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Regularised Semi-parametric Composite
Likelihood Intensity Modelling of a Swedish

Spatial Ambulance Call Point Pattern
Fekadu L. Bayisa, Markus Ådahl, Patrik Rydén, and Ottmar Cronie

Motivated by the development of optimal dispatching strategies for prehospital
resources, we model the spatial distribution of ambulance call events in the Swedish
municipality Skellefteå during 2014–2018 in order to identify important spatial covari-
ates and discern hotspot regions. Our large-scale multivariate data point pattern of call
events consists of spatial locations and marks containing the associated priority levels
and sex labels. The covariates used are related to road network coverage, population den-
sity, and socio-economic status. For eachmarginal point pattern, wemodel the associated
intensity function bymeans of a log-linear function of the covariates and their interaction
terms, in combination with lasso-like elastic-net regularized composite/Poisson process
likelihood estimation. This enables variable selection and collinearity adjustment as well
as reduction of variance inflation from overfitting and bias from underfitting. To incor-
porate mobility adjustment, reflecting people’s movement patterns, we also include a
nonparametric (kernel) intensity estimate as an additional covariate. The kernel inten-
sity estimation performed here exploits a new heuristic bandwidth selection algorithm.
We discover that hotspot regions occur along dense parts of the road network. A mean
absolute error evaluation of the fitted model indicates that it is suitable for designing
prehospital resource dispatching strategies.

Supplementary materials accompanying this paper appear online.

Key Words: Bandwidth selection; Cyclic coordinate descent algorithm; Emergency
alarm; Inhomogeneous Poisson process; Lasso-like elastic-net; Multivariate point pro-
cess.

1. INTRODUCTION

In many (if not most) countries/regions, the prehospital resources available, e.g., ambu-
lances, are scarce, and this clearly affects the availability and general quality of the pre-

F. L. Bayisa ·M. Ådahl · P. Rydén, Department of Mathematics andMathematical Statistics, Umeå University, 901
87Umeå, Sweden. F. L. Bayisa, Department ofMathematics and Statistics, Auburn University, Auburn, AL 36849,
USA. O. Cronie (B) Department of Mathematical Sciences, Chalmers University of Technology and University
of Gothenburg, 412 96 Gothenburg, Sweden. School of Public Health and Community Medicine, Institute of
Medicine, University of Gothenburg, Gothenburg, Sweden (E-mail: ottmar@alumni.chalmers.se).

© 2023 The Author(s)
Journal of Agricultural, Biological, and Environmental Statistics
https://doi.org/10.1007/s13253-023-00534-5

https://doi.org/10.1007/s13253-023-00534-5
http://orcid.org/0000-0002-6721-8608
mailto:ottmar@alumni.chalmers.se
http://crossmark.crossref.org/dialog/?doi=10.1007/s13253-023-00534-5&domain=pdf


F. L. Bayisa et al.

hospital service in question. For example, a small decrease in the median response time,
which could be the effect of the addition of an ambulance, could save a significant number
of lives annually. However, simply adding additional ambulances to a given region might
not necessarily yield the expected outcome, i.e., drastically decreased response times, but
instead the main challenge might be one of resource optimisation. More specifically, it may
very well be the case that the existing resources are not utilised optimally; note that, given an
expected performance outcome in terms of the response time distribution, one might have
to both add and optimise prehospital resources. Moreover, in most/all cases, the addition
of a new ambulance comes at a relatively high cost, so simply adding ambulances until the
expected outcome has been achieved is likely never a viable option. Such optimisation can
be quite challenging and extensive; in 2018, in Sweden, approximately 660 ambulances
responded to roughly 1.2 million ambulance/emergency alarm calls, i.e., events defined by
the deployment of an ambulance. In addition, the deployment of ambulances in 2018 cost
more than 4 billion Swedish krona (Byrsell et al. 2021).

Carrying out resource optimisation within a prehospital care organisation/system, which
to a large degree boils down to placing ambulance stations at locations for which, e.g., the
median response time is minimised annually, requires knowledge/ understanding of where
(and when) calls tend to occur spatially (and temporally). In essence, minimising the
response times of ambulances is crucial for obtaining the desired clinical outcomes fol-
lowing ambulance calls (O’keeffe et al. 2011).

The call occurrence risk can be influenced by various underlying factors, such as demo-
graphic factors. More specifically, within the spatial context, if one is able to exploit dif-
ferent covariates or predictors to model the expected number of calls occurring within a
given region, within an arbitrary period of time, then one can obtain an understanding of
which spatial population characteristics, e.g., age distribution in a given subregion, that are
driving the risk of an ambulance call occurring at a given spatial location. In addition, such
a model may be extended to be exploited for predictive purposes, most notably within a
spatio-temporal context. One can easily imagine that the distribution of calls (in Sweden)
is complex, dynamical, and heterogeneously distributed within the spatial study region.
This work is aimed at describing the spatial dynamics of ambulance calls in the munici-
pality of Skellefteå, Sweden. The main focus of our study is to generate a risk-map for the
ambulance calls, which is modelled by means of different spatial covariates, and to identify
hotspot regions in Skellefteå, which can play a key role in designing optimal dispatching
strategies for prehospital resources. It also focuses on identifying spatial covariates that tend
to influence the occurrence of call events. Hence, we aim for a model with good predictive
performance.

