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Abstract

The following supplementary material document contains additional background to

the manuscript, including some preliminaries on multivariate change-point detection,

and hierarchical clustering with details regarding linkage functions, and methods to

estimate optimal clusters for spatially dependent data in Section S1. Additional sim-

ulation studies can be found in Section S2 which covers various scenarios concerning

changes in the mean, the variance, multiple changes, and scalability of HSTCPD. Fur-

ther descriptions and results about our real datasets (i.e. LST in Spain from February

2000 to November 2021, and Afghan War Diary (AWD) data which runs monthly from

January 2004 to December 2009) are also presented in Section S3.



S1 Extra background

This section is devoted to providing some technical preliminaries (Section S1.1), examples of

image time series over which it could be of interest to perform change-point analysis (Section

S1.2), and hierarchical cluster analysis (Section S1.3) together with a detailed background

on di↵erent linkage functions (Section S1.3.1), ways to find an optimal number of clusters

(Section S1.3.2), and spatially dependent functional clustering (Section S1.3.3).

S1.1 Preliminaries

Throughout, let T , with T0 = inf T and T1 = supT , be a time domain, given either by

an interval T = [T0, T1] in the Euclidean space R or a discrete collection of times, i.e.

T = {T0, . . . , T1}. We further denote the Euclidean norm on Rd, d � 1, by | · |.

We here consider a set of locations, z1, . . . , zn 2 W ⇢ Rd, n � 1, d � 1, which typi-

cally represent a set of monitoring places/sites. Next, given a time interval T , we attach

a multivariate random function/process X(t) = (X1(t), . . . , Xn(t)), t 2 T , to these spatial

locations. More specifically, we assume that X is a random element in the product space

L2(T )n, where the Hilbert space

L2(T ) = {f : T ! R such that kfk =

✓Z

T

f 2(t)dt

◆1/2

< 1},

has inner product hf, gi =
R
T f(t)g(t)dt, and metric

dL2(f, g) = kf � gk = hf � g, f � gi1/2 =

sZ

T

(f(t)� g(t))2dt (S1)

for f, g 2 L2(T ) (Ramsey and Silverman, 2005).

S1.1.1 Multivariate change-point detection

Given an n-dimensional stochastic process X(t) = (X1(t), . . . , Xn(t)), t 2 T , either in contin-

uous or discrete time, let ⇥i(t) = (✓i,1(t), . . . , ✓i,q(t)), t 2 T , 1  i  n, correspond to q � 1

characteristics/parameters of Xi such as mean, variance, etc. In multivariate change-point

detection the main interest lies in alerting when, for some i, ⇥i(t) undergoes changes (Aston
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and Kirch, 2012; Matteson and James, 2014; Liu et al., 2020; Grundy et al., 2020). Formally

speaking, to discover change-points {⌧1, . . . , ⌧k} ⇢ T , for each i = 1, . . . , n one deals with

the hypotheses

H0 : ⇥i(t) = ⇥(t) = ⇥0, for any t 2 T, i = 1, . . . , n, (S2)

H1 : We can find i 2 {1, . . . , n} s.t. 9{⌧ 01, . . . , ⌧
0
k0} ⇢ {⌧1, . . . , ⌧k} where ⇥i(t) = ⇥j

i (t),

⌧ 0j�1 < t  ⌧ 0j,⇥
j
i 6= ⇥j+1

i , for all j = 1, . . . , k0 + 1,

where ⌧ 00 = T0, ⌧ 0k0+1 = T1, and ⇥j
i is a q-dimensional function on T . In other words, the

alternative hypothesis H1 claims di↵erent behaviours for ⇥i(t) for any two consecutive time

periods, separated by ⌧ 0j, 1  j  k0. If k = 1 the problem reduces to the detection of at

most one change (AMOC). Note that, in contrast to the classical setting, we do not assume

that the changes occur jointly across all marginals Xi. When dealing with multivariate data,

it is rarely the case that all Xi’s face changes of the same type or undergo changes at the

same time. Moreover, nearby locations usually tend to experience similar changes in terms

of time but possibly of di↵erent magnitudes, which might be a sign of spatial dependence.

A frequently used non-parametric change-point detection approach for multivariate time-

series X(t) = (X1(t), . . . , Xn(t)), t 2 T , i.e. multivariate discrete time stochastic processes,

is that of Matteson and James (2014). They proposed to detect the number of changes and

their positions through a multivariate divergence measure and then hierarchically estimate

change-point time indices. In the case of AMOC, the divergence measure used by Matteson

and James (2014) is of the form

E↵(X, s) /
X

T0is

X

s<jT1

|X(i)�X(j)|↵ �

X

T0i<ks

|X(i)�X(k)|↵ �

X

s<j<kT1

|X(j)�X(k)|↵,

where ↵ 2 (0, 2). They label the time b⌧ 2 T , which maximises the above divergence measure,

a change-point, i.e.,

b⌧ = argmax
s2T

E↵(X, s).

Thus, if the parameter under consideration was e.g. the mean function µ(·), under the
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assumption of AMOC, one may rewrite an estimator of a discretely sampled version of (1)

as

Xi(t) = µ1
i (t)1{t 2 [T0, b⌧ ]}+ µ2

i (t)1{t 2 (b⌧ , T1]}+ ✏i(t), i = 1, . . . , n,

where 1{·} is an indicator function and µ1
i (·) 6= µ2

i (·). Matteson and James (2014) further

proposed to iteratively apply the above technique to search for multiple change-points. The

statistical significance of such change-points is, at a later step, checked through a permutation

test which gives rise to approximate p-values.

S1.2 Examples of image time series

Below we give two examples where one deals with image time series.

Example 1 (Time series of satellite images) Such a time series constitutes a set of

time-ordered satellite images (taken from a fixed region) of some quantity of interest, e.g. Land

Surface Temperature (LST) or Normalised Di↵erence Vegetation Index (NDVI), where the

spatial locations z1, . . . , zn are (regularly dispersed) pixels. One may here want to monitor

the temporal distributional behaviour and detect significant changes in the quantity of interest

(Militino et al., 2020; Moradi et al., 2022).

