cells
could not be identified, and removed them from the study. Cells
may also move persistently in one direction before changing
direction. However, we found that this was not relevant for time
spans longer than a couple of hours in our case. Conclusively, we
found that our method is applicable to the cells and data set used
in this study.

A challenge with studying migration in vitro is that 2D
adherent cancer migration is not representative of invasion in the
brain. In patients’ tumors, cells move in 3D and have to break
down or circumvent the extracellular matrix to progress. In
particular, for GBM, invasion is challenging due to narrow routes
in the brain parenchyma and requires cells to perform drastic cell
size changes to invade34. Additionally, cell motion is affected by
local anatomy and environmental variables. For example, cells
might be attracted to and co-opt local vasculature35,36 while
migrating away from hypoxic regions37,38. Neither of these fac-
tors is present in adherent cultures. Nevertheless, our migration
estimates correlate with migratory signatures and drugs asso-
ciated with in vivo invasion. For example, our top hit, dasatinib,
has been shown to reduce GBM invasion in orthotopic

xenografts39. One recent study also suggests dasatinib as a pre-
cision treatment for GBM patients with mesenchymal subtype
and high Src activation40. We found that GBMs belonging to the
classical subtype were associated with invasion. This is consistent
with recent findings by our team, in which classical GBMs
invaded diffusively in a zebrafish model41.

The existence of resistant subpopulations within a single well is
not accounted for in our method and could potentially affect its
estimates of proliferation and migration rates. The impact of
resistant subpopulations could be investigated in the case of time-
lapse data by estimating the proliferation and migration rates
individually for each cell. In addition, one could trace the lineage
of the cells, which could reveal resistance in terms of elevated
proliferation rates in certain sub-lineages. We reserve such
extensions for future work. We can also expect the population of
GBM cells to exhibit cell-to-cell variation in migration speed.
This could, in part, explain the outliers in Fig. 2e, where some
estimates of diffusion coefficients differ by an order of magnitude
between the two methods.

One advantage of our method is that it allows for measure-
ments of drug effects on migration in a high-throughput setting,
in which a high number of drugs are covered over multiple doses
and cell lines. Our data strongly suggests patient differences in
how migration is affected by drugs. For instance, our method
could detect differences among previously identified anti-
migratory drugs across patient-derived cell lines. These com-
pounds included two GSK3 inhibitors (indirubin and AZD2858)
and a RhoA inhibitor (CCG-1423). Previous data for these
compounds, collected across a limited number of doses and GBM
cell lines indicate effects on cell migration27–29. Of note, CCG-
1423 can induce a mesenchymal-amoeboid switch in 3D
cultures27. Further work will be needed to fully explain the dif-
ferences between individual patient-derived cell cultures, and
evaluate effects in 3D assays, reserved for future work.

There are many foreseeable extensions of the method. For
instance, the addition of images of the initial distribution of the
cells has the potential to improve the accuracy of our method.
With such data, it would be possible to estimate the initial pair
correlation function (PCF), and this can be used to inform the
initial spatial distribution of cells in the agent-based model. Thus,
instead of assuming a spatially homogeneous distribution one
would place the cells such that the PCF is as similar as possible to
the initial PCF for each well. This procedure eliminates the
assumption of spatial homogeneity and should improve the
estimates obtained from the model. The ABC method can also
likely be extended. In this investigation, we opted for a variant of
ABC where the top 0.5% samples from the prior are retained to
form the posterior distribution. This was due to the large varia-
tion in the discrepancy in summary statistics between simulations
and the experimental data. However, this choice made it more
difficult to draw conclusions about the goodness of fit, and in
future work, it might be worth considering more recent versions
of rejection sampling that make use of adaptive tolerance, see e.g.,
ref. 42.

The simulation and estimation package used in this article is
provided as a ready-to-use Python package (github.com/emilro-
sen/endpoint_cell_diffusion). The method should be used in the
early stages before findings are validated in more expensive
in vitro and in vivo models. We expect our method to extend the
functionality of high-content screens to also screen for anti-
migratory drugs.

Methods
Human glioblastoma cell cultures. Human glioblastoma multiforme patient-
derived cells (Supplementary Data) were obtained from the Human Glioblastoma
Cell Culture (HGCC)20 biobank and maintained in laminin-coated T25 flasks
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(Corning catalog #353808) in a 1:1 nutrient mix of Neurobasal and DMEM/F12
(Gibco catalog #21103-049, #31331-028) medium supplemented with B27 and N2
(Thermo Fisher Scientific catalog #12587-001, #17502-001) and human recombi-
nant EGF and FGF (10 ng/ml, Peprotech). The cell cultures were between passages
8 and 24 (average 16), see also ref. 22. TrypLE select (Gibco catalog #12563-011)
was used to dissociate cells before seeding adherent cultures into plates for
experiments. Note that cells must be fully dissociated before seeding for the
assumptions of our algorithm to hold. The number of cells seeded was optimized to
achieve a subconfluent growth phase (approximately 70 percent) at the end of the
assay. All cell lines were checked by Mycoalert kit (Lonza catalog #LT07-418) and
displayed no mycoplasma contamination.