Note that, a priori, we do not know howmany calls there will be within the spatial region
studied and within the timeframe considered, which here is given by the years 2014–2018.
In addition, we have access to the exact (GPS) locations of the events, as well as additional
information, so-calledmarks, attached to each event. Such datasets are commonly referred to
as (marked) point patterns, and their natural modelling framework is that of (marked) spatial
point processes (Baddeley et al. 2015), which may be thought of as generalised random
samples with the properties that the number of points/elements in the sample is allowed to
be random and the points are allowed to be dependent. Here, in our specific dataset, each
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event has two mark components attached to each spatial location: the priority/risk level (1
or 2) of the call and the gender (male or female) of the patient associated with the call.

The univariate properties of a point process are most commonly characterised through its
intensity function. In most applications, it is unrealistic to assume that the underlying point
process is homogeneous and there are various approaches available to deal with the spatial
inhomogeneity of the points/events (Baddeley et al. 2015). Quite often, one has access to a
collection of spatial covariates, which may be used to model the spatially varying intensity
function. In particular, it is commonly assumed that the intensity has a log-linear form.
Here, common practice is to first model the intensity function using a Poisson process
log-likelihood function, which is given by a closed-form expression of only the (assumed)
intensity function. In the case of a general point process, although a Poisson process is
a point process with independent points/events and Poisson distributed counts within any
subregion, the indicated intensity estimation approach still has good large sample properties
(Coeurjolly and Lavancier 2019).

Once an intensity function estimate is obtained, one would proceed with analysing and
modelling possible spatial interaction (Baddeley et al. 2000, 2015). It should here be empha-
sised that observed clumps of points in a point pattern may be the result of either inho-
mogeneity, spatial interaction (clustering/aggregation/attraction) or both. Since our main
interest here is generating a spatial risk map for the observed events, i.e., the ambulance
calls, which can be exploited for predictive purposes and also used as input in the problem
of designing an optimal dispatching strategy of ambulances, we will solely focus on the
former, i.e., modelling the intensity function as a log-linear function of a collection of spa-
tial covariates. This allows us to address one of the main objectives of this work, which is
to identify hotspot regions of the events. A further main objective of this work is to select
covariates governing the intensity function. The original spatial covariates and the created
spatial covariates used in this study are detailed in Sections S4 and S5.

Aside from including the individual covariates in our model framework, we also include
the cross-/interaction-terms given by the products of the individual covariates, since there
may potentially be interactive effects of the covariates. This results in a high-dimensional
data setting (a total of nine hundred eighty-nine covariates), with possibly hard to interpret
cross-terms, and it is clearly a challenge to identify which covariates sensibly explain the
actual intensity of the events. As a solution, one may apply regularisation when fitting
the model, which, aside from carrying out variable selection, also reduces variance inflation
from overfitting and bias from underfitting. In addition, we want to adjust for the fact that the
demographic covariates we have access to only reflect where different demographic groups
live, and not how they move around. Since we do not have access to any human mobility
covariates, we have to be pragmatic and use some proxy for such covariates. Our solution
is to additionally include a nonparametric intensity estimate of the events as an additional
covariate, yielding a semi-parametric approach. People may require an ambulance not only
at home or at work. The nonparametric intensity estimate then provides the likelihood of
incidents along a continuum, and we believe that we can catch some of this mobility by
incorporating the nonparametric intensity estimate.

These added covariates would thus (to some degree) represent the portion of the intensity
function that the original spatial covariates could not explain. Here we have another benefit
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of the regularisation: having accounted for the other covariates, if this added covariate has
little/no influence on the intensity function, then the regularisation should indicate this.
Many of the spatial covariates which we deal with are most likely strongly correlated,
which calls for some collinearity adjustment. Moreover, variable selection in the modelling
of the spatially varying intensity function is most likely necessary in the modelling of
ambulance call events. Tibshirani (1996) introduced a penalised likelihood procedure, which
has been a cornerstone in the development of variable selection methods via regularisation
(or penalisation). The idea of Tibshirani (1996) is to add a least absolute shrinkage and
selection operator (lasso) penalty to the loss function, often the likelihood function, to shrink
small coefficients of covariates to zero while retaining covariates with large coefficients in
the model, thus leaving us with a sparse model with highly influential covariates. Hence, the
approach simultaneously performs variable selection and parameter estimation. A plethora
of regularisation methods, such as elastic-net (Zou and Hastie 2005) and adaptive lasso (Zou
2006), have been developed subsequent to the work of Tibshirani (1996). A predecessor of
the lasso penalty, the ridge penalty, which is an �2-penalty, may be combined linearly with
the lasso �1-penalty to obtain elastic-net regularisation, which is used to select variables
and shrinks the coefficients of correlated variables to each other. It should be emphasised
that these shrinkage/regularisation methods have the effect of balancing estimation bias
and variance, which is an additional motivation for their employment. Turning to the point
process context, also here regularization/variable selection has been developed to reduce
variance inflation from overfitting and bias from underfitting. Yue and Loh (2015), Renner
and Warton (2013) and Thurman and Zhu (2014) have used regularisation methods such
as lasso, adaptive lasso, and elastic-net to model spatial point processes. Choiruddin et al.
(2018) further extended the above works to include a larger range of models and penalties.
We here essentially follow the track of Yue and Loh (2015).

With regard to the estimation of the regularisedmodels, Efron et al. (2004) have developed
the least angle regression to estimate the entire lasso regularisation paths. According to
Friedman et al. (2007) and Friedman et al. (2010a), in comparison with the least angle
regression algorithm, the cyclical coordinate descent algorithm computes the regularisation
paths of different regularisation methods with lower computational costs. In this study, the
cyclical coordinate descent method has been used to estimate the entire regularisation paths
since it is computationally fast on large datasets (Fercoq and Richtárik 2016). The general
idea of the coordinate descent algorithm is that the objective function is optimised with
respect to a single parameter at a time, and the optimisation of the objective function is
iteratively carried out for all parameters until a convergence criterion is fulfilled. In this
work, the objective function represents a regularised quadratic approximation to the log-
likelihood function of an inhomogeneous spatial Poisson process.

