
Supplementary material for “Regularised semi-parametric

composite likelihood intensity modelling of a Swedish spatial

ambulance call point pattern"

S1. Statistical methods

S1.1. Parametric spatial intensity function modelling

If X is an inhomogeneous Poisson point process, then the associated log-likelihood function is given

by

log (θ | x) =
n∑

i=1

log ρθ (xi) −
∫

W
ρθ (x) dx. (S1)

Using any quadrature rule, the integral in (S1) can be approximated by a finite sum

∫
W
ρθ (x) dx ≈

m∑
j=1

ρθ(s j)w j, (S2)

where the positive numbers w j, j = 1, 2, . . . ,m, are quadrature weights summing to the area |W |

and s j ∈ W, j = 1, 2, . . . ,m, are quadrature points. Following this approximation, the approximated

log-likelihood function may be expressed as

log (θ | x) ≈
n∑

i=1

log ρθ (xi) −
m∑

j=1

ρθ(s j)w j, (S3)

where s = {s1, . . . , sm} ⊆ W represents the union of the observed spatial locations of events x =

{x1, . . . , xn} and the set of dummy points s \ x = {v1, . . . , vq}, q = m − n. Here we assume that m

is much larger than n for a better approximation of the log-likelihood function log (θ | x). The



approximated log-likelihood function in expression (S3) can then be rewritten as

log (θ | x) ≈
m∑

j=1

(
y j log ρθ(s j) − ρθ(s j)

)
w j, (S4)

y j =
a j

w j
and a j = 1{s j ∈ x}. (S5)

Note that a j = 0 means that s j is a dummy point. Exploiting the approximation in equation (S2),

a large number of dummy points are required to obtain accurate parameter estimation using equa-

tion (S4). Waagepetersen (2008) proposed two ways of obtaining dummy points and quadrature

weights. With regard to the quadrature weights, the first method is a grid approach in which the

observation window W is partitioned into a collection of rectangular tiles. The quadrature weight

for a quadrature point s ∈ s falling in a tile R is the area of R divided by the total number of quadra-

ture points falling in R. This approach is advantageous since the computation of the quadrature

weights is easy. The second approach is the Dirichlet approach (Okabe et al., 2009) in which the

quadrature weights are the areas of the tiles of the Dirichlet/Voronoi tessellation generated by the

quadrature points in s. With regard to the dummy points, Waagepetersen (2008)’s first approach is

to use stratified dummy points combined with grid-type weights while the second approach is to

exploit binomial dummy points with the Dirichlet-type weights. According to Baddeley and Turner

(2000) and Thurman et al. (2015), a computationally cheaper approach to generate dummy points

and compute quadrature weights is to partition the study region W into tiles R of equal area. To

generate dummy points, we place one dummy point exactly in each tile either systematically or

randomly. It follows that the quadrature weights for quadrature points s j can be set to w j = ∆/E j,

where ∆ is the area of each tile and E j is the number of events and dummy points in the same tile

as point s j.

Modelling spatial intensity functions parametrically, in particular modelling based on spatial covari-

ates, we often assume that ρθ has a log-linear form. More specifically, letting β = (β1, β2, . . . , βK)
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and θ = (β0,β), we assume that

ρθ(x) = exp
{
β0 + z(x)β′

}
, (S6)

where z(x) = (z1(x), z2(x), · · · , zK(x)) is a vector of spatial covariates at location x ∈ W. Combining

equations (S4) and (S6), we will get the approximated log-likelihood function log (θ | x) given in

equation (1) in the article.

S2. Optimisation methods

To deal with the optimisation problem in (4), we carry out the optimisation using a cyclical co-

ordinate descent method, which optimises a target function/optimisation problem with respect to

a single parameter at a time and iteratively cycles through all parameters until a convergence cri-

terion is reached. Here, we present the coordinate descent algorithm for solving the regularized

log-likelihood function with the elastic-net penalty.

Let f (θ) be the approximated log-likelihood function (1), i.e.,

f (θ) = f (β0,β) =
m∑

j=1

w j

(
y j

(
β0 + z(s j)β′

)
− exp

{
β0 + z(s j)β′

})
.

Let r denote the step number in the optimisation algorithm, and θ(r−1) = (β(r−1)
0 ,β(r−1)) represent the

current estimates of the parameters. A quadratic approximation of f (θ) at the point θ(r−1) is given

by

f (θ) ≈ f
(
θ(r−1)

)
+

d f
(
θ(r−1)

)
dθ

(
θ − θ(r−1)

)′
+

1
2

(
θ − θ(r−1)

) d2 f
(
θ(r−1)

)
dθdθ′

(
θ − θ(r−1)

)′
, (S7)
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where the first and the second-order derivatives of the function f with respect to θ are given by

d f (θ)
dθ

=

m∑
j=1

w j

(
y jz̄(s j) − exp

{
β0 + z(s j)β′

}
z̄(s j)

)
, (S8)

d2 f (θ)
dθdθ′

= −

m∑
j=1

w j exp
{
β0 + z(s j)β′

}
z̄(s j)′z̄(s j), (S9)

and z̄(s j) = (1, z(s j)). Hence, a quadratic approximation of the approximated log-likelihood func-

tion in (1) can be obtained through equations (S8), (S9), and (S7), i.e.,

q (θ) = −
1
2

m∑
j=1

u j

(
y∗j − β0 − z(s j)β′

)2
+C

(
θ(r−1)

)
, (S10)

where C(θ(r−1)) is a constant function of θ and the remaining variables in equation (S10) are given

by

y∗j = β
(r−1)
0 + z(s j)β(r−1)′ +

y j

exp
{
β(r−1)

0 + z(s j)β(r−1)′
} − 1 and u j = w j exp

{
β(r−1)

0 + z(s j)β(r−1)′
}
.(S11)

As can be seen from equations (S10) and (S11), the variable y∗j is the working response variable

while u j is the updated weight. Replacing the log-likelihood function log (θ) in equation (4) by

the quadratic approximation q (θ), the optimisation problem of the regularised quadratic approxi-

mation of the log-likelihood function becomes

argmin
θ∈RK+1

qp (θ) = argmin
θ∈RK+1

− 1
m
q (θ) + λ

K∑
k=1

{
1
2

(1 − α) β2
k + α|βk|

} . (S12)

The optimisation problem in equation (S12) can be solved by the coordinate descent algorithm.