Data acquisition of time-lapse validation experiment of untreated cells. 10
HGCC cell cultures (Supplementary Data) seeded in five 96-well Primaria plates
(VWR 734-0079), with two PDC per plate. Each PDC was seeded at 2000, 1000,
500, 250, and 125 cells per well with 8 replicates each. Plates were put in the
Incucyte S3 (37 ∘C, 5% CO2) and imaged at 10x magnification once every hour over
4 days.

Data acquisition of time-lapse validation experiment of treated cells. Four
HGCC cell cultures (Supplementary Data) were seeded in two replicates in 96 well
primaria plates (VWR catalog #734-0079) coated with laminin at a density of 2500
cells/well and grown in a 5% CO2 incubator at 37 ∘C. Dasatinib, Simvastatin,
Ciclopirox ethanolamine (Selleckchem catalog #S1021, #S1792, #S3019), Thapsi-
gargin (Sigmaaldrich catalog #T9033), Nocodazole, Colchicine, (MedChem Express
catalog #HY-13520, #HY-16569) were reconstituted with DMSO at a stock con-
centration of 10 mM. After 24 h of cells seeding, above drug treatments were added
in the concentration range of 0.005, 0.05, 0.5, 1, 2, 4, 8, 16, 25, 32, and 50 μM,
Paclitaxel (MedChem Express catalog #HY-B0015 reconstituted in DMSO, 10 mM)
in the concentration range of 0.007, 0.015, 0.031, 0.06, 0.125, 0.25, 0.5, 1, 2, 4, and
8 μM, AZD2858, Indirubin (7BIO), and CCG-1423 (MedChem Express catalog
#HY-15761, #HY-121035, #HY-13991, reconstituted in DMSO, 10 mM) in the
concentration range of 0.005, 0.05, 0.5, 1, 2, 4, 8, 16, 25, 30, and 40 μM. Plates were
transferred into the IncuCyte S3 soon after adding the treatments for live image
acquisition (10X magnification) every 30 min for up to 72 h.

Data acquisition of drug screen images. Data were acquired from ref. 22 using
end-point images from phase 3. In brief, 41 patient-derived cell cultures from the
Human Glioma Cell Culture resource20 were suspended in stem cell medium and
plated on 384 well plates (BD Falcon Optilux #353962) coated in laminin at a
density of 1000–2200 cells/well. The cells were cultured at 37 ∘C, and 5% CO2 for
96 h and imaged using the ImageXpress microscope at 20x magnification. Treat-
ments were added after 24 h in treated wells using 11 doses and 94 drugs. Images
consisted of two fluorescent channels (cell nuclei and cytoplasm), and a phase-
contrast channel (see ref. 22 for details). During the imaging process, the plates were
washed, which also removed dead cells. It was, therefore, not possible to reliably
identify dead cells in the images.

Image segmentation. Two deep convolutional neural networks (DCNN), based
on the U-Net architecture43, were used for cell segmentation for the images from
the time series validation experiments and drug screen images. The two DCNNs
were trained on different training data due to different cameras, instruments, and
channels used, but were otherwise identical (Supplementary Data). We imple-
mented the DCNN in Python 3.5.3 using Keras 2.1.644 with Tensorflow 1.8.045 as
the backend. The DCNN was trained to separate distinct cell bodies by weighting
pixels between two adjacent cell bodies higher. Additionally, the DCNN applied to
the drug screen images was also trained to identify areas with non-adherent
growth. After segmentation, we used the watershed algorithm to find cell positions.
The total number of cells was counted and the PCF calculated for each well
(Supplementary Data).

Cell radius estimation. Cell radius was estimated from the images using the
segmented images (Supplementary Fig. 2). The area for each cell was calculated,
followed by calculation of the radius calculated by treating the cell as a disk. Note
that these cell radius estimates are not needed for the model and were only used to
compare the results with the cell radius estimates using the ABC method.

Analysis of time series data. Cell bodies were linked between time points for the
time series images using the python library Trackpy 0.5 and python 3.6.246,47.
Using trackpy, we computed the MSD for each well, using a max lag time of 24h.
The diffusion coefficients were estimated by MSD=D ⋅ t, where D is the diffusion
coefficient, and t is the lag time21. Point estimates of the PDC-specific diffusion
constants were calculated by the mean value of the diffusion constant of each well.