Two approaches have been used to evaluate the performance of the proposed model.
The first approach involves training the proposed model on the whole dataset. We treat the
trained (or estimated) intensity function on the whole dataset as the true intensity function
of the call events. Based on the estimated intensity function, p-thinning/undersampling,
using 70% of the whole dataset, has been used to generate a hundred datasets, which are
then used to generate a hundred intensity images. Using quantiles and mean absolute errors
between pixel-by-pixel differences of the estimated image (i.e., image based on the whole
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dataset) and the hundred estimated intensity images (i.e., the intensity images based on the
hundred undersampled datasets) can be used to evaluate the stability of the proposed model
in estimating the intensity function of the emergency alarm call events. The second approach
is to visually evaluate the performance of the proposed model. We train the proposed model
on 70% and validate it on the remaining 30% of the whole dataset. Then, we compare the
hotspot regions in the estimated/trained intensity images to the held out data. If the patterns
of hotspot regions and the spatial locations in the respective datasets seemingly coincide
with each other, then the proposed model is more likely applicable for the modelling of the
call events.
In summary, the aim of this article is to explore the space-dynamics of ambulance calls and
to identify spatial covariates associated with the call events. The result of this work will be
used as input in designing optimal dispatching strategies for prehospital resources such as
ambulances.

Throughout, entries with the prefix ’S’ refer to the supplementarymaterials. The structure
of the article is as follows. Section2 and SectionS1 provide an overview of the data and
statistical methods used in this work. Section S5 and Section 4 present the created spatial
features for modelling the call events and the results of the study. We evaluate the fitted
model in Section 5, and discuss the implication of the results and provide a summary of the
work in Section 6.

2. DATA

Given a spatial/geographical region W , which we assume to be a subset of R2, by
an event we will mean a location (GPS position) in W to which an ambulance is dis-
patched during a given time period and the total collection of events will be referred to
as an ambulance/emergency call dataset. Here, the available information associated to an
ambulance call dataset is the collection of locations {x1, . . . , xn} ⊆ W , n ≥ 0, as well a
mark mi which is attached to each location xi , i = 1, . . . , n. As we a priori do not know
n, i.e., how many calls there will be within W during the period in question, such a dataset
y = {(x1,m1), . . . , (xn,mn)} is most naturally classified as amarked point pattern (Badde-
ley et al. 2015). Note that when the marks are discrete, we usually refer to the point pattern
as multivariate/multitype rather than as marked.

2.1. SPATIAL AMBULANCE CALL DATASET

Turning to the dataset at hand, W will represent the Swedish municipality of Skellefteå,
and the timeperiod under consideration is givenby the years 2014–2018.Our dataset consists
of 14,919 events where the mark structure is such that for each event, and thereby the person
associated with the ambulance call in question, there is a recording of the event’s priority
label (1 indicates the highest severity, implying turned on sirens, and 2 is a lower severity
level) and a recording of the sex/gender of the person (female or male). Among the 14,919
events, 7204 and 7715 of them have priority labels 1 and 2, respectively. Unfortunately, a
missing data issue is present here: 5236 and 5238 of the events are recorded as male and



F. L. Bayisa et al.

Figure 1. Ambulance
emergency alarm call locations
and the main road network of
Skellefteå .

female, respectively, and the remaining events do not have any sex recording for the person
related to the event, so they are labelled as “missing”. As our interest in the sex label lies
mostly in highlighting possible structural differences related to the different covariates at
hand, we have decided to proceed by studying the data as two separatemarked point patterns:
one where the marks are given by the priority labels and one where the marks are given by
the sex labels. It should be said that there are other ways of handling this.

Figure 1 demonstrates the locations of all calls as well as the main road network of
Skellefteå, Sweden. The figure highlights that the call locations are unevenly distributed
over the study region and they tend to lie along the road network, which will make the
statistical modelling quite challenging. We moved each location of the events randomly
by at least one kilometer for data privacy reasons, i.e., to avoid the possibility of tracking
plotted data to real cases/exact positions. Moving each event location at random by at least
one kilometer works not only for this plot but also for the remaining data plots.

2.2. SPATIAL COVARIATES

In order to properly model the ambulance call risk, we also need a range of spatial
covariates. To begin with, a closer look at Figure 1 and the relation between the road network
and the call locations justifies the inclusion of road network related covariates. In addition,
demographic spatial covariates should also play a role here, given that different demographic
zones have different behavioural patterns. The demographic spatial covariates considered
have been supplied by Statistics Sweden (SCB), and the road network related covariates
considered have been provided by the Swedish Transport Administration (Trafikverket).
Here, we will distinguish between two categories of covariates. The first is the collection of
’original’ covariates, which are raw covariates retrieved from SOS alarm, Statistics Sweden
(SCB), and Trafikverket. These covariates will, in turn, be used to generate a collection of
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new covariates, which we will refer to as ’created’ covariates. In Section S5, we outline the
construction of the created covariates in detail.