More specifically, for any pre-specified value of the tuning parameter λ, in iteration r = 1, 2, . . ., the

coordinate descent algorithm partially optimises the optimisation problem with respect to βk, given

the estimates β(r−1)
0 and β(r−1)

h , h ∈ {1, . . . ,K} \ {k}. Explicitly, the optimisation can be described by

argmin
θ∈RK+1

qp (θ) ≈ argmin
βk∈R

qp

(
β(r−1)

0 , β(r−1)
1 , · · · , β(r−1)

k−1 , βk, β
(r−1)
k+1 , · · · , β

(r−1)
K

)
. (S13)
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According to Friedman et al. (2007), there are closed form coordinate-wise updates to estimate

the parameters of the optimisation problem. Letting βk ≥ 0, the first-order derivative of qp (θ) in

equation (S13) with respect to βk is given by

dqp (θ)
dβk

= −
1
m

m∑
j=1

u jzk(s j)
(
y∗j − ỹ(k)

j

)
+

1
m

m∑
j=1

u jz2
k(s j)βk + λ(1 − α)βk + λα, (S14)

where ỹ(k)
j = β

(r−1)
0 +

∑K
h,k β

(r−1)
h zh(s j) is the fitted value excluding the covariate zk(s j). Similarly,

the first-order derivative of qp (θ) for the case βk < 0 can easily be obtained. It follows that the

coordinate-wise updates for parameter estimation in the elastic-net penalisation can be obtained by

β(r)
k =

S

 1
m

m∑
j=1

u jzk(s j)
(
y∗j − ỹ(k)

j

)
, λα


1
m

m∑
j=1

u jz2
k(s j) + λ (1 − α)

, r = 1, 2, . . . , k = 1, 2, . . . ,K, (S15)

where S (z, ϑ) is the soft-thresholding operator given by

S (z, ϑ) = sign (z) (|z| − ϑ)+ =



z − ϑ, if z > 0 and ϑ < |z|,

0, if ϑ ≥ |z|,

z + ϑ, if z < 0 and ϑ < |z|.

The intercept parameter need not be penalised as it has no role in the variable selection. The

estimate of the intercept term can be obtained by

β(r)
0 =

1∑m
j=1 u j

m∑
j=1

u j

(
y∗j − z(s j)β′(r−1)

)
, r = 1, 2, . . . .

The parameter estimates are updated until the algorithm converges. With regard to the tuning

parameter λ ∈ [λmax, λmin], we start with the smallest value λmax of the tuning parameter for which

the entire vector is zero. That is, we begin with a λmax for which β̂ = 0 to obtain solutions for a
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decreasing sequence of λ values. Using a prediction performance measure, e.g. cross-validation,

for the estimated model, the user can select a particular value of λ from the candidate sequence

of λ values. Since the parameter estimation updating equation (S15) is obtained for elastic-net

penalisation, we may set α = 0 to implement ridge regression and α = 1 to use the lasso approach;

other kinds of elastic-net regularisation can be implemented by picking α ∈ (0, 1). Recall that

elastic-net is particularly useful when there are many correlated covariates in the statistical model

and the data are high-dimensional, i.e., the data have the property that K ≫ m. Cyclical coordinate

descent methods are a natural approach to solving convex problems and each coordinate-descent

step of the algorithm is fast with an explicit formula for each coordinate-wise optimisation. It also

exploits the sparsity of the model and it has better computational speed both for high dimensional

data and big data (Friedman et al., 2010a).

Algorithm 1. Algorithm for regularized Poisson process log-likelihood estimation.

1: Identify the spatial domain W,
2: Generate a set of dummy points v = {v1, v2, . . . , vq} in W,
3: Combine the dummy points v = {v1, v2, . . . , vq} with the data points x = {x1, x2, . . . , xn} to form

a set of quadrature points s = {s1, s2, . . . , sm},
4: Compute the quadrature weights w j, j = 1, . . . ,m,
5: Following equation (S5), determine the indicator a j and compute the variable y j = a j/w j,

j = 1, . . . ,m,
6: Obtain the vector of spatial covariates z(s j) = (z1(s j), . . . , zK(s j)) at each quadrature point s j,

j = 1, . . . ,m,
7: Use existing model-fitting software such as glmnet (Friedman et al., 2010b), specifying that

the model is a log-linear Poisson regression model, log ρθ(s j) = β0 + z(s j)β′, in order to fit the
responses y j and vector of covariate values z(s j) with weights w j, j = 1, . . . ,m,

8: The coefficient estimates returned by the software give the approximate maximum log-
likelihood estimate of θ,

The optimisation problem in equation (S13) can be implemented using Algorithm 1. The approxi-

mated log-likelihood function in equation (1) and the log-likelihood function of the weighted gen-

eralised linear model (Poisson distribution) have the same deviance function  (θ) = 2{log(y |

y) − log(θ | y)}. Hereby, the deviance  of the regularised weighted generalised linear model

(Poisson distribution) obtained by the model-fitting software, e.g. glmnet, can be exploited to se-

lect an optimal tuning parameter in the optimisation of the regularised quadratic approximation of
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the log-likelihood function of the inhomogeneous Poisson process in equation (S12). Choosing an

optimal tuning parameter value can be done using K-fold cross-validation where, in short, we set a

sequence of tuning parameter candidate values λ1 > λ2 > · · · > λT and split the data into K-folds.

Then, for each λ-candidate value, we leave out a data fold/piece and perform parameter estimation

on all the remaining K − 1 data folds, thus obtaining a deviance for the left-out data fold. We repeat

the parameter estimation and deviance computation for the remaining K−1 possible folds to be left

out. This means that we obtain K out-of-sample deviances for each λ value. Among the sequenced

λ values, the one giving the smallest mean deviance can be picked as an optimal estimate of the

tuning parameter λ of the regularised quadratic approximation of the log-likelihood function. We

then use the selected optimal λ to again carry out the regularized fitting, this time using the full

dataset, in order to obtain a final estimate of the model parameter θ. Finally, the stopping criterion

for the cyclic coordinate descent algorithm is generally based on the change of the fitted quadratic

approximation of the log-likelihood function value.