Example 2 (Time series of point patterns) One may be interested in monitoring time-

ordered point patterns, i.e. realisations of point processes, that correspond to locations of

events or objects of interest, which are distributed over a fixed region (Baddeley et al., 2015).

A typical example of a quantity of interest, which we may want to monitor here, is the

estimated intensity surface; when and where was there a significant change in the intensity of

e.g. crimes? Note that z1, . . . , zn represent a discretisation of the spatial domain (Chaudhuri

et al., 2021).

S1.3 Hierarchical cluster analysis

Cluster analysis is usually carried out to discover groups of observations as homogeneous as

possible, based on a pre-selected similarity measure (distance metric). The output of such

an analysis is a collection of groups of observations such that pairwise dissimilarities between
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observations within the same group are smaller than dissimilarities between di↵erent groups.

Among clustering approaches, hierarchical clustering, which is quite frequently used in prac-

tice, refers to labelling observations by cluster IDs through hierarchical representations. In

order to perform such clustering, one can follow: i) a bottom-up strategy (agglomerative),

which considers each observation as a single cluster and then starts to merge them recursively

at each level of the hierarchy until the highest level that contains a single cluster with all

observations, or ii) a top-down procedure (divisive) which puts all observations in a single

cluster and then, at each level of the hierarchy, starts to split one of the existing clusters

into two clusters. In agglomerative approaches, which is what we will consider in this paper,

the idea is to merge (based on some rule) the two most similar clusters at each level of the

hierarchy. We next go through some commonly used linkage functions, which govern how

the merging of clusters occurs.

S1.3.1 Linkage functions

In the lowest level of the hierarchy, merging begins with putting the two closest (most similar)

observations in a single cluster. Therefore, and since in the next level one deals with merging

clusters of one observation and a single cluster of two observations, a measure of dissimilarity

should be specified to quantify the dissimilarity between any of the clusters of size one and

that of size two. In the literature, various linkage functions to measure such dissimilarities

have been proposed, and we next briefly look at a few such proposals.

Let G and H be two arbitrary clusters, at any level of the hierarchy. We use the nota-

tion d(i, j) to denote the dissimilarity between two observations i and j. Three frequently

encountered linkage functions are:

• Single: this linkage function is also known as the nearest-neighbour technique, and

considers the minimum distance between the members of G and H when merging

clusters. More specifically, the dissimilarity between clusters G and H is given by

dS(G,H) = min{d(i, j) : i 2 G and j 2 H},

which means that the only requirement to merge two clusters is to have at least two

very close/similar members.

5



• Complete: this linkage function is also called furthest-neighbour technique, and con-

siders the maximum distance between the members of G and H when merging clusters.

Hence, the dissimilarity between clusters G and H is given by

dC(G,H) = max{d(i, j) : i 2 G and j 2 H},

which means that two clusters can be merged if all pairwise dissimilarities between

their members are small. The clusters generated by complete linkage would typically

be more dense than those obtained by single linkage.

• Ward: this linkage function aims to minimise the within-cluster dispersion at each level

of the hierarchy, based on a sum-of-squares criterion that, in turn, deals with a more

complicated merging process. Since the first definition by Ward (1963), there have

been a few modifications for this linkage function; see Murtagh and Legendre (2014)

for details. Throughout we consider the version known as Ward.D2.

S1.3.2 Optimal number of clusters

At this stage, the remaining task is to decide what level of the hierarchy should be considered

as the optimal classification. This can be achieved through a dendrogram, which provides

a way to display the clusters at all levels of the hierarchy. Letting Ch,r, 1 < h  r < n,

denote the obtained clusters at the level r of the dendrogram hierarchy, which forms an

r-sized partition of {1, . . . , n}, the task is to find an optimal value for r, which is done by

maximising an index ↵(r), 1 < h  r < n. Below we briefly review three commonly used

indices to find the optimal (number of) clusters:

• Calinski and Harabasz (Ch) : Caliński and Harabasz (1974) proposed to select the

optimal number of clusters by minimising the within-cluster dispersion and maximising

the between-clusters dispersion simultaneously. According to their proposal, the level

of hierarchy that maximises

↵(r) = ch(r) =
n� r

r � 1

 
1/n

Pn
i,j=1 d(i, j)

2

Pr
h=1(1/#Ch,r)

P
i,j2Ch,r d(i, j)

2
� 1

!
,
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where #Ch,r denotes the cardinality of Ch,r, leads to an optimal number of clusters

(Hennig and Liao, 2013).

• Dunn: Dunn (1974) introduced the index

↵(r) = d(r) = min
i=1,...,r�1

8
<

: min
j=i+1,...,r

8
<

:
dS(Ci,r, Cj,r)

max
h=1,...,r

diam(Ch,r)

9
=

;

9
=

; ,

where diam(Ch,r) = maxi,j2Ch,r d(i, j). Since the interest is to maximise the similarities

(dissimilarities) within (between) clusters, argmaxr d(r) provides an estimate of the

optimal number of clusters (Halkidi et al., 2001).

• Dunn2: this is another version of the Dunn index, which instead suggests to select a

level of hierarchy that maximises

↵(r) = d2(r) =
min

1i<jr

n
(#Ci,r#Cj,r)�1

P
i02Ci,r

P
j02Cj,r d(i

0, j0)
o

max
1hr

n
2(#Ch,r(#Ch,r � 1))�1

P
i2Ch,r

P
j2Ch,r\{i} d(i, j)

o .

This is a ratio of minimum average dissimilarities between pairs of clusters and maxi-

mum average dissimilarities within clusters.

S1.3.3 Spatially dependent functional clustering

In order to find similar groups within a set of functional data, {fi}ni=1, we need a metric

d(·, ·) which allows us to measure distances d(i, j) = d(fi, fj) between two functions fi, fj.