All covariates considered have been based on the year 2018 and in their final forms they
are given as functions of the form zi (s), s ∈ W . As the majority of these are demographic in
nature, and since the demography of Sweden did not change at a high pace, we believe that
covariates based on the year 2018 can be reasonably used to model the spatial point pattern
data over the period 2014–2018.Moreover, in addition to including each individual covariate
zi in the analysis, we also include each interaction term zi j (s) = zi (s)z j (s), s ∈ W , which
makes sense because we suspect that many of the covariates interact in one way or another.
We have a total of 43 individual spatial covariates and, all in all, we consider a total of 989
(= (43

2

)+2×43) covariates as candidates to be included in the modelling of the ambulance
call risk.

2.2.1. Demographic Spatial Covariates

Each demographic spatial covariate zi (s), s ∈ W,which has been sampled on the 31st of
December 2018, is piecewise constant and its value changes depending onwhichDeSO zone
the location s belongs to. The DeSO zones, which we use to define different demographic
zones, partition Sweden into 5984 smaller spatial sub-regions, which do not overlap with
the borders of any of the country’s 290 municipalities and are encoded based on, e.g., how
rural a DeSO zone is. The spatial covariates at hand include population density, population
by age, population by sex, population by Swedish/foreign background, population 20–
64 years of age by occupation, population 25–64 years of age by education level, population
20+ years of age by accumulated income, population 20+ years of age by accumulated
income, and population 20+ years of age by economical standard. It is worth emphasising
that the covariates relating to sex (proportions of women and men in a DeSO) represent the
underlying population structure, while the marks male/female relate to individual observed
cases. We present a short description of these covariates in Section S4 (some are graphically
illustrated in Figure S1).

2.2.2. Road Network Related Covariates

The road network data at hand have been broken down into sub-networks, which reflect
the complete road network, the main road network, and the densely populated areas; a
graphical illustration of these can be found in Figure S3. Each network is included in
the analysis with the aim of indicating a different level of call activity: The complete road
network indicates the overall spatial region where calls tend to occur, the main road network
indicates the parts of the complete network where there is a reasonable amount of activity,
and the densely populated area indicates on which parts of the complete road network most
people live.

We would further like to adjust for the fact that the covariates above mainly reflect where
different people (of different demographic groups) live, and not how they move about.
Unfortunately, we do not have access to explicit mobility covariates such as aggregated
movement patterns in the population, and, as one may guess, people do not only need
access to ambulances when they are at home. A partial solution to this, as we see it, is to
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consider an additional covariate, namely a spatial point pattern of bus stop locations. The
idea is that bus stops reflect where there is a large amount of human mobility/activity. It
may be noted that the above original covariates are not functions of the form zi (s), s ∈ W ,
but rather line segment patterns and point patterns (Baddeley et al. 2015). Our approach to
including them in the analysis is to let them give rise to a set of created covariates, which
are described in detail in Section S6.

2.2.3. The Spatial Domain

We finally emphasise that the x- and y-coordinates of the spatial domainW ⊆ R
2 will be

included as covariates. These are intended to explain residual and explicit spatial variation,
having adjusted for the full range of spatial covariates.

3. STATISTICAL METHODS

As emphasised in Section 2, in particular throughFigure 1, the ambulance calls aremainly
located on/close to the underlying road network. One way to deal with the analysis is to
project all events to a linear network representation of the road network and proceed with a
linear network point pattern analysis (Baddeley et al. 2021). However, we here avoid such
projections and instead choose to treat the spatial domain, and thereby the data point pattern,
as Euclidean. As a result, wewill instead introduce road network generated covariates which
control that the fitted model generates events close to the underlying road network; details
on the construction of such covariates can be found in Section S6.

3.1. POINT PROCESS PRELIMINARIES

In application areas such as environmental science, epidemiology, ecology, etc., aside
from the spatial locations of the events, additional information about the events may be
available, which can be associated to the locations of the events. Such information pieces
are referred to as marks, and by including them in the analysis, we can often obtain more
realistic spatial point process models for the events—note that, in contrast, a covariate
reflects information which is known throughout the spatial domain before realisation of the
events. For instance, as we saw above, it is both common and practically appropriate in
emergency medical services to document the priority levels, the gender, the incident time,
etc. for a call/patient; recall that by spatial points of the events we mean the set of spatial
locations to which ambulances have been dispatched or the set of spatial locations from
which calls have been made to the dispatcher/emergency alarm center.

As previously indicated, marked point patterns are modelled by marked point processes
(Baddeley et al. 2015). Given a spatial domain W ⊆ R

2 and a (Polish) mark space M, a
point process Y = {(xi ,mi )}Ni=1 ⊆ W ×M, 0 ≤ N ≤ ∞, is a random subset such that, with
probability 1,Y∩A×B has finite cardinalityY (A×B) for any A×B ⊆ W×M; throughout,
any set under consideration is a Borel set. If we additionally have that Yg = {xi }Ni=1 ⊆ W
is a well-defined point process on W in its own right, then we say that Y is a marked point
process. Note that each (xi ,mi ) is a random variable and note in particular that if W is
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bounded then Y is automatically a marked point process. When the mark space is discrete,
e.g., M = {1, 2, . . . , k}, k > 1, we say that Y is multitype and we note that we may
split Y into the marginal (purely spatial) point processes Y j = {xi : (xi ,mi ) ∈ Y,mi = j},
j = 1, 2, . . . , k. This collectionmay formally be represented by the vector (Y1,Y2, . . . ,Yk),
which is referred to as amultivariate point process, and one commonly uses the two notions
interchangeably.

