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ABSTRACT
Detecting change-points in multivariate settings is usually carried out by analyzing all marginals either
independently, via univariate methods, or jointly, through multivariate approaches. The former discards any
inherent dependencies between different marginals and the latter may suffer from domination/masking
among different change-points of distinct marginals. As a remedy, we propose an approach which groups
marginals with similar temporal behaviors, and then performs group-wise multivariate change-point detec-
tion. Our approach groups marginals based on hierarchical clustering using distances which adjust for
inherent dependencies. Through a simulation study we show that our approach, by preventing domina-
tion/masking, significantly enhances the general performance of the employed multivariate change-point
detection method. Finally, we apply our approach to two datasets: (i) Land Surface Temperature in Spain,
during the years 2000–2021, and (ii) The WikiLeaks Afghan War Diary data.
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1. Introduction

Time series of spatial data, for example, satellite images
and estimated intensity surfaces of point patterns, often face
naturally/artificially emerging space-dependent distributional
changes. Under what is commonly referred to as “separability”
in the spatial statistical literature (Cressie and Wikle 2015), one
assumes that the studied phenomenon may be described as a
temporally varying rescaling of a spatial base distribution. It has,
however, been well noted that separability, to a large degree, is a
mathematically convenient assumption rather than an assump-
tion reflecting the data at hand (Cressie and Wikle 2015); the
observed changes often tend to appear in new/different spatial
locations as time progresses. Simultaneous detection of the spa-
tial regions and times of such changes is not only scientifically
interesting in itself, but is often a crucial component for subse-
quent more advanced statistical analyses including model fitting,
prediction, etc. As modern datasets tend to be large and com-
plex, with frequent naturally/artificially occurring changes, the
need for methods which enable detection of change-points in the
distribution of (spatially referenced) time-ordered observations
is steadily increasing.

Not surprisingly, change-point detection has a long history;
it was first discussed to split univariate time series into homo-
geneous subsets in terms of the mean (Page 1954, 1955). Grad-
ually, different methodologies, from different statistical points
of view, have been developed to detect changes in various char-
acteristics, for example, means and variances of time-ordered
observations (see Horváth and Rice 2014; Aminikhanghahi and
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Cook 2017; Truong, Oudre, and Vayatis 2020 and the references
therein). Over time, change-point detection approaches started
to be applied to a range of different applications, including
flood volume (Xiong et al. 2015), financial returns of stocks
(Sundararajan and Pourahmadi 2018), or the normalized differ-
ence vegetation index (Moradi et al. 2022), among other con-
texts. Moreover, the modern-day availability of multivariate data
and potential relationships between the associated marginals
have highlighted the need to develop multivariate change-point
detection approaches.

Discrete data, including almost all time-ordered datasets, are
rarely actually discrete in nature, but in fact the outcome of a dis-
crete sample of a continuous phenomenon, for example, a collec-
tion of functions reflecting temperature in various spatial loca-
tions. Berkes et al. (2009) and Aston and Kirch (2012) proposed
different frameworks/tests to perform multivariate change-point
analyses when dealing with functional data. Matteson and
James (2014) developed a nonparametric approach to hierarchi-
cally detect/locate multiple change-points for multivariate time-
ordered data. Liu et al. (2020) proposed a unified data-adaptive
framework to detect change-points for high-dimensional data.
Generally, multivariate change-point detection is performed
by assuming that all marginals/series/dimensions/components
undergo changes jointly. However, as the size of the data grows,
this assumption might easily be violated due to internal/local
dependencies between different marginals. Thus, some authors
considered the case where only a sparse/dense subset of the
marginals undergoes changes, while the rest of the marginals do
not experience any change (Zhang et al. 2010; Wang and Sam-
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worth 2018; Hahn, Fearnhead, and Eckley 2020). In the multi-
variate context, a common way to treat data has usually been
to first reduce the dimension to one, based on desirable aggre-
gation techniques, and then to apply some univariate change-
point detection method. For instance, Wang and Samworth
(2018) proposed to aggregate/project data by a suitable projec-
tion direction and then locate change-points through CUSUM
statistics for the projected series. Hahn, Fearnhead, and Eckley
(2020) argued that such an approach may be computationally
costly, especially when the number of components increases, and
instead proposed a Bayesian approach to estimate the projection
direction. Grundy, Killick, and Mihaylov (2020) noted that such
approaches, which reduce the dimension to one, are generally
developed to detect a change in a single parameter. Thus, they
mapped a multivariate time series, by measuring distances and
angles between each marginal and a reference marginal, to two
dimensions, which are used to simultaneously detect changes in
the mean and the variance.

With a growing number of marginals/series/dimensions/
components, as previously indicated, it is more likely that
there exist distinct subsets of data exhibiting unique/similar
temporal behaviors. Moreover, as the length of the study
period grows, the time series in question is more likely to
face temporal distributional changes. Once the majority of
the marginals/series/dimensions/components undergo similar
changes jointly, it becomes less challenging to detect change-
points. However, such an assumption might easily be violated
as the number of marginals increases. With this said, in a
high-dimensional/multivariate setting, one may find distinct
subsets (most likely of different sizes) of marginals undergoing
different types of changes at dissimilar times. Such changes
may include slow/rapid deviations from the past with(out)
returning to the past state, and/or abrupt changes. Multi-
variate change-point detection tends to be quite complicated
when for example, (i) changes in several subsets of marginals
act in different directions, (ii) there are subsets experiencing
changes of different magnitudes, (iii) the sizes of the sub-
sets undergoing changes are different, and (iv) the occur-
rence times of the changes in different subsets are close to
each other. Such circumstances may easily cause domina-
tion/masking among different change-points and consequently
lead to rather poor detection/precision rates; for example, when
change-point methods are based on global distance measure-
ments, aggregation, and/or global dimension reduction which
may accidentally force different change-points to cancel each
other out (see Section 4 for details). For practical situations
where these issues occur, see Section 5. The literature has mostly
focused on univariate change-point detection, and generally,
in multivariate settings, assumed that either all or the major-
ity of the marginals/series/dimensions/components undergo
changes jointly. Moreover, multivariate change-point meth-
ods generally do not reveal which (subsets of the) marginals
undergo changes. Thus, a treatment in connection with dom-
ination/masking between different change-points occurring in
distinct subsets of the marginals is, to date, lacking in the
literature.