S3. Semi-parametric intensity function modelling

The chosen modelling approach is suitable for the setting where i) the main goal is a predic-

tion/predictive model, i.e., one wants to predict a collection of further/unseen events as precisely as

possible, ii) one believes that the observed covariates can only describe a part of the spatial intensity

variation, and iii) added spatial flexibility is warranted in the modelling. In the case of our ambu-

lance data, as our end goal is to build optimal dispatching strategies, we mainly want a predictive

model.

We want to emphasise that the demographic covariates we have at hand only reflect where different

demographic groups live but not how they move about (recall Section 3.6). Specifically, we do not

have access to explicit mobility covariates such as aggregated movement patterns in the population,

and, as one may guess, people do not only need access to ambulances when they are at home. Our

solution is quite pragmatic and simple. We simply add a further spatial covariate to the existing

collection of covariates, which is given by a non-parametric spatial intensity estimate ρ̃(x), x ∈ W,
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and will be referred to as the benchmark spatial intensity. As an alternative one could instead use

log ρ̃(x), x ∈ W, as a further spatial covariate, resulting in ρ̃ being treated as an offset in (S6); note

that this would require that ρ̃ is strictly positive. Hence, we include the spatial intensity estimate ρ̃

as a covariate in the approximated log-likelihood expression in (1) and the inclusion has the effect

that the modelling steps away from a purely parametric setting to a semi-parametric approach.

This added covariate should pick up on regions where there is an increased intensity due to human

mobility, which cannot be explained by the existing list of covariates. Note that this is similar

in nature to the semi-parametric (spatio-temporal) log-Gaussian Cox process modelling approach

advocated for in e.g. Diggle (2013). To be able to discern whether this added covariate is in fact

necessary/useful in the presence of the other covariates, we carry out elastic-net regularisation-

based variable selection (see Section 3.5) to indicate whether the benchmark spatial intensity has

any added value in terms of describing the true intensity function.

A natural question here is what kind of non-parametric intensity estimator one should use to gener-

ate the benchmark spatial intensity. There are different candidates for this, and the main distinction

one usually makes is between global and adaptive/local smoothers. Adaptive smoothing techniques

include adaptive kernel intensity estimation (Davies et al., 2018) and (resample-smoothed) Voronoi

intensity estimation (Moradi et al., 2019; Ogata, 2004; Ogata et al., 2003). These have some clear

benefits (in particular the latter, Moradi et al. (2019)), but here we do not want to put too much

weight on the local features since we may run the risk of overfitting. Instead, we here consider

(global) kernel intensity estimation (Baddeley et al., 2015; Diggle, 1985), which is arguably the

most prominent approach to global smoothing and is defined as

ρ̃(x) =
∑
y∈x

κh(x − y)/wh(x, y), x ∈ W,

where κh(·) = h−1κ(·/h), κ is a symmetric density function and the smoothing parameter h > 0 is

the bandwidth. The function wh(x, y) is a suitable edge correction factor which adjusts for the effect

of unobserved events outside W on the intensity of the observed events (Baddeley et al., 2015); we
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here use the local corrector wh(x, y) =
∫

W
κh(u − y)du which ensures mass preservation, i.e. that∫

W
ρ̃(x)dx = n, the number of observed events. Practically, to carry out kernel intensity estimation

we make use of the function density.ppp in the R package spatstat (Baddeley et al., 2015).

Although the choice of kernel may play a certain role, the choice of bandwidth is absolutely the

main determinant for the quality of the intensity estimate; recall that the bandwidth governs how

much we smooth the data. However, optimal bandwidth selection is a well-studied and challeng-

ing problem. Concerning the state of the art, the bandwidth selection criterion of Cronie and

Van Lieshout (2018) is generally the most stable with respect to accounting for spatial interaction;

observed clusters of points in a point pattern may be the effect of aggregation/clustering (depen-

dence) or intensity peaks, or a combination of the two. However, there is one scenario where it

tends to not perform too well, and that is when there are large regions in W where there are no

points present, which is the case for our ambulance dataset. Other standard methods for bandwidth

selection include the state estimation approach of Diggle (1985) (called bw.diggle in spatstat),

the Poisson process likelihood leave-one-out cross-validation approach in Baddeley et al. (2015)

and Loader (1999) (called bw.ppl in spatstat), the rule of thumb of Scott (2015) (called bw.scott

in spatstat), and the recent machine learning-based approach of Bayisa et al. (2020) (see Algorithm

2).

S3.1. New heuristic algorithm for bandwidth selection

In K-means clustering, the dataset is partitioned into a number of clusters, and each cluster con-

sists of data points whose intra-point distances, i.e., distances between points within a cluster, are

smaller than their inter-point distances, i.e., their distances to points outside of the cluster. In a

recent study, Bayisa et al. (2020) proposed a K-means clustering-based bandwidth selection ap-

proach for kernel intensity estimation, where the average of the standard deviations of the clusters

is used as an optimally selected bandwidth. Although the approach performed well in terms of non-

parametrically describing the current ambulance call dataset, it has some limitations/issues. Firstly,

the number of clusters used in the K-means algorithm has been selected visually, and thereby sub-

jectively. Secondly, clusters with high point densities and clusters with widely dispersed data points
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tend to uniformly determine the resulting bandwidth. Evidently, a cluster with widely dispersed

data points has a larger standard deviation, which can be an outlier, and hence, it distances the es-

timated bandwidth away from the standard deviations of clusters with highly clustered data points.

As a result, the selected bandwidth leads to oversmoothing of the spatial intensity.