In the classical functional data analysis setting, where {fi}ni=1 is treated as a realisation of

an independent and identically distributed (iid) sample of random functions, a natural choice

for d(·, ·) is the metric dL2(·, ·) found in (S1). However, when the sample of random functions

exhibits spatial dependence, (S1) could become problematic for the purpose of describing

similarities between the underlying random functions since closeness between two functions

may be the result of i) similarity between e.g. their means and/or ii) spatial dependence

between them, which forces nearby functions to resemble each other.

The literature o↵ers only a few proposals for measuring distances between functions

while incorporating potential underlying dependencies. In particular, Giraldo et al. (2012)
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proposed to use the weighted distances

d(fi, fj) = dL2(fi, fj)b�(h),

where �(h) is an estimate of the so-called trace-variogram. More specifically, we assume that

fi, i = 1, . . . , n, are realisations of second-order stationary and isotropic processes Xi(t),

t 2 T , i = 1, . . . , n, with trace-variogram function

�(h) = �(kzi � zjk) =
1

2
E
Z

T

(Xi(t)�Xj(t))
2dt

�
, (S3)

where zi, zj denote the locations corresponding to Xi(·) and Xj(·), respectively. The trace-

variogram is estimated by means of

b�(h) = 1

2#N(h)

X

(i,j)2N(h)

Z

T

(Xi(t)�Xj(t))
2dt, (S4)

where N(h) consists of all distinct pairs (i, j) with a spatial distance of exactly h units. In

situations where N(h) is empty or does not include enough observations, the exact distance

h would be replaced by an interval h ± ✏, ✏ > 0. Although we here assume second-order

stationarity, we have seen that, in comparison to dL2(·, ·), the proposed metric works well also

when this assumption may not hold. In practice, when we sample Xi(t), t 2 T , i = 1, . . . , n,

over a set of discrete times, thus yielding a multivariate time series, the integrals in (S1) and

(S4) are approximated by sums.

S2 Numerical Evaluation

This section presents additional parts of the results for scenario I together with the entire

results of scenarios II, III, IV, V, and VI. Before turning to further details we emphasise

that, throughout the paper, the considered spatial random field is Gaussian with mean 0

and covariance function

((x1, y1), (x2, y2)) 7! 10e�(||(x1,y1)�(x2,y2)||/5)2 , (x1, y1), (x2, y2) 2 R2. (S5)
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Concerning scenarios I, II, and III, the results of the approach of Matteson and James

(2014) (ecp) are given in Section S2.1, S2.2, and S2.3, respectively, while all the results for

the adaptive method of Liu et al. (2020) (AdaptiveCpt) and geometrical mapping approach

of Grundy et al. (2020) (geomcp) are presented in Section S2.4 and S2.5, respectively. The

results of scenario IV, which focuses on multiple changes in the mean per each cloud, are

presented in Section S2.6, and our findings corresponding to scenario V, which deals with

the case where there are changes in both the mean and the variance in each cloud, are given

in Section S2.7. We further present our findings within scenario VI, which concerns the

scalability of HSTCPD, in Section S2.8.

S2.1 Scenario I

S2.1.1 Spatially correlated time series of images

Figure S1 and S2 show the proportion of the estimated change-points when the actual change-

point for cl2 occurs at time 90 and 120, respectively. One can easily see that, in all cases re-

gardless of the clustering approach, HSTCPD clearly outperforms the Classic approach while

providing results quite similar to the Conditional. Additionally, we can see that increasing

the time di↵erence between the two change-points in cl1 and cl2 improves the performance of

both Classic and HSTCPD; compare Figure S1 and S2 with Figure 3 in the main paper. We

add that such an improvement for HSTCPD is quite minor, but having large time di↵erence

between the two actual change-points can slightly facilitate the detection of optimal clusters

which in turn may lead to a better detection of actual change-points. However, increasing

the time di↵erence between the two change-points has a big e↵ect on the performance of the

Classic approach by enhancing its detection rate. Note that, the Classic approach can still

not discover the marginals which undergo changes.
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Figure S1: Detection rate based on 200 simulations from Scenario I, with spatially correlated
pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S2: Detection rate based on 200 simulations from Scenario I, with spatially correlated
pixel time series, when the change-point for cl2 occurs at time 120.

11



S2.1.2 Independent pixel time series coming from the standard normal distri-

bution

From Table S1 and Figure S3 one can see that, in this scenario, the joint performance of

Dunn approach and any of the linkage functions seems to be the best by leading to properly

disclosing the borders of two clouds as both RI and SI are nearly one. Other combinations

of linkage functions and methods to discover optimal clusters could not manage to disclose

the borders of the two clouds properly; one cloud is lost within the part of image with no

change.

Table S1: Scenario I with independent pixel time series. An upward change with magnitude
one happens at time 60 in cl1, whereas the time index of a downward change of the same
magnitude, happening in cl2, varies between 70 and 120. Average Rand index RI (separation
index SI) are reported.

Linkage Optimal
2nd change-point

70 80 90 100 110 120

Single

Ch 0.97 (1.00) 0.93 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00)
Dunn 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (1.00) 0.98 (1.00) 0.96 (1.00)
Dunn2 0.93 (0.99) 0.91 (0.98) 0.90 (0.97) 0.90 (0.97) 0.90 (0.96) 0.91 (1.00)

Complete

Ch 0.97 (1.00) 0.93 (1.00) 0.92 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00)
Dunn 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.98 (1.00) 0.96 (1.00)
Dunn2 0.92 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00)

Ward.D2

Ch 0.96 (1.00) 0.92 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00)
Dunn 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.98 (1.00) 0.96 (1.00)
Dunn2 0.92 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00)

Figure S4-S6 show the detection rate when the change for cl2 happens at times 70, 90, and

120, respectively. Similar to other cases, one can easily see how the pre-clustering component

of HSTCPD can enhance the detection/precision rate, especially when the time di↵erence

between the two change-points in cl1 and cl2 is short.
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Figure S3: Individual examples (one out of 200 simulations) of the clustering results for
Scenario I, with independent pixel time series, when the change-point for cl2 happens at time
90. Rows from top to bottom: Single, Complete, and Ward.D2 linkage functions. Columns
from left to right: Ch, Dunn, and Dunn2. Each colour represents a cluster, and the two
clouds are displayed as grids.
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Figure S4: Detection rate based on 200 simulations from Scenario I, with independent pixel
time series, when the change-point for cl2 occurs at time 70.
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Figure S5: Detection rate based on 200 simulations from Scenario I, with independent pixel
time series, when the change-point for cl2 occurs at time 90.
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Figure S6: Detection rate based on 200 simulations from Scenario I, with independent pixel
time series, when the change-point for cl2 occurs at time 120.
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S2.2 Scenario II

In this scenario we consider the case in which the two clouds, cl1 and cl2, undergo upward

changes but of di↵erent magnitudes. We are interested to see if a change of larger magnitude

inhibits the Classic approach’s ability to detect both of the changes. In addition, we want

to see if our HSTCPD approach manages to properly detect both of the change-points.