Motivated by the above, in this article we propose an
approach to find sub-regions such that, within each sub-region,
marginals show similar temporal behaviors. In order to find

such sub-regions, we propose the use of a weighted metric
for the marginals, which enables the incorporation of poten-
tial spatial correlation between (nearby) marginals, and then
hierarchically groups them into disjoint clusters. Hence, condi-
tionally on a spatial dependence structure, we may proceed to
study multivariate temporal evolution in a nonseparable fash-
ion. Our approach locally searches for change-points within
the estimated sub-regions. Under these circumstances, we pre-
vent marginals with different temporal behaviors and change-
points from being studied jointly when performing change-
point analyses. Thus, domination/masking between change-
points of different sub-regions tends to not happen, and con-
sequently the rate of detection/precision increases. Through a
simulation study, when employing common linkage functions
in the clustering part and considering both spatially corre-
lated and independent time series, we study various settings
where different change-points may dominate/mask each other.
The quality of the clustering outcome is assessed through the
Rand index and a separation index, which we introduce in
order to study how well we assign sub-regions with distinct
change-points to different clusters. The achieved gain in change-
point detection is measured through the rate of detection/
precision.

Throughout, labels starting with the prefix “S” refer to items
in the supplementary material of the article.

2. Multivariate Change-Point Detection

We here consider a set of locations, z1, . . . , zn ∈ W ⊂ R
d, n ≥ 1,

d ≥ 1, which typically represent a set of monitoring places/sites.
Next, given a time interval T, we attach a multivariate random
function/process X(t) = (X1(t), . . . , Xn(t)), t ∈ T, to these
spatial locations. It is noteworthy that the marginals X1, . . . , Xn
may be dependent which is a deviation from the classical func-
tional data analysis setting (Ramsey and Silverman 2005). In
other words, we consider dependent functional data where time
is continuous and, here, we are particularly interested in the
scenario where the dependence structure for the marginals is
governed by their associated locations, that is, z1, . . . , zn. Note
that we may consider the decomposition

Xi(t) = μi(t) + εi(t), t ∈ T, 1 ≤ i ≤ n, (1)

where μi(t) = E[Xi(t)] is the mean function of Xi, and εi(·)
is a zero-mean residual stochastic process with var(εi(·)) =
var(Xi(·)). See Section S1.1, supplementary materials for tech-
nical details. It should be noted that, in practice, data are not
sampled continuously in time but rather at discrete time points,
that is, we sample a collection of dependent univariate time
series, which will be the focus of this article. Some practical
examples are given in Section S1.2.

Given an n-dimensional stochastic process X(t) =
(X1(t), . . . , Xn(t)), t ∈ T, either in continuous or discrete time,
let �i(t) = (θi,1(t), . . . , θi,q(t)), t ∈ T, 1 ≤ i ≤ n, correspond to
q ≥ 1 characteristics/parameters of Xi such as mean, variance,
etc. In multivariate change-point detection the main interest
lies in alerting when, for some i, �i(t) undergoes changes
(Aston and Kirch 2012; Matteson and James 2014; Liu et al.
2020; Grundy, Killick, and Mihaylov 2020). Formally speaking,
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to discover change-points {τ1, . . . , τk} ⊂ T, one deals with the
null hypothesis H0 : constant distribution for all marginals
over the time period T, versus the alternative hypothesis H1:
some marginals undergo changes, at times τ1, . . . , τk, in some
parameters. In other words, the alternative hypothesis H1, for
some �i(t), claims different behaviors for any two consecutive
time periods, separated by τj, 1 ≤ j ≤ k. If k = 1 the problem
reduces to the detection of at most one change (AMOC). Note
that, in contrast to the classical setting, we do not assume that
the changes occur jointly across all marginals Xi, since, in
practice, it is rarely the case that all Xi’s face changes of the same
type or undergo changes at the same time. Moreover, nearby
locations usually tend to experience similar changes in terms
of time but possibly of different magnitudes, which might be
a sign of spatial dependence. Further technical details can be
found in Section S1.1.1.

Our objective here is to develop an approach to detect possi-
ble change-points in the associated marginal time series while
taking the inherent multivariate (spatially governed) depen-
dence structure into account. This allows us to borrow strength
from the fact that (spatially) close marginal time series tend to
have similar temporal distributional properties, which in turn
may lead to having similar change-points. In addition, we may
detect subsets of locations with similar change-points (in terms
of time position) of (dis)similar magnitudes.