Algorithm 3. Subalgorithm of the main algorithm
1: while ∆ > ε and v ≤ max.iter do
2: Obtain optimal classes ki and 1-of-P class indicator variables ιiq for data points xi:

k(v)
i = arg min

q∈{1,2,...,P}

∥∥∥xi −ϖ
(v)
q

∥∥∥2
, ι(v)

iq = 1{
q=k(v)

i

}, q = 1, 2, . . . , P; i = 1, 2, . . . , n,

3: Update the centroids of the clusters (the mean locations of the clusters) ϖq:

ϖ(v+1)
q =

 n∑
i=1

ι(v)
iq xi


/ n∑

i=1

ι(v)
iq , q = 1, 2, . . . , P,

4: ∆ =

P∑
q=1

∥∥∥ϖ(v+1)
q −ϖ(v)

q

∥∥∥2
.

5: end while

To overcome these limitations, we propose a new heuristic algorithm, which is outlined in Algo-

rithm 2, to establish the ideal number of clusters and thereby to obtain an optimal estimate of the

bandwidth. The main algorithm, which is Algorithm 2, consists of two crucial steps. It continually

invokes Algorithm 3, which is a K-means algorithm, to establish the optimal number of clusters

using the KL index of Krzanowski and Lai (1988). Once an optimal number of clusters has been

obtained, the main algorithm determines an optimal bandwidth by calling the K-means algorithm

and using a weighted mean of dispersion measures for the clusters, where the weight for each clus-

ter is given by the inverse of the average of the squares of the distances from the centroid of the

cluster to each observation. When establishing the bandwidth, the weights help in balancing the

contributions of clusters with closely spaced spatial points and clusters with widely spaced spatial

points. In Algorithm 3, the spatial data points are re-assigned to clusters (see step 2 in Algorithm 3),

the cluster means are re-computed (see step 3 in Algorithm 3), and these steps are repeated until the

sum composed of the squared Euclidean distances between all successive centroids is smaller than
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Algorithm 2. K–means clustering-based heuristic algorithm for bandwidth selection

1: Consider the observed spatial location data: x = {x1, x2, · · · , xn} ⊆ W ⊂ R2,
2: Candidates for the number of clusters: K = 2, 3, · · · ,Kmax,
3: Let tr (·) denote the trace of a square matrix,
4: Let d denote the number of variables,
5: Set while condition determining parameter: ∆ = 1,
6: Set the maximum number of iterations for the while loop: max.iter,
7: Let ϖq, q = 1, 2, · · · , P represent the centroid of a cluster q,
8: Let Cq denote the collection of observations in cluster q,
9: Let nq is the number of data points in Cq,

10: Set a parameter determining the convergence of the algorithm: ε,

11: Let DP =

P∑
q=1

∑
x∈Cq

(
x −ϖq

)′ (
x −ϖq

)
denote within-cluster dispersion matrix for P clusters,

12: Let KLP =

∣∣∣∣∣∣ (P − 1)2/d tr (DP−1) − P2/d tr (DP)
P2/d tr (DP) − (P + 1)2/d tr (DP+1)

∣∣∣∣∣∣ represent KL index,

13: for K ← 2, 3, · · · ,Kmax do
14: for P← K + 1 do

Initialize the centroids: ϖ(v)
q , v = 0 and q = 1, 2, . . . , P,

Call algorithm 3,
15: end for
16: if K = 2, then
17: for P← K do

Initialize the centroids: ϖ(v)
q , v = 0 and q = 1, 2, . . . , P,

Call algorithm 3,
18: end for
19: for P← K − 1 = 1 do

ϖ1 =

 n∑
i=1

xi

/
n

,
20: end for
21: end if
22: if K > 2, then
23: for P← K − 1,K do

Initialize the centroids: ϖ(v)
q , v = 0 and q = 1, 2, . . . , P,

Call algorithm 3,
24: end for
25: end if
26: Obtain the optimal centroids

{
ϖq

}P

q=1
for P = K − 1, K, and K + 1 from step 14 to 25,

27: Using the result from step 26, compute the expression DP in step 11 for P = K − 1, K, and
K + 1,

28: Based on the result from step 27, compute KLP in step 12 for P = K.
29: end for
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30: From step 13 to 29, obtain the optimal number of clusters: P0 = arg max
P∈{2,3,...,Kmax}

{
KLP

}
,

31: Initialize the centroids for the optimal number of clusters P0: ϖ(v)
q , v = 0 and q = 1, 2, . . . , P =

P0,
32: Based on step 31, call algorithm 3 and obtain the optimal centroids

{
ϖq

}P

q=1
and classes of data

points {ki}
n
i=1,

33: Compute cluster dispersion measure: σ2
q =

0.5
nq − 1

∑
xi∈Cq

∥∥∥xi −ϖq

∥∥∥2
, q = 1, 2, . . . , P,

34: Compute the weight: wq =
1

gq

(
x, ϖq

) , q = 1, 2, . . . , P and gq

(
x, ϖq

)
=

1
n

n∑
i=1

∥∥∥xi −ϖq

∥∥∥2
,

35: Obtain an optimal bandwidth estimate: h =

√√√√√√√√√√√√√√√√√
P∑

q=1

wqσ
2
q

P∑
q=1

wq

.

a user-specified value (see step 4 in Algorithm 3). Alternatively, one may control the convergence

of Algorithm 3 by repeating steps 2 and 3 until there is either no further change in the assignments

of data points to clusters or until some maximum number of iterations has been reached. In our

case, we have used ε = 10−5 and max.iter = 100.

S4. Spatial covariates

This section presents a short description of the spatial covariates (some are graphically illustrated

in Figure S1):

• Population density: Per DeSO, this gives us the ratio of the total population size of the DeSO

to the area of the DeSO.

• Population by age (counts): The number of individuals of a given age category living in

a given DeSO zone. There are a total of 17 such covariates, reflecting the following age

categories (ages in years): 0-5, 6-9, 10-15, 16-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49,

50-54, 55-59, 60-64, 65-69, 70-74, 75-79 and 80+.
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• Population by sex (counts): The number of individuals of a given sex classification living

in a given DeSO zone. There are 2 sex related covariates: women and men.

• Population by Swedish/foreign background (counts): The number of individuals of a given

Swedish/foreign classification living in a given DeSO zone. There are 2 such covariates:

Swedish background and foreign background (the latter includes people born outside Sweden

as well as people born in Sweden with both parents born outside Sweden).