S2.2.1 Spatially correlated time series of images

Table S2 shows the obtained average RI and SI from 200 simulations. The main di↵erence

with respect to Table 1 is that here, in Scenario II, the Single linkage function generally per-

forms better in terms of SI. We can further see that apart from Single-Dunn2, for which SI

varies between 0.41 and 0.48, the rest of the combinations of linkage functions and methods to

estimate the optimal number of clusters properly separate the two clouds. Similarly, we can

see that, regardless of the method to estimate the number of clusters, Single linkage favours

few clusters. The combination of Ward.D2/Complete with Ch/Dunn leads to substantially

more clusters compared to their combination with Dunn2. Moreover, Ward.D2/Complete

with Ch/Dunn estimate the borders of the clouds better than Ward.D2/Complete with

Dunn2. We further see that RI and SI do not vary by increasing the time distance between

the two change-points.

In Figure S7 we show the clustering outcomes for an individual simulation, when the

change-point for cl2 happens at time 90, with the intention of clarifying the meaning of

the obtained values for RI and SI in Table S2. The combination of Single and either

of Ch or Dunn properly detects the borders of one of the clouds, while the other cloud

is included/lost within a large detected second cluster, which essentially covers the rest

of the image. Moreover, Single and Dunn2 perform comparably less well, with an SI of

approximately 0.45, and in Figure S7 we see one of 200 simulations where separation was

not successful. The joining of Ward.D2/Complete and Dunn2 separates the clouds cl1 and cl2

by dividing the image time series into two big clusters, so that the estimated clouds become

bigger than their actual sizes. However, according to RI, Complete-Dunn2 performs slightly

better than Ward.D2-Dunn2. The combination of Ward.D2/Complete with Ch/Dunn leads

to many clusters but the borders of cl1 and cl2 are essentially well estimated.
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Table S2: Scenario II with spatially correlated pixel time series. An upward change with
magnitude one happens at time 60 in cl1, whereas the time index of the upward change
of magnitude two, happening in cl2, varies between 70 and 120. Average Rand index RI
(separation index SI) are reported.

Linkage Optimal
2nd change-point

70 80 90 100 110 120

Single

Ch 0.90 (1.00) 0.90 (1.00) 0.90 (1.00) 0.90 (1.00) 0.90 (1.00) 0.90 (1.00)
Dunn 0.90 (1.00) 0.90 (1.00) 0.90 (1.00) 0.90 (0.99) 0.90 (1.00) 0.90 (0.99)
Dunn2 0.85 (0.44) 0.85 (0.46) 0.85 (0.48) 0.85 (0.44) 0.84 (0.42) 0.84 (0.41)

Complete

Ch 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00)
Dunn 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00)
Dunn2 0.54 (1.00) 0.52 (1.00) 0.51 (1.00) 0.51 (1.00) 0.51 (1.00) 0.49 (1.00)

Ward.D2

Ch 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00)
Dunn 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00)
Dunn2 0.49 (1.00) 0.49 (1.00) 0.48 (1.00) 0.48 (1.00) 0.47 (1.00) 0.48 (1.00)

For all 200 simulated image time series, Figure S8 shows the proportion of all detected

change-points within all estimated clusters obtained by the 9 considered combinations. The

Classic approach always detects the change-point in cl2, which is of magnitude two, but in

only 69% of times it manages to detect the change-point in cl1, which is of magnitude one.

Thus, one can see how changes of bigger magnitudes can dominate/hide changes of smaller

magnitudes.

The results for the Conditional approach confirm that the change-point in cl1 (cl2) is

detected 96.5% (100%) of the time. A few changes are also detected at times 59 and 61,

which correspond to the change-point in cl1. Such di↵erences in the change-point detection

rate of the Conditional approach and the Classic approach reveal the importance of carrying

out classification prior to running multivariate change-point detection analyses.

Turning to the performance of HSTCPD, in accordance with what we saw in Table

S2, the poorest results are those for Single-Dunn2 which did not manage to separate the

clouds su�ciently well. This leads to 77% and 100% precise detection of the changes in cl1

and cl2. Note, however, that this is in contrast with the Classic approach, which has 69%

detection rate for cl1. Furthermore, other combinations of linkage functions and methods to

find optimal clusters give rise to a high rate of simultaneous detection of both changes. For

instance, Ward.D2-Dunn (Complete-Dunn) detects both changes in cl1 and cl2 with rates
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Figure S7: Individual examples (one out of 200 simulations) of the clustering results for
Scenario II, with spatially correlated pixel time series, when the change-point for cl2 happens
at time 90. Rows from top to bottom: Single, Complete, and Ward.D2 linkage functions.
Columns from left to right: Ch, Dunn, and Dunn2. Each colour represents a cluster, and
the two clouds are displayed as grids.

96% and 100% (97% and 100%), the estimated clusters are compact and the border of the

detected clouds are closer to the original cloud borders. The detection rates for Ward.D2-

/Complete-Dunn2 are 95% and 100%, and the clouds are estimated to be larger than their

actual sizes.