3. Hierarchical Spatio-Temporal Change-Point
Detection

From a geostatistical point of view, functions corresponding to
spatially nearby sites tend to have similar temporal behaviors
which, in turn, makes it more likely that temporal changes
happen simultaneously within a spatially restricted group of
functions. For instance, temperature measurements at different
weather stations over time are such that nearby stations show
similar trends and changes. It is worth emphasizing that simi-
larity between nearby functions (in space and/or time) can be
the result of (spatial and/or temporal) changes in both the mean
structure and the dependence structure; recall (1). Note further
that a mean shift may, by pure chance, be canceled by a shift
in the noise term of a process, which may lead to missing the
detection of an actual change.

We argue that spatially associated multivariate change-point
analyses may benefit from a refinement where we first group
the univariate marginal time series into similar/spatially close
groups of time series, before carrying out group-wise change-
point analyses. Note that the larger the dataset, and the inherent
distances, the bigger the chance that the general heterogeneity
in the collection of processes/series under study is increased. In
particular, there is an increased chance that different sub-regions
exhibit different change-points.

We could, in principle, treat each marginal series as its
own entity, meaning that we independently carry out an indi-
vidual univariate analysis for each marginal series. This has
a few drawbacks, most notably that we discard any inherent
dependencies, which in turn may result in detected changes
being labeled as changes in the characteristic of interest, for
example, the mean, when in fact they do not correspond to
such changes. Moreover, aside from the evident computational

burden associated with such an approach, there is also no
borrowing of strength taking place, that is, we do not sta-
tistically exploit that nearby functions have the same/similar
marginal distributions to improve the estimation. Hereby, as
has been well noted in the literature (Matteson and James
2014; Liu et al. 2020), a more sensible approach is multivari-
ate change-point analysis, where the marginal functions are
analyzed jointly. Since all marginals are handled jointly here,
there is an increased chance that changes in some marginals
dominate/conceal changes in some other marginals, and con-
sequently one may not be able to detect all existing changes.
Note that the domination/concealment may clearly depend on,
for example, the types of changes occurring (e.g., up-/down-
ward jumps), magnitudes of the changes, and the time difference
between consecutive changes. In addition, existing methods do
not necessarily reveal for which specific marginal(s) a given
change-point occurs.

In line with the discussion above, in Definition 1, we present
a general approach to hierarchically carry out change-point
detection by first grouping the univariate marginal time series
into similar/spatially close groups and then, conditionally on
the group associations, carrying out multivariate change-point
detection. Our approach may be viewed as a middle-ground
between multivariate and univariate approaches, both concep-
tually and computationally.

Definition 1 (Hierarchical spatio-temporal change-point
detection). Consider the multivariate time series x(t) =
(x1(t), . . . , xn(t)), t ∈ T, resulting from a discrete-time
sampling of an n-dimensional continuous-time stochastic
process X, which is attached to a set of spatial locations
z1, . . . , zn ∈ W ⊂ R

d, d ≥ 1, n ≥ 2. Further, consider a suitable
clustering approach based on (a discrete-time approximation
of) a functional distance d(·, ·) and a linkage function. Given
a chosen multivariate change-point method, any method
which detects change-points of the multivariate time series in
accordance with Algorithm 1 is referred to as a hierarchical
spatio-temporal change-point detection (HSTCPD) method.

Note that, in Definition 1, since one can employ any well-
established multivariate change-point detection method, the
statistical/mathematical properties of the chosen change-point
methodology will still be met. Nevertheless, the only difference
comes from the fact that here the chosen methodology will be
independently applied to disjoint subsets C1, . . . , Cr , 1 < r < n,
of marginals. We note that this form of clustering preserves the
potential spatial dependencies while detecting the correspond-
ing change-points. Note further that the general performance of
HSTCPD tends to either that of univariate methods, if r → n,
or classical multivariate approaches, if r → 1.

For spatially dependent data, a detailed background on suit-
able metrics, different linkage functions (Single, Complete, and
Ward.D2) and different ways to find an optimal number of
clusters (Ch, Dunn, and Dunn2) is given in Section S1.3.

4. Numerical Evaluation

This section is devoted to studying the performance of our
proposal in Definition 1 under various settings. In each setting
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Algorithm 1: Hierarchical spatio-temporal change-
point detection

Input:
A (discrete-time approximation of a) functional
distance d(·, ·) which takes the (spatial)
dependence/correlation among the functions into
account;
A linkage function;
An index α(·) to find optimal clusters;
A multivariate change-point detection method;

Data:
A multivariate time series x(t) = (x1(t), . . . , xn(t)),
t ∈ T, n ≥ 2, with associated spatial locations
z1, . . . , zn ∈ W ⊂ R

d, d ≥ 1;
Result:

Disjoint subsets Cj ⊂ {1, . . . , n} with associated
spatial locations {zi : i ∈ Cj} and a set of
change-points Tj ⊂ T, j = 1, . . . , r, 1 < r < n;

Generate a dendrogram for x based on the chosen
metric and linkage function;

Given the dendrogram and the chosen metric, find
r = arg maxr′=2,...,nα(r′);

Let C1, . . . , Cr denote the clusters associated to r;
for j = 1, . . . , r do

Apply the multivariate change-point detection
method to {xi(t) : t ∈ T}, i ∈ Cj;

Denote the resulting change-points by Tj, where
Tj = ∅ if no change-point is found and
Tj = {τ1,j, . . . , τkj,j}, kj ≥ 1, otherwise;

end

we deal with time series of 200 images, where each image
contains 400 pixels within the bounding box W = [0, 1]2.
In other words, we consider a multivariate time series x(t) =
(x1(t), . . . , x400(t)), t ∈ T = {1, . . . , 200}, where the spa-
tial locations zi, i = 1, . . . , 400, represent pixel locations.
Throughout our simulation study, we consider two regions,
hereafter called clouds, which undergo (multiple) abrupt
changes in their means (and variances) at different time points.
The rest of the image does not experience any distributional
change. The sizes and positions of the clouds, as well as the
magnitudes/types of changes, vary according to the scenarios
described below.