3.2. SPATIAL INTENSITY FUNCTIONS

Our main interest here is to create a set of “heat maps” which describe the risk of
a call occurring at a given spatial location x ∈ W , given an associated mark. This is
accomplished by assuming that our data are generated by a multivariate point process Y ⊆
W × {1, 2, . . . , k}, k > 1 and then modelling the spatial intensity function of each of the
component Y j , j = 1, 2, . . . , k. Formally, we define the spatial intensity function ρY of Y
as the Radon–Nikodym derivative of the intensity measure w.r.t. the product of a Lebesgue
measure and a counting measure, i.e.,

A × B �→ E[Y (A × B)] =
k∑

j=1

1{ j ∈ B}
∫

A
ρY (x, j)dx, A × B ⊆ W × {1, 2, . . . , k},

where 1{·} denotes the indicator function. Heuristically, ρY (x, j)dx may be interpreted
as the probability that Y has an event with mark j in an infinitesimal neighbourhood
of x with size dx . Since E[Y (A × { j})] = E[Y j (A)], it follows that the spatial inten-
sity function of Y j satisfies ρ j (x) = ρY (x, j), x ∈ W , j = 1, 2, . . . , k. By mod-
elling the marginal intensities ρ j separately, we obtain a model for ρY . Letting X denote
an arbitrary Y j , j = 1, 2, . . . , k, we see that its spatial intensity function ρ satisfies
E[X (A)] = ∫

A ρ(x)dx , A ⊆ W , or equivalently ρ(x) = lim‖dx‖→0 E [X (dx)] /‖dx‖. If a
point process has constant intensity function then we say that it is homogeneous, otherwise
we refer to it as inhomogeneous. In a similar fashion, we may define higher-order inten-
sity functions ρn(x1, . . . , xn), x1 . . . , xn ∈ W , n ≥ 2 as ρn(x1, . . . , xn) dx1, . . . , dxn =
E[X (dx1) · · · X (dxn)] = P(X (dx1) = 1, . . . , X (dxn) = 1) for disjoint infinitesimal
neighbourhoods dx1, . . . , dxn ⊆ W of x1, . . . , xn . If xi = x j for any i �= j , then
ρn(x1, . . . , xn) = 0.

3.3. POISSON PROCESSES

Poisson processes, which satisfy ρn(x1, x2, . . . , xn) = ρ(x1)ρ(x2) · · · ρ(xn), n ≥ 1,
and that X (A) is Poisson distributed with mean

∫
A ρ(x)dx for any A ⊆ W , are baseline

models for the case of complete spatial randomness, i.e., when there is no spatial inter-
action/dependence present. Poisson processes are completely governed by their spatially
varying intensity functions and may be viewed as generalisations of random samples to the
case where the size of the sample is random.
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3.4. PARAMETRIC SPATIAL INTENSITY FUNCTION MODELLING

We have observed a high degree of inhomogeneity in the ambulance call locations and
we believe that a large portion of this inhomogeneity can be attributed to (some of) the
spatial covariates which we have access to. Hence, as a starting point, for a given mark, we
will consider parametric modelling of the call locations.

Consider a family of spatial intensity functions ρθ (x), x ∈ W , which depends on spatial
covariates through a parameter vector θ ∈ R

K+1. A common and convenient approach
when modelling the intensity function of an arbitrary point process is to proceed as if we
are considering a Poisson process, which is commonly referred to as composite likelihood
estimation and is oftenmotivated by good large sample properties (Coeurjolly and Lavancier
2019). Accordingly, consider a point pattern x = {x1, x2, . . . , xn} ⊆ W which represents
a realisation of a spatial point process X restricted to a bounded study region W . The
associated Poisson process log-likelihood function logL (θ | x) can be approximated by

logL (θ | x) ≈
m∑

j=1

(
y j

(
β0 + z(s j )β ′) − exp

{
β0 + z(s j )β ′})w j , (1)

where z(x) = (z1(x), z2(x), . . . , zK (x)) is a vector of spatial covariates at location x ∈ W ,
si ∈ W represents the observed spatial location of events or a dummy point, y j = a j

w j
and

a j = 1{s j ∈ x}; for details, see Section S1.1 of the supplementary material. It follows that
the right-hand side of expression (1) is a weighted log-likelihood function of independent
Poisson random variables Y j , j = 1, 2, . . . ,m. That is, for j = 1, 2, . . . ,m, y j are the
observations,ρθ (s j ) = exp{β0+z(s j )β ′} are the parameters of thePoisson distributions, and
w j are the weights. Thus, the weighted log-likelihood function in Eq. (1) can be maximised
using standard software for fitting generalised linear models (McCullagh and Nelder 1989).

3.5. VARIABLE SELECTION: ELASTIC-NET REGULARISATION

Incorporating regularisation into the log-likelihood function inEq. (1) can help to simulta-
neously select variables and estimate the parameters of themodel.Apenalised log-likelihood
function based on Eq. (1) takes the form

Lp (θ) ≈ 1

m
logL (θ | x) + λR(β), (2)

where R(β) is a regularisation method or penalty function, and λ ≥ 0 is a tuning or
smoothing parameter determining the strength of the penalty, or the amount of shrinkage.
Several penalties such as garrote (Breiman 1995), least absolute shrinkage and selection
operator (lasso), elastic-net and fused lasso (Tibshirani et al. 2005), group lasso (Yuan and
Lin 2006),Berhu (Owen2007), adaptive lasso (Zou2006), andLAD-lasso (Wang et al. 2007)
have been developed for penalised regression modelling. The most common regularisation
methods are lasso, ridge regression, elastic-net, and adaptive lasso. In short, lasso has a
tendency to shrink several coefficients to zero, leaving only the most influential ones in the
model, while ridge regression shrinks the coefficients of correlated covariates towards each
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other to borrow strength from each other and adjust for collinearity (Friedman et al. 2010a).
The elastic-net penalty provides a mix between the ridge and the lasso penalties, and it is
useful in cases where there are many correlated covariates or when the number of covariates
exceeds the size of observations. It has the form