Individual-based model. We model the well in which the cells migrate, divide, and
die as a square region in two-dimensional space with linear size L, denoted

Ω= [0, L] × [0, L]. The position of cell i is denoted xi(t) and to denote the position
of all cells we write xðtÞ ¼ fxiðtÞgNðtÞ

i¼1 , where N(t) is the number of cells at time t.
We assume that cell motion is over-damped and therefore model cell migration

and mechanical interactions as a Langevin equation48:

dxiðtÞ ¼ FiðxðtÞÞdt þ
ffiffiffiffiffiffi

2D
p

dWðtÞ; ð1Þ
where migration is modeled as a Brownian motion (dW(t)) with diffusion
coefficient D and intercellular forces (pushing/adhesion) are captured by the drift
term Fi(x(t)), which depends on the position of all other cells. The forces between
cells are assumed to be pairwise, and the total force experienced by cell i can hence
be written as

FiðxðtÞÞ ¼ ∑
N

j≠i
f ðjxi � xjjÞ þ f extðxiÞ; ð2Þ

where f(r)= f0 if r < R (the cell radius) and zero otherwise. The term fext( ⋅ )
represents external forces imposed by the wall of the well.

We assume that cell division occurs with a PDC-specific base rate α > 0, and is
reduced due to contact inhibition by the presence of other cells. This is modeled
using an interaction kernel wb(r)= e−γr, which only depends on the distance r
between the cells. The total rate of cell division for cell i with position xi is given by

ρi ¼ α� β ∑
N

j¼1;j≠i
wbðjxi � xjjÞ ð3Þ

Upon cell division, the daughter cell is placed at distance R from the parent cell,
and at an angle drawn uniformly from the interval [0, 2π]. In this study, we set
gamma= 1 and beta= 0.8.

Lastly, we assume that cell death occurs at a rate μ independent of cell density.
We set μ= 0 for the drug screen and time-lapse validation experiments.

Numerical implementation of simulation. Each image represents a cropped part
of each well close to the center of the well. To reduce computational time, we used
an artificial well with a wall length of 1.3 times larger than the camera field of view.
Thus we could reduce the number of cells in the simulation while keeping density
equivalent, assuming that any potential edge effects of the reduced well were
negligible. Other parameters were kept as close as possible to the physical prop-
erties used in the experiment. See Supplementary Data for exact parameter values.

The system is initialized by placing N0 cells at random in the domain, with
coordinates drawn from a uniform probability distribution on the interval [0, Ls]
for both the x- and y-coordinates. The fact that the model contains both discrete
and continuous dynamics is handled by coupling the Gillespie algorithm49, which
is used for handling discrete birth/death events, to the numerical solution of SDEs
(using the Euler–Maruyama method50) that describe the motion of the cells. The
simulations were carried out for 96 h using a time-step of 50 s. We used KD-trees51

to find nearby cells and speed up cell-cell interactions, which would otherwise scale
with Oðn2Þ. Simulations with a high proliferation rate would quickly reach
confluence and significantly increase simulation length. We discarded simulations
with an unrealistic number of cells (2 times max number of cells in the most
populous well) and let those simulations stop early. At the end of each simulation,
we applied a virtual camera mimicking the field of view of the real camera and only
kept cells within these regions. The number of cells and the PCF were calculated in
both of these regions. The simulation was implemented in Python 3.6.2 and is
made available as a GitHub repository (github.com/emilrosen/
endpoint_cell_diffusion).

Parameter estimation. To find the model parameters that best describe the data,
we used Approximate Bayesian computation (ABC)19. Two sets of simulations
were created, each with parameters matching the experimental parameters of the
time series validation experiment and the drug screen data. Both sets of data
contained wells with a different number of initially seeded cells. For both the time-
series validation experiment and the drug screen experiment, we generated
100,000 simulations for each unique seeding density. Due to the large number of
wells, we reuse simulations for wells with identical initial conditions.

For each simulation, we varied three parameters; proliferation rate, diffusion
constant, and cell radius (Supplementary Data). As summary statistics, we used the
final cell count and the PCF. The error for cell count and PCF, respectively, were
defined as

En ¼ Nw � Ns

1þ Nw

� �2

ð4Þ

Epcf ¼
1
K

∑
K

i¼1

PCFwðiÞ � PCFsðiÞ
1þ PCFwðiÞ

� �2

ð5Þ

for well w and simulation s where K is the number of bins used to approximate the
PCF. The final distance function was defined as E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En þ Epcf
p

.