• Population 20-64 years of age by occupation (counts): The number of individuals of a

given occupational status living in a given DeSO zone. There are a total of 2 such covariates:

(gainfully) employed and unemployed.

• Population 25-64 years of age by education level (counts): The number of individuals of

a given maximal education level category living in a given DeSO zone. There are a total of

4 such covariates: no secondary education, secondary education, post-secondary education

of at most three years, and post-secondary education of more than three years (including

doctoral degrees).

• Population 20+ years of age by accumulated income (counts): The number of individuals

of a given income level category living in a given DeSO zone. There are a total of 2 such

covariates: below the national median income and above the national median income.

• Population 20+ years of age by economical standard (counts): The number of individuals

of a given economical standard category living in a given DeSO zone (this is a measure based

on each household’s total income and composition). There are a total of 2 such covariates:

below the national median economical standard and above the national median economical

standard.

S5. Created covariates

Recall the notions of ’original’ and ’created’ covariates from Section 2. We illustrate some of the

selected ’original’ and ’created’ covariates considered in this study in Figure S1. Below, we provide
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a description of the construction of all created covariates.

S5.1. Benchmark intensity covariate for the ambulance data

Recall that our semi-parametric approach is based on the idea of including a non-parametric in-

tensity estimate, the so-called benchmark intensity, as a covariate in our log-linear intensity form.

To generate the benchmark intensity for the ambulance data, we employ our new algorithm to ob-

tain the intensity estimate found in panel (e) of Figure S2. We further compare the result with the

aforementioned approaches (recall Section S3), in particular the approach of Bayisa et al. (2020),

which is based on 5 clusters (this number has been obtained through visual inspection). The result-

ing intensity estimates for the ambulance data can be found in panels (b)-(g) in Figure S2. Note

that throughout we have used a Gaussian kernel in combination with the aforementioned local edge

correction factor. We argue that the state estimation approach and the Poisson process likelihood

leave-one-out cross-validation approach tend to under-smooth the data and thereby do not reflect

the general overall variations of the data, whereas the approach of Cronie and Van Lieshout (2018)

and the K-means clustering based bandwidth selection of Bayisa et al. (2020) instead tend to over-

smooth the ambulance data. Recall that the number of clusters, which is a necessary input in the

K-means clustering based bandwidth selection of Bayisa et al. (2020), has to be selected through

visual inspection.

Looking at panel (g) of Figure S2, we see that by employing our proposed KL index to automatically

select the number of clusters, we obtain a total of 16 clusters. We argue that, compared to the

different panels in Figure S2, the new heuristic algorithm performs the best in terms of balancing

over- and under-smoothing of the ambulance call events. Interestingly, we see that this bandwidth

is very similar to the one obtained with the rule of thumb of Scott (2015); see panel (e).

S5.2. Creation of (road) network-related covariates

The role of the road network-related covariates is to control that the fitted model generates events

close to the underlying road network. But, as previously indicated, the original road network-

related covariates are not of the form zi(s), s ∈ W. We here propose to treat the road networks under
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Fig. S1. Spatial demographic and road network-related covariates. Population 20+ years old income status: a) below
and b) above median income. Population 20-64 years old employment status: c) employed and d) unemployed. Popu-
lation by age: e) 35-39 years old, f) 55-59 years old, and g) 80+ years old. Population by sex: h) male and i) female.
j) complete road network line density. k) main road network line density. l) population density. Households 20+ years
old economic status: m) below and n) above median income. o) Densely populated line density. All covariates, except
for j), k), l) and o), are representing proportions.
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Fig. S2. The roles of different bandwidth selection methods using Gaussian kernel density estimation for the unmarked
ambulance call data in panel (a). b) State estimation (Diggle, 1985). c) Poisson likelihood cross-validation (Loader,
1999). d) Cambell’s formula-based bandwidth selection (Cronie and Van Lieshout, 2018), e) Scott’s rule (Scott, 2015),
f) K-means clustering (Bayisa et al., 2020). g) The new heuristic algorithm developed in this work. Note that what
interests us here are the relative scales rather than the raw scales; the values in the plots above have been multiplied by
1000 for ease of visualisation.

consideration as line segment patterns (Baddeley et al., 2015), which essentially means that each

road network considered is a realisation of a point process in the space of line segments in R2. The

spatial covariate corresponding to a given line segment pattern is then given by the estimated line

segment intensity, which is obtained as the convolution of an isotropic Gaussian kernel with the

line segments of the pattern in question. Practically, such an estimate may be obtained through the

function density.psp in the R package spatstat, and the standard deviation of the Gaussian kernel,

the bandwidth, determines the degree of smoothing. The default bandwidth choice in density.psp

is given by the diameter of the observation window multiplied by 0.1. As an alternative, we propose

to use our new heuristic algorithm for bandwidth selection, which is achieved by letting W = [0,∞),

and letting the observations x = {x1, x2, · · · , xn} ⊆ W considered in Algorithm 2 represent the

lengths of the line segments. We here consider the following network-related covariates:

• Complete road networks line density/intensity. It is a spatial pattern of line segments, which

is converted to a pixel image. The value of each pixel in the image is measured as the total
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length of intersection between the pixel and the line segments [1].

• Main road networks line density/intensity. It is a spatial pattern of line segments, which is

converted to a pixel image. The value of each pixel in the image is measured as the total

length of intersection between the pixel and the line segments [1].

• Densely populated line density/intensity. It is a spatial pattern of line segments, which is

converted to a pixel image. The value of each pixel in the image is measured as the total

length of intersection between the pixel and the line segments [1].

• Bus stops intensity. It is a spatial point pattern, which is converted to a pixel image. The

value of each pixel is an intensity, which is measured as "points per unit area" [1].

• Shortest distance to bus stops. It is the shortest distance in meters from the ambulance location

data to the bus stops [1].

• Shortest distance to densely populated areas. It is the shortest distance in meters from the

ambulance location data to the densely populated areas [1].