The results concerning the cases where the change in cl2 happens at times 90 or 120 can

be found in Figure S9 and S10.
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Figure S8: Detection rate for 200 simulations of Scenario II, with spatially correlated pixel
time series, when the change-point in cl2 occurs at time 70.
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Figure S9: Detection rate based on 200 simulations from Scenario II, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S10: Detection rate based on 200 simulations from Scenario II, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 120.
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S2.2.2 Independent pixel time series coming from the standard normal distri-

bution

Table S3 shows the obtained average RI and SI based on 200 simulations in this case

with similar results to those in Table S1; the combination of Dunn and any of the linkage

functions seems to perform the best. The joint performance of Single and Ch/Dunn2 could

only detect one of the clouds and the other one is lost within the part of image with no

change. The combinations of Complete/Ward.D2 and Ch perform quite poorly in the sense

that they could not properly separate the two clouds so that Complete-Ch approximately has

an average value of 0.14 for SI while average SI for Ward.D2-Ch is zero. The performance

of Complete/Ward.D2 and Dunn2 clearly depends on the time di↵erence between the two

change-points; it clearly improves by increasing such time di↵erence.

Table S3: Scenario II with independent pixel time series. An upward change with magnitude
one happens at time 60 in cl1, whereas the time index of the upward change of magnitude
two, happening in cl2, varies between 70 and 120. Average Rand index RI (separation index
SI) are reported.

Linkage Optimal
2nd change-point

70 80 90 100 110 120

Single

Ch 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00)
Dunn 0.94 (1.00) 0.95 (1.00) 0.96 (1.00) 0.98 (1.00) 0.98 (1.00) 0.99 (1.00)
Dunn2 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00) 0.91 (1.00)

Complete

Ch 0.98 (0.20) 0.98 (0.14) 0.98 (0.14) 0.98 (0.11) 0.98 (0.12) 0.99 (0.07)
Dunn 0.98 (1.00) 0.99 (1.00) 0.99 (1.00) 0.99 (1.00) 1.00 (1.00) 1.00 (1.00)
Dunn2 0.98 (0.20) 0.98 (0.14) 0.98 (0.18) 0.99 (0.50) 0.99 (0.84) 0.99 (0.98)

Ward.D2

Ch 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)
Dunn 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
Dunn2 0.99 (0.00) 0.99 (0.00) 0.99 (0.05) 1.00 (0.44) 1.00 (0.84) 1.00 (0.98)

Figure S12-S14 show the proportion of the detected change-points when the change in cl2

happens at times 70, 90, and 120, which, in accordance with the results in Table S3, confirm

a better performance for HSTCPD compared to the Classic approach in all cases.
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Figure S11: Individual examples (one out of 200 simulations) of the clustering results for
Scenario II, with independent pixel time series, when the change-point for cl2 happens at time
90. Rows from top to bottom: Single, Complete, and Ward.D2 linkage functions. Columns
from left to right: Ch, Dunn, and Dunn2. Each colour represents a cluster, and the two
clouds are displayed as grids.
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Figure S12: Detection rate based on 200 simulations from Scenario II, with independent
pixel time series, when the change-point for cl2 occurs at time 70.
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Figure S13: Detection rate based on 200 simulations from Scenario II, with independent
pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S14: Detection rate based on 200 simulations from Scenario II, with independent
pixel time series, when the change-point for cl2 occurs at time 120.
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S2.3 Scenario III

This scenario focuses on a situation where we have two changes of similar magnitudes but in

di↵erent regions and at distinct times. The sizes of the regions exhibiting changes are also

di↵erent. Hence, we study whether the sizes of regions undergoing changes tend to mislead

change-point detection methods, and consequently yielding erroneous outcomes.

S2.3.1 Spatially correlated time series of images

Table S4 shows the average Rand index RI and the separation index SI. Similarly to the

other two scenarios, we can see that the combination of Complete/Ward.D2 and Ch/Dunn

yields several compact clusters, which in turn pushes down RI while the two clouds, cl1 and

cl2, do not share any mutual pixels/functions. The combinations of Complete and Ward.D2

with Dunn2 perform similarly in terms of RI while Complete-Dunn2 performs slightly better

than Ward.D2-Dunn2 in terms of SI. The Single linkage performs best when it is combined

with Ch and it has high values for both RI and SI. The performance of Single-Dunn is

slightly poorer than Single-Ch, but slightly better than Single-Dunn2.

Table S4: Scenario III with spatially correlated pixel time series. An upward change of
magnitude one happens at time 60 in cl1, while the time index of an upward change of
similar magnitude, which happens in cl2, varies between 70 and 120. The sizes of cl1 and
cl2 correspond to 5.25% and 17.25% of the full image. Average Rand index RI (separation
index SI) are reported.

Linkage Optimal
2nd change-point

70 80 90 100 110 120

Single

Ch 0.92 (0.98) 0.92 (0.98) 0.90 (0.95) 0.87 (0.93) 0.86 (0.97) 0.81 (0.92)
Dunn 0.85 (0.90) 0.85 (0.93) 0.82 (0.90) 0.81 (0.84) 0.81 (0.90) 0.77 (0.85)
Dunn2 0.76 (0.72) 0.75 (0.75) 0.72 (0.74) 0.70 (0.63) 0.71 (0.74) 0.70 (0.70)

Complete

Ch 0.41 (1.00) 0.41 (0.99) 0.41 (1.00) 0.41 (1.00) 0.41 (0.99) 0.41 (1.00)
Dunn 0.41 (1.00) 0.41 (0.99) 0.41 (1.00) 0.41 (1.00) 0.41 (0.99) 0.41 (1.00)
Dunn2 0.55 (0.83) 0.55 (0.79) 0.54 (0.78) 0.54 (0.85) 0.54 (0.80) 0.53 (0.80)

Ward.D2

Ch 0.41 (1.00) 0.41 (1.00) 0.41 (1.00) 0.41 (1.00) 0.41 (1.00) 0.41 (1.00)
Dunn 0.41 (1.00) 0.41 (1.00) 0.41 (1.00) 0.41 (1.00) 0.41 (1.00) 0.41 (1.00)
Dunn2 0.55 (0.74) 0.55 (0.71) 0.55 (0.73) 0.54 (0.74) 0.54 (0.80) 0.54 (0.73)