Convergence analysis. Typically in ABC estimation, all simulations with E < ϵ are
retained to form the posterior. However, we found that setting a singular threshold
for all samples and wells did not work well in practice. In addition, from the
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simulated data, we noted that the errors from the ABC method (E), were only
marginally related to the error between the known and estimated parameter values.
A higher E, indicated slightly higher parameter errors as well, but a majority of the
variation of E was still unexplained (linear regression R2 < 0.2, Supplementary
Fig. 7A–C). Instead, we opted to retain 0.5% (500 simulations) of all simulations
with the lowest error. We found that this method worked better in practice, as long
as our bank of simulations was large enough.

For the simulated data, to determine if the approximated posteriors were
suitable, we first investigated how the parameter errors changed by varying the
acceptance ratio. Decreasing the acceptance ratio also gradually reduced the
parameter errors (Supplementary Fig. 7D–F), as the peak of the posterior
distributions better reflected the true values used. There were very small gains by
reducing the acceptance threshold below 1%. Further, we investigated how
convergence of the diffusion constant would be affected if we introduced a non-
zero death rate into the simulations since the diffusion estimates were negatively
affected by reduced proliferation. Similar to (Supplementary Fig. 7E), the errors
decreased rapidly and stabilized well before the acceptance threshold used in the
article (Supplementary Fig. 7G). However, the error was also consistently higher,
indicating that the death rate made it more difficult to get correct estimates,
regardless of how many simulations were used. We omitted proliferation rate as we
already noted that estimates would reflect net proliferation, but otherwise be
accurate, when introducing cell death.

For the drug screen experiment, the true parameter values were unknown.
Instead, we sought to look at how stable the parameter estimates were while
varying the acceptance ratio. If the parameter estimates change drastically for
different acceptance thresholds, then the posterior would not be stable and we
would need to increase the number of simulations used. We used the parameter
estimates using the 0.5% acceptance ratio as a reference and compared how
different the estimates would be if we instead had chosen another acceptance ratio
(Supplementary Fig. 7H, I). The estimates were stable with only minimal changes
to the parameter estimates below 10%. Our proposed simulation bank was thus
large enough to form consistent parameter estimates.

Point estimates of model parameters. The ABC method generates an approxi-
mated posterior for each model parameter for each well. Due to the uniform prior
used in the model, we opted to use the mode rather than the mean value for point
estimates. Each parameter posterior was divided into 11 equidistant bins, and the
mode was assigned as the bin containing the highest number of retained parameter
values. PDC point estimates were calculated by taking the mean across all well-
specific point estimates.

Differentially expressed genes and gene sets. The HGCC contains RUV-
normalized Affymetrix gene expression data for 100 PDCs22, including the 41
PDCs in this study. The p-value histograms were calculated using a linear
regression between gene expression and the estimated log proliferation and dif-
fusion estimates (n= 32 PDCs, n= 23832 genes). Three principal components
(PCs) were derived using all 100 PDCs in the data set and principal component
analysis to reduce the dimensionality. The correlation between each PC and the log
proliferation and diffusion estimates were computed (n= 32 PDCs).

Single sample gene set enrichment analysis52 was used to get a gene set
enrichment score for each PDC and gene set. The Spearman correlation coefficient
was calculated between the second PC and each gene set/gene of interest (n= 100
PDCs). Adjusted p values (q-values) were computed using the Benjamini-Hochberg
correction. Adjusted p < 0.01 were considered significant.

Estimation of drug effects. We estimated drug effects on the model parameters
using the linear mixed-effects model

Y � 1þ Drug : Concentrationþ ð1þ Drug : ConcentrationjjPDCÞ

where Y is either the logged proliferation rate of the diffusion constant, Drug is the
drug used, Concentration is the logged treatment concentration used, and PDC is
the cell culture. Thus, the model estimates the fixed linear effect on parameter Y for
each drug across all PDCs, while sharing intercept values for each PDC across all
drugs. PDC-specific responses are calculated as random effects. A drug was con-
sidered a statistically significant effect on parameter Y if the Benjamini-Hochberg
adjusted p < 0.25. The model was implemented using statsmodels 0.12, and python
3.6.253.

Statistics and reproducibility. The number of data points underlying each ana-
lysis is given separately, above. All cell culture experiments were carried out in 2–8
replicates, as described above. The Bonferroni method was used to correct p values
when testing for gene set enrichments.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The imaging data is available from the authors upon request. The simulation was
implemented in Python 3.6.2 and is made available as a GitHub repository (github.com/
emilrosen/endpoint_cell_diffusion).
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