4.1. Description of Scenarios

We first consider two general situations according to which an
image time series is built. In the first situation, given a base
realization in the form of a spatial Gaussian random field on W,
with mean 0 and a Gaussian covariance function with scale 5
and variance 10 (given in (S5)), which we sample at the pixel
locations, we generate a multivariate pixel time series by, for
each t ∈ T, adding the base realization to an error/noise
field where all marginals xi(t), i = 1, . . . , 400, come from iid
standard normal distributions. This means that we consider spa-
tial correlation but temporal conditional independence. In the

second situation, identically to the error field in situation one,
we consider completely independent pixel time series, where all
marginals xi(t), i = 1, . . . , 400, t = 1, . . . , 200, come from iid
standard normal distributions. Now, for each such situation, we
consider the following scenarios:

• Scenario I: There exist two clouds (contained within circles
of radius 0.12), each corresponding to 21 pixels (5.25% of
the full image of 400 pixels), where the pixel time series
contained within the first cloud (cl1 ⊂ W) experience an
upward change of magnitude one while those within the
second cloud (cl2 ⊂ W) face a downward change of the same
magnitude. Here, we are interested to see how our proposal
can improve the state-of-the-art when different subregions
undergo changes which are similar in magnitude but different
in terms of direction.

Concerning the times at which changes occur, for cl1 we
consider a change at time 60. For cl2, which similarly has
only one change, we consider different choices for the time
of occurrence: 70, 80, 90, 100, 110, 120. We do this to further
study the performance of our proposal when the time dis-
tance between the two change-points increases. The results
for the situation where there exists spatial correlation among
different pixel time series and the change-point in cl2 occurs
at time 70 are presented in the main paper, whereas the rest
of the results can be found in Section S2.1.

• Scenario II: The cloud sizes are the same as in Scenario I, but
here the pixel time series within cl1 experience an upward
change of magnitude one while the pixels within cl2 face an
upward change of magnitude two. Here, we are interested
in analyzing the fact that changes of larger magnitudes may
hide/impede/blur the detection of smaller changes. The times
at which changes occur are analogous to Scenario I, and
corresponding results for both situations can be found in
Section S2.2.

• Scenario III: There exist two clouds that both undergo upward
changes of magnitude one. Here, cl1 includes 21 pixels,
while cl2 consists of 69 pixels (17.25% of the full image),
contained within a circle of radius 0.24. The interest here
is to detect different changes of the same magnitude and
direction, which occur within regions of different sizes. The
times at which changes occur are analogous to Scenario I,
and corresponding results for both situations can be found in
Section S2.3.

In addition to the above scenarios, we consider the below two
cases to further study the masking/concealment problem when
there are multiple changes per each cloud cl1 and cl2.

• Scenario IV: Here, we only consider spatially correlated pixel
time series with the cloud sizes similar to Scenario I. Fur-
ther, we consider two change-points per cloud according to
which cl1 (cl2) experiences an upward (downward) change
of magnitude one at time 60 (70) and a downward (upward)
change of the same size at time 120 (130). Further details
together with all corresponding results can be found in
Section S2.6.

• Scenario V: Here, completely independent pixel time series
are used with the cloud sizes similar to Scenario I. Further, we
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Figure 1. Top row: image representation including clouds (in red and blue) where changes occur. Bottom row: examples of pixel time series within each part of the image.
Columns from left to right: Scenario I, Scenario II, Scenario III. Vertical lines represent the change-points which are 60 and 120 in this case.

consider two change-points in the mean and the variance per
cloud, where cl1 experiences an upward change of magnitude
one, in the mean, at time 60 and a change in the variance
at time 120. The cloud cl2 experiences changes of the same
magnitude, at times 70 (mean) and 130 (variance), but in
different directions compared to their counterparts in cl1.
Further details together with all corresponding results can be
found in Section S2.7.

Furthermore, in light of the scalability implications of our
proposal, we next proceed to deliberate upon the following
scenario.

• Scenario VI: Here, we replicate Scenario I using image time
series of similar size to the two real data analyzed in Section 5;
details and results are presented in Section S2.8.

For any combination of the aforementioned settings, scenar-
ios, and times of changes, we simulate 200 image time series. We
add that when there is no correlation between different pixels,
we fix the position of the clouds, whereas in the presence of
spatial correlation we let the position of the clouds vary from
one simulation to another. More specifically, we let cl1 and cl2 be
centered around the maximum and minimum of the generated
field. For the case of no spatial correlation, Figure 1 shows the
positions of the clouds within the Scenarios I–III together with
examples of pixel time series for each part of the image. In the
top row, the two clouds are displayed in blue and red, and the rest
of the image, which is the region facing no change, is displayed
in grey. The bottom row shows examples of pixel time series
when a change happens at time 60 (corresponding to cloud I)
and another when a change happens at time 120 (corresponding
to cloud II).