Figure S15 shows the clustering outcomes for one of 200 simulations when the change
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for cl2 occurs at time 90. We can see that the Single linkage, regardless of the choice of

method to estimate the number of clusters, precisely detects the borders of cl1 while the rest

of the pixels/functions are classified as belonging to a sole cluster. Similar to the previous

scenarios, the combination of Complete/Ward.D2 with Ch/Dunn yields compact clusters

which are relatively small. The two clouds cl1 and cl2 are clearly separated here. Note that the

borders of the actual clouds are not well detected and, in particular, the bigger cloud belongs

to several di↵erent clusters. Since, at a later step, we independently carry out individual

change-point detection analyses for all detected clusters, the clusters which intersect the

clouds and also have the majority of the pixels/functions not facing any change, might

influence the quality of the detected changes. The performance of Complete/Ward.D2 when

combined with Dunn2 results in few clusters, with the sizes of the detected clouds/clusters

being bigger than the actual cloud sizes. It further seems that Ward.D2-Dunn2 gives rise to

more clusters in which the borders of the bigger cloud are better detected. We also see that

the time di↵erence between the two changes apparently has no e↵ect on the performance of

the clustering approaches.

Figure S16 shows the proportion of all detected changes for all considered approaches

when the change-point for cl2 happens at time 70. The performance of the Classic approach

is influenced by the existence of two changes in regions of di↵erent sizes, and it only in

approximately half of times detect the change in the smaller cloud.

The Conditional approach is able to detect the actual change in cl1 97% of the time while

the other change, in cl2, is always detected. This stresses the importance of pre-classification,

just as in the other two scenarios.

Turning to the performance of HSTCPD, for the Single linkage the best separation be-

tween the two clouds happens when it is combined with Ch, as noted in Table S4. Here we

obtain 95.5% and 100% precise detection rate for the changes in cl1 and cl2, respectively.

The rate of precise detection for the change in cl1 is 93% and 88.5% for Dunn and Dunn2,

respectively, in combination with the Single linkage function. The proportion of times that

changes in cl1 and cl2 are precisely detected when we make use of Complete/ward.d2 together

with ch are 97% and 100%, respectively. The same proportions of precise detection are ob-

tained when Dunn is used together with Complete/Ward.d2. Concerning the performance

of Dunn2 in this scenario, for the placed change in cl1 we obtain a precise detection rate of
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Figure S15: Individual examples (one out of 200 simulations) of the clustering results for
Scenario III, with spatially correlated pixel time series, when the change-point for cl2 happens
at time 90. Rows from top to bottom: Single, Complete, and Ward.D2 linkage functions.
Columns from left to right: Ch, Dunn, and Dunn2. Each colour represents a cluster, and
the two clouds are displayed as grids.

92.5% if we construct the dendrogram by means of the Complete linkage, while this rate is

94.5% if we use the Ward.D2 linkage. Not surprisingly, the quality of the change-point de-

tection strongly depends on how well one manages to put di↵erent sub-regions with distinct

temporal behaviours in disjoint clusters. The cases for which pieces of the clouds belong

to di↵erent estimated clusters may decrease the performance of the employed change-point

detection method. If this is the case, since we would consider clusters for which not all the
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included functions actually undergo changes, the changes in these clusters may be detected

with small/negligible errors, which can be seen in Figure S16. This is more visible when

Ch/Dunn is combined with Complete/Ward.D2 to estimate the optimal clusters; note the

small/compact clusters.

Figure S16: Detection rate based on 200 simulations of Scenario III, with spatially correlated
pixel time series, when the change-point in cl2 occurs at time 70.

The results corresponding to the case where the change-point for cl2 happens at time 90

and 120 can be seen in Figure S17 and S18.
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Figure S17: Detection rate based on 200 simulations from Scenario III, with spatially
correlated pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S18: Detection rate based on 200 simulations from Scenario III, with spatially
correlated pixel time series, when the change-point for cl2 occurs at time 120.
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S2.3.2 Independent pixel time series coming from the standard normal distri-

bution

Table S5 shows the obtained average values for both RI and SI based on 200 simulations for

this scenario. Surprisingly, none of the combinations of the linkage functions and methods to

estimate optimal clusters could properly separate the two clusters; SI for the combinations

of Complete/Ward.D2 with Ch/Dunn2 is zero, i.e. mistakenly put the two clouds in a unique

cluster, apart from when the change-point for cl2 happens at time 120 which is 0.14. However,

in all other case, we can see that SI increases as the time di↵erence between the two change-

points increases. This is clearly reflected in the performance of HSTCPD which even in such

cases performs better than the Classic approach (see Figure S20-S22).

Table S5: Scenario III with independent pixel time series. An upward change of magnitude
one happens at time 60 in cl1, while the time index of an upward change of similar magnitude,
which happens in cl2, varies between 70 and 120. The sizes of cl1 and cl2 correspond to 5.25%
and 17.25% of the full image. Average Rand index RI (separation index SI) are reported.

Linkage Optimal
2nd change-point

70 80 90 100 110 120

Single

Ch 0.97 (0.02) 0.98 (0.09) 0.96 (0.22) 0.94 (0.44) 0.90 (0.68) 0.81 (0.92)
Dunn 0.97 (0.04) 0.98 (0.20) 0.96 (0.37) 0.95 (0.75) 0.95 (0.93) 0.89 (0.97)
Dunn2 0.94 (0.01) 0.91 (0.07) 0.86 (0.15) 0.80 (0.32) 0.76 (0.55) 0.72 (0.69)

Complete

Ch 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
Dunn 0.97 (0.01) 0.98 (0.05) 0.97 (0.26) 0.99 (0.64) 0.98 (0.93) 0.97 (0.99)
Dunn2 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.14)