• Shortest distance to main road networks. It is the shortest distance in meters from the ambu-

lance location data to the main road networks [1].

• Shortest distance to complete road networks. It is the shortest distance in meters from the

ambulance location data to the complete road networks [1].

Figure S3 compares the default bandwidth choice of density.psp to our heuristic algorithm, and it

clearly suggests that the line segment intensities generated using the heuristic algorithm bandwidth

selection have captured the spatial pattern of the line segments in the observed data better than the

default bandwidth choice. Note that what interests us here are the relative scales rather than the raw

scales; the values in the plots have been multiplied by 1000 for ease of visualisation.
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Fig. 4. The creation of covariates from line segment patterns. Figures (a), (d), and (g) represent complete road networks, main road networks, and
densely populated areas in Skellefteå. Figures (b), (e), and (h) are the created covariates using Gaussian kernel density with default bandwidth in
density.psp function in R package spatstat. Using Gaussian kernel density estimation, the performance of our heuristic algorithm for bandwidth
selection is shown in Figure (c), (f), and (i), which represent the covariates complete road network line density, main road network line density, and
densely populated area line density. Note that what interests us here are the relative scales rather than the raw scales; note that the values in the plots
above have been multiplied by 1000 for ease of visualisation.

Using the aforementioned covariates and their first-order interaction terms, the trace plots of the estimated param-
eters for lasso regularization and lasso-like elastic-net regularisation with α = 0.95 are shown in Figure 5. At their
corresponding optimal tuning parameters, which are shown by blue coloured vertical lines in Figure 5, lasso and lasso-
like elastic-net regularizations have selected 185 (18.69%) and 207 (20.91%) of the covariates, respectively, that are
associated to the intensity of the events. As it is expected, even though the lasso-like elastic-net regularisation se-
lects more variables than the lasso regularization, it forces the highly correlated covariates to have similar coefficients
(Friedman et al., 2010a; Yue and Loh, 2015). As a result, the correlated covariates have similar role on the intensity of
the events and their presence in the fitted model can be advantageous for interpretation. Therefore, hereafter, we use
lasso-like elastic-net regularisation with α = 0.95.

17

Fig. S3. Creation of covariates from line segment patterns. The first column represents a) the complete road network,
d) the main road network and g) the densely populated area road network, respectively. Created road network covari-
ates using the spatstat function density.psp: (b), (e) and (h) have been obtained using the default bandwidth of
density.psp, whereas (c), (f) and (i) have been obtained using the new heuristic bandwidth selection algorithm. The
values in the plots have been multiplied by 1000 for ease of visualisation.

S6. Data analysis results

S6.1. Modelling the ambulance call intensity function

Figure S4 shows the estimated coefficients of the spatial covariates, using both lasso regularisation

and lasso-like elastic-net regularisation, for the spatial point pattern constituting the events with

priority level 1. Note that the numbers at the top of each panel in Figure S4 indicate the number of

18



spatial covariates with non-zero coefficients, i.e. the number of covariates that are associated with

the fitted spatial intensity functions for the indicated value of λ. We clearly see how a large number

of covariates are quickly excluded as we increase log λ.

Using the aforementioned covariates and their first-order interaction terms, the trace plots of the

estimated parameters for lasso regularization and lasso-like elastic-net regularisation with α = 0.95

are shown in Figure S4. At their corresponding optimal tuning parameters, which are shown by

blue-coloured vertical lines in Figure S4, lasso and lasso-like elastic-net regularisations have se-

lected 185 (18.69%) and 207 (20.91%) of the covariates that are associated with the intensity of the

events. As it is expected, even though the lasso-like elastic-net regularisation selects more variables

than the lasso regularization, it forces the highly correlated covariates to have similar coefficients

(Friedman et al., 2010a; Yue and Loh, 2015). As a result, the correlated covariates have similar

roles for the intensity of the events, and their presence in the fitted model can be advantageous for

interpretation. Therefore, hereafter, we use lasso-like elastic-net regularisation with α = 0.95.

A grid of λ values has been exploited to train the proposed model, and among the candidate λ

values, the one which gives the smaller deviance, , has been selected as an optimal estimate of λ.

The optimal elastic-net regularisation parameter λ has been selected using ten-fold cross-validation

as shown in Figure S5.

The two vertical lines in the figure have been drawn to show the location of the logarithm of the

optimal estimate of the tuning parameter (blue) and the location of the logarithm of the estimate

of the tuning parameter that is one standard error away from the optimal estimate (red); the one-

standard-error-rule (Hastie et al., 2017) says that one should go with the simplest model, which is

no more than one standard error worse than the best model.

For the priority level 1 and 2 events, about 20.91% and 36.06% of the spatial covariates have

been associated with/included in the final intensity function estimates, respectively. The lasso-like

elastic-net has discerned about 17.68% and 35.76% of the spatial covariates which determine the

spatial intensities of the point patterns corresponding to male and female, respectively.
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Let P1, P2, M, and F denote emergency alarm call events with marks priority level 1, priority level

2, male and female, respectively, whereas Unm denotes unmarked emergency alarm call events.

?tablename? S1. The estimated dense models for the marginals and unmarked emergency alarm call
events/patterns. The dots in the table represent small coefficients of covariates that are shrunk to
zero.