4.2. Benchmarks

We evaluate the performance of the considered clustering
approaches based on two indices to firstly see how well pixel time
series are grouped, and second to see how well the two clouds are
separated. Therefore, we first make use of the Rand index (Rand
1971)

RI = TP + TN
TP + FP + TN + FN

, (2)

where TP, the true positives, is the number of pairs of pixels that
in reality belong to the same cluster, and also do so according to
the clustering procedure; FP, the false positives, is the number
of pairs of pixels that in reality do not belong to the same cluster,
but do so according to the clustering procedure; TN, the true
negatives, is the number of pairs of pixels that in reality do not
belong to the same cluster, and also do not do so according to the
clustering procedure; and finally FN, the false negatives, is the
number of pairs of pixels that in reality belong to the same clus-
ter, but do not do so according to the clustering procedure. The
Rand index (2), which takes values between 0 and 1, is indeed
a measure of similarity between any obtained classification and
the ground truth data. However, in our simulation study the
cluster with no change-point forms the biggest part of the image
(89.5% for the first two scenarios and 77.5% for Scenario III).
Thus, in situations where only one of the clouds is detected (see
e.g., Figure S3) or both clouds are detected but as one unique
cluster (Figure S19), the Rand index (2) may still claim a good
performance. Since throughout the simulation study, one of our
main aims is to have the clouds cl1 and cl2 in different clusters,
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to avoid any domination/concealment between changes, we fur-
ther define the separation index

SI = 1 − 1
2

⎡
⎣ 1

#cl1

∑
i∈cl1

1

⎧⎨
⎩l(i) ∈

⋃
j∈cl2

l(j)

⎫⎬
⎭

+ 1
#cl2

∑
j∈cl2

1

⎧⎨
⎩l(j) ∈

⋃
i∈cl1

l(i)

⎫⎬
⎭

⎤
⎦ , (3)

that takes values between 0 (fully overlapped) and 1 (fully sep-
arated); here l(i) denotes the clustering procedure’s labeling of
pixel i. In fact, the index SI aims at measuring how well we sepa-
rate the cloud cl1 from cl2 by averaging the proportions of pixels
in cl1 and cl2 which are assigned to the same cluster. This said,
ideal clustering happens when both RI and SI are simultaneously
equal to one. Note that (2) and (3) only measure the goodness
of pre-clustering/classification. We add that, throughout our
simulation studies, when employing the clustering techniques,
which are presented in Section S1.3, we consider the maximum
number of clusters to be 20.

4.3. Change-Point Detection Methods

With respect to change-point detection results, we compare
the performance of our proposal with the general multivariate
change-point detection (Classic) and a situation where we are
aware of the positions of the clouds (Conditional). We do this
to see how good we perform compared to the Classic approach,
and also how close we can get to the ideal situation represented
by Conditional. The state-of-the-art, in change-point detection,
is represented by the methods of Matteson and James (2014), Liu
et al. (2020), and Grundy, Killick, and Mihaylov (2020), which
we have applied by means of the R package ecp (the divisive
approach implemented in the function e.divisive), version
3.1.3 (James and Matteson 2015), R-code (data-adaptive test)
supplied by the authors of Liu et al. (2020), and the R package
changepoint.geo (the function geomcp), version 1.0.1
(Grundy 2020). For bothe.divisive andgeomcpwe let the
maximum time distance between change-points be 5. In order to
study the effect of incorporating the proposed clustering on the
performance of the employed change-point detection methods,
we demonstrate detection rates for all detected change-points,
with respect to the total number of simulations, generated by
the Classic, Conditional, and HSTCPD approaches. We have

relegated all results pertaining to the methods of Liu et al. (2020)
and Grundy, Killick, and Mihaylov (2020) in combination with
HSTCPD to Sections S2.4 and S2.5, respectively.

Note that here we are only interested in studying the per-
formance of the considered change-point methods when dom-
ination/concealment happens between different marginals; for
other types of performance analyses we refer the reader to Mat-
teson and James (2014), Liu et al. (2020), and Grundy, Killick,
and Mihaylov (2020).

4.4. Results

4.4.1. Scenario I
This scenario studies the case where cl1 undergoes an upward
change while cl2 experiences a change of the same magnitude
but in a different direction, that is, downwards. Our goal here is
to see if such circumstances generally tend to mislead change-
point detection methods, thus, yielding erroneous results, and
further to see how HSTCPD improves the overall performance
of change-point detection methods.

Table 1 shows the obtained average RI and SI, based on 200
simulations of Scenario I. One can see that the Complete and
Ward.D2 linkage functions give rise to substantially lower RI
than the Single linkage. This is due to the fact that the former two
generally favor more compact clusters, and consequently they
inflate FN, that is, the number of pairs of pixels that in reality
belong to the same cluster, but do not do so according to the
clustering procedure. Moreover, since these two give compact
clusters, they are always able to separate the two clouds wherein
change-points are placed, that is, having high SI. However, the
Single linkage function generally suggests fewer clusters and
thereby it is not sufficiently successful in separating the two
clouds. In particular, the combination of the Single linkage
function and Dunn2, to find the optimal number of clusters,
seems to perform quite poorly. The joint performance of Single
and Dunn is slightly better but seems to depend on the time
difference between the two inserted change-points; as this dif-
ference increases, that is, as the time of change in cl2 tends to
120, SI increases slightly. The joint performance of Single and
Ch seems to be the best in this scenario since both RI and SI are
high for all choices of occurrence time for cl2.

To better understand the performance differences in Table 1,
for an individual simulation where the change-point for cl2 hap-
pens at time 90, Figure 2 shows the clustering outcomes of the

Table 1. Scenario I with spatially correlated pixel time series. An upward change with magnitude one happens at time 60 in cl1, whereas the time index of a downward
change of the same magnitude, happening in cl2, varies between 70 and 120. Average Rand index RI (separation index SI) are reported.