R(β) =
K∑

k=1

(
1

2
(1 − α) β2

k + α‖βk‖
)

, (3)

where the elastic-net parameter α ∈ [0, 1] turns (3) into a ridge penalty if α = 0 and a
lasso penalty if α = 1. If α = 1 − ε for small ε > 0, then elastic-net performs like lasso
but it avoids unstable behaviour due to extreme correlation (Yue and Loh 2015); empirical
studies have indicated that the elastic-net technique tends to outperform lasso on data with
highly correlated features (Comber and Harris 2018). Zou (2006) proposed an adaptive
lasso to address the shortcomings of lasso, such as biased estimates of large coefficients
and conflict between optimal prediction and consistent variable selection. According to
Krämer et al. (2009), however, the performance of adaptive lasso is poor in the presence of
highly correlated variables. We here follow Yue and Loh (2015) by considering elastic-net
penalisation and substituting Eq. (3) into Eq. (2), whereby the optimization problem of the
elastic-net penalization of the log-likelihood function can be summarized as

argmin
θ∈RK+1

Lp (θ) ≈ argmin
θ∈RK+1

{

− 1

m
logL (θ) + λ

K∑

k=1

{
1

2
(1 − α) β2

k + α‖βk‖
}}

. (4)

To deal with the optimisation problem in (4), we refer to Section S2 in supplementary
material.

3.6. SEMI-PARAMETRIC MODELLING AND A NEW BANDWIDTH SELECTION

APPROACH

In the spatial intensity function modeling of our ambulance data we do not have access to
explicit mobility covariates, such as aggregated movement patterns in the population. Our
solution to this is quite pragmatic and simple: we consider the semi-parametric approach
where we simply add a further spatial covariate to the existing collection of covariates,
which is given by a nonparametric (kernel) intensity estimate ρ̃(x), x ∈ W , and referred to
as the benchmark spatial intensity; see Section S3 of the supplementary material for details.
To this end, we propose a new heuristic algorithm for optimal bandwidth selection in kernel
intensity estimation; see Section S3.1 of the supplementary material for more information.
The idea here is that the inclusion of ρ̃, which is also included in the regularisation, should
pick up on regions where there is an increased intensity due to human mobility, which is
not reflected by the existing list of covariates.
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4. DATA ANALYSIS

Having presented the semi-parametric regularised fitting procedure to be employed, we
next turn to the modelling of the ambulance call data; recall the structure of the data (includ-
ing themissing sex/gender label issue) and that wemaymodel the intensity of eachmarginal
Y j separately. Our motivation for elastic-net regularisation is mainly that we have a large
number of spatial covariates, which may be highly correlated. The choice of α is subjective,
and we usually pick α between 0 and 1, and then proceed to the estimation of the proposed
model (Friedman et al. 2010a). Recall further that elastic-net performs like a lasso but avoids
unstable behaviour due to extreme correlation if the elastic-net parameter α is large enough
but less than one (Yue and Loh 2015); α = 1 yields lasso and α = 0 yields ridge. To be
as close as possible to lasso in terms of shrinkage/variable selection, while still reaping
the benefits of the ridge component of the elastic-net penalty, which can yield more stable
modelling, we here follow a recommendation of Friedman et al. (2010a) and Yue and Loh
(2015) where we set α = 0.95. Such lasso-like elastic-net regularisation results in variable
selection (coefficients of less determining covariates are set to zero), but the penalty also
forces highly correlated features to have similar coefficients.

4.1. MODELLING THE AMBULANCE CALL INTENSITY FUNCTION

The trace plots of the estimated coefficients for lasso and lasso-like elastic-net, as well as
covariates associated with the fitted intensities are presented in Section S6.1 of the supple-
mentary material. Also the tuning parameter selection method is shown in Section S6.1 of
the supplementary material. To get an overall view of the fitted intensities, in Figure 2, for
each marginal point pattern, we present a spatial interpolation of the fitted intensity over the
study region, based on the intensity estimates for the corresponding data points. Note that
we have scaled the intensity estimates to range between 0 and 1 so that we may compare
them more easily.

The aforementioned analyses have utilised the spatial covariates zi (s), s ∈ W , and the
interaction terms of the form zi (s)z j (s), both for i = j and i �= j . However, with this
approach it is not easy to interpret the results and present the estimated models. Therefore,
we are interested in further exploring the estimation of the intensity of the emergency alarm
call events using only the original spatial covariates zi (s), s ∈ W , i.e., no interactions of
spatial covariates in themodelling of the spatial intensity.Given the vast number of covariates
we consider when we include the interaction terms, modelling the spatial intensity of the
emergency alarm call events using only the original spatial covariates can help to identify
the spatial covariates that play a key role in determining the spatial distribution of the
emergency alarm call events, and it also eases the interpretation and presentation of the
results. Moreover, we can also compare the estimated intensities that are obtained by the
two approaches (i.e., modelling with only the original spatial covariates and modelling with
the original spatial covariates plus the first-order interaction terms) to discern the approach
that can be practicable. Using only the original spatial covariates, a lasso-like elastic-net
(α = 0.95) with an optimal tuning parameter estimate does not provide sparse solutions,
i.e., most of the coefficients of the spatial covariates are non-zero. That is to say, the lasso-
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Figure 2. The estimated spatial intensities of the emergency alarm calls and their corresponding observedmarginal
spatial point patterns. The first column presents estimated intensities for priority levels 1 and 2, respectively, while
the second column demonstrates their corresponding observed marginal spatial point patterns. In a similar manner,
the third column presents the estimated intensities for genders male and female, while the fourth column shows
their corresponding observed marginal spatial point patterns. Note that we have scaled the intensity estimates to
range between 0 and 1 so that we may compare them more easily.