No. Covariates P1 P2 M F Unm

Spatial locations:

11 x 0.823 0.826 0.951 0.522 0.725

22 y -0.144 -0.225 -0.175 -0.463 -0.243

Shortest distance to:

32 Bus stops -42.810 -52.120 -53.820 -49.810 -44.776

42 Densely populated area -3.685 -4.380 -2.344 -4.246 -3.674

52 Main road networks -32.030 -16.740 -16.890 -20.800 -24.907

62 Complete road networks -206.300 -238.600 -203.100 -259.200 -229.287

7 Population density 18.991 -141.524 68.728 · -31.185

8 Benchmark intensity 949.209 3802.066 -15119.642 · 276.511

Line densities:

9 Complete road networks 243.727 280.890 308.540 304.280 275.264

10 Main road networks 42.073 -54.408 -78.472 -57.196 25.836

11 Densely populated -158.792 -155.344 -175.181 -157.708 -161.800

122 Bus stops density 5.481 -1.633 6.046 0.819 4.941

Population by:

a) employment status:

13 Employed · · · · ·

Continued on next page

1The parameter estimates are divided by 10−5 for better visualisation of the estimates
2The parameter estimates are divided by 105 for better visualisation of the estimates
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?tablename? S1 – continued from previous page

No. Covariates P1 P2 M F Unm

14 Unemployed · · · · ·

b) income status:

15 Below national median income 4.747 0.387 0.365 0.866 4.446

16 Above national median income -0.116 -0.001 -0.001 -0.010 -0.079

c) educational level:

17 Pre-high school -0.355 -2.112 -1.996 -2.260 -2.150

18 High school 1.808 0.962 2.001 1.365 1.190

19 Post-secondary – less than 3 years 3.105 1.196 2.534 · 1.034

20 Post-secondary – 3 years or longer · · · · ·

d) age:

21 0 – 5 7.999 5.926 4.683 6.189 6.000

22 6 – 9 -1.115 -12.052 -3.768 -12.189 -4.575

23 10 – 15 4.505 1.310 5.901 3.828 7.542

24 16 – 19 · 4.433 2.148 0.247 -3.813

25 20 – 24 · -3.429 · · 0.063

26 25 – 29 -0.179 -0.764 -1.902 -4.533 -0.163

27 30 – 34 -3.306 -3.821 · · -0.599

28 35 – 39 1.486 12.824 4.757 15.668 5.583

29 40 – 44 -3.386 0.112 -8.503 -3.040 0.737

30 45 – 49 -1.064 -3.946 -4.763 -4.098 -4.794

31 50 – 54 -10.938 -8.441 -7.539 -5.996 -10.981

32 55 – 59 3.340 4.501 6.950 7.621 6.450

33 60 – 64 -1.003 0 1.370 -0.171 -0.422

34 65 – 69 -13.011 -5.694 -6.573 -8.789 -7.743

Continued on next page

23



?tablename? S1 – continued from previous page

No. Covariates P1 P2 M F Unm

35 70 – 74 0.131 0.025 · 0.098 -4.211

36 75 – 79 3.020 · · 3.359 2.524

37 80 + · 0.294 · · 2.507

e) gender:

38 Female -0.816 2.586 1.431 2.145 -1.302

39 Male 0.058 -0.017 -0.004 -0.043 0.106

f) background:

40 Swedish background -0.177 -1.460 -1.715 · -0.671

41 Foreign background 0.046 0.028 0.062 · 0.044

g) household economic standard:

42 Below the national median -3.741 · · · -3.195

43 Above the national median 0.131 · · · 0.079

Intercept parameter estimate: 2.410 8.409 3.646 25.929 10.886
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?tablename? S2. The estimated parsimonious/sparse models for the marginal and unmarked emer-
gency alarm call events/patterns. The dots in the table represent small coefficients of covariates that
are shrunk to zero.

No. Covariates P1 P2 M F Unm

Spatial locations :

11 x 0.098 0.324 0.390 0.119 0.128

22 y -0.077 · -0.002 -0.015 -0.133

Shortest distance to:

32 Bus stops -38.910 -45.250 -48.560 -44.100 -41.486

42 Densely populated area -2.633 -2.882 -1.567 -2.899 -2.898

52 Main road networks -22.740 -8.121 -8.359 -11.310 -19.045

62 Complete road networks -65.710 -54.770 -57.790 -64.720 -101.270

7 Population density · · · · ·

8 Benchmark intensity · · · · ·

Line densities:

9 Complete road networks 273.826 315.707 319.707 335.114 309.844

10 Main road networks 74.692 · · · 34.869

11 Densely populated -141.438 -129.585 -152.325 -141.335 -159.128

122 Bus stops density 6.014 0.526 0.766 · 6.046

Population by:

a) employment status:

13 Employed · · · · ·

14 Unemployed · · · · ·

b) income status:

Continued on next page

1The parameter estimates are divided by 10−5 for better visualisation of the estimates
2The parameter estimates are divided by 105 for better visualisation of the estimates
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?tablename? S2 – continued from previous page

No. Covariates P1 P2 M F Unm

15 Below national median income · · · · ·

16 Above national median income · · · · ·

c) educational level:

17 Pre-high school · · · · ·

18 High school · · · · ·

19 Post-secondary – less than 3 years · · · · ·

20 Post-secondary – 3 years or longer · · · · ·

d) age:

21 0 – 5 1.917 2.120 2.780 3.782 3.786

22 6 – 9 0.045 · 1.197 · ·

23 10 – 15 2.123 2.552 3.126 0.937 0.924

24 16 – 19 · · · · ·

25 20 – 24 · · · · ·

26 25 – 29 · · · · ·

27 30 – 34 · · · · ·

28 35 – 39 · 4.098 · 9.585 1.289

29 40 – 44 · · · · ·

30 45 – 49 · · · · ·

31 50 – 54 · · · · -1.541

32 55 – 59 · -0.901 · · ·

33 60 – 64 -6.267 -2.451 -3.532 · -3.204

34 65 – 69 -0.466 · · · -0.144

35 70 – 74 · · · · ·

36 75 – 79 · · · · ·

Continued on next page
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?tablename? S2 – continued from previous page

No. Covariates P1 P2 M F Unm

37 80 + · · · · ·

e) gender:

38 Female · · · · ·

39 Male · · · · ·

f) background:

40 Swedish background · · · · ·

41 Foreign background · · · · ·

g) household economic standard:

42 Below the national median · · · · ·

43 Above the national median · · · · ·

Intercept parameter estimate: 3.255 -4.821 -4.872 -2.757 6.651

S7. Further analysis on emergency alarm call events with priority 2 and unmarked events

In a broad sense, the three approaches, i.e., i) the estimated spatial intensity based on the original

spatial covariates plus the first-order interaction terms, and the estimated spatial intensities that

are obtained using ii) the estimated dense model and iii) the parsimonious/sparse model based

on only the original spatial covariates, have similar performance for the marginal point patterns

corresponding to the marks priority level 1, male, and female. Here we present the results of the

three approaches, i.e., the estimated spatial intensity using the estimated model based on the original

spatial covariates and the first-order interaction terms; the estimated spatial intensities using the

estimated dense and the parsimonious/sparse models based on only the original spatial covariates.