Linkage Optimal Change-point for cl2
70 80 90 100 110 120

Single Ch 0.95 (0.99) 0.94 (0.97) 0.93 (0.95) 0.93 (0.97) 0.92 (0.95) 0.90 (0.94)
Dunn 0.81 (0.12) 0.82 (0.14) 0.81 (0.12) 0.82 (0.14) 0.83 (0.19) 0.82 (0.18)
Dunn2 0.80 (0.01) 0.80 (0.02) 0.80 (0.01) 0.80 (0.03) 0.80 (0.04) 0.80 (0.04)

Complete Ch 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00)
Dunn 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00)
Dunn2 0.46 (1.00) 0.46 (1.00) 0.45 (1.00) 0.46 (1.00) 0.46 (1.00) 0.46 (0.99)

Ward.D2 Ch 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00)
Dunn 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00) 0.24 (1.00)
Dunn2 0.45 (1.00) 0.46 (1.00) 0.46 (1.00) 0.46 (1.00) 0.45 (0.99) 0.47 (1.00)
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Figure 2. An individual example (one out of 200 simulations) of the clustering results for Scenario I, with spatially correlated pixel time series, when the change-point for
cl2 happens at time 90. Rows from top to bottom: Single, Complete, and Ward.D2 linkage functions. Columns from left to right: Ch, Dunn, and Dunn2. Each color represents
a cluster, and the two clouds are displayed as two grids in the corners.

nine combinations of considered linkage functions and methods
to estimate the optimal number of clusters. The two grids in the
corners show the positions of clouds cl1 and cl2 in this example
and different colors represent distinct estimated clusters. We can
see that none of the combinations is able to precisely detect
the borders of the clouds. The combinations of Complete and
Ward.D2 with Dunn2 generally seem to lead to similar classi-
fication of the pixel time series. Both encapsulate the clouds in
regions that are bigger than the actual clouds. On the contrary,
the combinations of Complete and Ward.D2 with Ch/Dunn
propose clusters that partially cover the clouds, whereby parts
of the clouds belong to different estimated clusters. The joint
performance of Single and Dunn/Dunn2 performs quite poorly,
as it is not able to properly distinguish between the pixel time
series in cl1, cl2, and the rest of the image. Finally, when the
Single linkage is combined with Ch it apparently detects the
border of one of the clouds. Moreover, generally, the Single
linkage function seems to often introduce singular pixels as
clusters.

Figure 3 shows the detection rate for all detected change-
points based on all considered combinations of clustering
approaches, including Classic and Conditional, when the
change-point for cl2 is 70. The results concerning the cases
where the change for cl2 happens at time 90 or 120 can be found

in Section S2.1.1 (see Figures S1 and S2). Overall, we can see that
the Classic approach performs quite poorly; the change-point
for cl1 is precisely detected only 49% of the time and that for
cl2 is detected only 54% of the time. More importantly, in only
69 of the 200 simulations (i.e., 34.5%) the two change-points are
jointly detected with no error margin. In other words, employing
no pre-classification may lead to erroneous results due to the
fact that an actual change-point could be dominated/hidden
by either another change-point or by pixel time series with no
change blurring the detection. In addition, in Figure 3 one can
see that the Classic approach sometimes detects change-points
at times between the times of the actual change-points in cl1
and cl2.

Turning to the Conditional approach, the change in cl1 (cl2)
is precisely detected 96.5% (97%) of the time; the rate of simul-
taneous precise detection is 93.5%. For the rest of the cases, the
changes are generally detected with an error margin of one time
unit, that is, 59 or 61 for the case of cl1 and 69 or 71 for the
case of cl2. This emphasizes the need of running a classification
algorithm prior to performing change-point detection, that is,
applying HSTCPD.

With respect to HSTCPD, the change-point detection perfor-
mance generally depends on the quality of the pre-classification.
The poorest performance in this case is that of Single-Dunn2
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Figure 3. Detection rate based on 200 simulations from Scenario I, with spatially correlated pixel time series, when the change-point for cl2 occurs at time 70.

since, based on the SI values in Table 1, it could not sufficiently
separate the two clouds; the change in cl1 (cl2) is precisely
detected 49.5% (56%) of the time, which is slightly better than
the results for the Classic approach. For all other combina-
tions, the results for HSTCPD are generally as good as for the
Conditional approach. For instance, for Ward.D2-Dunn (Single-
Ch) the change-points for cl1 and cl2 are precisely detected
98% (96%) and 96.5% (95.5%) of the time, with a simulta-
neous detection rate of 94.5% (92%). The (slight) difference
between HSTCPD and the Conditional approach comes from
the fact that (i) it may happen that there are a few pixel time
series in a cloud for which the general behavior happens to
differ from the expected behavior within the cloud (due to
random effects), that is, outliers, and pre-classification generally
excludes outliers from the detected cluster/estimated cloud, and
(ii) HSTCPD may generate clusters outside the actual clouds
and random effects may in turn lead the change-point detec-
tion method in question to conclude that there is a change-
point in such an artificial cloud, when there in fact is not,
that is, we commit a Type I error; this is reflected by the
small red jumps in Figure 3. Regarding (ii), note, however, that
with respect to the number of actual tests we are conducting,
the proportion of Type I errors committed is in line with the
chosen significance level. Excluding the outliers facilitates the
change-point detection process by increasing the power and
reducing the estimation error. Coming back to (ii), Ward.D2-
Dunn2 and Complete-Dunn2 lead to four (large) clusters while
properly separating the clouds and consequently giving rise

to a high power, low estimation error, and low risk for Type
I error. On the contrary, Ward.D2-Ch and Complete-Ch lead
to many clusters, where the actual clouds might be part of
distinct clusters, whereby the number of mistakenly detected
changes increases but, as previously stated, still on par with the
significance level. Note that, clearly, there is a tradeoff between
the sizes of the detected clusters and the number of detected
change-points.