Ward.D2

Ch 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
Dunn 0.97 (0.03) 0.98 (0.12) 0.98 (0.32) 0.99 (0.67) 0.99 (0.91) 0.99 (1.00)
Dunn2 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.14)
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Figure S19: Individual examples (one out of 200 simulations) of the clustering results
for Scenario III, with independent pixel time series, when the change-point for cl2 happens
at time 90. Rows from top to bottom: Single, Complete, and Ward.D2 linkage functions.
Columns from left to right: Ch, Dunn, and Dunn2. Each colour represents a cluster, and
the two clouds are displayed as grids.
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Figure S20: Detection rate based on 200 simulations from Scenario III, with independent
pixel time series, when the change-point for cl2 occurs at time 70.
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Figure S21: Detection rate based on 200 simulations from Scenario III, with independent
pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S22: Detection rate based on 200 simulations from Scenario III, with independent
pixel time series, when the change-point for cl2 occurs at time 120.
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S2.4 AdaptiveCpt

S2.4.1 Scenario I

Figure S23: Detection rate based on 200 simulations from Scenario I, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 70.
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Figure S24: Detection rate based on 200 simulations from Scenario I, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S25: Detection rate based on 200 simulations from Scenario I, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 120.
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S2.4.2 Scenario II

Figure S26: Detection rate based on 200 simulations from Scenario II, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 70.
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Figure S27: Detection rate based on 200 simulations from Scenario II, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S28: Detection rate based on 200 simulations from Scenario II, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 120.
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S2.4.3 Scenario III

Figure S29: Detection rate based on 200 simulations from Scenario III, with spatially
correlated pixel time series, when the change-point for cl2 occurs at time 70.
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Figure S30: Detection rate based on 200 simulations from Scenario III, with spatially
correlated pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S31: Detection rate based on 200 simulations from Scenario III, with spatially
correlated pixel time series, when the change-point for cl2 occurs at time 120.

47



S2.5 Geompcp

S2.5.1 Scenario I

Figure S32: Detection rate based on 200 simulations from Scenario I, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 70.
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Figure S33: Detection rate based on 200 simulations from Scenario I, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S34: Detection rate based on 200 simulations from Scenario I, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 120.
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S2.5.2 Scenario II

Figure S35: Detection rate based on 200 simulations from Scenario II, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 70.
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Figure S36: Detection rate based on 200 simulations from Scenario II, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S37: Detection rate based on 200 simulations from Scenario II, with spatially corre-
lated pixel time series, when the change-point for cl2 occurs at time 120.
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S2.5.3 Scenario III

Figure S38: Detection rate based on 200 simulations from Scenario III, with spatially
correlated pixel time series, when the change-point for cl2 occurs at time 70.
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Figure S39: Detection rate based on 200 simulations from Scenario III, with spatially
correlated pixel time series, when the change-point for cl2 occurs at time 90.
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Figure S40: Detection rate based on 200 simulations from Scenario III, with spatially
correlated pixel time series, when the change-point for cl2 occurs at time 120.
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S2.6 Multiple mean change-point detection

In this Section, under the existence of spatial correlation between pixel time series and using

clouds of the same sizes as scenarios I and II, we consider a situation where we have two

mean change-points per each cloud. The considered change-points in di↵erent clouds act in

di↵erent directions and they are all of magnitude one (similar to scenario I). There is an

upward change at time 60 and a downward change at time 120 in cl1, whereas in cl2 there is

a downward change at time 70 and an upward change at time 130. In other words, after the

second change-points time series return to their past state (i.e. the state before their first

change-point). In order to perform clustering, we make use of the Ward.D2 linkage functions

and Dunn criteria to estimate optimal number of clusters, and concerning the change-point

method, we employ the ecp approach (Matteson and James, 2014). Figure S41 shows the

detection rate of change-points where one can easily see that the Classic approach can hardly

detect the actual change-points and its detection rate for all four change-points is around 0.5.

However, the HSTCPD approach has a detection rate of 0.97 for all actual change-points

which is generally the same as that of Conditional.

Figure S41: Detection rate when there are change-points 60(upward)/120(downward) in
cl1 and 70(downward)/130(upward) in cl2. All changes are of magnitude one, and spatially
correlated pixel time series are considered for this example.
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S2.7 Simultaneous mean and variance change-point detection

This section is devoted to the case where in each cloud there exist changes in both mean and

variance, pixel time series are completely independent, and clouds are of the same sizes as

scenarios I and II. Regarding the changes in mean parameter, there is an upward change at

time 60 in cl1 and a downward change at time 70 in cl2; both changes are of magnitude one

similar to scenario I. The changes corresponding to variance occur at times 120 and 130 in

cl1 and cl2, respectively, in which variance in cl1 (cl2) changes from one to 0.3 (3). In order

to perform clustering before turning to the change-point detection part, similar to Section

S2.6, we make use of Ward.D2 in combination with Dunn.

Figure S42 shows the detection rate of the ecp approach (Matteson and James, 2014)

where one can see that the Classic approach could hardly detect the actual changes; the

mean change at time 60 (70) is detected only 19.5% (43.5%) of the time and the variance

change at time 120 (130) is detected 15% (0.5%)of times. The performance of HSTCPD in

detecting the actual mean changes is generally as good as the Conditional one; the mean

change at time 60 (70) is detected 97% (94%) of times. In terms of changes in variance, the

change at time 120 is detected 98.5% (98%) by HSTCPD (Conditional) while the change at

time 130 is detected 38.5% (99.5%). It is also visible that the not well detecting the borders

of clouds has led HSTCPD to detect some change-points with an error margin of few units.

Figure S42: Detection rate of ecp approach for the change-points 60(mean)/120(variance)
in cl1 and 70(mean)/130(variance) in cl2. No spatial correlation between pixel time series is
considered in this scenario.
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Since the method of Grundy et al. (2020) is inherently built to simultaneously detect

change-points in both mean and variance when dealing with multivariate data, we next em-

ploy the geomcp approach (Grundy, 2020) to further study its performance in this particular

case. Figure S43 shows its detection rate in which apart from poor performance of Classic

approach compared to HSTCPD/Conditional, one can see that geomcp sometimes mistak-

enly detects changes in mean as if they were changes in variance and vice versa. For the case

of Conditional approach, the change-points 120 and 130, which correspond to variance, are

53% and 61% of times detected as if they were changes in mean. Similarly, the change-points

60 and 70, which correspond to mean, are 20% and 47.5% of times detected as if they were

changes in variance. This highlights that not only geomcp can su↵er from masking, but it

may mistakenly introduce mean changes as changes in variance and vice versa.