Analogously to Figure 2, Figure S6 illustrates the fitted spatial intensities using the three approaches

for the marginal point pattern with priority level 2.
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Fig. S6. The estimated spatial intensities of the emergency alarm call events with priority level 2 using the estimated
model based on the original spatial covariates and the first-order interaction terms, the estimated dense and sparse
models, which are based on only the original covariates, respectively. The performance of the estimated models can be
evaluated based on the pattern of the events in the observed marginal spatial point pattern. Note that we have scaled the
intensity estimates to range between 0 and 1 so that we may compare them more easily.

The figure clearly demonstrates that the dense and sparse models capture the spatial distribution of

the events more accurately than the estimated model based on the original spatial covariates and the

first-order interaction terms. Those spatial covariates in the dense model with non-zero estimated

coefficients that continue to exist in the sparse model, i.e., those spatial covariates with non-zero

estimated coefficients, have a strong association with the spatial intensity of the events. As the

figure shows, the estimated dense and sparse models perform well in capturing the spatial variation

of the events, and, relatively speaking, we can loosely and strongly interpret the results from the

dense and sparse models, respectively.

Next, we examine the modelling of the spatial intensity function for unmarked ambulance call data,

i.e., we ignore the marks of the ambulance call data, using only the original spatial covariates. Here,

we are interested in recognising how the marks influence the inclusion of different covariates. As in

the modelling of each marginal spatial point pattern, the spatial intensity function modelling of the

unmarked spatial point pattern based solely on the original spatial covariates is expected to better

capture the spatial distribution of the emergency alarm call events than the corresponding model

setting including both the original spatial covariates and the first-order interaction terms. Then,

using only the original spatial covariates, we focus on modelling the spatial intensity function of

the unmarked ambulance call data. The last column in Table S1 presents the estimated dense model

for the unmarked spatial point pattern, while the last column in Table S2 displays the corresponding

sparse model for the unmarked spatial point pattern that is obtained by utilising the one-standard-
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error rule. Figure S7 shows the estimated spatial intensities of the unmarked ambulance call data

using the estimated dense and sparse models.
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Fig. S7. The estimated spatial intensities of the unmarked ambulance call data using the estimated dense model (left)
and sparse model (middle). The pattern of the events in the observed unmarked spatial point pattern (right) can be used
to assess the performance of the estimated models. To make it easier to compare the intensity estimates, we scaled
them to have a range between 0 and 1.

In the presence of the other covariates, from the coefficients for the spatial locations in Table S1,

we see that there is a slight positive trend to the east/the coast and to the south. This is not sur-

prising as this is where the majority of the population lives; most likely, we here catch some of the

residual effects which the demographic covariates do not manage to catch. Moreover, regarding the

distance-based covariates, which are all on the same scale, the biggest effect, in general, seems to

come from the distance to the road network, which is not surprising, followed by the distance to bus

stops. When looking simultaneously at the coefficients for the population density and the bench-

mark intensity, which is intended to reflect mobility, for priority level 1 calls both tend to increase

the risk; they thus enhance each other which we interpret as there being a mobility structure which

we actually catch here. In the case of the unmarked events and the priority level 2 events, on the

other hand, these two go in opposite directions, which could indicate that they cancel each other

out, to some degree, as well as that there may be places with a low population density where there,

relatively speaking, is a higher frequency of events. Interestingly, for females these two covariates

do not seem to have an effect on the outcome whereas for men we see the reversed of what we

saw in the case of priority level 2. We further note that the bus stop density, which is intended to

reflect an additional layer of mobility, has positive coefficients for all marks except priority level

2; we interpret this as more severe cases happening in places where there is a larger amount of

human mobility. Turning to the line density covariates, not surprisingly, we have that the main road
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network impacts the risk positively. Turning to the socioeconomic covariates, we find that living

in an impoverished area, versus in an above-national median income area, markedly increases the

risk, irrespectively of the mark/group considered. Quite interestingly, areas with a higher propor-

tion of educated persons seem to have a higher event frequency, which may be a reflection of lack

of education making people adverse to calling an ambulance, in favour of seeking help in other

ways. Employment rate does not seem to play a role. We further see that the most priority level 1

calls occur in areas inhabited by larger proportions of certain young and certain old age categories.

With a few exceptions and a bit of variation, the picture is more or less the same for the other

marks/groups. In fact, having a high proportion of young living in an area seems to be one of the

main sociodemographic drivers here. Despite the effect being weak, we see that having a higher

proportion of males in an area decreases number of priority level 2 calls but increases the number

of priority level 1 calls. Moreover, having a (non-)Swedish background does not seem to have a

big impact, which could indicate that it is primarily the poverty of one’s area (impoverished areas

are to a larger degree inhabited by people of non-Swedish background) that has an impact on the

number events taking place there. By considering the intercept terms as indicators for how much of

the spatial variation is caught by the included covariates, we see that the mark category female has

a markedly higher intercept, which could indicate that additional covariates could have increased

the fit of the model. We would like to point out that the above interpretations are contingent on the

presence of other covariates in the model with non-zero coefficients.

Based on the results in Table S2, we can make a strong interpretation in comparison to the results in

Table S1. Here we see that there is a slight positive trend to the east/the coast and to the south and

that, in the case of the distance-based covariates, the biggest effect seems to come from the distance

to the road network, followed by the distance to bus stops. The actual bus stop density in an area

also seems to increase the risk. Moreover, here, none of the sociodemographic covariates, except

for the age proportion covariates, seem to have an impact on the outcome. In particular, for each

marks/groups we see that having a higher proportion of children in an area has a clear impact on the
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outcome. Here, having a larger proportion elderly does not seem have an effect. In fact, when the

number of retirees increases, the risk seems to decrease. Here, throughout, the orders of magnitude

of the intercept terms is quite small, which could be an indication of a good fit.
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