In addition, we have seen that increasing the time differ-
ence between the two change-points in cl1 and cl2 improves
the performance of the Classic approach, however, its general
performance does not reach that of HSTCPD and would be
still unable to discover the marginals undergoing changes (see
Figures S1 and S2).

4.4.2. Other Scenarios
Regarding the Scenarios II and III with spatially correlated
pixel time series, which are presented in Sections S2.2.1 and
S2.3.1, we have similarly seen that the pre-clustering component
of HSTCPD significantly enhances the change-point analysis
by significantly increasing the detection rate of the Classic
approach. For the situation where all marginals are both spatially
and temporally independent, the corresponding results for the
Scenarios I, II, and III are presented in Sections S2.1.2, S2.2.2,
and S2.3.2, respectively. We have seen that, for Scenarios I and
II, the combination of any of the linkage functions with Dunn
leads to RI and SI being nearly one in all cases, regardless
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Figure 4. Detection rate based on 200 simulations from Scenario I, with spatially correlated pixel time series, when the change-point for cl2 occurs at time 70.

of the change-point in cl2 (see Tables S1 and S3 and Figures
S3 and S11). Consequently, such a combination leads to the
best performance of HSTCPD which is in general identical to
that of the Conditional approach (see Figures S4–S6 and S12–
S14). With respect to Scenario III, when the time difference
between the two change-points in cl1 and cl2 is small, none
of the clustering approaches is generally able to put the two
clouds in distinct clusters. However, the general performance
of the considered clustering approaches improves by increasing
the time difference between the two change-points according
to which the combinations of Single and any of Ch, Dunn, or
Dunn2, Complete-Dunn, and Ward.D2-Dunn show their best
performance when the change-point in cl2 occurs at time 120.
The performance of Complete-Ch and Ward.D2-Ch does not
get any better by increasing the time difference between the
two change-points. For Complete-Dunn2 and Ward.D2-Dunn2,
their performances get only slightly better when the change-
point in cl2 occurs at time 120 (See Table S5 and Figure S19).
The detection rates for all three approaches in scenario III are
presented in Figures S20–S22.

We further apply the methods of Liu et al. (2020) and
Grundy, Killick, and Mihaylov (2020) to the situation where
there exists spatial correlation between the pixel time series,
when the change-point for cl2 happens at times 70, 90, and
120. The corresponding results for these two methods can be
found in Sections S2.4 and S2.5. We see that, in general, the pre-
classification enhances the performance of the adaptive method
of Liu et al. (2020). However, it performs poorer than the method
of Matteson and James (2014), which is a consequence of spread-
ing out the estimated change-points around the actual change-
points leading to a lower precise detection rate. The geometrical
mapping approach of Grundy, Killick, and Mihaylov (2020)
performs quite poor in the absence of pre-classification, having
a detection rate near zero for most cases, especially those in
Scenario I. Nevertheless, its performance significantly enhances
when HSTCPD is applied to it, yielding a detection rate of
around 97%. For a general comparison of the three considered
approaches in the absence (Classic) and presence (HSTCPD)
of pre-classification, Figure 4 shows their detection rates under
Scenario I, using Ward.D2-Dunn, when the change-point for
cl2 occurs at time 70. The biggest impact of pre-classification
can be seen in the geometrical mapping approach (i.e., geomcp)

which is somehow expected as it is based on global dimension
reduction.

Turning to (i) multiple changes in the mean of each cloud,
(ii) existence of both mean and variance changes in each cloud,
and (iii) scalability of HSTCPD, we add that their corresponding
results are presented in Sections S2.6, S2.7, and S2.8, respec-
tively. The general take away message in these situations is that
HSTCPD clearly outperforms the state-of-the-art, even on large
image time series, and geomcp sometimes mistakenly detects
changes in the mean as if they were changes in the variance and
vice versa.

5. Real Data Analyses

This section is devoted to applying our proposal to two sets of
real data: (i) Land Surface Temperature (LST) in Spain from
February 2000 to November 2021, and (ii) The WikiLeaks
Afghan War Diary (AWD) data (Zammit-Mangion et al. 2012),
which runs monthly from January 2004 to December 2009.
Note that, generally speaking, identifying change-points could
indicate changes in the underlying data-generating processes,
and consequently lead to improved modeling by incorporating
this information. Throughout we employ the Ward.D2 linkage
and the Dunn approach to estimate the optimal clusters. We
let the maximum number of clusters be 150 when searching
for optimal clusters. Since our image time series may exhibit
seasonality, we make use of their deseasoned versions, that is,
the monthly anomalies, to look for change-points based on the
method of Matteson and James (2014).