like elastic-net provides dense solutions, i.e., it has a low rate of variable exclusion; see
Table S1 in Section S6.1 of the supplementary material. On the other hand, exploiting the
one-standard-error rule in Friedman et al. (2010b), where we pick the most parsimonious
estimated model within one standard error of the minimum, in the context of regularisation,
we present the result of the estimation for each of the intensity functions of themarginal point
patterns in Table S2 and also highlight the important covariates associated with the events in
SectionS6.1 of the supplementarymaterial. The three approaches,which are (i) the estimated
spatial intensity based on the original spatial covariates plus the first-order interaction terms,
and the estimated spatial intensities that are obtained using (ii) the estimated dense model
and (iii) the parsimonious/sparse model based on only the original spatial covariates, can all
be compared for how well they capture the spatial variation of the events. Here, we need to
remark thatwhenwe say densemodel and parsimonious/sparsemodel,we are referring to the
estimated models obtained based on only the original spatial covariates, i.e., no interaction
terms in the model setting. Figure2 indicates that the spatial distributions of the events are
well captured by their corresponding estimated spatial intensities, with the exception that
the distribution of the events with priority level 2 is not well captured by its corresponding
estimated spatial intensity. This can be viewed as a shortcoming of incorporating the original
covariates plus the first-order interaction terms when modelling the ambulance call events.
Hence, we are interested in comparing the performance of the estimated model based on
the original spatial covariates and the first-order interaction terms with that of the estimated
dense and sparse models based on only the original covariates on the marginal point pattern
corresponding to priority level 2; see Section S7 of the supplementary material. Section S7
also presents the result for the modelling of the spatial intensity function for the unmarked
ambulance call data, i.e., when we ignore the marks of the ambulance call data, using only
the original spatial covariates.
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In Figure 2, we further see that the intensity of priority level 2 has a smooth, almost constant,
shape, indicating that the risk does not change much spatially, and, in contrast, for priority
level 1we see clear peaks in the intensity, in various locations.We further see little difference
in the intensities for males and females, indicating that these two groups have a similar risk.
With regard to priority level 1, it seems that the spatial variation of the events is well
captured by the model that involves the original and first-order interaction terms. Among
others, some of the interaction terms that are associated with the spatial intensity function
for priority level 1 are population density and shortest distance to bus stops, benchmark
intensity and shortest distance to bus stops, benchmark intensity and shortest distance to a
densely populated area, bus stop density and shortest distance to main road networks, as
well as age (6–9) and population density.

5. EVALUATION OF THE FITTED MODEL

The evaluation of the fitted spatial models is generally challenging, and here we use two
approaches. Firstly, we evaluate the stability of the estimatedmodels. Arguing from the point
of view of Moradi et al. (2019), we consider p-thinning-based subsampling/undersampling
by retaining 70% of the observed points for the unmarked and marginal point patterns, to
compare the stability of the fitted models. The estimates of the spatial intensities obtained
for the unmarked and marginal point patterns using the fitted dense and sparse models are
treated as the true spatial intensities of the corresponding point patterns. In this context,
hereafter, we refer to the estimated spatial intensities based on the marginal and unmarked
point patterns as the true spatial intensities.Wegenerated one hundred undersampled random
realisations/thinnings, i.e., we retained 70% for each of the unmarked and marginal spatial
point patterns, in order to produce one hundred estimated spatial intensities for each of
the unmarked and marginal spatial point patterns. Pixel-wise mean absolute errors, the 5%
and 95% quantiles of pixel-wise absolute errors of the true intensities, and each of the one
hundred estimated spatial intensities are used to assess the stabilities of the fitted dense
and sparse models for each of the unmarked and marginal point patterns. Figure3 shows
the evaluation of the stabilities of the estimated dense models in estimating the spatial
intensities of the emergency alarm call events. The overall means and standard deviations
of the pixel-wise mean absolute errors for the dense models are 0.098 and 0.107, 0.099 and
0.123, 0.057 and 0.052, 0.060 and 0.052, and 0.052 and 0.051, respectively, for the point
patterns with priority level 1, priority level 2, male, and female, as well as for the unmarked
point pattern. Figure4 demonstrates the evaluation of the stabilities of the estimated sparse
models in estimating the spatial intensities of the emergency alarm call events. The overall
means and standard deviations of the pixel-wise mean absolute errors for the sparse models
for the priority level 1, priority level 2, male, and female point patterns, as well as for the
unmarked point pattern, are 0.103 and 0.128, 0.103 and 0.140, 0.056 and 0.058, 0.062 and
0.066, and 0.054 and 0.061, respectively. Based on a comparison of the plots in Figures 3
and 4, the estimated dense models seem to be more stable than the sparse models. Even
though the 95% and 5% quantiles of pixel-wise absolute errors for the estimated dense
models do not entirely lie below the corresponding 95% and 5% quantiles of pixel-wise
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absolute errors for the estimated sparse models, the maximum 95% and 5% quantiles can
be used to compare the stabilities of the estimated dense and sparse models. An estimated
model can be unstable if it has maximum 95% and 5% quantiles and has a broader band
between the two quantiles. Despite the fact that the overall means and standard deviations
of the pixel-wise mean absolute errors for the estimated dense and sparse models do not
differ much as the aforementioned results suggest, we still believe that the estimated dense
models are more stable than the estimated sparse models. Here, we want to emphasize that
the spatial covariates that continue to exist in the sparse model and have non-zero estimated
coefficients have a strong association with the emergency alarm call events, and as a result,
we may draw a strong interpretation based on the estimated sparse model.