Figure S43: Detection rate of geomcp for the change-points 60(mean)/120(variance) in
cl1 and 70(mean)/130(variance) in cl2. No spatial correlation between pixel time series is
considered in this scenario.

S2.8 Simulation on large images

This section replicates scenario I, as explained in Section 4.1, for large images (i.e. images of

the same size as the Spanish LST data and the AWD data) to further study the performance

of our proposal, i.e. HSTCPD, when the number of pixel time series is large. To do so, as

a showcase, we here only consider the case where there is complete independence between
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pixel time series, and concerning the clustering part, similarly to Section S2.6 and S2.7, we

make use of Ward.D2 in combination with Dunn. For the case where we simulate time series

on images with the same size as the LST data, the two actual change-points happen at times

80 (upward in cl1) and 90 (downward in cl2), whereas for the case of AWD the two change-

points occur at times 20 (upward in cl1) and 30 (downward in cl2). The corresponding time

of these changes are chosen to be proportionally similar to the case of the change-points 60

and 70 in scenario I. Regarding the choice of multivariate change-point detection method,

we have here employed ecp (Matteson and James, 2014) and geomcp (Grundy et al., 2020)

since they have previously showed a better performance than the data-adaptive approach of

Liu et al. (2020). Figure S44 shows the estimated clusters for two individual cases together

with the locations of cl1 and cl2.

Figure S44: Individual examples (one out of 200 simulations) of the clustering results for
Scenario VI. Left: Afghanistan, Right: Spain. Colours show the estimated clusters and grids
display the clouds cl1 and cl2.

Figure S45 and S46 show the detection rates for both cases. We can see that, similarly

to other scenarios, HSTCPD outperforms the Classic approach. More specifically, one can

see that HSTCPD has its biggest impact on the geometrical mapping approach of Grundy

et al. (2020). In both cases, the Classic approach, represented by geomcp, does not detect

any of the actual change-points. However, for the image time series simulated over Spain,

the detection rates of HSTCPD, for the actual change-points 80 and 90, are equal to 100%.

Concerning the case of the image time series simulated over Afghanistan, the detection rates

of HSTCPD, for the actual change-points 20 and 30, are 100% and 78.5%.

With respect to the detection rates of the ecp approach (Matteson and James, 2014), for

the data simulated over Spain, the actual change-points 80 and 90 are detected at a rate of
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44% and 43%, whereas HSTCPD detects these changes 100% of the time. For the image

time series simulated over Afghanistan, the change-points 20 and 30 are detected 33% and

57% of the time, while HSTCPD detects these changes 75% and 81.5% of the time. This

slightly poorer performance is due to the fact that the actual change-points are near the tails

of time series, see Moradi et al. (2022) for details.

Figure S45: Detection rate for scenario VI when time series are simulated over the images
of the same size as AWD in Afghanistan.

Figure S46: Detection rate for the scenario VI when time series are simulated over the
images of the same size as LST in Spain.
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S3 Real data

In this Section we present additional information regarding our real datasets.

S3.1 Land Surface Temperature (LST) in Spain from 2000 to 2021

The Modis images are provided in a sinusoidal projection, which represents pixels of di↵erent

sizes, i.e. larger in the north when approaching the Poles and smaller in the south when

approaching the Equator. Therefore, the images are re-projected into the UTM coordinate

system to ensure that all the pixels represent the same size.

Figure S47 shows the LST data for the study period. All the detected change-points per

cluster are presented in Figure S48 and for additional intuition we also present the average

elevation within the estimated clusters in Figure S49. We can see that the general distribution

of change-points is spatially dependent, such that there are clusters with di↵erent numbers

of change-points from zero to 12. Moreover, there are few changes that are detected within

several clusters, but generally there is no agreement between the clusters regarding the

number and position of the change-points. Note that following a no pre-clustering approach

allows the change-points which are visible in the majority of clusters to dominate/conceal

other actual change-points.

S3.2 Afghan War

Figure S50 shows the monthly spatial point patterns corresponding to the AWD dataset.

The most dense pattern corresponds to August 2009 with 3619 events, and the most sparse

pattern is that of April 2004 with 81 events. In Figure S51 we present the monthly estimated

intensity surfaces for such point patterns. One can observe an increasing tendency in the east

of Afghanistan from the middle of 2006 which apparently reaches its peak around May/June

2007. Thereafter, it experiences a decreasing trend up to July 2008. Then, the estimated

intensity in the east and south-east seems to go through some spatially dependent variations

including an increasing tendency which starts in June 2009 and reaches its maximum around

August 2009, and then slightly decreases. One can further see that the temporal behaviour

of the estimated intensity is clearly spatially dependent, i.e. the spatial distribution tends

to locally change with time. Figure S52 presents the detected change-points within the
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Figure S47: LST data in Spain from the year 2000 to 2021. Values are LST based on Kelvin
unit.

63



Figure S48: Detected change-points for the LST dataset in Spain within the estimated
clusters. Values are change-points.

Figure S49: Average elevation in the estimated clusters. Values are elevation divided by 100.
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estimated clusters in which one can see that neighbour clusters experience similar changes.

Although there are some changes that are detected in several clusters, we can see that there

is no general agreement concerning the detected change-points within the estimated clusters

which is not visible if one does not perform pre-clustering/classification prior to change-point

detection.

Figure S50: The AWD data. Rows from top to bottom represent the years 2004 to 2009,
respectively. Columns from left to right represent the months January to December, respec-
tively.

Figure S51: Monthly estimated intensity images for AWD data in Figure S50. Intensity
values are points per 109 meters.
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Figure S52: Detected change-points for the AWD data within the estimated clusters. Values
are change-points.
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