5.1. Land Surface Temperature (LST) in Spain from 2000 to
2021

As an effect of climate change, in recent years, southern
European countries have experienced extreme weather con-
ditions, with, for example, rapid temperature changes, and it
has been hypothesized that weather conditions are becoming
more extreme (Toreti et al. 2019). Such changes may, however,
vary regionally, and we here wish to understand how Spain has
been subjected to this phenomenon in the last two decades.
More specifically, we here study the image time series of LST in
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Figure 5. Change-point detection, based on HSTCPD, for LST data in Spain (left), and AWD data of Afghanistan (right). Each sub-region, obtained via Ward.D2-Dunn,
represents a single cluster and numerical values are the number of detected change-points.

continental Spain, which is a region of 505,944 km2. Since the
study region is large, we use the Modis Terra satellite which leads
to 17GB of images that are downloaded from the MOD11C3
product (Wan, Hook, and Hulley 2015). For the selected period,
February 2000 to November 2021, we deal with one image per
month and that leads to a total of 262 images, represented in Fig-
ure S47. Each image captures the monthly average LST derived
from the daily collected data, which have been put together
and cropped to obtain a monthly image with a resolution of
253 × 147 = 39,721 pixels per image; this means handling this
amount of marginals when performing change-point analysis.
All downloading and processing are carried out using the R
package rsat (Pérez-Goya et al. 2022). See Section S3.1 for more
details about the data.

The left panel of Figure 5 shows the optimal clusters for the
LST data together with their corresponding numbers of detected
change-points. There are various clusters with no change-point
which are generally located in the north. The majority of the rest
of the clusters face change-points, but at dissimilar times. Figure
S48 shows the estimated change-points per clusters, revealing
the changes which could not be detected if one does not follow
a pre-classification approach; in this case, one can only detect
two change-points at times 199 and 217, which correspond to
the months August, 2016, and February, 2018. Note in particular
that these change-points occur toward the end of the study
period. Furthermore, according to HSTCPD the majority of the
estimated clusters also undergo changes at such times which
means that these changes dominate other change-points and/or
regions with no change-points if one does not carry out cluster-
ing prior to the change-point analysis. In addition, one can see
that the distribution of both numbers and times of the detected
change-points is spatially dependent.

5.2. Afghan War Data

The original data consists of roughly 77,000 events, represent-
ing anything from a stop-and-search episode to a gun fight in
which the U.S. military was involved, which reduces to 75,239
events after excluding the points which are placed outside the
boundary of Afghanistan. Figure S50 shows the AWD data from
which one can see that most events occurred in the east and
south-east of Afghanistan. We are here interested in looking
for change-points in the time-ordered intensity surfaces cor-
responding to such spatial point patterns, and check if the

behavior of possible change-points is spatially dependent. In
particular, such an analysis allows us to elucidate where and
when the underlying conflict may have escalated. Hence, for
each point pattern in Figure S50, an intensity surface is esti-
mated using a kernel-based estimator with the Jones-Diggle
edge correction (Baddeley, Rubak, and Turner 2015, chap. 6)
and a common bandwidth which is obtained as the geometrical
mean of individual bandwidths for each pattern based on the
criterion of Cronie and Van Lieshout (2018). See the estimated
intensities in Figure S51; each image is based on 7756 pixels,
within the boundary of Afghanistan, which means dealing with
this amount of marginals when performing multivariate change-
point detection. See Section S3.2 for a further description of the
data and the estimated intensity surfaces.

The right panel of Figure 5 shows the 99 optimally estimated
clusters for the image time series of the estimated intensities,
together with the corresponding numbers of change-points.
One can see that the number of estimated change-points varies
spatially across Afghanistan, showing that the estimated inten-
sities, and thereby the conflicts, in the north-east, north-west
and south-east are more stable as for having less change-points
compared to the rest of Afghanistan. Moreover, we see that
there are sub-regions behaving differently compared to their
neighbors, thus, emphasizing the non-separable nature of the
data. In Figure S52 we present the estimated change-points per
cluster, disclosing the change-points that could not be detected if
one ignores the pre-clustering/classification which consequently
results in detecting only five change-points without gaining any
knowledge of where they occur.

6. Discussion

A key step in HSTCPD is the way one performs clustering
which clearly influences its general performance. Here, we have
considered hierarchical clustering for spatially dependent func-
tions; however, one may employ other clustering approaches
(e.g., non-Euclidean distance-based approaches), linkage func-
tions, and/or methods to discover the optimal number of
clusters. Overall, we recommend trying various methods and,
then, taking data characteristics and possible prior knowl-
edge/assumptions into account, choosing the results which tend
to better suit such characteristics and assumptions. Moreover, we
recommend avoiding clustering approaches which, proportional
to the dimension of data, give rise to too large or too small
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clusters. The former may not properly separate sub-regions with
different behaviors, while the latter may split similar data into
smaller clusters. Too large clusters may lead to results which
still suffer from masking/domination, and too small clusters
may diminish the general performance of multivariate change-
point methods. Moreover, multivariate change-point detection
methods different from those of Matteson and James (2014),
Liu et al. (2020), and Grundy, Killick, and Mihaylov (2020) may
be considered. Future work includes exploring such variations.
Finally, we emphasize that the idea behind HSTCPD can be
applied to nonspatial settings as masking/concealment among
different marginals/components can happen in general multi-
variate settings. In this line of reasoning, we believe that our
method is widely generally applicable in many applied contexts
and real data settings, and as such can be helpful to various
applied researchers with a need to detect change-points.

Supplementary Materials

The supplementary material contains additional background to the
manuscript, including some preliminaries on multivariate change-point
detection, and hierarchical clustering with details regarding linkage func-
tions, and methods to estimate optimal clusters for spatially dependent data
in Section S1. Additional simulation studies can be found in Section S2
which cover various scenarios concerning changes in the mean, the vari-
ance, multiple changes, and scalability of HSTCPD. Further descriptions
and results about our real datasets (i.e. LST in Spain from February 2000
to November 2021, and AWD data which runs monthly from January 2004
to December 2009) are also presented in Section S3.
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