We can also visually assess howwell the estimatedmodels capture the spatial distribution
of the emergency alarm call events. In order to do this, following the p-thinning-based
cross-validation (Monte-Carlo cross-validation) approach in Cronie et al. (2021), each of
the datasets corresponding to the unmarked and marginal point patterns can be randomly
divided into two parts, a training point pattern/set (retention probability 0.7) and a validation
point pattern/set. That is, for each of the unmarked and marginal point patterns, we estimate
the proposed model using 70% of the data and use the remaining 30% to assess/validate the
performance of the estimated models; we consider only one split. The predicted intensities
for the validation point patterns can be used together with the corresponding validation
point patterns to visually evaluate the performance of the estimated models. As can be seen
in Figure 5, the hotspot regions in the validation point patterns are well captured by their
respective predicted/estimated spatial intensities. The plots in the figure also suggest that
the estimated dense models seemingly perform better than their corresponding fitted sparse
models, which are taken to be submodels of the estimated dense models.

6. DISCUSSION

The purpose of this study is to model the spatial distribution of ambulance/medical emer-
gency alarm call events in order to establish a framework for developing optimal ambulance
dispatching strategies/algorithms, which are related to the response times and operational
costs of prehospital resources such as ambulances. Such optimal strategies can assist the
concerned body in providing efficient emergency medical assistance to life-threatening
emergencies as quickly as possible. Further, the locations of hotspot areas within the study
region are crucial components of such designs, i.e., identifying study area subregions with
a high risk of events plays a crucial role in developing the optimal dispatching strategies.
Understanding what drives the associated risk is thus paramount. This work focuses on dis-
cerning such hotspot areas aswell as selecting/exploring spatial covariates that are associated
with the spatial distribution of the call events.

Our modeling strategy is to treat the data as a realization of a spatial point process and
model its intensity function to quantify the spatially varying call risk. We assume that the
intensity function is a log-linear function of the spatial covariates under consideration and
their interaction terms, and we fit the intensity function by means of a Poisson process
log-likelihood function, i.e., we carry out composite likelihood estimation. To carry out
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Figure 5. A cross-validation-based evaluation of the performance of the estimated dense and sparse models in
estimating the spatial intensities of the emergency alarm call events. The estimated spatial intensities are shown
in the first and second rows using the estimated dense and sparse models based on the corresponding test datasets
in the third row. From left to right, the plots in the figure present the estimated spatial intensities for the test point
patterns with priority level 1, priority level 2, male, and female, as well as for the unmarked test point pattern. Note
that we have scaled the intensity estimates to range between 0 and 1 so that we may compare them more easily.
We also multiplied the normalized versions by 1000 for ease of visualisation.

variable selection and adjust for over-/under-fitting, a regularisation term is added to the
(approximated) log-likelihood function. Following Yue and Loh (2015), we have chosen to
employ an elastic-net penalty, which is useful when the number of covariates considered in
the modeling is large, in particular exceeds the total point count, or when the model contains
several correlated spatial covariates. The elastic-net penalty is governed by a parameter, α,
which controls howmuchweightweput on either the lasso or the ridge penalty, and by setting
α = 1 − ε for some small ε > 0, it performs much like the lasso, but avoids any unstable
behaviour caused by extreme correlations. Following a recommendation by Friedman et al.
(2010a) and Yue and Loh (2015), we used α = 0.95, i.e., we obtain a lasso-like elastic-net,
and tenfold cross-validation was used to select an optimal estimate of the tuning parameter
λ.

The primary challenge in this work is the nature of the spatial data; that is, the locations
of the events tend to be close to/on road networks. Traditional kernel smoothing methods
are incapable of displaying the spatial variation of emergency alarm call events. To address
this issue, semi-parametric modelling of the spatial intensity function of the events has
been considered, and it appears that the proposed approach is feasible for obtaining a good
estimated spatial intensity for the events, which will be used to design optimal ambulance
dispatching strategies to support emergency medical services as efficiently as possible, in
particular in life-threatening situations. Even though the semi-parametric modelling of the
spatial intensity function captures the spatial distribution of the emergency alarm call events
well, the effect of the nature of the spatial data persists. To address this issue,wewill continue
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towork on the spatial intensity functionmodelling but focusing on the linear network setting.
The proposed statistical method is tested with data gathered from Skellefteå, a municipality
in northern Sweden. Long term, our goal is to model the intensity for the region covering all
of the four northern regions/counties of Sweden (Norrbotten, Västerbotten, Västernorrland,
and Jämtland) using the proposed statistical model.

Finally, the study developed a new heuristic algorithm for bandwidth selection and dis-
covered that spatial covariates such as population age categories, spatial location of events,
and spatial covariates related to bus stops, main road networks, complete road networks,
and densely populated areas play an important role in determining the spatial distribution of
emergency alarm call events. The study also demonstrated that semi-parametric modelling
of the spatial intensity function can handle the spatial variation of emergency alarm call
events, and the estimated spatial intensity function of the events can be used as an input in
designing optimal ambulance dispatching strategies to provide better emergency medical
services for life-threatening health conditions.
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